Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information					
Building number, street name				Unit no.	Lot/con.
Municipality	Postal code	Plan number/ other des	scription		•
BRAMPTON				1	
B. Individual who reviews and takes	responsibility fo	r design activities	$\overline{}$	7	
Name MICHAEL O'ROURKE		Firm HVAC DESIGNS LTD	3. 2		
Street address			Unit no.	-	Lot/con.
375 FINLEY AVE			202		N/A
Municipality AJAX	Postal code L1S 2E2	Province ONTARIO	E-mail info@hvacde	esigns.ca	
Telephone number (905) 619-2300	Fax number (905) 619-2375		Cell number		
C. Design activities undertaken by in	dividual identifie	ed in Section B. (Bui	lding Code Ta	able 3.5.2.1 OI	F Division C]
☐ House	⊠ HVAC	– House		Building Stru	uctural
☐ Small Buildings		Services		Plumbing –	
☐ Large Buildings☐ Complex Buildings	☐ Detecti	on, Lighting and Po		Plumbing – .	All Buildings /age Systems
Description of designer's work HEAT LOSS / GAIN CALCULATIONS DUCT SIZING RESIDENTIAL MECHANICAL VENTILATIO RESIDENTIAL SYSTEM DESIGN per CSA- D. Declaration of Designer	N DESIGN SUMM F280-12	Model:	2003 FIN BSMT SUMMER RID	GE ESTATES	
	C .C.	5	de eleve A		
MICHAEL O'ROURKE	int name)	>	_ deciare i	inai (crioose one	e as appropriate):
□ I review and take responsibility fo Division C, of the Building Code. classes/categories. Individual BCIN: Firm BCIN:	or the design work of am gualified, and	on behalf of a firm regist the firm is registered, in	ered under subs the	section 3.2.4.of appropri	iate
	2.5.of Di visio 19669	m qualified in the approp n C, of the Building Cod d qualification:	e.		4.1 (4)
☐ The design work is exempt Basis for exemption from registra		on and qualification requon:	uirements of the	Building Code.	
I certify that:					
The information contained I have submitted this applica		ale is true to the best of redge and consent of the	firm.		2,
April 24, 2024			Make	I Ofoun	Le.
Date	•				of Designer
				<u> </u>	<u> </u>

NOTE

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

SITE NAME: BUILDER:				TATES				TYPE:	FIN BSN 2003	IT				GFA:	1961			DATE: Apr-24 LO# 104855					HANGE RATE 0.266 HANGE RATE 0.083	HEAT LOSS A		74 11		PE	CSA-F280-12 RFORMANCE
ROOM USE	i			MBR			ENS						BED-2			BED-3				BATH						в-втн	I		B-BED
EXP. WALL	1			12			21						11			12				0						0			10
CLG. HT.	ı			9			9						9			9				9						9			9
	FACTO	RS																											
GRS.WALL AREA	LOSS	GAIN		103			181						95			103				0						0			66
GLAZING	1			LOSS	GAIN		LOSS	GAIN				L	oss	GAIN		LOSS	GAIN			LOSS	GAIN					LOSS	GAIN		OSS GAIN
NORTH	20.8	12.8	0	0	0	0	0	0				0	0	0	0	0	0		0	0	0				0	0	0	0	0 0
EAST	20.8	32.9	0	0	0	0	0	0				26	540	856	35	727	1152		0	0	0				0	0	0	10	208 329
SOUTH	20.8	19.8	0	0	0	16	332	317				0	0	0	0	0	0		0	0	0				0	0	0	0	0 0
WEST	20.8	32.9	30	623	987	0	0	0				0	0	0	0	0	0		0	0	0				0	0	0	0	0 0
SKYLT.	34.1	132.1	0	0	0	0	0	0				0	0	0	0	0	0		0	0	0				0	0	0	0	0 0
DOORS	19.6	2.9	0	0	0	0	0	0				0	0	0	0	0	0		0	0	0				0	0	0	0	0 0
NET EXPOSED WALL	3.5	0.5	73	254	38	165	571	85				69	238	35	68	236	35		0	0	0				0	0	0	0	0 0
NET EXPOSED BSMT WALL ABOVE GR	3.5	0.5	0	0	0	0	0	0				0	0	0	0	0	0		0	0	0				0	0	0	20	70 10
EXPOSED CLG	1.3	0.6	285	357	159	142	178	79	l			232	291	129	204	256	114		101	127	56			j	0	0	0	0	0 0
NO ATTIC EXPOSED CLG	2.7	1.2	0	0	0	0	0	0	l			0	0	0	17	46	20		0	0	0			j	0	0	0	0	0 0
EXPOSED FLOOR	2.5	0.4	0	0	0	4	10	1	l			0	0	0	0	0	0		0	0	0			j	0	0	0	0	0 0
BASEMENT/CRAWL HEAT LOSS	ı			0			0		l				0			0				0						108			291
SLAB ON GRADE HEAT LOSS	ı			0			0		l				0			0				0						0			0
SUBTOTAL HT LOSS	ı			1234		1	1091		l				1069			1265			l	127				j		108			570
SUB TOTAL HT GAIN	i				1184			482	l					1020			1321				56						0		340
LEVEL FACTOR / MULTIPLIER	ı		0.20	0.38		0.20	0.38		l			0.20	0.38		0.20	0.38			0.20	0.38				j	0.50	1.64		0.50	1.64
AIR CHANGE HEAT LOSS	i			473			418		l				410			485				48						177			934
AIR CHANGE HEAT GAIN	1				100			41						87			112				5						0		29
DUCT LOSS	1			0			151						0			0				0						0			0
DUCT GAIN	1				0			52						0			0				0						0		0
HEAT GAIN PEOPLE	240		2		480	0		0				1		240	1		240		0		0				0		0	1	240
HEAT GAIN APPLIANCES/LIGHTS	1				467			0						467			467				0						0		467
TOTAL HT LOSS BTU/H	1			1707			1660						1478			1750				175						286			1503
TOTAL HT GAIN x 1.3 BTU/H					2901			748						2358			2782				79						0		1398
ROOM USE				LV/DN		l				(/B/G	- 1	FI	NTRY-1	1	ı	LAUN			l	FOY		ENTRY-2	REC	1					BAS
EXP. WALL	1			11						12			7	•		0				12		21	10						36
CLG. HT.	1			10						10			10			9				11		11	9						9
	FACTO	RS														•				•••									·
GRS.WALL AREA										115			67			_				127									238
GLAZING	LOSS			106												0						223	66						LOSS GAIN
NORTH	LOSS			106 LOSS	GAIN						GAIN			GAIN		•	GAIN			LOSS	GAIN	223 LOSS GAIN	66 LOSS GAIN						0 0
		GAIN	0	LOSS	GAIN 0						GAIN 0	0		GAIN 0	0	LOSS 0	GAIN 0		0	LOSS 0	GAIN 0	223 LOSS GAIN 0 0 0	LOSS GAIN					0	
	20.8	GAIN 12.8	0 37	LOSS 0	0				ι	oss (0		LOSS		0	LOSS	0		0 5	0	0	LOSS GAIN	LOSS GAIN					0	
EAST SOUTH	20.8 20.8	GAIN	0 37 0	LOSS					0 0	.oss (0	LOSS 0	0		LOSS 0						LOSS GAIN	LOSS GAIN					0 0 0	
EAST SOUTH	20.8 20.8 20.8	12.8 32.9	37	LOSS 0 769	0 1218				0 0	.oss (0 0 0	0	0	LOSS 0 0	0 0	0	LOSS 0 0	0		5	0 104	0 165	LOSS GAIN 0 0 0 0 0 0	LOSS GAIN 0 0 0 0 0 0					0	0 0
EAST	20.8 20.8 20.8 20.8	12.8 32.9 19.8	37 0	LOSS 0 769 0	0 1218 0				0 0 0	.oss (0 0 0	0 0 0	0 0 0	LOSS 0 0 0	0 0 0	0	LOSS 0 0	0 0 0		5	0 104 0	0 165 0	LOSS GAIN 0 0 0 0 0 0 0 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0					0	0 0
EAST SOUTH WEST	20.8 20.8 20.8 20.8 34.1	12.8 32.9 19.8 32.9	37 0 0	0 769 0 0	0 1218 0 0				0 0 0 33	OSS (0 0 0 0 686	0 0 0 1086	0 0 0	LOSS 0 0 0 0	0 0 0	0 0	LOSS 0 0	0 0 0		5 0 0	0 104 0 0	0 165 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 10 208 329					0 0	0 0 0 0 0 0
EAST SOUTH WEST SKYLT.	20.8 20.8 20.8 20.8 34.1	12.8 32.9 19.8 32.9 132.1	37 0 0 0	0 769 0 0	0 1218 0 0				0 0 0 33 0	.OSS (0 0 0 0 686	0 0 0 1086 0	0 0 0 0	LOSS 0 0 0 0 0	0 0 0 0	0 0 0	LOSS 0 0 0 0	0 0 0 0		5 0 0	0 104 0 0	0 165 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 10 208 329 0 0 0					0 0	0 0 0 0 0 0 0 0
EAST SOUTH WEST SKYLT. DOORS	20.8 20.8 20.8 20.8 34.1 19.6	12.8 32.9 19.8 32.9 132.1 2.9	37 0 0 0 0	0 769 0 0 0	0 1218 0 0 0				0 0 0 33 0	OSS (0 0 0 0 686 0	0 0 0 1086 0	0 0 0 0 0 20	DOSS 0 0 0 0 0 0 392	0 0 0 0 0 58	0 0 0 0	LOSS 0 0 0 0 0	0 0 0 0 0		5 0 0 0 36	0 104 0 0 0 705	0 165 0 0 0 104	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116	LOSS GAIN 0 0 0 0 0 0 0 0 0 10 208 329 0 0 0					0 0 0 0 0	0 0 0 0 0 0 0 0 0 392 58
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL	20.8 20.8 20.8 20.8 34.1 19.6 3.5	12.8 32.9 19.8 32.9 132.1 2.9 0.5	37 0 0 0 0 0	LOSS 0 769 0 0 0 238	0 1218 0 0 0 0 0 35				0 0 0 33 0 0	OSS (0 0 0 0 686 0 0	0 0 0 1086 0 0 42	0 0 0 0 0 20 47	0 0 0 0 0 0 392 164	0 0 0 0 0 58 24	0 0 0 0 0 0	LOSS 0 0 0 0 0 0	0 0 0 0 0		5 0 0 0 36 86	0 104 0 0 0 705 299	0 165 0 0 0 104 44	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94	LOSS GAIN 0 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0					0 0 0 0 0 20	0 0 0 0 0 0 0 0 392 58 0 0
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR	20.8 20.8 20.8 20.8 34.1 19.6 3.5 3.5	12.8 32.9 19.8 32.9 132.1 2.9 0.5	37 0 0 0 0 0 69	LOSS 0 769 0 0 0 0 238 0	0 1218 0 0 0 0 0 35				0 0 0 33 0 0 82	OSS (0 0 0 0 686 0 0 285	0 0 0 1086 0 0 42	0 0 0 0 0 20 47	LOSS 0 0 0 0 0 0 392 164 0	0 0 0 0 0 58 24	0 0 0 0 0 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0		5 0 0 0 36 86	0 104 0 0 0 705 299 0	0 165 0 0 0 104 44	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0	LOSS GAIN 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0 0 0 0 20 70 10					0 0 0 0 20 0 72	0 0 0 0 0 0 0 0 392 58 0 0 253 38
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG	20.8 20.8 20.8 20.8 34.1 19.6 3.5 3.5	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5	37 0 0 0 0 0 69 0	LOSS 0 769 0 0 0 0 238 0	0 1218 0 0 0 0 0 35 0				0 0 0 33 0 0 82 0	OSS 0 0 0 0 686 0 0 285 0	0 0 0 1086 0 0 42 0	0 0 0 0 0 20 47 0	DOSS 0 0 0 0 0 392 164 0 0	0 0 0 0 0 58 24 0	0 0 0 0 0 0 0	LOSS 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		5 0 0 0 36 86 0	0 104 0 0 0 705 299 0	0 165 0 0 0 104 44 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0 0 0 0	LOSS GAIN O O O O O O O O O 10 208 329 O O O O O O 20 70 10 O O O					0 0 0 0 20 0 72	0 0 0 0 0 0 0 0 392 58 0 0 253 38 0 0
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG	20.8 20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 0 69 0	LOSS 0 769 0 0 0 0 238 0	0 1218 0 0 0 0 0 35 0				0 0 0 33 0 0 82 0	OSS 0 0 0 0 686 0 0 285 0 0	0 0 0 1086 0 0 42 0	0 0 0 0 0 20 47 0	DOSS 0 0 0 0 0 0 392 164 0 0 0 0	0 0 0 0 0 58 24 0 0	0 0 0 0 0 0 0 0 50	LOSS 0 0 0 0 0 0 0 0 0 0 63 0 0	0 0 0 0 0 0 0 0		5 0 0 0 36 86 0	0 104 0 0 0 705 299 0	0 165 0 0 104 44 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0 0 0 0 0 0 0	LOSS GAIN O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O					0 0 0 0 20 0 72 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EAST SOUTH WEST SYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR	20.8 20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 0 69 0	LOSS 0 769 0 0 0 0 238 0 0	0 1218 0 0 0 0 0 35 0				0 0 0 33 0 0 82 0	OSS 0 0 0 0 686 0 0 285 0 0	0 0 0 1086 0 0 42 0	0 0 0 0 0 20 47 0	DOSS 0 0 0 0 0 0 392 164 0 0 0 0	0 0 0 0 0 58 24 0 0	0 0 0 0 0 0 0 0 50	LOSS 0 0 0 0 0 0 0 0 0 0 63 0 0	0 0 0 0 0 0 0 0		5 0 0 0 36 86 0	0 104 0 0 0 705 299 0	0 165 0 0 104 44 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0 0 0 0 0 0 0	LOSS GAIN O O O O O O O O O 10 208 329 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O					0 0 0 0 20 0 72 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS	20.8 20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 0 69 0	LOSS 0 769 0 0 0 0 238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1218 0 0 0 0 0 35 0				0 0 0 33 0 0 82 0 0	OSS 0 0 0 0 686 0 0 285 0 0	0 0 0 1086 0 0 42 0	0 0 0 0 0 20 47 0	LOSS 0 0 0 0 0 392 164 0 0 0	0 0 0 0 0 58 24 0 0	0 0 0 0 0 0 0 0 50	LOSS 0 0 0 0 0 0 0 0 0 0 63 0 0	0 0 0 0 0 0 0 0		5 0 0 0 36 86 0	0 104 0 0 0 705 299 0 0 0	0 165 0 0 104 44 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0 0 0 0 0 0 0 0 0 0	LOSS GAIN O O O O O O O O O 10 208 329 O O O O O O O O O O O O TO					0 0 0 0 20 0 72 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BANT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN	20.8 20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 0 69 0	LOSS 0 769 0 0 0 0 238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1218 0 0 0 0 0 35 0				0 0 0 33 0 0 82 0 0	OSS 0 0 0 0 686 0 0 285 0 0 0 0	0 0 0 1086 0 0 42 0	0 0 0 0 0 20 47 0	LOSS 0 0 0 0 0 0 392 164 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 58 24 0 0	0 0 0 0 0 0 0 0 50	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		5 0 0 0 36 86 0	0 104 0 0 0 705 299 0 0 0 0	0 165 0 0 104 44 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LOSS GAIN O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O					0 0 0 0 20 0 72 0	0 0 0 0 0 0 0 392 58 0 0 0 253 38 0 0 0 0 513
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRWIL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS	20.8 20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 69 0 0 0	LOSS 0 769 0 0 0 0 238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1218 0 0 0 0 35 0 0				0 0 0 33 0 0 82 0 0	OSS 0 0 0 0 686 0 0 285 0 0 0 0 0 0	0 0 1086 0 0 42 0 0 0	0 0 0 0 20 47 0 0	LOSS 0 0 0 0 0 0 392 164 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 58 24 0 0	0 0 0 0 0 0 0 0 50	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 28 0		5 0 0 36 86 0 0	0 104 0 0 0 705 299 0 0 0 0	0 165 0 0 104 44 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0 0 0 0 0 0 0 0 0 0 1416	LOSS GAIN O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O					0 0 0 0 20 0 72 0	0 0 0 0 0 0 0 0 392 58 0 0 0 253 38 0 0 0 0 513
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BANT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN	20.8 20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 69 0 0 0	LOSS 0 769 0 0 0 0 238 0 0 0 0 0 1007	0 1218 0 0 0 0 35 0 0				0 0 0 33 0 0 82 0 0 0	OSS 0 0 0 0 686 0 0 285 0 0 0 0 0 0	0 0 1086 0 0 42 0 0 0	0 0 0 0 20 47 0 0	LOSS 0 0 0 0 392 164 0 0 0 0 555	0 0 0 0 58 24 0 0	0 0 0 0 0 0 0 50 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 28 0		5 0 0 36 86 0 0	0 104 0 0 0 705 299 0 0 0 0 0	0 165 0 0 104 44 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 1166 183 633 94 0 0 0 0 0 0 0 0 0 0 0 0 0 1416 210	LOSS GAIN O O O O O O O O O 10 208 329 O O O O O O O O O O O O TO O O O O O O O O O O O O O O O O O O O O O O O O O O					0 0 0 0 20 0 72 0 0	0 0 0 0 0 0 0 0 392 58 0 0 0 253 38 0 0 0 0 513 1158 96
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BINT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT CANN LEVEL FACTOR / MULTIPLIER	20.8 20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 69 0 0 0	LOSS 0 769 0 0 0 0 238 0 0 0 0 0 1007 0.55	0 1218 0 0 0 0 35 0 0				0 0 0 33 0 0 82 0 0 0	OSS (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1086 0 0 42 0 0 0	0 0 0 0 20 47 0 0	LOSS 0 0 0 0 0 392 164 0 0 0 0 555	0 0 0 0 58 24 0 0	0 0 0 0 0 0 0 50 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 28 0		5 0 0 36 86 0 0	0 104 0 0 0 705 299 0 0 0 0 0 1108	0 165 0 0 104 44 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0 0 0 0 0 0 0 0 1416 210 0.30 0.55	LOSS GAIN O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O					0 0 0 0 20 0 72 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EAST SOUTH WEST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BIMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT COSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GSIN DUCT LOSS	20.8 20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 69 0 0 0	LOSS 0 769 0 0 0 0 238 0 0 0 0 0 1007 0.55	0 1218 0 0 0 35 0 0 0				0 0 0 33 0 0 82 0 0 0	OSS (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1086 0 0 42 0 0 0	0 0 0 0 20 47 0 0	LOSS 0 0 0 0 0 392 164 0 0 0 0 555	0 0 0 0 58 24 0 0	0 0 0 0 0 0 0 50 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 28 0 0		5 0 0 36 86 0 0	0 104 0 0 0 705 299 0 0 0 0 0 1108	0 165 0 0 104 44 0 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0 0 0 0 0 0 0 1416 210 0.30 0.55 781	LOSS GAIN O O O O O O O O O 10 208 329 O O O O O O O O O O O					0 0 0 0 20 0 72 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EAST SOUTH WEST SYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SUBTOTAL HT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN	20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7 2.5	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 69 0 0 0	LOSS 0 769 0 0 0 0 238 0 0 0 0 0 1007 0.55 555	0 1218 0 0 0 35 0 0 0				0 0 0 33 0 0 82 0 0 0	OSS 0 0 0 0 686 0 0 285 0 0 0 0 0 0 971	0 0 0 1086 0 0 42 0 0 0	0 0 0 0 20 47 0 0	LOSS 0 0 0 0 392 164 0 0 0 0 555 0.55 306	0 0 0 0 58 24 0 0	0 0 0 0 0 0 0 50 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 28 0 0		5 0 0 36 86 0 0	0 104 0 0 0 705 299 0 0 0 0 0 1108	0 165 0 0 104 44 0 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0 0 0 0 0 0 0 0 0 1416 210 0.30 0.55 781	LOSS GAIN O O O O O O O O O 10 208 329 O O O O O O O O O O O					0 0 0 0 20 0 72 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS DUCT GAIN HEAT GAIN PEOPLE	20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7 2.5	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 69 0 0 0	LOSS 0 769 0 0 0 0 238 0 0 0 0 0 1007 0.55 555	0 1218 0 0 0 35 0 0 0 1253				0 0 0 33 0 0 82 0 0 0	OSS 0 0 0 0 686 0 0 285 0 0 0 0 0 0 971	0 0 0 1086 0 0 42 0 0 0 0	0 0 0 0 20 47 0 0	LOSS 0 0 0 0 392 164 0 0 0 0 555 0.55 306	0 0 0 0 0 58 24 0 0 0	0 0 0 0 0 0 0 50 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5 0 0 36 86 0 0	0 104 0 0 0 705 299 0 0 0 0 0 1108	0 165 0 0 104 44 0 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 1166 183 633 94 0 0 0 0 0 0 0 0 0 0 0 1416 210 0.30 0.55 781 18	LOSS GAIN O					0 0 0 0 20 0 72 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EAST SOUTH WEST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG EXPOSED FLOOR BASEMENT/CRWWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS DUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS	20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7 2.5	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 69 0 0 0 0	LOSS 0 769 0 0 0 0 0 238 0 0 0 0 1007 0.55 555 0	0 1218 0 0 0 35 0 0 0 1253				0 0 0 33 0 0 82 0 0 0 0	OSS 0 0 0 0 0 686 0 0 2285 0 0 0 0 0 0 971	0 0 0 1086 0 0 42 0 0 0 0	0 0 0 0 0 20 47 0 0 0	LOSS 0 0 0 0 0 0 392 164 0 0 0 0 5555 0.555 306 0	0 0 0 0 0 58 24 0 0 0	0 0 0 0 0 0 0 0 50 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 28 0 0		5 0 0 36 86 0 0 0	0 104 0 0 0 705 299 0 0 0 0 0 1108 0.55 610	0 165 0 0 0 104 44 0 0 0 0	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 1166 183 633 94 0 0 0 0 0 0 0 0 0 0 0 1416 210 0.30 0.55 781 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LOSS GAIN O O O O O O O O O O O O					0 0 0 0 20 0 72 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS DUCT GAIN HEAT GAIN PEOPLE	20.8 20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7 2.5	12.8 32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	37 0 0 0 0 69 0 0 0 0	LOSS 0 769 0 0 0 0 238 0 0 0 0 0 1007 0.55 555	0 1218 0 0 0 0 35 0 0 0 0 1253				0 0 0 33 0 0 82 0 0 0 0	OSS 0 0 0 0 0 686 0 0 0 2285 0 0 0 0 0 971 0.55 535	0 0 1086 0 0 42 0 0 0 0 0	0 0 0 0 0 20 47 0 0 0	LOSS 0 0 0 0 392 164 0 0 0 0 555 0.55 306	0 0 0 0 0 58 24 0 0 0 0	0 0 0 0 0 0 0 0 50 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5 0 0 36 86 0 0 0	0 104 0 0 0 705 299 0 0 0 0 0 1108	0 165 0 0 104 44 0 0 0 0 313	LOSS GAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 116 183 633 94 0 0 0 0 0 0 0 0 0 0 1416 210 0.30 0.55 781 18 0 0 0	LOSS GAIN O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O					0 0 0 0 20 0 72 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL HEAT GAIN BTU/H:

17796 TONS: 1.48 LOSS DUE TO VENTILATION LOAD BTU/H: 1593

STRUCTURAL HEAT LOSS: 22176

TOTAL COMBINED HEAT LOSS BTU/H: 23769

Mhebal Kounke. INDIVIDUAL BCIN: 1969 MICHAEL O'ROURKE

	545 22,176 24.58 4th 0 0 ess note	A 3rd 0 0 0 d otherwi	TOTAL HI AIR FLOW R 2nd 7 4 se on layo	ES LING CFM EAT GAIN ATE CFM 1st 5	545 17,559		ple max	TYPE: 20 furnace pre furnace a/c coil pre vailable pre	essure e filter essure essure a & r/a ure s/a s. loss	0.6	r/a	r/a grille pre	pressure ss. Loss	0.22 0.02 0.20		59	ME N	(CARRIEI 26 0 545		OUTPUT	AFUE = (BTU/H) = (BTU/H) = GN CFM = CFM @ .i	26,000 25,000 545	· °F
RUN # ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ff/min) COOLING VELOCITY (ff/min) OUTLET GRILL SIZE TRUNK	1 MBR 0.85 21 1.45 0.22 59 160 219 0.1 5 154 330 3X10 A	2 ENS 1.66 41 0.75 23 0.22 61 170 231 0.1 4 470 264 3X10 A	ayou.	4 BED-2 1.48 36 2.36 73 0.22 27 190 217 0.1 6 184 372 4X10 B		6 BED-3 1.75 43 2.78 86 0.21 38 150 188 0.11 6 219 438 4X10 B	7 BATH 0.18 4 0.08 2 0.22 34 130 164 0.14 4 46 23 3X10 B			10 MBR 0.85 21 1.45 45 0.22 54 160 214 0.1 5 154 330 3X10 A		12 LV/DN 1.56 38 2.37 74 0.22 19 160 179 0.13 6 194 377 4X10 B			15 K/B/G 1.51 37 2.220 68 0.22 36 110 146 0.15 6 189 347 4X10 A	16 ENTRY-' 0.86 21 0.12 4 0.22 54 170 224 0.1 4 241 46 3X10 A	17 1 LAUN 0.09 2 0.65 20 0.22 37 140 177 0.13 4 23 229 3X10 B		19 FOY 1.72 42 0.44 14 0.22 10 170 180 0.12 4 482 161 3X10 B	20 ENTRY-2 2.20 54 0.30 9 0.22 56 160 216 0.1 5 396 66 3X10 A	21 REC 2.63 65 0.48 15 0.22 45 140 185 0.12 5 477 110 3X10 A	22 B-BTH 0.29 7 0.00 0 0.22 15 100 115 0.19 4 80 0 3X10 B	23 B-BED 1.50 37 1.40 43 0.22 34 170 204 0.11 5 272 316 3X10 B	24 BAS 1.53 38 0.37 12 0.22 50 160 210 0.11 4 436 138 3X10 A
RUN # ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (f/min) COOLING VELOCITY GRIMIN OUTLET GRILL SIZE TRUNK	25 BAS 1.53 38 0.37 12 0.22 6 120 126 0.18 4 436 138 3X10 B																							
TRUNK A TRUNK B TRUNK C TRUNK D TRUNK D TRUNK F	TRUNK CFM 298 545 0 0 0	STATIC PRESS. 0.10 0.10 0.00 0.00 0.00 0.00	ROUND DUCT 8.4 10.6 0 0	RECT DUCT 8 14 0 0 0	x x x x x	8 8 8 8 8	VELOCITY (ft/min) 671 701 0 0 0	TR TI TF	RUNK G RUNK H RUNK I RUNK J RUNK K RUNK L	TRUNK CFM 0 0 0 0 0	STATIC PRESS. 0.00 0.00 0.00 0.00 0.00 0.00	ROUND DUCT 0 0 0 0 0	RECT DUCT 0 0 0 0 0 0	x x x x x	8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0 0 0 0	TRUNK O TRUNK P TRUNK Q TRUNK R TRUNK S TRUNK T TRUNK U TRUNK U	TRUNK CFM 0 0 0 0 0 0 0 0	STATIC PRESS. 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0	ROUND DUCT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RECT DUCT 0 0 0 0 0 0 0	x x x x x x	8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RETURN AIR # FLOOR AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE ROUND DUCT SIZE INLET GRILL SIZE	1 2 60 0.20 55 235 290 0.07 5.1 8 X 14	2 2 65 0.20 46 195 241 0.08 5 8 X	3 2 75 0.20 47 155 202 0.10 5 8 X	4 2 85 0.20 55 140 195 0.10 5.3 8 X 14	5 1 185 0.20 24 220 244 0.08 7.5 8 X 14	6 B 45 0.20 32 155 187 0.10 4.2 8 X	0 0.20 1 0 1 19.60 0 0 X	1 0 1	0 0.20 1 0 1 19.60 0 0 X	0 0.20 1 0 1 19.60 0 0 X	0 0.20 1 0 1 19.60 0 0 X	0 0.20 1 0 1 19.60 0 0 X	0 0.20 1 0 1 19.60 0 0 X	0 0.20 1 0 1 19.60 0 0 X	0 0.20 1 0 1 19.60 0 0 X	BR B 30 0.20 40 175 215 0.09 3.7 0 X	TRUNK W TRUNK X TRUNK Y TRUNK Z DROP	0 545 415 0 545	0.07 0.07 0.07 0.07 0.07 0.07	0 11.6 10.4 0 11.6	0 16 12 0 24	x x x x	8 8 8 8 10	0 613 623 0 327

TYPE: 2003 SITE NAME: SUMM

SUMMER RIDGE ESTATES

LO # 104855 FIN BSMT

RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL V	ENTILATION CAPACIT	Υ	9.32.3.5.
a)		Total Ventilation Cap	pacity	159	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Ventil	. Capacity	79.5	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Supplement	ntal Capacity	79.5	cfm
d) Solid Fuel (including fireplaces)		PRINCIPAL EVILAL	OT FAN CARACITY		
e) No Combustion Appliances		PRINCIPAL EXHAU		1 4:	DOM
		Model:	VANEE V150H	Location:	BSMT
HEATING SYSTEM		79.5	cfm		✓ HVI Approved
Forced Air Non Forced Air		PRINCIPAL EXHAU	ST HEAT LOSS CALC	ULATION FACTOR	% LOSS
		79.5 CFM	X 74 F	X 1.08	X 0.25
Electric Space Heat		SUPPLEMENTAL F	ANS	BY INSTALLING CON	ITRACTOR
HOUSE TYPE	0.22.4(2)	Location	Model BY INSTALLING CONT	cfm	HVI Sones ✓ 3.5
HOUSE TIPE	9.32.1(2)	ENS BATH	BY INSTALLING CONT		✓ 3.5 ✓ 3.5
Type a) or b) appliance only, no solid fuel					
II Type I except with solid fuel (including fireplaces	s)				I I
III Any Type c) appliance		HEAT RECOVERY Model:	VENTILATOR VANEE V150	Н	9.32.3.11.
		150	cfm high	35	cfm low
		75	% Sensible Effici	ency	✓ HVI Approved
Other: Type I, II or IV no forced air			@ 32 deg F (0 d	eg C)	
CVCTFM DECICAL OPTIONS	O.N.H.W.P.	LOCATION OF INST	TALLATION		
SYSTEM DESIGN OPTIONS	O.N.H.W.P.	Lot:		Concession	
1 Exhaust only/Forced Air System		Township		Plan:	
2 HRV with Ducting/Forced Air System					
3 HRV Simplified/connected to forced air system		Address		D. 11 C. D.	2. 11
4 HRV with Ducting/non forced air system		Roll #		Building Per	mit #
Part 6 Design		BUILDER:	ROYAL PIE HO	MES	
<u> </u>		Name:			
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:			
Basement + Master Bedroom 1 @ 21.2 cfm 21.2	cfm	City:			
Other Bedrooms <u>3</u> @ 10.6 cfm <u>31.8</u>	cfm	Telephone #:		Fax#:	
Kitchen & Bathrooms <u>5</u> @ 10.6 cfm <u>53</u>	cfm	INSTALLING CONT	RACTOR		
Other Rooms <u>5</u> @ 10.6 cfm <u>53.0</u>	cfm	Name:			
Table 9.32.3.A. TOTAL <u>159.0</u>	cfm	Address:			
		City:			
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	Telephone #:		Fax #:	
1 Bedroom 31.8	cfm	DESIGNER CERTIF	ICATION		
2 Bedroom 47.7	cfm	I hereby certify that t	this ventilation system h		
3 Bedroom 63.6	cfm	Name:	he Ontario Building Coo HVAC Designs		
4 Bedroom 79.5	cfm	Signature:		Michael Oxfound	e.
5 Bedroom 95.4	cfm	HRAI#		001820	
TOTAL 79.5 cfm		Date:		April-24	
I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUA	LIFIED IN THE AP	PROPRIATE CATEGORY AS AN	"OTHER DESIGNER" UNDER	DIVISION C, 3.2.5 OF THE BI	JILDING CODE.

				80-12 Residential Hea						
LO#: 104	.855	Model: 2003	70111		r: ROYAL PIE HOMES	alcalation			Date:	2024-04-24
2011. 10-1	033	Volume Calculation	n	Dunac	I ROMETTE HOMES		Air Change & Delt	a T Data	Dute.	2024 04 24
			••				· · · · · · · · · · · · · · · · · · ·			
ouse Volume						WINTER	NATURAL AIR CHANG	E RATE	0.266	
Level	Floor Area (ft²)	Floor Height (ft)	Volume (ft³)				NATURAL AIR CHANG		0.083	
Bsmt	980	9	8428							1
First	980	10	9408	1						
Second	981	9	8436.6				Design Te	mperature Diff	erence	
Third	0	9	0				Tin °C	Tout °C	ΔT °C	ΔT °F
Fourth	0	9	0			Winter DTDh	22	-19	41	74
·		Total:	26,272.6 ft ³			Summer DTDc	24	30	6	11
		Total:	744.0 m ³							
	5.2.3	3.1 Heat Loss due to A	r Leakage			6.2.	6 Sensible Gain due	to Air Leakage		
		V_{-}					V_{t}			
	$HL_{airb} =$	$LR_{airh} \times \frac{V_b}{3.6} \times R_b$	$OTD_h \times 1.2$		Н	$IG_{salb} = LR_{airc}$	$\times \frac{V_b}{3.6} \times DTD_c$	× 1.2		
0.366		5.0		2722 \\			0.0			12C W
0.266	x 206.65	x 41 °C	XX	= 2722 W	= 0.083	X 206.65	x 6°C	X	_ = !	126 W
				= 9289 Btu/h	, 				=	431 Btu/h
				- 3289 Btu/II	<u>.</u>				- 1	451 Btu/11
	5.2.3.2 He	at Loss due to Mechai	ical Ventilation			6.2.7	Sensible heat Gain d	ue to Ventilatio	on	
	$HL_{mairh} =$	$PVC \times DTD_h \times$	$1.08 \times (1 - E)$		HL_1	$_{mairh} = PVC \times$	$DTD_h \times 1.08 \times$	(1 - E)		
	vanb	n	,			vali b	7.	` ,		
80 CFM	x 74 °F	x 1.08	x 0.25	= 1593 Btu/h	80 CFM	x 11 °F	x 1.08	x 0.25	=	236 Btu/h
00 0	~ <u> </u>	_ ^	_				^	×	_	200 2 (4)
			5 2 3 3 Calcula	tion of Air Change Heat	oss for Each Room (Flor	or Multiplier Section	nn)			
			3.2.3.3 Calcula	tion of Air change freat	LOSS TOT LUCIT NOOTH (TTO	or waterprier seeme	···,			
		HL_{α}	$_{irr} = Level Fact$	$or \times HL_{airbv} \times \{(H_{airbv}) \times \{$	$(L_{ager} + HL_{bger}) \div$	$(HL_{aaclanal} + H$	$\{L_{haclonal}\}$			
				unbo e(uger byer)	(agetevet	bycieverys			
				HLairve Air Leakage +	Level Conductive Heat	Air Leakage Heat	Loss Multiplier (LF x			
		Level	Level Factor (LF)	Ventilation Heat Loss	Loss: (HL _{clevel})	_	/ HLlevel)			
				(Btu/h)	,,		. ,			
		1	0.5		2,833		639			
		2	0.3	1	5,056		551			
		3	0.2	9,289	4,848	0.	383			
		4	0		0		000		Michael O'Ro	
		5	0		0	0.	000		BCIN# 19669)
		*HLairbv = A	ir leakage heat loss	+ ventilation heat loss					nel 1	I Ofmule
			-	entilation system HLairve					1/00/1 /-	.1 / 18 /

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL: 2002	i i i i i i i i i i i i i i i i i i i		PHILDED. DOVAL DIE HOMES	
MODEL: 2003 SFQT: 1961	LO#	FIN BSMT 104855	BUILDER: ROYAL PIE HOMES SITE: SUMMER RIDGE E	
3FQ1: 1961	LO#	104855	SITE: SUIVIMER RIDGE E	SIAIES
DESIGN ASSUMP	TIONS			
HEATING		°F	COOLING	°F
OUTDOOR DESIG		-2	OUTDOOR DESIGN TEMP.	86
INDOOR DESIGN	TEMP.	72	INDOOR DESIGN TEMP. (MAX 75°F)	75
DI III DINC DATA			WINDOW SHGC	0.60
BUILDING DATA				
ATTACHMENT:		ATTACHED	# OF STORIES (+BASEMENT):	3
			,	
FRONT FACES:		EAST	ASSUMED (Y/N):	Υ
AIR CHANGES PE	R HOUR:	3.00	ASSUMED (Y/N):	Υ
AIR TIGHTNESS C	ATEGORY:	TIGHT	ASSUMED (Y/N):	Υ
7.11. TIGITI 14255 C	ATEGORI.	110111	7.550 MED (1714).	•
WIND EXPOSURE	:	SHELTERED	ASSUMED (Y/N):	Υ
HOUSE VOLUME	(ft³):	26272.6	ASSUMED (Y/N):	Υ
INTERNAL CHARL	N.C. DUIA	IDC/CLIDTAINC	ACCUMED OCCUPANTS.	-
INTERNAL SHADI	NG: BLIN	IDS/CURTAINS	ASSUMED OCCUPANTS:	5
INTERIOR LIGHTI	NG LOAD (Btu/h/ft²):	1.27	DC BRUSHLESS MOTOR (Y/N):	Υ
	(, , - , -			-
FOUNDATION CO	NFIGURATION	BCIN_1	DEPTH BELOW GRADE:	6.6 ft
LENGTH: 5	5.0 ft WIDTH:	21.0 ft	EXPOSED PERIMETER:	56.0 ft

2012 OBC - COMPLIANCE PACKAGE		
	Compliance	Package
Component	PERFOR	MANCE
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22+1.5	21.40
Basement Walls Minimum RSI (R)-Value	20	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	1.6	-
Skylights Maximum U-Value	2.6	-
Space Heating Equipment Minimum AFUE	96%	-
HRV/ERV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	0.9	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Wes	ther Sta	tion Description
Province:	Ontario	tion bescription
Region:	Brampto	on.
-0	•	escription
Soil Conductivity:		conductivity: dry sand, loam, clay
, Water Table:		(7-10 m, 23-33 ft)
Fo		n Dimensions
Floor Length (m):	16.8	
Floor Width (m):	6.4	
Exposed Perimeter (m):	17.1	
Wall Height (m):	2.6	
Depth Below Grade (m):	2.01	Insulation Configuration
Window Area (m²):	1.9	
Door Area (m²):	1.9	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ation Loads
Heating Load (Watts):		478

TYPE: 2003 FIN BSMT

LO# 104855

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Statio	n Des	cripti	ion		
Province:	Ontai	io			
Region:	Bram	pton			
Weather Station Location:	Open	flat te	rrain, \S	grass	
Anemometer height (m):	10				
Local Sh	ieldin	g			
Building Site:	Subui	ban, f	orest		
Walls:	Heav	/			
Flue:	Heav	/			
Highest Ceiling Height (m):	6.16				
Building Cor	nfigura	ation			
Туре:	Semi				
Number of Stories:	Two				
Foundation:	Full				
House Volume (m³):	744.0)			
Air Leakage/	Venti	latior	1		
Air Tightness Type:	Attac	hed (3	.0 ACH)	
Custom BDT Data:	ELA @	9 10 Pa	Э.		833.4 cm ²
	3.00				ACH @ 50 Pa
Mechanical Ventilation (L/s):	To	tal Sup	ply		Total Exhaust
		37.5			37.5
Flue	Size				
Flue #:	#1	#2	#3	#4	
Diameter (mm):	0	0	0	0	
Natural Infilt	ration	Rate	S		
Heating Air Leakage Rate (ACH/H):		C	.26	6	
Cooling Air Leakage Rate (ACH/H):		C	.08	3	

TYPE: 2003 FIN BSMT

LO# 104855

LAUNDRY ELEV. 'A' (ELEV. 'B' SIMILAR)

PART. BASEMENT PLAN FOR SUNKEN FOYER (-2R)ELEV. 'A' (ELEV. 'B' SIMILAR)

PART. BASEMENT PLAN, ELEV. 'B'

BASEMENT PLAN

		3.								
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	REDUCER		REVISIONS						

I Michael O'Rourke have reviewed and take responsibility for the design work and am qualified under division C,3.2.5 of the building

Michael Ofowhe Michael O'Rourke BCIN # 19669 HVAC Designs Ltd.

PERFORMANCE

ROYAL PINE HOMES

Project Name

SUMMER RIDGE ESTATES BRAMPTON, ONTARIO

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

	HEAT L	OSS 23769	BTU/H	# OF RUNS	S/A	R/A	FANS	Shee
		UN I T DATA		3RD FLOOR				
	MAKE	CARRIER		2ND FLOOR	7	4	3	
	MODEL 59SC	C6A026M14	10	1ST FLOOR	5	1	2	
	INPUT	26	MBTU/H	BASEMENT	5	2	1(2)	Date
_	OUTPUT	0.5	MBTU/H	ALL S/A DIFFU:	SERS.	4 "x10)"	Scale
	COOLING	25		UNLESS NOTE				
е		1.5	TONS	UNLESS NOTE	D OTH	IERW		
	FAN SPEED	545	cfm @ 0.6" w.c.	ON LAYOUT. U DOORS 1" min.				L

BASEMENT HEATING LAYOUT APR/2024 3/16" = 1'-0" BCIN# 19669 104855 |LO#|

2003 - FIN BSMT

1961 sqft

(UNDRY ELE) .ev. 'b' similar)

OPT. GROUND FLOOR PLAN, ELEV. 'A'

PART. GROUND FLOOR PLAN, ELEV. 'B'

		3.								
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u> </u>	30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	REDUCER		REVISIONS						

D DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING

I Michael O'Rourke have reviewed and take responsibility for the design work and am qualified under division C,3.2.5 of the building

Michael Ofowhe Michael O'Rourke BCIN # 19669 HVAC Designs Ltd.

PERFORMANCE

FIRST FLOOR

HEATING

ROYAL PINE HOMES

Project Name

SUMMER RIDGE ESTATES BRAMPTON, ONTARIO

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be

LAYOUT APR/2024 3/16" = 1'-0" BCIN# 19669

2003 - FIN BSMT

1961 sqft adequately insulated and be gas-proofed.

104855 LO#

PART. SND. FLR. PLAN, ELEV. 'A' OPT. BATH LAYOUT

PART SECOND FLOOR PLAN, ELEV. 'B'

HVAC LEGEND								3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u> </u>	30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	25	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	Y	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING

I Michael O'Rourke have reviewed and take responsibility for the design work and am qualified under division C,3.2.5 of the building code.

Michael O'Rourke Michael O'Rourke BCIN # 19669 HVAC Designs Ltd. PERFORMANCE

Cllent

ROYAL PINE HOMES

2003 - FIN BSMT

Project Name

SUMMER RIDGE ESTATES BRAMPTON, ONTARIO

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR
HEATING
LAYOUT

Date APR/2024
Scale 3/16" = 1'-0"

BCIN# 19669 LO# 104855