Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information					
Building number, street name				Unit no.	Lot/con.
Municipality	Postal code	Plan number/ other de	scription	,	•
BRAMPTON				4	
B. Individual who reviews and takes i	responsibility fo	r design activities	$\overline{}$	7	
Name MICHAEL O'ROURKE		Firm HVAC DESIGNS LTD	3. 2		
Street address			Unit no	-	Lot/con.
375 FINLEY AVE			202		N/A
Municipality AJAX	Postal code L1S 2E2	Province ONTARIO	E-mail info@hvacde	esigns.ca	
Telephone number (905) 619-2300	Fax number (905) 619-2375		Cell number		
C. Design activities undertaken by in-	dividual identifie	ed in Section B. [Bui	ilding Code Ta	able 3.5.2.1 OF	Division C]
☐ House	⊠ HVAC	- House		Building Stru	ctural
Small Buildings		Services		Plumbing – F	
☐ Large Buildings☐ Complex Buildings	☐ Detecti	on, Lighting and Po		Plumbing – A On-site Sewa	
Description of designer's work		Model:		On site dewe	age cystems
HEAT LOSS / GAIN CALCULATIONS		Woder.	2304-END		
DUCT SIZING	4	2 2	OPT 2ND		
RESIDENTIAL MECHANICAL VENTILATIO	N DESIGN SUMM	ARY Project	: SUMMER RID	GE ESTATES	
RESIDENTIAL SYSTEM DESIGN per CSA-	F280-12				
D. Declaration of Designer	V %				
IMICHAEL O'ROURKE	int name)	-	_ declare t	hat (choose one	as appropriate):
☐ I review and take responsibility for	or the design work o	on behalf of a firm regist	tered under subs		ato.
Division C, of the Building Code. classes/categories.	i am qualilled and	tile iii ii is registered, ii	i uie	appropria	ale
Individual BCIN: Firm BCIN:	46				
☑ I review and take responsibility for	or the design and a			as an "other	
designer" under subsection 3.2	2.5.01 DI VISIO	n C, of the Building Cod	ie.		
	19669			ITENIOE OO	
Basis for exemption tr	om registration and	d qualification:	O.B.C SEI	11ENCE 3.2.4	<u>I.1 (4)</u>
☐ The design work is exempt Basis for exemption from registra		on and qualification requent	uirements of the	Building Code.	
I certify that:					
The information contained I have submitted this applica		ale is true to the best of edge and consent of the			
June 11, 2024			Make	of Officers	Le.
Date	•		,	Signature o	f Designer
Date				Signature 0	1 Designer

NOTE

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

SITE NAME:	SUMMER F	IDGE E	STATES					OPT 2N	ID							DATE:	Jun-24			١	WINTER	R NATU	JRAL AIR (HANGE RATE 0.29	B HEAT LOSS	S AT °F.	. 74			CSA-F28	0-12
BUILDER:	ROYAL PIN	Е НОМЕ	ES				TYPE:	2504-E	ND			GFA	: 2027			LO#	105280			S	UMMEF	RNATU	JRAL AIR C	HANGE RATE 0.09	7 HEAT GAIN	V ΔT °F.	. 11		PE	RFORMAN	NCE
ROOM USE			MBR			ENS					BED-	-2		BED-3			BED-4			BATH											
EXP. WALL			43			25					23			30			20			0											
CLG. HT.			9			9					9			9			9			9											
	FACTORS																														
GRS.WALL AREA		IN	387			225					207			270			180			0											
GLAZING			LOSS	GAIN		LOSS	GAIN				LOSS			LOSS	GAIN			GAIN		LOSS	GAIN										
NORTH	20.8 12	8 0	0	0	0	0	0				0 0	0	0	0	0	0	0	0	0	0	0										
EAST	20.8 32		0	0	0	0	0				32 665		1 -	727	1152	0	0	0	o	0	0										
SOUTH	20.8 19		0	0	0	0	0				0 0	0	0	0	0	29	595	568	0	0	ő										
WEST	20.8 32		-	856	17	353	560				0 0	-	0	0	0		0	0	0	0	0										
	34.1 13		0		0	ანა 0	0				0 0	0	0	0	0	0	0		0	0	0										
SKYLT.			-	0		-	-				-	-	1 -	-	-		-	0	-		-										
DOORS	19.6 2		0	400	0	0	0				0 0	0	0	0	0	0	0	0	0	0	0										
NET EXPOSED WALL	3.5 0			186	208	721	107				75 607		235		121	151	525	78	0	0	0										
NET EXPOSED BSMT WALL ABOVE GR	3.5 0		0	0	0	0	0				0 0	0	0	0	0	0	0	0	0	0	0										
EXPOSED CLG	1.3 0			218	132	165	74				55 194		110		61	0	0	0	115	144	64										
NO ATTIC EXPOSED CLG	2.7 1		0	0	0	0	0				0 0	0	50	134	60	0	0	0	0	0	0										
EXPOSED FLOOR	2.5 0	4 0	0	0	0	0	0			1	20 299	44	0	0	0	0	0	0	100	249	37										
BASEMENT/CRAWL HEAT LOSS		1	0		1	0		1			0			0			0		1	0				1							
SLAB ON GRADE HEAT LOSS		1	0		1	0		1			0			0			0		1	0				1							
SUBTOTAL HT LOSS			2282			1240					176			1814			1120			393				1							
SUB TOTAL HT GAIN		1		1259	1		740	1				1274	١		1394			646	1		101			1							
LEVEL FACTOR / MULTIPLIER		0.20	0.23		0.20	0.23				0	.20 0.23	3	0.20	0.23		0.20	0.23		0.20	0.23		l		1							
AIR CHANGE HEAT LOSS			527			286					408	:		419			259			91				1							
AIR CHANGE HEAT GAIN				85			50					86			94			44			7										
DUCT LOSS			0			0					217			0			0			48											
DUCT GAIN				0			0					227			0			0			11										
HEAT GAIN PEOPLE	240	2		480	0		0				1	240	1		240	1		240	0		0										
HEAT GAIN APPLIANCES/LIGHTS	-			672			0					672			672			672			0										
TOTAL HT LOSS BTU/H			2809			1526					2390			2233			1379			532	-										
TOTAL HT GAIN x 1.3 BTU/H				3246			1027					3249	,		3120			2083			154										
TOTAL HT GAIN x 1.3 BTU/H				3246			1027					3249)		3120			2083			154										
TOTAL HT GAIN x 1.3 BTU/H				3246		LV/DN	1027		K/B/F			3249		ENS-2			PWD	2083		FOY	154		MUD				WOD)		BAS	<u> </u>
				3246		LV/DN 50	1027		K/B/F 60			3249		ENS-2			PWD 10	2083		FOY 10	154		MUD 14				WOD 33)		BAS 148	
ROOM USE				3246			1027					3249						2083			154)			
ROOM USE EXP. WALL	FACTORS			3246		50	1027		60			3249		11			10	2083		10	154		14				33)		148	
ROOM USE EXP. WALL		N		3246		50	1027		60			3249		11			10	2083		10	154		14				33)		148	
ROOM USE EXP. WALL CLG. HT.		N		3246		50 10 500	1027 GAIN		60 10 600	AIN		3249		11 9			10 10	2083 GAIN		10 10			14 10	N			33 9 297) S GAIN		148 9	AIN
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA				3246	0	50 10 500			60 10 600 LOSS G	SAIN 0		3249	0	11 9 99		0	10 10 100		0	10 10 100			14 10 140	N		0	33 9 297		0	148 9 987 LOSS G	AIN 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING	LOSS GA	8		3246		50 10 500 LOSS 0	GAIN		60 10 600 LOSS G			3249		11 9 99 LOSS	GAIN	0 0	10 10 100 LOSS	GAIN		10 10 100 LOSS	GAIN		14 10 140 LOSS GAI	N		0 0	33 9 297 LOSS	S GAIN	0	148 9 987 LOSS G	
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST	20.8 12 20.8 32	8		3246	0 34	50 10 500 LOSS 0 706	GAIN 0	0	60 10 600 LOSS G 0	0		3249	0 0	11 9 99 LOSS 0	GAIN 0 0		10 10 100 LOSS 0 0	GAIN 0	0	10 10 100 LOSS 0	GAIN 0		14 10 140 LOSS GAI 0 0	N		0 0 0	33 9 297 LOSS 0	S GAIN 0	1 -	148 9 987 LOSS G 0	0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH	LOSS GA 20.8 12	8 9 8		3246	0	50 10 500 LOSS 0	GAIN 0 1119	0 0	60 10 600 LOSS G 0 0	0		3249	0	11 9 99 LOSS 0	GAIN 0	0	10 10 100 LOSS 0	GAIN 0	0	10 10 100 LOSS 0 0	GAIN 0 0	0	14 10 140 LOSS GAI 0 0	N		0	33 9 297 LOSS 0 0	S GAIN 0 0	0	148 9 987 LOSS G 0 0 125 1	0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST	20.8 12 20.8 32 20.8 19 20.8 32	8 9 8 9		3246	0 34 21 0	50 10 500 LOSS 0 706 436	GAIN 0 1119 416 0	0 0 0 73	60 10 600 LOSS G 0 0 0 0	0 0 0		3249	0 0 18	11 9 99 LOSS 0 0 374	GAIN 0 0 357	0 7 0	10 10 100 LOSS 0 0 145	GAIN 0 0 139	0 0 0	10 10 100 LOSS 0 0	GAIN 0 0	0 0 0	14 10 140 LOSS GAI 0 0 0 0	N		0	33 9 297 LOSS 0 0	S GAIN 0 0 0	0	148 9 987 LOSS G. 0 0 125 1	0 0 119
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH	20.8 12 20.8 32 20.8 19	8 9 8 9		3246	0 34 21	50 10 500 LOSS 0 706 436 0	GAIN 0 1119 416	0 0	60 10 600 LOSS G 0 0 0 1517 2	0 0 0 403		3249	0 0 18 0	99 LOSS 0 0 374	GAIN 0 0 357 0	0 7 0 0	10 10 100 LOSS 0 0 145 0	GAIN 0 0 139 0	0 0 0	10 10 100 LOSS 0 0 0	GAIN 0 0 0	0 0 0	14 10 140 LOSS GAI 0 0 0 0 0 0			0 0 3	33 9 297 LOSS 0 0 0	6 GAIN 0 0 0 0 99	0 6 0	148 9 987 LOSS G. 0 0 125 1 0	0 0 119 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2	8 9 8 9 1		3246	0 34 21 0	50 10 500 LOSS 0 706 436 0 0	GAIN 0 1119 416 0 0	0 0 0 73 0	60 10 600 LOSS G 0 0 0 1517 2	0 0 0 403 0		3249	0 0 18 0 0	11 9 99 LOSS 0 0 374 0	GAIN 0 0 357 0 0	0 7 0 0 20	10 100 LOSS 0 0 145 0 0 392	GAIN 0 0 139 0	0 0 0 0 0	10 100 LOSS 0 0 0 0	GAIN 0 0 0 0	0 0 0 0 0	14 10 140 LOSS GAI 0 0 0 0 0 0 0 0			0 0 3 0	33 9 297 LOSS 0 0 0 62 0	6 GAIN 0 0 0 99 0	0 6 0	148 9 987 LOSS G 0 0 125 1 0 0	0 0 119 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13: 19.6 2 3.5 0	8 9 8 9 1		3246	0 34 21 0 0	50 10 500 LOSS 0 706 436 0	GAIN 0 1119 416 0	0 0 0 73 0	60 10 600 LOSS G 0 0 0 1517 2	0 0 0 403 0		3249	0 0 18 0	11 9 99 LOSS 0 0 374 0	GAIN 0 0 357 0	0 7 0 0	10 100 LOSS 0 0 145 0	GAIN 0 0 139 0 0 58	0 0 0 0	10 100 LOSS 0 0 0 0	GAIN 0 0 0 0	0 0 0 0	14 10 140 LOSS GAI 0 0 0 0 0 0 0 0 0 0 392 58			0 0 3 0 0	33 9 297 LOSS 0 0 0 62 0 0	6 GAIN 0 0 0 99 0 0	0 6 0 0	148 9 987 LOSS G 0 0 125 1 0 0 0	0 0 119 0 0 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL	20.8 12 20.8 32 20.8 32 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0	8 9 8 9 1		3246	0 34 21 0 0 0 445	50 10 500 LOSS 0 706 436 0 0 0	GAIN 0 1119 416 0 0 229	0 0 0 73 0 0 527	600 10 6000 LOSS G 0 0 0 1517 2 0 0 1827 3	0 0 0 4403 0 0 271		3249	0 0 18 0 0 0 81	11 9 99 LOSS 0 0 374 0 0 0 281	GAIN 0 0 357 0 0 42	0 7 0 0 20 73 0	10 100 LOSS 0 0 145 0 0 392 253 0	GAIN 0 0 139 0 0 58 38	0 0 0 0 0 0 100	10 100 LOSS 0 0 0 0 0 0 0 347	GAIN 0 0 0 0 0 0 51	0 0 0 0 0 20 120	140 LOSS GAI 0 0 0 0 0 0 0 0 0 0 392 58 416 62 0 0			0 0 3 0 0 0	33 9 297 LOSS 0 0 0 62 0 0 0 685	S GAIN 0 0 0 99 0 0 0	0 6 0 0 0 0 345	148 9 987 LOSS G 0 0 125 1 0 0 0 1212 1	0 0 119 0 0 0 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0	8 9 8 9 91 9 5 5 5 6		3246	0 34 21 0 0 0 445 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0	GAIN 0 1119 416 0 0 229 0	0 0 73 0 0 527 0	600 100 6000 LOSS G 0 0 0 1517 2 0 0 1827 3 0 0 0	0 0 0 2403 0 0 2711 0		3249	0 0 18 0 0 81 0	11 9 99 LOSS 0 0 374 0 0 281 0	GAIN 0 0 357 0 0 42 0 45	0 7 0 0 20 73 0	10 100 LOSS 0 0 145 0 0 392 253 0	GAIN 0 0 139 0 0 58 38 0	0 0 0 0 0 0 0 100 0	10 100 LOSS 0 0 0 0 0 0 0 347 0	GAIN 0 0 0 0 0 0 51 0	0 0 0 0 0 20 120 0	140 LOSS GAIL 0 0 0 0 0 0 0 0 0 0 392 58 416 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 3 0 0 0 195	33 9 297 LOSS 0 0 0 62 0 0 0 685 0	6 GAIN 0 0 0 99 0 0 0	0 6 0 0 0 0 345	987 LOSS G 0 0 125 1 0 0 0 1212 1 0	0 0 119 0 0 0 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALLABOVE GR EXPOSED CLG	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0 2.7 1.	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0	GAIN 0 1119 416 0 0 229	0 0 0 73 0 0 527 0	600 100 6000 LOSS G 0 0 0 1517 2 0 0 1827 3 0 0 0 0	0 0 0 2403 0 0 0 271 0		3249	0 0 18 0 0 81 0 80	11 9 99 LOSS 0 0 374 0 0 281 0	GAIN 0 0 357 0 0 42 0 45 0	0 7 0 0 20 73 0 0	10 100 LOSS 0 0 145 0 0 392 253 0 0	GAIN 0 0 139 0 0 58 38 0 0	0 0 0 0 0 0 100 0	10 100 LOSS 0 0 0 0 0 0 0 347 0 0	GAIN 0 0 0 0 0 0 51	0 0 0 0 0 20 120 0	140 140 LOSS GAI 0 0 0 0 0 0 0 0 0 392 58 416 62 0 0 0 0 0 0			0 0 3 0 0 0	33 9 297 LOSS 0 0 0 62 0 0 0 685 0	S GAIN 0 0 0 99 0 0 0 102 0	0 6 0 0 0 0 345 0	987 LOSS G 0 0 125 1 0 0 0 1212 1 0 0 0	0 0 119 0 0 0 0 180
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0	GAIN 0 1119 416 0 0 229 0	0 0 73 0 0 527 0	600 100 6000 LOSS G 0 0 0 1517 2 0 0 1827 3 0 0 0 0 0 0 0 0 0	0 0 0 2403 0 0 2711 0		3249	0 0 18 0 0 81 0	11 9 99 LOSS 0 0 374 0 0 281 0 100 0	GAIN 0 0 357 0 0 42 0 45	0 7 0 0 20 73 0	10 100 LOSS 0 0 145 0 0 392 253 0	GAIN 0 0 139 0 0 58 38 0	0 0 0 0 0 0 0 100 0	10 10 100 LOSS 0 0 0 0 0 0 0 347 0 0	GAIN 0 0 0 0 0 0 51 0	0 0 0 0 0 20 120 0	140 LOSS GAI 0 0 0 0 0 0 0 0 0 392 58 416 62 0 0 0 0 0 0			0 0 3 0 0 0 195 0	33 9 297 LOSS 0 0 0 62 0 0 0 685 0	6 GAIN 0 0 0 99 0 0 0	0 6 0 0 0 0 345	148 9 987 LOSS G 0 0 125 1 0 0 1212 1 0 0 0	0 0 119 0 0 0 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED SED WALL NET EXPOSED SED NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0 2.7 1.	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0 0	GAIN 0 1119 416 0 0 229 0	0 0 0 73 0 0 527 0	600 100 6000 LOSS G 0 0 0 1517 2 0 0 1827 3 0 0 0 0	0 0 0 2403 0 0 0 271 0		3249	0 0 18 0 0 81 0 80	11 9 99 LOSS 0 0 374 0 0 281 0	GAIN 0 0 357 0 0 42 0 45 0	0 7 0 0 20 73 0 0	10 100 LOSS 0 0 145 0 0 392 253 0 0 0	GAIN 0 0 139 0 0 58 38 0 0	0 0 0 0 0 0 100 0	10 10 100 LOSS 0 0 0 0 0 0 347 0 0 0	GAIN 0 0 0 0 0 0 51 0	0 0 0 0 0 20 120 0	14			0 0 3 0 0 0 195 0	33 9 297 LOSS 0 0 62 0 0 685 0	S GAIN 0 0 0 99 0 0 0 102 0	0 6 0 0 0 0 345 0	987 LOSS G 0 0 125 1 0 0 0 1212 1 0 0 0	0 0 119 0 0 0 0 180
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BAST WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0 2.7 1.	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0	50 10 500 LOSS 0 706 436 0 0 1543 0 0 0	GAIN 0 1119 416 0 0 229 0	0 0 0 73 0 0 527 0 0	60 10 600 LOSS G 0 0 0 1517 2 0 0 1827 :	0 0 0 2403 0 0 0 271 0		3249	0 0 18 0 0 81 0 80	11 9 99 LOSS 0 0 374 0 0 281 0 100 0 0	GAIN 0 0 357 0 0 42 0 45 0	0 7 0 0 20 73 0 0	10 10 100 LOSS 0 0 145 0 0 392 253 0 0 0 0	GAIN 0 0 139 0 0 58 38 0 0	0 0 0 0 0 0 100 0	10 10 100 LOSS 0 0 0 0 0 0 347 0 0 0	GAIN 0 0 0 0 0 0 51 0	0 0 0 0 0 20 120 0	14			0 0 3 0 0 0 195 0	33 9 297 LOSS 0 0 0 62 0 0 685 0 0	S GAIN 0 0 0 99 0 0 0 102 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G. 0 0 125 1 0 0 0 1212 1 0 0 5032	0 0 119 0 0 0 0 180
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED CLG EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0 2.7 1.	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0 0	GAIN 0 11119 416 0 0 0 229 0 0 0	0 0 0 73 0 0 527 0 0	60 10 600 LOSS G 0 0 0 1517 2 0 0 1827 :	0 0 0 0403 0 0 271 0 0		3249	0 0 18 0 0 81 0 80	11 9 99 LOSS 0 0 374 0 0 281 0 100 0	GAIN 0 0 357 0 0 0 42 0 45 0 0	0 7 0 0 20 73 0 0	10 100 LOSS 0 0 145 0 0 392 253 0 0 0	GAIN 0 0 139 0 58 38 0 0 0	0 0 0 0 0 0 100 0	10 10 100 LOSS 0 0 0 0 0 0 347 0 0 0	GAIN 0 0 0 0 0 0 51 0 0 0 0 0	0 0 0 0 0 20 120 0	14			0 0 3 0 0 0 195 0	33 9 297 LOSS 0 0 62 0 0 685 0	6 GAIN 0 0 99 0 0 0 102 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G 0 0 125 1 0 0 1212 1 0 0 5032	0 0 119 0 0 0 0 180 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED EVALL NET EXPOSED CLG EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0 2.7 1.	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0 0 0 0 2686	GAIN 0 1119 416 0 0 229 0	0 0 0 73 0 0 527 0 0	60 10 600 LOSS G 0 0 0 1517 2 0 0 0 0 0 0 0 0 3344	0 0 0 2403 0 0 0 271 0		3249	0 0 18 0 0 0 81 0 80 0	11 9 99 LOSS 0 0 374 0 0 281 0 100 0 0 755	GAIN 0 0 357 0 0 42 0 45 0	0 7 0 0 20 73 0 0 0	10 10 100 LOSS 0 0 145 0 0 392 253 0 0 0 0	GAIN 0 0 139 0 0 58 38 0 0	0 0 0 0 0 0 100 0 0	10 10 100 LOSS 0 0 0 0 0 0 347 0 0 0 0 347	GAIN 0 0 0 0 0 0 51 0	0 0 0 0 0 20 120 0 0	140 LOSS GAI 0 0 0 0 0 0 0 0 0 392 588 416 62 0 0 0 0 0 0 0 0 0 808			0 0 3 0 0 0 195 0	33 9 297 LOSS 0 0 0 62 0 0 685 0 0	S GAIN 0 0 0 99 0 0 0 102 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G 0 0 125 1 0 0 0 1212 1 0 0 5032	0 0 119 0 0 0 0 180
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED EAG EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0 2.7 1.	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0 0	50 10 500 LOSS 0 706 436 0 0 1543 0 0 0 0 2686	GAIN 0 11119 416 0 0 0 229 0 0 0	0 0 0 73 0 0 527 0 0 0	60 10 600 LOSS G 0 0 1517 2 0 0 1827 3 0 0 0 3344	0 0 0 0403 0 0 271 0 0		3249	0 0 18 0 0 81 0 80	11 9 99 LOSS 0 0 374 0 0 281 0 100 0 755	GAIN 0 0 357 0 0 0 42 0 45 0 0	0 7 0 0 20 73 0 0	10 10 100 LOSS 0 0 145 0 0 392 253 0 0 0 0 0 790	GAIN 0 0 139 0 58 38 0 0 0	0 0 0 0 0 0 100 0	10 10 100 LOSS 0 0 0 0 0 0 0 347 0 0 0 0 0 347	GAIN 0 0 0 0 0 0 51 0 0 0 0 0	0 0 0 0 0 20 120 0 0	14 10 140 LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 3 0 0 0 195 0	33 9 297 LOSS 0 0 0 62 0 0 685 0 0	6 GAIN 0 0 99 0 0 0 102 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G 0 0 125 1 0 0 0 1212 1 0 0 5032 6369 2 0.76	0 0 119 0 0 0 0 180 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0 2.7 1.	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0 0 0 0 2686	GAIN 0 1119 416 0 0 0 229 0 0 0	0 0 0 73 0 0 527 0 0 0	60 10 600 LOSS G 0 0 1517 2 0 0 1827 3 0 0 0 0 3344 2 0 0 0 0	0 0 0 2403 0 0 2771 0 0 0		3249	0 0 18 0 0 0 81 0 80 0	11 9 99 LOSS 0 0 374 0 0 281 0 100 0 0 755	GAIN 0 0 357 0 0 0 42 0 45 0 0	0 7 0 0 20 73 0 0 0	10 10 100 LOSS 0 0 145 0 0 392 253 0 0 0 0	GAIN 0 0 139 0 0 58 38 0 0 0	0 0 0 0 0 0 100 0 0	10 10 100 LOSS 0 0 0 0 0 0 347 0 0 0 0 347	GAIN 0 0 0 0 0 51 0 0 0 0 0 51	0 0 0 0 0 20 120 0 0	14			0 0 3 0 0 0 195 0	33 9 297 LOSS 0 0 0 62 0 0 685 0 0	6 GAIN 0 0 99 0 0 0 102 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G 0 0 125 1 0 0 0 1212 1 0 0 5032 6369 2 0.76 5411	0 0 119 0 0 0 0 0 0 0 80 0 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED CLG EXPOSED CLG EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0 2.7 1.	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0 0 0 0 2686	GAIN 0 11119 416 0 0 0 229 0 0 0	0 0 0 73 0 0 527 0 0 0	60 10 600 LOSS G 0 0 0 1517 2 0 0 0 0 0 0 0 3344 2 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0403 0 0 271 0 0		3249	0 0 18 0 0 0 81 0 80 0	111 9 999 LOSS 0 0 374 0 0 0 281 0 0 0 0 755 0 0.23 174	GAIN 0 0 357 0 0 0 42 0 45 0 0	0 7 0 0 20 73 0 0 0	10 10 100 LOSS 0 0 145 0 0 392 253 0 0 0 0 0 790	GAIN 0 0 139 0 58 38 0 0 0	0 0 0 0 0 0 100 0 0	10 10 100 LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GAIN 0 0 0 0 0 0 51 0 0 0 0 0	0 0 0 0 0 20 120 0 0	14 10 140 LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 3 0 0 0 195 0	33 9 297 LOSS 0 0 0 62 0 0 685 0 0	6 GAIN 0 0 99 0 0 0 102 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G 0 0 125 1 0 0 0 1212 1 0 0 5032 6369 2 0.76 5411	0 0 119 0 0 0 0 180 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BANT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GOSS AIR CHANGE HEAT GOSS AIR CHANGE HEAT GAIN DUCT LOSS	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0 2.7 1.	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0 0	50 10 500 LOSS 0 706 436 0 0 1543 0 0 0 0 2686	GAIN 0 11119 416 0 0 0 229 0 0 0 1764	0 0 0 73 0 0 527 0 0 0	60 10 600 LOSS G 0 0 1517 2 0 0 1827 3 0 0 0 0 3344 2 0 0 0 0	0 0 0 0 4403 0 0 2771 0 0 0 0		3249	0 0 18 0 0 0 81 0 80 0	11 9 99 LOSS 0 0 374 0 0 281 0 100 0 755	GAIN 0 0 357 0 0 42 0 445 0 0	0 7 0 0 20 73 0 0 0	10 10 100 LOSS 0 0 145 0 0 392 253 0 0 0 0 0 790	GAIN 0 0 139 0 0 588 0 0 0 0 0 0 166 166 166 166 166 166 166	0 0 0 0 0 0 100 0 0	10 10 100 LOSS 0 0 0 0 0 0 0 347 0 0 0 0 0 347	GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 20 120 0 0	14			0 0 3 0 0 0 195 0	33 9 297 LOSS 0 0 0 62 0 0 685 0 0	6 GAIN 0 0 99 0 0 0 102 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G 0 0 125 1 0 0 0 1212 1 0 0 5032 6369 2 0.76 5411 :	0 0 119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED END EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SUBTOTAL HT LOSS SUBTOTAL HT GAIN LEVEL FACTOR I MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS DUCT GAIN	LOSS GA 20.8 12 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 2.7 1. 2.5 0	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0 0 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0 0 0 0 2686	GAIN 0 1 119 416 0 0 229 0 0 0 0	0 0 0 73 0 0 527 0 0 0	60 10 600 LOSS G 0 0 0 1517 2 0 0 0 0 0 0 0 3344 2 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4403 0 0 0 2771 0 0 0 0 0		3249	0 0 18 0 0 0 81 1 0 0 0 0	111 9 999 LOSS 0 0 374 0 0 0 281 0 0 0 0 755 0 0.23 174	GAIN 0 0 357 0 0 0 42 0 443 30 0	0 7 0 0 20 73 0 0 0	10 10 100 LOSS 0 0 145 0 0 392 253 0 0 0 0 0 790	GAIN 0 0 139 0 0 58 38 0 0 0	0 0 0 0 0 0 100 0 0 0	10 10 100 LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 20 120 0 0	14			0 0 3 0 0 0 195 0 0	33 9 297 LOSS 0 0 0 62 0 0 685 0 0	S GAIN 0 0 0 999 0 0 0 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G 0 0 125 1 0 0 0 1212 1 0 0 5032 6369 2 0.76 5411	0 0 119 0 0 0 0 0 180 0 0 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BAME WALL ABOVE GR EXPOSED CLG EXPOSED CLG EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SUB TOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS OUT GAIN DUCT GAIN HEAT GAIN PEOPLE	20.8 12 20.8 32 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 1.3 0 2.7 1.	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0 0 0 0 2686	GAIN 0 11119 416 0 0 0 229 0 0 0 1764	0 0 0 73 0 0 527 0 0 0	60 10 600 LOSS G 0 0 1517 2 0 0 1827 : 0 0 0 0 0 0 33344 2 0 0 0 0 1 1361 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 4403 0 0 0 2711 0 0 0 0 0		3249	0 0 18 0 0 0 81 0 80 0	111 9 999 LOSS 0 0 374 0 0 0 281 0 0 0 0 755 0 0.23 174	GAIN 0 0 357 0 0 42 0 445 0 0	0 7 0 0 20 73 0 0 0	10 10 100 LOSS 0 0 145 0 0 392 253 0 0 0 0 0 790	GAIN 0 0 139 0 0 588 0 0 0 0 0 0 166 166 166 166 166 166 166	0 0 0 0 0 0 100 0 0	10 10 100 LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 20 120 0 0	14			0 0 3 0 0 0 195 0	33 9 297 LOSS 0 0 0 62 0 0 685 0 0	6 GAIN 0 0 99 0 0 0 102 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G 0 125 1 0 0 0 1212 1 0 0 0 5032 6369 2 0.76 5411	0 0 119 0 0 0 0 0 180 0 0 0 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED CLG EXPOSED CLG EXPOSED CLG EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS OUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS	LOSS GA 20.8 12 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 2.7 1. 2.5 0	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0 0 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GAIN 0 1 119 416 0 0 229 0 0 0 0	0 0 0 73 0 0 527 0 0 0	60 10 10 600 LOSS G 0 0 0 1517 2 0 0 1827 2 0 0 0 0 0 33344 2 2 0.41 1361 0 0	0 0 0 4403 0 0 0 2771 0 0 0 0 0		3249	0 0 18 0 0 0 81 1 0 0 0 0	111 9 99 LOSS 0 0 0 374 0 0 0 281 0 100 0 0 0 755 0 0.23 174 0	GAIN 0 0 357 0 0 0 42 0 443 30 0	0 7 0 0 20 73 0 0 0	10 10 100 LOSS 0 0 145 0 0 392 253 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GAIN 0 0 139 0 0 588 0 0 0 0 0 0 166 166 166 166 166 166 166	0 0 0 0 0 0 100 0 0 0	10 10 100 LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 20 120 0 0 0	14			0 0 3 0 0 0 195 0 0	33 9 297 LOSS 0 0 0 0 62 0 0 0 685 0 0 0 747	S GAIN 0 0 0 999 0 0 0 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G 0 0 125 1 0 0 0 1212 1 0 0 5032 6369 2 0.76 5411 0	0 0 119 0 0 0 0 0 180 0 0 0
ROOM USE EXP. WALL CLG. HT. GRS.WALL AREA GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BAME WALL ABOVE GR EXPOSED CLG EXPOSED CLG EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SUB TOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS OUT GAIN DUCT GAIN HEAT GAIN PEOPLE	LOSS GA 20.8 12 20.8 19 20.8 32 34.1 13 19.6 2 3.5 0 3.5 0 2.7 1. 2.5 0	8 9 8 9 91 9 5 5 5 6 6 2 2		3246	0 34 21 0 0 0 445 0 0 0	50 10 500 LOSS 0 706 436 0 0 0 1543 0 0 0 0 2686	GAIN 0 1119 416 0 0 0 0 0 0 1764 1119 0 0 0	0 0 0 73 0 0 527 0 0 0	60 10 10 600 LOSS G 0 0 0 1517 2 0 0 1827 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 4403 0 0 0 2711 0 0 0 0 0		3249	0 0 18 0 0 0 81 1 0 0 0 0	111 9 999 LOSS 0 0 374 0 0 0 281 0 0 0 0 755 0 0.23 174	GAIN 0 0 357 0 0 0 42 0 443 30 0	0 7 0 0 20 73 0 0 0	10 10 100 LOSS 0 0 145 0 0 392 253 0 0 0 0 0 790	GAIN 0 0 139 0 0 588 0 0 0 0 0 0 166 166 166 166 166 166 166	0 0 0 0 0 0 100 0 0 0	10 10 100 LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 20 120 0 0 0	14			0 0 3 0 0 0 195 0 0	33 9 297 LOSS 0 0 0 62 0 0 685 0 0	6 GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 6 0 0 0 0 345 0	148 9 987 LOSS G 0 0 125 1 0 0 0 1212 1 0 0 5032 6369 2 0.76 5411 0	0 0 119 0 0 0 0 0 180 0 0 0 0

TOTAL HEAT GAIN BTU/H:

23766 TONS: 1.98 LOSS DUE TO VENTILATION LOAD BTU/H: 1593

STRUCTURAL HEAT LOSS: 35546

TOTAL COMBINED HEAT LOSS BTU/H: 37139

Mahal Ofounde. INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

			R RIDGE		S				OPT 2ND 2504-ENI	D			DATE:	Jun-24			GFA:	2027	LO#	105280				
HEATING CFM TOTAL HEAT LOSS AIR FLOW RATE CFM	21.66		TOTAL H AIR FLOW F		23,530 32.72	i	а	furı a/c coil vailable	pressure nace filter pressure pressure r s/a & r/a	0.6 0.00 0.26 0.34	FACTOR	RY INSTA	LLED			59		M1410 SPEED LOW	0	₹	OUTPUT	AFUE = (BTU/H) = (BTU/H) =	40,000 39,000	
RUN COUNT S/A R/A R/A All S/A diffusers 4"x10" unlenders of the second o				1st 7 2 out.	Bas 3 1		max	s/a dif p	essure s/a ress. loss essure s/a	0.18 0.02 0.16		r/a grille pre usted pre		0.16 0.02 0.14			N	EDLOW MEDIUM M HIGH HIGH	545 770 925 0	Т		GN CFM = CFM @ . URE RISE	6 " E.S.P.	- _ °F
RUN # ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK	1 MBR 1.40 30 1.62 53 0.17 52 220 272 0.06 5 220 389 3X10 C	2 ENS 1.53 33 1.03 34 0.17 44 170 214 0.08 4 379 390 3X10 A	3 BED-2 1.19 26 1.62 53 0.17 48 140 188 0.09 5 191 389 3X10 C	4 BED-2 1.19 26 1.62 53 0.17 45 120 165 0.1 5 191 389 3X10 C	5 BED-3 1.12 24 1.56 51 0.17 66 210 276 0.06 5 176 374 3X10 B	6 BED-3 1.12 24 1.56 51 0.17 62 210 272 0.06 5 176 374 3X10 B	7 BATH 0.53 12 0.15 5 0.17 27 140 167 0.1 4 138 57 3X10 C	8 BED-4 1.38 30 2.08 68 0.17 29 180 209 0.08 6 153 347 4X10 C		10 MBR 1.40 30 1.62 53 0.17 44 210 254 0.07 5 220 389 3X10 C		12 LV/DN 1.89 41 1.66 54 0.17 41 120 161 0.1 5 301 396 3X10 B	13 LV/DN 1.89 41 1.66 54 0.17 45 120 165 0.1 5 301 396 3X10 B	14 K/B/F 2.35 51 2.29 75 0.17 32 100 132 0.13 5 374 551 3X10 A	15 K/B/F 2.35 51 2.29 75 0.17 22 110 132 0.13 5 374 551 3X10 A		17- ENS-2-2 0.93- 20- 0.62- 20- 0.17- 48- 190- 238- 0.07- 4- 229- 229- 3X10- B	18 PWD 1.11 24 0.33 11 0.17 20 120 140 0.12 4 275 126 3X10 C	19 FOY 0.49 11 0.07 2 0.17 38 110 148 0.11 4 126 23 3X10 B	20 MUD 1.14 25 0.17 5 0.17 12 150 162 0.1 4 287 57 3X10 C	21 BAS 4.18 90 0.52 17 0.16 27 90 117 0.13 6 459 87 4X10 A	22 BAS 4.18 90 0.52 17 0.16 120 136 0.12 6 459 87 4X10 A	23 BAS 4.18 90 0.52 17 0.16 34 130 164 0.1 6 459 87 4X10 B	
RUN# ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK																								
SUPPLY AIR TRUNK SIZE	TDUNK	074710	POLINE	DEGT			VELOOPY			TRUNK	OTATIO	DOLIND	DEOT			VELOCITY	RETURN A			DOLIND	DEOT			VELOOFT
TRUNK A TRUNK B TRUNK C TRUNK D TRUNK F	TRUNK CFM 315 251 454 0 0	STATIC PRESS. 0.08 0.06 0.06 0.00 0.00 0.00	9.1 9.1 9.1.2 0	10 12 16 0 0	x x x x x	8 8 8 8 8	VELOCITY (ft/min) 567 377 511 0 0		TRUNK G TRUNK H TRUNK I TRUNK J TRUNK K TRUNK L	TRUNK	STATIC PRESS. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROUND DUCT 0 0 0 0 0 0	DUCT 0 0 0 0 0 0 0	x x x x x	8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0	TRUNK O TRUNK P TRUNK Q TRUNK R TRUNK S TRUNK T TRUNK U TRUNK V	TRUNK CFM 0 0 0 0 0 0 0 0 0	PRESS. 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	ROUND DUCT 0 0 0 0 0 0 0 0 0 0	DUCT 0 0 0 0 0 0 0 0 0 0 0	x x x x x x	8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0 0 0 0 0
RETURN AIR # FLOOR AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE ROUND DUCT SIZE INLET GRILL SIZE	1 2 91 0.14 36 155 191 0.07 5.9 8 X 14	2 75 0.14 64 205 269 0.05 6 8 X	3 2 72 0.14 70 245 315 0.05 5.9 8 X	4 2 70 0.14 58 260 318 0.05 5.8 8 X	5 1 152 0.14 36 155 191 0.07 7 8 X 14	6 1 175 0.14 49 160 209 0.07 7.5 8 X 14	0 0.14 1 0 1 14.32 0 0 X	0 0.14 1 0 1 14.32 0 0 X 0	0 0.14 1 0 1 14.32 0 0 X	0 0.14 1 0 1 14.32 0 0 X	0 0.14 1 0 1 14.32 0 0 X	0 0.14 1 0 1 14.32 0 0 X	0 0.14 1 0 1 14.32 0 0 X 0	0 0.14 1 0 1 14.32 0 0 X 0	0 0.14 1 0 1 14.32 0 0 X	BR B 135 0.14 14 135 149 0.10 6 8 X 14	TRUNK V TRUNK X TRUNK X TRUNK Y TRUNK Z DROP	0 770 392 175 770	0.05 0.05 0.05 0.05 0.05 0.05	0 14.3 11.1 8.2 14.3	0 24 14 8 24	x x x x x	8 8 8 8 10	0 578 504 394 462

TYPE: 2504-END LO# SITE NAME: SUMMER RIDGE ESTATES

105280 OPT 2ND RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL VENTILATION CAPACITY	9.32.3.5.
a) Direct vent (sealed combustion) only		Total Ventilation Capacity137.8	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Ventil. Capacity 79.5	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Supplemental Capacity 58.3	cfm
d) Solid Fuel (including fireplaces)			
e) No Combustion Appliances		PRINCIPAL EXHAUST FAN CAPACITY Model: VANEE V150H Location: [6]	BSMT
HEATING SYSTEM			HVI Approved
✓ Forced Air Non Forced Air		PRINCIPAL EXHAUST HEAT LOSS CALCULATION	
		CFM ΔT °F FACTOR 79.5 CFM X 74.F X 1.08 X	% LOSS 0.25
Electric Space Heat			
		SUPPLEMENTAL FANS BY INSTALLING CONTRACTO Location Model cfm HVI	Sones
HOUSE TYPE	9.32.1(2)	ENS BY INSTALLING CONTRACTOR 50 ✓ BATH BY INSTALLING CONTRACTOR 50 ✓	3.5
✓ I Type a) or b) appliance only, no solid fuel			3.5
II Type I except with solid fuel (including fireplaces)	PWD BY INSTALLING CONTRACTOR 50 ✓	3.5
	´	HEAT RECOVERY VENTILATOR	9.32.3.11.
III Any Type c) appliance		Model: VANEE V150H 150 cfm high 35	cfm low
IV Type I, or II with electric space heat		75 % O	LD /I A
Other: Type I, II or IV no forced air		75 % Sensible Efficiency	HVI Approved
		LOCATION OF INSTALLATION	
SYSTEM DESIGN OPTIONS	O.N.H.W.P.	Lot: Concession	
1 Exhaust only/Forced Air System		Edt. Concession	
2 HRV with Ducting/Forced Air System		Township Plan:	
		Address	
3 HRV Simplified/connected to forced air system		Roll # Building Permit #	
4 HRV with Ducting/non forced air system		BUILDER: ROYAL PINE HOMES	
Part 6 Design		Name:	
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:	
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	cfm	City:	
Other Bedrooms <u>3</u> @ 10.6 cfm <u>31.8</u>	cfm	Telephone #: Fax #:	
Kitchen & Bathrooms 5 @ 10.6 cfm 53	cfm	INSTALLING CONTRACTOR	
Other Rooms <u>1</u> @ 10.6 cfm <u>10.6</u>	cfm	Name:	
Table 9.32.3.A. TOTAL <u>137.8</u>	cfm	Address:	
		City:	
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	Telephone #: Fax #:	
1 Bedroom 31.8	cfm	DESIGNER CERTIFICATION	
2 Bedroom 47.7	cfm	I hereby certify that this ventilation system has been designed in accordance with the Ontario Building Code.	
3 Bedroom 63.6	cfm	In accordance with the Ontario Building Code. Name: HVAC Designs Ltd.	
4 Bedroom 79.5	cfm	Signature: Mehand OffenLe.	
5 Bedroom 95.4	cfm	HRAI# 001820	
TOTAL 79.5 cfm	IEIEE W	Date: June-24	
I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUAL	IFIED IN THE AP	PPROPRIATE CATEGORY AS AN "OTHER DESIGNER" UNDER DIVISION C, 3.2.5 OF THE BUILDING CO	JUÉ.

				80-12 Residential Hea						
			Form	iula Sheet (For Air Lea	ikage / Ventiliation C	alculation)				
LO#: 10)5280	Model: 2504-END		Builde	r: ROYAL PINE HOMES				Date:	5/11/2024
		Volume Calculatio	n				Air Change & Delt	a T Data		
				1		•			_	
use Volume	-1 (0.3)	T					ATURAL AIR CHANG		0.298	
Level	Floor Area (ft²)	Floor Height (ft)	Volume (ft³)			SUMMER N	ATURAL AIR CHAN	GE RATE	0.097	
Bsmt First	914 914	9	8226 9140							
Second	1113	9	10017	-			Design Te	mperature Diff	oronco	
Third	0	9	0	-			Tin °C	Tout °C	ΔT °C	ΔT°F
Fourth	0	9	0	1		Winter DTDh	22	-19	41	74
		Total:	27,383.0 ft ³			Summer DTDc	24	30	6	11
		Total:	775.4 m³						1	
				-						
	5.2.3	3.1 Heat Loss due to Ai	r Leakage			6.2.6	Sensible Gain due	to Air Leakage		
		V.					V.			
	$HL_{airb} =$	$LR_{airh} \times \frac{V_b}{3.6} \times L$	$DTD_h \times 1.2$		Н	$IG_{salb} = LR_{airc}$	$\times \frac{v_b}{2c} \times DTD_c$	× 1.2		
0.298		_ x <u>41 °C</u>		= 3172 W	= 0.097		3.6 x 6°C		_ Г	153 W
0.236	X 213.39	_		- 31/2 W	0.097	X 213.39	_ ^	X	L	133 W
				= 10822 Btu/h	Ţ 				= Γ	522 Btu/h
				- 10022 Dta/11					- L	JZZ Dtu/II
	5.2.3.2 He	at Loss due to Mechan	ical Ventilation			6.2.7 Se	ensible heat Gain d	ue to Ventilatio	n	
	$HL_{vairb} =$	$PVC \times DTD_h \times 1$	$0.08 \times (1 - E)$		HL_1	$_{vairb} = PVC \times L$	$OTD_h \times 1.08 \times$	(1 - E)		
80 CFM	x74 °F	x 1.08	x 0.25	= 1593 Btu/h	80 CFM	x <u>11 °F</u>	x 1.08	x0.25	= [236 Btu/h
				- •					-	
			5.2.3.3 Calcula	tion of Air Change Heat	Loss for Each Room (Floo	or Multiplier Section)			
		HL_{a}	$t_{rr} = Level Fact$	$or \times HL_{airbv} \times \{(H_{airbv}) \times \{$	$IL_{agcr} + HL_{bgcr}) \div$	$(HL_{agclevel} + HI$	$\mathcal{L}_{bgclevel})\}$			
		Level	Level Factor (LF)	HLairve Air Leakage + Ventilation Heat Loss (Btu/h)	Level Conductive Heat Loss: (HL _{clevel})	Air Leakage Heat Lo HLairbv /	• •			
		1	0.5	15.87.11	7,116	0.7	60			
		2	0.3	1	7,974	0.4	07	•		
		3	0.2	10,822	9,368	0.2	31			
		4	0		0	0.0	00		Michael O'Ro	urke
		5	0		0	0.0	00	•	BCIN# 19669	
		*HLairbv = A	ir leakage heat loss -	+ ventilation heat loss						1 Oxambe
									10001	1 /11//

HEAT LOSS AND GAIN SUMMARY SHEET

			.00071110 07	WITT STILL!	
MODEL:	2504-END		OPT 2ND	BUILDER: ROYAL PINE HOME	S
SFQT:	2027	LO#	105280	SITE: SUMMER RIDGE ES	TATES
DESIGN A	ASSUMPTIONS				
HEATING			°F	COOLING	°F
	R DESIGN TEMP.		-2	OUTDOOR DESIGN TEMP.	86
INDOOR I	DESIGN TEMP.		72	INDOOR DESIGN TEMP. (MAX 75°F)	75
DI III DINIG				WINDOW SHGC	0.60
BUILDING	DAIA				
ATTACHM	ΛΕΝΙΤ·	ı	DETACHED	# OF STORIES (+BASEMENT):	3
ATTACHIV	VICINI.	'	DETACHED	# OF STORIES (+BASEIVIEINT).	3
FRONT FA	ACES:		EAST	ASSUMED (Y/N):	Υ
	.020.		27.10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·
AIR CHAN	IGES PER HOUR:		3.00	ASSUMED (Y/N):	Υ
AIR TIGHT	TNESS CATEGORY:		TIGHT	ASSUMED (Y/N):	Υ
WIND EX	POSURE:	S	HELTERED	ASSUMED (Y/N):	Υ
HOUSE V	OLUME (ft³):		27383.0	ASSUMED (Y/N):	Υ
					_
INTERNAL	L SHADING:	BLINDS/	CURTAINS	ASSUMED OCCUPANTS:	5
INTERIOR	LICUTING LOAD (Dt.)	/h /f+2\.	1.60	DC DDUCHLESS MOTOR (V/AL).	V
INTERIOR	LIGHTING LOAD (Btu/	n/1t-):	1.60	DC BRUSHLESS MOTOR (Y/N):	Υ
EOLINDAT	TION CONFIGURATION		BCIN 1	DEPTH BELOW GRADE:	6.0 ft
TOUNDAT	HON CONFIGURATION		PCIIA_T	DEI III BELOW GRADE.	0.010
LENGTH:	51.0 ft	WIDTH:	23.0 ft	EXPOSED PERIMETER:	148.0 ft
	32.0		20.0	L GOLD I LIMITE I LIM	± 10.0 10

2012 OBC - COMPLIANCE PACKAGE		
	Compliance	Package
Component	PERFOR	MANCE
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22+1.5	21.40
Basement Walls Minimum RSI (R)-Value	20	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	1.6	-
Skylights Maximum U-Value	2.6	-
Space Heating Equipment Minimum AFUE	96%	-
HRV/ERV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	0.9	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

We	eather Sta	tion Description									
Province:	Ontario	•									
Region:	Brampto	n									
	Site D	escription									
Soil Conductivity:	Normal o	conductivity: dry sand, loam, clay									
Water Table:	Normal (7-10 m, 23-33 ft)									
Foundation Dimensions											
Floor Length (m):	15.5										
Floor Width (m):	7.0										
Exposed Perimeter (m):	0.0										
Wall Height (m):	2.7										
Depth Below Grade (m):	1.83	Insulation Configuration									
Window Area (m²):	0.8										
Door Area (m²):	0.0										
	Radi	ant Slab									
Heated Fraction of the Slab:	0										
Fluid Temperature (°C):	33										
	Desig	n Months									
Heating Month	1										
	Founda	tion Loads									
Heating Load (Watts):		1474									

TYPE: 2504-END **LO#** 105280

nu 1621.

OPT 2ND

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather S	Station Description
Province:	Ontario
Region:	Brampton
Weather Station Location:	Open flat terrain, grass
Anemometer height (m):	10
	cal Shielding
Building Site:	Suburban, forest
Walls:	Heavy
Flue:	Heavy
Highest Ceiling Height (m):	7.62
Buildin	ng Configuration
Туре:	Detached
Number of Stories:	Two
Foundation:	Full
House Volume (m³):	775.4
Air Leak	kage/Ventilation
Air Tightness Type:	Attached (3.0 ACH)
Custom BDT Data:	ELA @ 10 Pa. 868.6 cm ²
	3.00 ACH @ 50 Pa
Mechanical Ventilation (L/s):	Total Supply Total Exhaust
	37.5 37.5
	Flue Size
Flue #:	#1 #2 #3 #4
Diameter (mm):	0 0 0 0
Natural	Infiltration Rates
Heating Air Leakage Rate (ACH	н/н): 0.298
Cooling Air Leakage Rate (ACH	I/H): 0.097

TYPE: 2504-END OPT 2ND

LO# 105280

		3.								
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE	N	RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD. © AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING

I Michael O'Rourke have reviewed and take responsibility for the design work and am qualified under division C,3.2.5 of the building

FAN SPEED

Michael O'Kourhe Michael O'Rourke BCIN # 19669 HVAC Designs Ltd.

SB-12 PERFORMANCE

BASEMENT

ROYAL PINE HOMES

Project Name

SUMMER RIDGE ESTATES BRAMPTON, ONTARIO

OPT 2ND 2504-END

2027 sqft

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

web. www.nvacdesigns.ca
Specializing in Residential Mechanical Design Services
on to comply with the latest Ontario Building Code. All s

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

HEAT LOSS	37139	BTU/H	# OF RUNS	S/A	R/A	FANS	Sheet Title	,
UNIT	DATA		3RD FLOOR				В	١.
MAKE CAR	RIER		2ND FLOOR		4	3		ŀ
MODEL	401444	10	1ST FLOOR	7	2	2		
59SC6A04	+UIVI 14	10	131 FLOOR	′				
INPUT 4	0	MBTU/H	BASEMENT	3	1	0	Date	
OUTPUT		MBTU/H	ALL S/A DIFFU:	SERS	4 "x10)"	Scale	
_	9		UNLESS NOTE	D OT	HERW	ISE		1
COOLING		TONG	ON LAYOUT. A	LL S/A	RUN	S 5"Ø		ı

Date JUNE/2024
Scale 3/16" = 1'-0"

BCIN# 19669

2.0 TONS ON LAYOUT. ALL S/A RUNS 5"Ø UNLESS NOTED OTHERWISE ON LAYOUT. ALL S/A RUNS 5"Ø UNLESS NOTED OTHERWISE ON LAYOUT. UNDERCUT DOORS 1" min. FOR R/A

LO# 105280

PARTIAL GROUND FLOOR PLAN ELEV 'A' (W/ OPT. KITCHEN LAYOUT) (ELEV. 'B' SIMILAR)

GROUND FLOOR PLAN ELEV 'A'

		3.								
SYMBOL	DESCRIPTION	DESCRIPTION	2.							
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u> </u>	30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	REDUCER		REVISIONS						

I Michael O'Rourke have reviewed and take responsibility for the design work and am qualified under division C,3.2.5 of the building

Michael Offmuche SB-12 PERFORMANCE Michael O'Rourke BCIN # 19669 HVAC Designs Ltd.

ROYAL PINE HOMES

Project Name

SUMMER RIDGE ESTATES BRAMPTON, ONTARIO

OPT 2ND 2504-END

2027 sqft

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR **HEATING LAYOUT**

JUNE/2024 3/16" = 1'-0"

BCIN# 19669 105280 LO#

HVAC LEGEND 2. DESCRIPTION DESCRIPTION DESCRIPTION SYMBOL SYMBOL DESCRIPTION SYMBOL SYMBOL SUPPLY AIR GRILLE 14"x8" RETURN AIR GRILLE 6" SUPPLY AIR BOOT ABOVE 1. - -RETURN AIR STACK ABOVE 30"x8" RETURN AIR GRILLE SUPPLY AIR GRILLE 6" BOOT 0 SUPPLY AIR STACK FROM 2nd FLOOR Description $>\!<$ Date RETURN AIR STACK 2nd FLOOR

SUPPLY AIR BOOT ABOVE FRA- FLOOR RETURN AIR GRILLE REDUCER **REVISIONS** Ø 6" SUPPLY AIR STACK 2nd FLOOR

EATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING

I Michael O'Rourke have reviewed and take responsibility for the design work and am qualified under division C,3.2.5 of the building code.

Michael Ofourhe Michael O'Rourke BCIN # 19669 HVAC Designs Ltd.

SB-12 PERFORMANCE

ROYAL PINE HOMES

Project Name

SUMMER RIDGE ESTATES BRAMPTON, ONTARIO

OPT 2ND 2504-END

2027 sqft

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR HEATING LAYOUT

JUNE/2024 3/16" = 1'-0"

BCIN# 19669 105280 LO#