Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information			_	
Building number, street name			Unit no.	Lot/con.
Municipality	Postal code	Plan number/ other de	escription	I
BRAMPTON				
B. Individual who reviews and tak	es responsibility	for design activities	0 40	
Name	•	Firm	22	
MICHAEL O'ROURKE		HVAC DESIGNS LTD		To
Street address 375 FINLEY AVE		X	Unit no. 202	Lot/con. N/A
Municipality	Postal code	Province	E-mail	IN/A
AJAX	L1S 2E2	ONTARIO CO	info@hvacdesigns.ca	
Telephone number	Fax number		Cell number	
(905) 619-2300	(905) 619-237	5		
C. Design activities undertaken by	y individual ident	ified in Section B. (Bu	ilding Code Table 3.5.2.1	OF Division C]
☐ House		C – House	☐ Building St	ructural
☐ Small Buildings	Build	ling Services	Plumbing -	- House
☐ Large Buildings		ction, Lighting and Po		- All Buildings
Complex Buildings	☐ Fire	Protection		wage Systems
Description of designer's work HEAT LOSS / GAIN CALCULATIONS		Model:	2502	
DUCT SIZING		7,		
RESIDENTIAL MECHANICAL VENTILA	TION DESIGN SUM	MMARY Project	: SUMMER RIDGE ESTATES	
RESIDENTIAL SYSTEM DESIGN per C	SA-F280-12	Troject	. SOMMER RIDGE ESTATES	
D. Declaration of Designer	~ ~			
I MICHAEL O'ROURKE		7	declare that (choose or	ne as appropriate):
	(print name)			
 I review and take responsibilities 	ty for the design wo	k on behalf of a firm regis	tered under subsection 3.2.4.o	
Division C, of the Building Co classes/categories.	de. I am qualified, a	ind the firm is registered, in	n the approp	priate
diasses/categories.				
Individual BCIN:	8 83			
Firm BCIN:	~ ```			
I review and take responsibility	ty for the design and	d am qualified in the appro	priate category as an "other	
designer" under subsection	0.7	sion C, of the Building Coo	de.	
Individual BCIN:	19669			
Basis for exemption	on from registration	and qualification:	O.B.C SENTENCE 3.:	2.4.1 (4)
☐ The design work is exempt			uirements of the Building Code).
Basis for exemption from reg	istration and qualific	ation:		
I certify that:				
4 The information contains	علم منطلا سن المن	- d. d. :- two - t- th- btt	many less and a disease	
The information containe I have submitted this app		edule is true to the best of owledge and consent of the		
''		J		0.
June 10, 2024			Michael Oxov	nhe.
Date				e of Designer
Date			Digilature	of Designer

NOTE

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

SITE NAME: BUILDER:								TYPE:	2502				GFA:	2034			DATE: Jun-24 LO# 105276				R NATURAL AIR CH R NATURAL AIR CH		HEAT LOSS A				SA-F280-12
ROOM USE	I	1 1142	IOIILC	MBR			ENS		1			BED-2		2004	BED-	ì.		1	BATH	CHINE	I I I I I I I I I I I I I I I I I I I	ANOLINATE 0.007	TIERT GAINT		••		CHARACE
EXP. WALL				37			7					24			19	•			8		1						
CLG. HT.				9			9					9			9				9								
CEG. III.	FACTO	De		9			9					9			9				9								
GRS.WALL AREA				333			63					216			171				72								
	LUSS	GAIN			CAIN			CAIN					CAIN			CAIN				CAIN							
GLAZING NORTH	20.8	12.8	0	LOSS 0	GAIN 0	0	LOSS 0	0			0		GAIN 0	0	0	GAIN 0		0	LOSS 0	0							
EAST		32.9	0	0	0	0	0	0			2		757	48	997	1580		0	0	0							
SOUTH		19.8	0	0	0	0	0	0			0		0	0	997	1560		0	0	0							
WEST		32.9	26	540	856	17	353	560			0		0	0	0	0		0	0	0							
SKYLT.		132.1	0	0	0	0	0	0			0		0	0	0	0		0	0	0							
DOORS	-	2.9	0	0	0	0	0	0			0		0	ő	0	0		0	0	0							
NET EXPOSED WALL		0.5	307	1064	158	46	159	24			19		99	123	426	63		72	250	37							
NET EXPOSED BSMT WALL ABOVE GR	3.5	0.5	0	0	0	0	0	0			0		0	0	0	0		0	0	0							
EXPOSED CLG	1.3	0.6	336	421	187	125	157	70			17		98	136	170	76		95	119	53							
NO ATTIC EXPOSED CLG		1.2	0	0	0	0	0	0			4		54	45	121	54		0	0	0	ĺ						
EXPOSED FLOOR		0.4	0	0	0	0	0	0			10		39	0	0	0		70	174	26							
BASEMENT/CRAWL HEAT LOSS			•	0	-	_	0	•			."	0			0	٠		1	0		ĺ						
SLAB ON GRADE HEAT LOSS				0		l	0					0		1	0				0		ĺ						
SUBTOTAL HT LOSS				2026		l	669					1749		1	1715				543		1						
SUB TOTAL HT GAIN					1201	l		653				-	1046	1	-	1772				116	ĺ						
LEVEL FACTOR / MULTIPLIER			0.20	0.33		0.20	0.33				0.2	0.33		0.20	0.33			0.20	0.33	-	1						
AIR CHANGE HEAT LOSS				673			222					581			570				180								
AIR CHANGE HEAT GAIN					89			48					77			131				9							
DUCT LOSS				0			0					233			0				72								
DUCT GAIN					0			0					234			0				12							
HEAT GAIN PEOPLE	240		2		480	0		0			1		240	1		240		0		0							
HEAT GAIN APPLIANCES/LIGHTS					974			0					974			974				0							
TOTAL HT LOSS BTU/H				2699			892					2562			2285				796								
TOTAL HT GAIN x 1.3 BTU/H					3566			911					3342			4052				178							
																	1	_			T						
ROOM USE							LV/DN		'	K/B/F					LAUN				FOY		MUD			1	WOD		BAS
EXP. WALL							35			38					0				10		13				28		92
CLG. HT.							10			10					9				11		11				9		9
000 W411 4054	FACTO						050												440		440				050		
GRS.WALL AREA	LUSS	GAIN					350			380					0				110		143				252		636
GLAZING	20.0	40.0					LOSS			OSS G				0	LOSS 0	GAIN 0			LOSS	GAIN 0	LOSS GAIN			0	OSS GAIN		OSS GAIN
NORTH		12.8				0	0	0	0		0			_				0	0					-		0	
EAST SOUTH		32.9 19.8				37 0	769 0	1218 0	0		0			0	0	0		0	0	0	0 0 0 8 166 159			0	0 0	0	0 0
WEST	20.8	19.8 32.9				0	0	0		U 1517 24	-			0	0	0		0	0	0	0 0 0			7	145 230	0	0 0
SKYLT.		132.1				0	0	0	0		0			0	0	0		0	0	0	0 0 0			0	0 0	0	0 0
DOORS		2.9				0	0	0	0	-	0			0	0	0		20	392	58	20 392 58			0	0 0	-	392 58
NET EXPOSED WALL	3.5	0.5				313	1085	161			58			0	0	0		90	312	46	115 399 59			0	0 0	0	0 0
NET EXPOSED BSMT WALL ABOVE GR		0.5				0	0	0	0		0			ő	0	0		0	0	0	0 0 0			161	566 84	-	675 100
EXPOSED CLG	1.3	0.6				ō	0	0	42		23			75	94	42		o	0	0	0 0 0			0	0 0	0	0 0
NO ATTIC EXPOSED CLG		1.2				0	0	0	0		0			0	0	0		o	0	0	0 0 0			0	0 0	0	0 0
EXPOSED FLOOR		0.4				0	0	0	o		0			0	0	0		o	0	0	0 0 0			0	0 0	0	0 0
BASEMENT/CRAWL HEAT LOSS							0	-		0					0				0		0			-	-		3059
SLAB ON GRADE HEAT LOSS						l	0			0				1	0				0		0				0		
SUBTOTAL HT LOSS	I						1854			2634					94				704		957				711		4126
I						l		1379		25	584			1		42				104	276				314		158
SUB TOTAL HT GAIN						0.20	0.55		0.30	0.55				0.20	0.33			0.30	0.55		0.30 0.55					0.50	1.17
SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER						0.30					- 1			1	31				388		527						5645
						0.30	1021			1451					31							1	I				0040
LEVEL FACTOR / MULTIPLIER						0.30		102			91				31	3				8	20						35
LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS						0.30		102			91				0	3			0	8	0 20						
LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN						0.30	1021	102 0		0	91				-	3 0			0	8							35
LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS						0.30	1021		0	0				0	-			0	0	8 0 0	0			0	0	0	35 0
LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS	240						1021	0		0	0			0	-	0		0	0		0 0			0	0	0	35 0 0
LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	240						1021	0	0	0 9 4085	0			0	-	0		0	0	0	0 0			-		0	35 0 0 0

TOTAL HEAT GAIN BTU/H:

24081 TONS: 2.01 LOSS DUE TO VENTILATION LOAD BTU/H: 1274

STRUCTURAL HEAT LOSS: 29374

TOTAL COMBINED HEAT LOSS BTU/H: 30648

Mhebal Kounke. INDIVIDUAL BCIN: 1969 MICHAEL O'ROURKE

OUTLET GRILL SIZE

TRUNK

3X10

Α

3X10

3X10

С

3X10

С

4X10

В

4X10

В

3X10

С

SITE NAME: SUMMER RIDGE ESTATES BUILDER: ROYAL PINE HOMES TYPE: 2502 DATE: Jun-24 GFA: 2034 LO# 105276 furnace pressure 0.6 HEATING CFM 770 COOLING CFM 770 furnace filter 0.00 FACTORY INSTALLED **CARRIER** AFUE = 96 % 59SC6A040M14--10 INPUT (BTU/H) = 40,000 TOTAL HEAT LOSS 29,374 TOTAL HEAT GAIN 23,892 a/c coil pressure 0.26 40 AIR FLOW RATE CFM 26.21 AIR FLOW RATE CFM 32.23 OUTPUT (BTU/H) = 39.000 available pressure FAN SPEED for s/a & r/a 0.34 LOW 0 DESIGN CFM = **770 RUN COUNT** MEDLOW 545 4th 3rd 2nd 1st Bas CFM @ .6 " E.S.P. S/A 3 plenum pressure s/a 0.18 r/a pressure 0.16 MEDIUM 770 0 R/A 0 0 4 max s/a dif press. loss 0.02 r/a grille press. Loss 0.02 MEDIUM HIGH 925 All S/A diffusers 4"x10" unless noted otherwise on layout. min adjusted pressure s/a 0.16 adjusted pressure r/a 0.14 HIGH TEMPERATURE RISE 47 All S/A runs 5"Ø unless noted otherwise on layout 10 14 15 17 19 20 22 23 RUN# 5 6 13 21 ROOM NAME MBR ENS BED-2 BED-3 BED-3 BATH MBR LV/DN K/B/F K/B/F LAUN FOY MUD BAS BAS BAS RM LOSS MBH. 1.48 0.89 1.28 1.28 2.88 2.04 3.49 3.49 3.49 1.35 1.14 1.14 0.80 1.35 2.04 0.13 1.09 CFM PER RUN HEAT 23 34 34 30 21 35 75 54 54 29 39 92 92 35 30 3 92 RM GAIN MBH 1.78 0.91 1.67 1.67 2.03 2.03 0.18 1.78 3.19 2.44 2.44 1.32 0.15 0.39 0.64 0.64 0.64 CFM PER RUN COOLING 79 79 43 12 21 57 29 54 54 65 65 6 57 103 5 21 21 ADJUSTED PRESSURE 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 ACTUAL DUCT LGH 45 48 52 63 55 37 55 48 34 21 37 22 32 32 21 17 7 **EQUIVALENT LENGTH** 200 140 130 140 190 170 140 150 140 130 110 140 130 140 120 140 150 TOTAL EFFECTIVE LENGTH 232 185 178 192 253 225 177 205 188 151 144 161 167 157 142 147 182 ADJUSTED PRESSURE 0.07 0.09 0.09 0.09 0.07 0.07 0.09 0.08 0.08 0.11 0.12 0.1 0.1 0.11 0.11 0.11 0.09 ROUND DUCT SIZE 5 6 5 6 5 5 4 4 HEATING VELOCITY (ft/min 34 469 257 264 250 250 153 153 241 257 382 396 396 333 447 469 469 COOLING VELOCITY (ft/min 419 333 396 396 331 331 69 419 525 580 580 493 57 138 107 107 107

RUN#
ROOM NAME
RM LOSS MBH.
CFM PER RUN HEAT
RM GAIN MBH.
CFM PER RUN COOLING
ADJUSTED PRESSURE
ACTUAL DUCT LGH.
EQUIVALENT LENGTH
TOTAL EFFECTIVE LENGTH
ADJUSTED PRESSURE
ROUND DUCT SIZE
HEATING VELOCITY (ft/min)
COOLING VELOCITY (ft/min)
OUTLET GRILL SIZE
TRUNK

3X10

Α

4X10

В

3X10

Α

3X10

Α

3X10

С

3X10

В

3X10

С

4X10

4X10

Α

4X10

В

SUPPLY AIR TRUNK SIZE																	RETURN A	IR TRUNI	K SIZE					
	TRUNK	STATIC	ROUND	RECT			VELOCITY			TRUNK	STATIC	ROUND	RECT			VELOCITY		TRUNK	STATIC	ROUND	RECT			VELOCI
	CFM	PRESS.	DUCT	DUCT			(ft/min)			CFM	PRESS.	DUCT	DUCT			(ft/min)		CFM	PRESS.	DUCT	DUCT			(ft/min
TRUNK A	385	0.07	10.1	12	Х	8	578		TRUNK G	0	0.00	0	0	Х	8	0	TRUNK O	0	0.05	0	0	Х	8	0
TRUNK B	256	0.07	8.7	10	Х	8	461		TRUNK H	0	0.00	0	0	Х	8	0	TRUNK P	0	0.05	0	0	Х	8	0
TRUNK C	387	0.07	10.2	14	Х	8	498		TRUNK I	0	0.00	0	0	Х	8	0	TRUNK Q	0	0.05	0	0	Х	8	0
TRUNK D	0	0.00	0	0	Х	8	0		TRUNK J	0	0.00	0	0	Х	8	0	TRUNK R	0	0.05	0	0	Х	8	0
TRUNK E	0	0.00	0	0	Х	8	0		TRUNK K	0	0.00	0	0	Х	8	0	TRUNK S	0	0.05	0	0	Х	8	0
TRUNK F	0	0.00	0	0	Х	8	0		TRUNK L	0	0.00	0	0	Х	8	0	TRUNK T	0	0.05	0	0	Х	8	0
																	TRUNK U	0	0.05	0	0	Х	8	0
																	TRUNK V	0	0.05	0	0	Х	8	0
ETURN AIR #	1	2	3	4	5	6										BR	TRUNK W	0	0.05	0	0	Х	8	0
LOOR	2	2	2	2	1	1										В	TRUNK X	770	0.05	14.3	24	Х	8	578
IR VOLUME	85	85	85	85	206	86	0	0	0	0	0	0	0	0	0	138	TRUNK Y	341	0.05	10.5	14	Х	8	438
LENUM PRESSURE	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	TRUNK Z	0	0.05	0	0	Х	8	0
CTUAL DUCT LGH.	50	62	57	47	21	39	1	1	1	1	1	1	1	1	1	14	DROP	770	0.05	14.3	24	Х	10	462
QUIVALENT LENGTH	195	250	245	215	135	270	0	0	0	0	0	0	0	0	0	135								
OTAL EFFECTIVE LH	245	312	302	262	156	309	1	1	1	1	1	1	1	1	1	149								
DJUSTED PRESSURE	0.06	0.05	0.05	0.05	0.09	0.05	14.32	14.32	14.32	14.32	14.32	14.32	14.32	14.32	14.32	0.10								
OUND DUCT SIZE	6	6	6	6	7.5	6	0	0	0	0	0	0	0	0	0	6.3								
LET GRILL SIZE	8	8	8	8	8	8	0	0	0	0	0	0	0	0	0	8								
	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X								
ILET GRILL SIZE	14	14	14	14	14	14	0	0	0	0	0	0	0	0	0	14								

SITE NAME: SUMMER RIDGE ESTATES RESIDENTIAL MEG	CHANICAL '	VENTILATION DESI	GN SUMMARY	,			
COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL	VENTILATION CA	APACITY			9.32.3.5.
a) V Direct vent (sealed combustion) only		Total Ventilation Ca	apacity		148.4	_	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Vent	til. Capacity		63.6	_	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Suppleme	ental Capacity		84.8	_	cfm
d) Solid Fuel (including fireplaces)		PRINCIPAL EXHAL	UST EAN CADAC	ITV			
e) No Combustion Appliances		Model:	VANEE V		Location:	ı	BSMT
HEATING SYSTEM		63.6	cfm _				HVI Approved
Forced Air Non Forced Air		PRINCIPAL EXHAL			ı		
		CFM 63.6 CFM		Г°F 4 F X	factor 1.08	Х	% LOSS 0.25
Electric Space Heat		SUPPLEMENTAL I	FANS	BY INST	FALLING CON	TRACTO	OR .
		Location		odel	cfm	HVI	Sones
HOUSE TYPE	9.32.1(2)	ENS BATH		G CONTRACTOR G CONTRACTOR	50 50	✓ ✓	3.5
I Type a) or b) appliance only, no solid fuel							
II Type I except with solid fuel (including fireplace	es)	HEAT RECOVERY	VENTILATOR				9.32.3.11
III Any Type c) appliance		Model: 150		E V150H high	35		cfm low
IV Type I, or II with electric space heat				-			
Other: Type I, II or IV no forced air		75		e Efficiency F (0 deg C)		✓	HVI Approved
		LOCATION OF INS	STALLATION				
SYSTEM DESIGN OPTIONS	O.N.H.W.P.	Lot:			Concession		
1 Exhaust only/Forced Air System		Township			Plan:		
2 HRV with Ducting/Forced Air System		Address			, idin		
3 HRV Simplified/connected to forced air system		Roll #			Building Per	mit #	
4 HRV with Ducting/non forced air system		BUILDER:	DOVAL F	PINE HOMES	Building Fer	11111 #	
Part 6 Design		Name:	ROTALF	TINE HOMES			
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:					
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	, ,	City:					
Other Bedrooms 2 @ 10.6 cfm 21.2		Telephone #:			Fax#:		
Kitchen & Bathrooms 3 @ 10.6 cfm 31.8	cfm	INSTALLING CON	TRACTOR				
Other Rooms5@ 10.6 cfm53.0	cfm	Name:					
Table 9.32.3.A. TOTAL <u>148.4</u>	cfm	Address:					
		City:					
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	Telephone #:			Fax#:		
1 Bedroom 31.8	cfm	DESIGNER CERTI					
2 Bedroom 47.7	cfm	I hereby certify that in accordance with	the Ontario Buildi	ng Code.	tesigned		
3 Bedroom 63.6	cfm	Name:	HVAC D	esigns Ltd.	1-101	1	
4 Bedroom 79.5	cfm	Signature:		Micha	001820	e.	
5 Bedroom 95.4	cfm	HRAI#			UU 102U		

HRAI#

95.4

			80-12 Residential Hea									
LO#: 105276	Model: 2502		· · · · · · · · · · · · · · · · · · ·	er: ROYAL PINE HOMES	aicaiationj			Dato	6/10/2024			
107270	Volume Ca		Dallac	Air Change & Delta T Data								
	volume ca	ilculation				All Change & Deit	a i Data					
use Volume			٦		WINTER NA	TURAL AIR CHANG	FRATE	0.308				
Level Floor Ar	ea (ft²) Floor Heigh	ht (ft) Volume (ft³)	-			ATURAL AIR CHANG		0.097				
Bsmt 92	· , ,	8361	-		SOMMER	ti oto il fini criftino	JE 10 (1E	0.037				
First 92		9290	1									
Second 110		9945	1			Design Te	mperature Diff	erence				
Third 0		0	1			Tin °C	Tout °C	ΔT °C	ΔT °F			
Fourth 0	9	0	1		Winter DTDh	22	-19	41	74			
•	Total:	27,596.0 ft ³	1		Summer DTDc	24	30	6	11			
	Total:	: 781.4 m³	1									
			_									
	5.2.3.1 Heat Loss d	ue to Air Leakage			6.2.6	Sensible Gain due	to Air Leakage					
	ī	V.				IZ.						
H	$HL_{airb} = LR_{airh} \times \frac{1}{3}$	$\frac{V_b}{N_c} \times DTD_h \times 1.2$		Н	$IG_{salb} = LR_{airc} >$	$\langle \frac{v_b}{2c} \times DTD_c \rangle$	× 1.2					
				- I		0.0		ı				
0.308 x	217.06 x 4	11 °C x 1.2	= 3309 W	= 0.097	x 217.06	x 6°C	x 1.2	_ = !	154 W			
			44200 Dt. /b	_T				i	524 Dt. /b			
			= 11289 Btu/h	1				=	524 Btu/h			
	5.2.3.2 Heat Loss due to	Mechanical Ventilation			6.2.7 Sei	nsible heat Gain d	ue to Ventilatio	n				
Н	$L_{vairb} = PVC \times DT$	$D_h \times 1.08 \times (1-E)$		$HL_{vairb} = PVC \times DTD_h \times 1.08 \times (1 - E)$								
	vati b	" ,					` '					
64 CFM x	74 °F x 1	1.08 x 0.25	= 1274 Btu/h	64 CFM	x 11 °F	x 1.08	x 0.25	=	189 Btu/h			
				' 	<u> </u>			- !				
		5.2.3.3 Calcula	ation of Air Change Heat	Loss for Each Room (Floo	or Multiplier Section)							
					,							
		$HL_{airr} = Level Fact$	$tor \times HL_{airbv} \times \{(H_{airbv}) \times $	$HL_{agcr} + HL_{bgcr}) \div$	$(HL_{agclevel} + HL)$	bgclevel)}						
			HLairve Air Leakage +		1							
		evel Level Factor (LF)		Level Conductive Heat	Air Leakage Heat Lo	ss Multiplier (LF x						
	"	Level ractor (Lr)	Ventilation Heat Loss	Loss: (HL _{clevel})	HLairbv / I	HLlevel)						
	 	1 0.5	(Btu/h)	4,837	1.16	57						
	 	2 0.3	†	6,148	0.55							
	<u> </u>	3 0.2	11,289	6,795	0.33							
	 	4 0	11,203	0,793	0.00			Michael O'Ro	urke			
	 	5 0	+	0	0.00			BCIN# 19669				
			<u> </u>	l 0	0.00	70						
	*HLa	airby = Air leakage heat loss	+ ventilation heat loss						1 Ofounde			

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL:	2502			BUILDER: ROYAL PINE HOMES	
SFQT:	2034	LO# 1	05276	SITE: SUMMER RIDGE ESTATE	S
DESIGN A	SSUMPTIONS				
HEATING			°F	COOLING	°F
	R DESIGN TEMP.		-2	OUTDOOR DESIGN TEMP.	86
INDOOR D	DESIGN TEMP.		72	INDOOR DESIGN TEMP. (MAX 75°F)	75
BUILDING	DATA			WINDOW SHGC	0.60
BOILDING	IDATA				
ATTACHN	IENT:	А	TTACHED	# OF STORIES (+BASEMENT):	3
FRONT FA	.CES:		EAST	ASSUMED (Y/N):	Υ
AIR CHAN	GES PER HOUR:		3.00	ASSUMED (Y/N):	Υ
AIR TIGHT	NESS CATEGORY:		TIGHT	ASSUMED (Y/N):	Υ
WIND EXF	OSURE:	SH	HELTERED	ASSUMED (Y/N):	Υ
HOUSE VO	DLUME (ft³):		27596.0	ASSUMED (Y/N):	Υ
INTERNAL	.SHADING:	BLINDS/0	CURTAINS	ASSUMED OCCUPANTS:	4
INTERIOR	LIGHTING LOAD (Btu/h	/ft²):	2.30	DC BRUSHLESS MOTOR (Y/N):	Υ
FOUNDAT	ION CONFIGURATION		BCIN_1	DEPTH BELOW GRADE:	6.0 ft
			_		
LENGTH:	47.0 ft	WIDTH:	23.0 ft	EXPOSED PERIMETER:	92.0 ft

2012 OBC - COMPLIANCE PACKAGE				
	Compliance Package			
Component	PERFOR	MANCE		
	Nominal	Min. Eff.		
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22		
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65		
Exposed Floor Minimum RSI (R)-Value	31	29.80		
Walls Above Grade Minimum RSI (R)-Value	22+1.5	21.40		
Basement Walls Minimum RSI (R)-Value	20	21.12		
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-		
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10		
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13		
Windows and Sliding Glass Doors Maximum U-Value	1.6	-		
Skylights Maximum U-Value	2.6	-		
Space Heating Equipment Minimum AFUE	96%	-		
HRV/ERV Minimum Efficiency	75%	-		
Domestic Hot Water Heater Minimum EF	0.9	-		

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

We	eather Sta	tion Description								
Province:	Ontario	•								
Region:	Brampto	rampton								
	Site D	escription								
Soil Conductivity:	Normal o	conductivity: dry sand, loam, clay								
Water Table:	Normal (7-10 m, 23-33 ft)								
I	oundatio	n Dimensions								
Floor Length (m):	14.3									
Floor Width (m):	7.0									
Exposed Perimeter (m):	28.0									
Wall Height (m):	2.7									
Depth Below Grade (m):	1.83	Insulation Configuration								
Window Area (m²):	0.7									
Door Area (m²):	1.9									
	Radi	ant Slab								
Heated Fraction of the Slab:	0									
Fluid Temperature (°C):	33									
	Desig	n Months								
Heating Month	1									
	Founda	tion Loads								
Heating Load (Watts):		896								

TYPE: 2502 **LO#** 105276

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Sta	ation De	scri	ipti	on		
Province:	Onta	rio				
Region:	Bran	pto	n			
Weather Station Location:	Oper	n fla	t tei	rain, g	grass	
Anemometer height (m):	10					
	l Shieldir	ıg				
Building Site:	Subu	rba	n, fo	rest		
Walls:	Heav	У				
Flue:	Heav	У				
Highest Ceiling Height (m):	7.62					
Building	Configur	ati	on			
Type:	Semi					
Number of Stories:	Two					
Foundation:	Full					
House Volume (m³):	781.	1				
Air Leaka	ge/Venti	lat	ion			
Air Tightness Type:	Atta	hec	d (3.	0 ACH)	
Custom BDT Data:	ELA (@ 10	0 Pa		875.4 cm ²	
	3.00)				ACH @ 50 Pa
Mechanical Ventilation (L/s):	Т	otal	Sup	oly		Total Exhaust
		3	0.0			30.0
FI	ue Size					
Flue #:	#1	#	‡2	#3	#4	
Diameter (mm):	0		0	0	0	
Natural In	filtration	ı Ra	ate	S		
Heating Air Leakage Rate (ACH/	H):		0	.30		
Cooling Air Leakage Rate (ACH/I	н):		0	.09	7	

TYPE: 2502 **LO#** 105276

		3.								
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u></u>	30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER	REVISIONS		

I Michael O'Rourke have reviewed and take responsibility for the design work and am qualified under division C,3.2.5 of the building

Michael Ofourhe Michael O'Rourke BCIN # 19669 HVAC Designs Ltd.

SB-12 PERFORMANCE

ROYAL PINE HOMES

Project Name

SUMMER RIDGE ESTATES BRAMPTON, ONTARIO

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be 2034 sqft adequately insulated and be gas-proofed.

FIRST FLOOR **HEATING LAYOUT** JUNE/2024

3/16" = 1'-0" BCIN# 19669 105276

LO#

2502

