Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Pro	ject Information					
	number, street name				Unit no.	Lot/con.
Municipa	ality	Postal code	Plan number/ other d	escription		
BRAMPT	•	r ostal code	r lait fluifibel/ offier u	escription		
		lea mananaihilite	for decima sativities			
Name	vidual who reviews and ta	kes responsibility	Firm			
	EL O'ROURKE		HVAC DESIGNS LTI)		
Street a			III/IO DEGIGINO ETI	Unit no.		Lot/con.
375 FIN	LEY AVE			202		N/A
Municipa	ality	Postal code	Province	E-mail		•
AJAX		L1S 2E2	ONTARIO	info@hvacdesi	gns.ca	
•	ne number	Fax number		Cell number		
(905) 61	19-2300	(905) 619-2375	i	()		
C. Desi	gn activities undertaken b	y individual identif	ied in Section B. [Bu	ilding Code Tabl	e 3.5.2.1 OF	Division C]
□ Но	use	⊠ HVA	C – House	ПЕ	Building Stru	ıctural
	nall Buildings		ng Services		Plumbing – F	
	rge Buildings		ction, Lighting and P		Plumbing – A	
	mplex Buildings ion of designer's work	☐ Fire F	Protection		On-site Sewa	age Systems
DUCT S RESIDE RESIDE	OSS / GAIN CALCULATIONS IZING NTIAL MECHANICAL VENTIL NTIAL SYSTEM DESIGN per laration of Designer		IProjec	et: ER RIDGE ESTATES I	INC.	
		_				
'	MICHAEL O'ROURK	(print name)		declare tha	at (choose one	as appropriate):
	I review and take responsib Division C, of the Building C classes/categories. Individual BCIN:				ction 3.2.4.of appropria	ate
	Firm BCIN:			· · · · · · · · · · · · · · · · · · ·		
X	I review and take responsib designer" under subsection		am qualified in the appr sion C, of the Building Co		an "other	
	Individual BCIN:	19669				
	Basis for exemp	tion from registration a	and qualification:	O.B.C SENT	ENCE 3.2.4	1.1 (4)
	The design work is exempt Basis for exemption from re		ation and qualification re ation:	quirements of the B	uilding Code.	
I certify	that:					
	The information contain I have submitted this ap		edule is true to the best o wledge and consent of th	ne firm.	/	7.
	April 25, 2022			Michan	Okouns	Le.
	Date				Signature o	f Designer
	Date				Signature 0	1 Designer

NOTE

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

SITE NAME: S	SUMME	R RIDGI	ESTA	TES INC	: .													DATE:	Apr-22			٧	WINTER	R NATURAL AIR CH	ANGE RATE 0.282	HEAT LOSS	ΔT °F. 74		CSA-F280
BUILDER: R	ROYAL	PINE H	IOMES	i				TYPE:	2501					GFA:	1905			LO#	95317			S	UMMER	R NATURAL AIR CH	ANGE RATE 0.088	HEAT GAIN	ΔT °F. 11	SB-12	2 PERFORMAN
ROOM USE				MBR			ENS					E	BED-2			BED-3						BATH							
EXP. WALL				31			7						29			10						8							
CLG. HT.				9			9						9			9						9							
F	FACTO	RS																											
GRS.WALL AREA	LOSS	GAIN		279			63						261			90						72							
GLAZING				LOSS	GAIN		LOSS	GAIN				L	oss	GAIN		LOSS	GAIN					LOSS	GAIN						
NORTH	20.8	15.5	0	0	0	0	0	0				0	0	0	0	0	0				0	0	0						
	20.8	41.0	0	0	0	0	0	0				44	914	1806	70	1454	2873				0	0	0						
SOUTH	20.8	24.4	0	0	0	0	0	0				0	0	0	0	0	0				0	0	0						
	20.8	41.0	26	540	1067	17	353	698				0	0	0	0	0	0				0	0	0						
SKYLT.	34.1	100.3	0	0	0	0	0	0				0	0	0	0	0	0				0	0	0						
	19.6	2.9	0	0	0	0	0	0				0	0	0	0	0	0				0	0	0						
	3.5	0.5	253	877	130	46	159	24					752	112	20	69	10				72	250	37						
NET EXPOSED BSMT WALL ABOVE GR	3.5	0.5	0	0	0	0	0	0				0	0	0	0	0	0				0	0	0						
	1.3	0.6	326	408	182	107	134	60					219	98	136	170	76				80	100	45						
	2.7	1.2	0	0	0	0	0	0				45	121	54	45	121	54				0	0	0						
	2.5	0.4	0	0	0	0	0	0					261	39	0	0	0				70	174	26						
BASEMENT/CRAWL HEAT LOSS			-	0	-	-	0	-					0		-	0	-					0							
SLAB ON GRADE HEAT LOSS				0			0						0			0						0							
SUBTOTAL HT LOSS				1826			647						2268			1815						524							
SUB TOTAL HT GAIN				.0_0	1379		•	781						2108			3013					·-·	107						
LEVEL FACTOR / MULTIPLIER			0.20	0.26		0.20	0.26					0.20	0.26		0.20	0.26					0.20	0.26							
AIR CHANGE HEAT LOSS			J	476		J. _J	169						592			474					J0	137							
AIR CHANGE HEAT GAIN					68			39						105			150						5						
DUCT LOSS				0	00		0	33					286	103		0	130					66	3						
DUCT GAIN				Ü	0		U	0					200	295		Ü	0					00	11						
	240		2		480	0		0				1		240	1		240				0		0						
HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS	240		-		501	٠		0				•		501	'		501				U		0						
TOTAL HT LOSS BTU/H				2302	301		816	٠					3146	301		2288	301					727	·						
TOTAL HT GAIN x 1.3 BTU/H				2302	3157		010	1066						4224		2200	5075					121	161						
TOTAL III GAIN X 1.5 BTO/II					3131			1000	<u> </u>					4224			3073						101						
ROOM USE							LV/DN			K/B/F						LAUN			PWD			FOY							BAS
EXP. WALL							35			38						7			4			10							92
CLG. HT.							10			10						9			11			11							9
F	FACTO	RS																											
GRS.WALL AREA L	LOSS	GAIN					350			380						63			44			110							552
GLAZING							LOSS	GAIN		LOSS	GAIN					LOSS	GAIN		LOSS	GAIN		LOSS	GAIN						LOSS G
NORTH	20.8	15.5				0	0	0	0	0	0				0	0	0	0	0	0	0	0	0						0 0
EAST	20.8	41.0				34	706	1396	0	0	0				0	0	0	0	0	0	0	0	0						0 0
SOUTH	20.8	24.4				0	0	0	0	0	0				0	0	0	0	0	0	0	0	0						0 0
WEST	20.8	41.0				0	0	0	73	1517	2997				0	0	0	0	0	0	0	0	0						6 125 2
		100.3				0	0	0	0	0	0				0	0	0	0	0	0	0	0	0						0 0
	19.6	2.9				20	392	58	0	0	0				0	0	0	0	0	0	20	392	58					:	20 392
	3.5	0.5				296	1026	152	307	1064	158				63	218	32	44	153	23	90	312	46						0 0
	3.5	0.5				0	0	0	0	0	0				0	0	0	0	0	0	0	0	0					2	276 970 1
	1.3	0.6				0	0	0	42	53	23				75	94	42	0	0	0	0	0	0						0 0
	2.7	1.2				0	0	0	0	0	0				0	0	0	0	0	0	0	0	0						0 0
	2.5	0.4				0	0	0	0	0	0				0	0	0	0	0	0	0	0	0						0 0
BASEMENT/CRAWL HEAT LOSS							0		1	0						0			0			0			j J				3062
SLAB ON GRADE HEAT LOSS							0			0						0			0			0							
SUBTOTAL HT LOSS							2124			2634						312			153			704							4548
SUB TOTAL HT GAIN								1606			3178						74			23			104						4
LEVEL FACTOR / MULTIPLIER						0.30	0.52		0.30	0.52					0.20	0.26		0.30	0.52		0.30							0	0.50 1.06
							1095		1	1357						82			79			363							4823
AIR CHANGE HEAT LOSS								80	1		158						4			1			5		j J				1
AIR CHANGE HEAT GAIN									1	•						0			0			0			1				
AIR CHANGE HEAT GAIN DUCT LOSS							0			0																			U
AIR CHANGE HEAT GAIN							0	0		U	0						0			0			0						Ü
AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	240					0	0	0	0	U	0				0		0	0		0	0		0						0
AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS	240					0	0		0	U					0			0		-	0								
AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	240						3219	0	0	3991	0				0	394	0	0	231	0	0	1066	0						0

STRUCTURAL HEAT LOSS: 27552 TOTAL HEAT GAIN BTU/H: 23892 TONS: 1.99 LOSS DUE TO VENTILATION LOAD BTU/H: 1274 TOTAL COMBINED HEAT LOSS BTU/H: 28826

Mehal Oxombe.

В

TRUNK

С

С

С

С

В

В

С

SITE NAME: SUMMER RIDGE ESTATES INC. **BUILDER: ROYAL PINE HOMES** TYPE: 2501 DATE: Apr-22 GFA: 1905 LO# 95317 furnace pressure 0.6 HEATING CFM 710 COOLING CFM 710 furnace filter 0.05 **#CARRIER** AFUE = 97 % 59SP5A-40-10 INPUT (BTU/H) = 40,000 TOTAL HEAT LOSS 27,552 TOTAL HEAT GAIN 23,703 a/c coil pressure 0.2 40 AIR FLOW RATE CFM 25.77 AIR FLOW RATE CFM 29.95 OUTPUT (BTU/H) = 39.000 available pressure FAN SPEED for s/a & r/a 0.35 LOW 0 DESIGN CFM = 710 CFM @ .6 " E.S.P. **RUN COUNT** MEDLOW 4th 3rd 2nd 1st Bas 0 S/A 3 plenum pressure s/a 0.18 r/a pressure 0.17 MEDIUM 0 0 R/A 0 0 4 max s/a dif press. loss 0.02 r/a grille press. Loss 0.02 MEDIUM HIGH 710 All S/A diffusers 4"x10" unless noted otherwise on layout. min adjusted pressure s/a 0.16 adjusted pressure r/a 0.15 HIGH TEMPERATURE RISE 51 All S/A runs 5"Ø unless noted otherwise on layout 10 14 15 17 18 19 22 23 RUN# 5 6 13 21 ROOM NAME MBR ENS BED-2 BED-3 BED-3 BATH MBR LV/DN K/B/F K/B/F LAUN PWD FOY BAS BAS BAS RM LOSS MBH 0.82 0.73 3.12 1.15 1.57 1.57 1.14 1.14 1.15 3.22 2.00 2.00 0.39 0.23 1.07 3.12 3.12 CFM PER RUN HEAT 21 41 41 29 30 30 29 19 83 51 51 10 6 27 80 80 80 RM GAIN MBH 1.58 1.07 2.11 2.11 2.54 2.54 0.16 1.58 2.84 2.49 2.49 0.75 0.03 0.14 0.42 0.42 0.42 CFM PER RUN COOLING 47 85 75 75 47 32 63 63 76 76 5 23 4 13 13 13 1 ADJUSTED PRESSURE 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 ACTUAL DUCT LGH 35 48 52 63 55 37 37 48 28 37 22 32 31 15 21 7 **EQUIVALENT LENGTH** 200 160 130 140 190 170 140 180 140 100 110 160 140 130 100 110 150 TOTAL EFFECTIVE LENGTH 231 195 178 192 253 225 177 217 188 115 138 181 147 167 122 117 182 ADJUSTED PRESSURE 0.07 0.09 0.1 0.09 0.07 0.08 0.1 0.08 0.09 0.15 0.12 0.1 0.12 0.1 0.14 0.15 0.09 ROUND DUCT SIZE 5 5 6 5 5 5 HEATING VELOCITY (ft/min 587 220 241 301 301 148 148 218 220 423 374 374 115 69 310 587 587 COOLING VELOCITY (ft/min 345 367 463 463 388 388 57 345 433 551 551 264 11 46 95 95 95 **OUTLET GRILL SIZE** 3X10 3X10 3X10 3X10 3X10 3X10 3X10 4X10 4X10 3X10 4X10 3X10 3X10 3X10 3X10 3X10 3X10

	RUN#
	ROOM NAME
	RM LOSS MBH.
	CFM PER RUN HEAT
	RM GAIN MBH.
	CFM PER RUN COOLING
	ADJUSTED PRESSURE
	ACTUAL DUCT LGH.
	EQUIVALENT LENGTH
	TOTAL EFFECTIVE LENGTH
	ADJUSTED PRESSURE
	ROUND DUCT SIZE
	HEATING VELOCITY (ft/min)
	COOLING VELOCITY (ft/min)
	OUTLET GRILL SIZE
l	TRUNK

В

Α

Α

C

С

В

С

SUPPLY AIR TRUNK SIZE																	RETURN A	IR TRUN	K SIZE					
	TRUNK	STATIC	ROUND	RECT			VELOCITY			TRUNK	STATIC	ROUND	RECT			VELOCITY		TRUNK	STATIC	ROUND	RECT			VELOCITY
	CFM	PRESS.	DUCT	DUCT			(ft/min)			CFM	PRESS.	DUCT	DUCT			(ft/min)		CFM	PRESS.	DUCT	DUCT			(ft/min)
TRUNK A	262	0.12	7.7	8	X	8	590		TRUNK G	0	0.00	0	0	х	8	0	TRUNK O	0	0.05	0	0	х	8	0
TRUNK B	248	0.07	8.6	8	Х	8	558		TRUNK H	0	0.00	0	0	Х	8	0	TRUNK P	0	0.05	0	0	Х	8	0
TRUNK C	446	0.07	10.7	14	Х	8	573		TRUNK I	0	0.00	0	0	Х	8	0	TRUNK Q	0	0.05	0	0	Х	8	0
TRUNK D	0	0.00	0	0	X	8	0		TRUNK J	0	0.00	0	0	х	8	0	TRUNK R	0	0.05	0	0	х	8	0
TRUNK E	0	0.00	0	0	Х	8	0		TRUNK K	0	0.00	0	0	Х	8	0	TRUNK S	0	0.05	0	0	Х	8	0
TRUNK F	0	0.00	0	0	X	8	0		TRUNK L	0	0.00	0	0	х	8	0	TRUNK T	0	0.05	0	0	х	8	0
																	TRUNK U	0	0.05	0	0	Х	8	0
																	TRUNK V	0	0.05	0	0	х	8	0
RETURN AIR #	1	2	3	4	5	6										BR	TRUNK W	0	0.05	0	0	х	8	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		TRUNK X	710	0.05	13.9	22	Х	8	581
AIR VOLUME	85	75	75	85	205	75	0	0	0	0	0	0	0	0	0	110	TRUNK Y	420	0.05	11.4	16	Х	8	473
PLENUM PRESSURE	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	TRUNK Z	0	0.05	0	0	х	8	0
ACTUAL DUCT LGH.	39	64	57	47	21	40	1	1	1	1	1	1	1	1	1	14	DROP	710	0.05	13.9	24	Х	10	426
EQUIVALENT LENGTH	195	260	245	215	135	270	0	0	0	0	0	0	0	0	0	135								
TOTAL EFFECTIVE LH	234	324	302	262	156	310	1	1	1	1	1	1	1	1	1	149								
ADJUSTED PRESSURE	0.06	0.05	0.05	0.06	0.09	0.05	14.80	14.80	14.80	14.80	14.80	14.80	14.80	14.80	14.80	0.10								
ROUND DUCT SIZE	6	6	6	6	7.5	6	0	0	0	0	0	0	0	0	0	5.8								
INLET GRILL SIZE	8	8	8	8	8	8	0	0	0	0	0	0	0	0	0	8								
	X	X	X	X	X	Х	Χ	Х	X	X	X	X	X	X	X	X								
INLET GRILL SIZE	14	14	14	14	14	14	0	0	0	0	0	0	0	0	0	14	1							

TYPE: 2501 LO# 95317

SITE NAME:

SUMMER RIDGE ESTATES INC. RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL VENTILATION CAPACI	TY	9.32.3.5.
a)		Total Ventilation Capacity	159	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Ventil. Capacity	63.6	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Supplemental Capacity	95.4	cfm
d) Solid Fuel (including fireplaces)				
e) No Combustion Appliances		PRINCIPAL EXHAUST FAN CAPACITY Model: VANEE V150H	Location:	BSMT
HEATING SYSTEM		63.6 cfm	Ecodulon.	✓ HVI Approved
✓ Forced Air Non Forced Air		PRINCIPAL EXHAUST HEAT LOSS CALC	CULATION	
		CFM ΔT °F 63.6 CFM X 74 F	FACTOR X 1.08	% LOSS X 0.25
Electric Space Heat		SUPPLEMENTAL FANS		
		Location Model	BY INSTALLING CON	HVI Sones
HOUSE TYPE	9.32.1(2)	ENS BY INSTALLING CONT BATH BY INSTALLING CONT		✓ 3.5 ✓ 3.5
✓ I Type a) or b) appliance only, no solid fuel		BATH BY INSTALLING CONT	RACION 50	√ 3.5
II Type I except with solid fuel (including fireplaces	,	PWD BY INSTALLING CONT	TRACTOR 50	✓ 3.5
Type rexcept with solid fuel (including ineplaces	,	HEAT RECOVERY VENTILATOR		9.32.3.11.
III Any Type c) appliance		Model: VANEE V150 150 cfm high	OH 35	cfm low
IV Type I, or II with electric space heat		130 CiliTiigii		CIII low
Other: Type I, II or IV no forced air		75 % Sensible Effic @ 32 deg F (0 c		✓ HVI Approved
		LOCATION OF INSTALLATION		
SYSTEM DESIGN OPTIONS	O.N.H.W.P.		0	
1 Exhaust only/Forced Air System		Lot:	Concession	
O LIDV with Dusting (Farmed Air County)		Township	Plan:	
2 HRV with Ducting/Forced Air System		Address		
HRV Simplified/connected to forced air system		Roll #	Building Perr	nit#
4 HRV with Ducting/non forced air system		BUILDER: ROYAL PINE H	IOMES	
Part 6 Design		Name:		
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:		
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	cfm	City:		
Other Bedrooms 2 @ 10.6 cfm 21.2	cfm	Telephone #:	Fax#:	
Kitchen & Bathrooms 4 @ 10.6 cfm 42.4	cfm	INSTALLING CONTRACTOR		
Other Rooms <u>5</u> @ 10.6 cfm <u>53.0</u>	cfm	Name:		
Table 9.32.3.A. TOTAL <u>159.0</u>	cfm	Address:		
		City:		
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	Telephone #:	Fax#:	
1 Bedroom 31.8	cfm		1 dx #.	
2 Bedroom 47.7	cfm	DESIGNER CERTIFICATION I hereby certify that this ventilation system I	•	
3 Bedroom 63.6	cfm	in accordance with the Ontario Building Co- Name: HVAC Designs		
4 Bedroom 79.5	cfm	Signature:	Mehad Ofounds	٠.
5 Bedroom 95.4	cfm	HRAI#	001820	
TOTAL 63.6 cfm		Date:	April-22	
I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUAL	IFIED IN THE AP	PROPRIATE CATEGORY AS AN "OTHER DESIGNER" UNDER	DIVISION C, 3.2.5 OF THE BU	ILDING CODE.

				80-12 Residential Hea						
			Form	ıula Sheet (For Air Lea	ikage / Ventiliation C	alculation)				
LO#: 95	317	Model: 2501		Builde	r: ROYAL PINE HOMES	SUMMER RIDGE ESTATES IN	C.		Date:	2022-04-25
		Volume Calculation	n				Air Change & Delt	a T Data		
				1						
use Volume	-1 . (6.2)	T =1	1 (6.3)	1			TURAL AIR CHANG		0.282	
Level	Floor Area (ft²)	Floor Height (ft)	Volume (ft³)	-		SUMMER NA	ATURAL AIR CHANG	E RATE	0.088	
Bsmt First	858 858	9 10	7722 8580							
Second	1047	9	9423	-			Design Te	mperature Diff	oronco	
Third	0	9	0	-			Tin °C	Tout °C	ΔT °C	ΔT °F
Fourth	0	9	0	1		Winter DTDh	22	-19	41	74
· ourti	-	Total:	25,725.0 ft ³	1		Summer DTDc	24	30	6	11
		Total:	728.5 m³				1		-	
		•		•						
	5.2.3	3.1 Heat Loss due to A	r Leakage			6.2.6	Sensible Gain due	to Air Leakage		
		V_{t}					V.			
	$HL_{airb} =$	$LR_{airh} \times \frac{V_b}{3.6} \times I$	$DTD_h \times 1.2$		H	$IG_{salb} = LR_{airc}$	$\times \frac{v_b}{2.6} \times DTD_c$	× 1.2		
0.282		5.0		= 2827 W	= 0.088		5.0		_ [131 W
0.282	x <u>202.35</u>	x <u>41 °C</u>	X 1.2	= 2027 VV	= 0.088	X 202.33	_ x <u>6 °C</u>	X	_ = L	131 W
				= 9645 Btu/h	Ţ 				= [448 Btu/h
				3043 514/11	1				L	440 5ta/11
	5.2.3.2 He	at Loss due to Mechar	ical Ventilation			6.2.7 Se	nsible heat Gain d	ue to Ventilatio	n	
								=		
	$HL_{vairb} =$	$PVC \times DTD_h \times 1$	$1.08 \times (1-E)$		HL	$_{vairb} = PVC \times D$	$TD_h \times 1.08 \times$	(1-E)		
64.0514	74.05	4.00	0.25	4074 8: //		44.05	4.00	0.05	F	100 5: //
64 CFM	x <u>74 °F</u>	_ x <u>1.08</u>	x <u>0.25</u>	= 1274 Btu/h	64 CFM	x 11 F	_ x <u>1.08</u>	x <u>0.25</u>	_ = [189 Btu/h
			E 2 2 2 Calcula	tion of Air Change Heat	loss for Each Poom (Fla	or Multiplior Section	\			
			3.2.3.3 Calcula	tion of All Change Heat	LOSS TOT LACTI NOOTH (FTO	or waitiplier section,				
		HL_a	$_{irr} = Level Fact$	$or \times HL_{airbv} \times \{(H_{airbv}) \times \{$	$(L_{agcr} + HL_{bgcr}) \div$	$(HL_{agclevel} + HL$	bgclevel)}			
			1	HLairve Air Leakage +		1				
		Level	Level Factor (LF)	Ventilation Heat Loss	Level Conductive Heat	Air Leakage Heat Lo	ss Multiplier (LF x			
			2010.14010.(2.7	(Btu/h)	Loss: (HL _{clevel})	HLairbv /	HLlevel)			
		1	0.5	(Dta/III	4,548	1.06	50			
		2	0.3	1	5,614	0.51				
		3	0.2	9,645	7,392	0.26				
		4	0	1	0	0.00			Michael O'Ro	urke
		5	0	1	0	0.00			BCIN# 19669	-
		*HI airby = 1	ir leakage heat loss	+ ventilation heat loss						1 Offmhe

HEAT LOSS AND GAIN SUMMARY SHEET

		ПЕАТ	LUSS AND GF	AIN SUIVIIVIART SHEET	
MODEL:	2501			BUILDER: ROYAL PINE HOME:	S
SFQT:	1905	LO#	95317	SITE: SUMMER RIDGE E	STATES INC.
DECICN A	CCLIMADTIONIC				
DESIGN A	SSUMPTIONS				
HEATING			°F	COOLING	°F
OUTDOO	R DESIGN TEMP.		-2	OUTDOOR DESIGN TEMP.	86
INDOOR I	DESIGN TEMP.		72	INDOOR DESIGN TEMP. (MAX 75°F)	75
				WINDOW SHGC	0.50
BUILDING	G DATA				
ATTACHN	MENT:		ATTACHED	# OF STORIES (+BASEMENT):	3
FRONT FA	ACES:		EAST	ASSUMED (Y/N):	Υ
AIR CHAN	IGES PER HOUR:		3.00	ASSUMED (Y/N):	Υ
7 till Clibar	IGEST EN TIOON.		3.00	ASSIVIES (TAM).	·
AIR TIGHT	TNESS CATEGORY:		TIGHT	ASSUMED (Y/N):	Υ
WIND EXI	POSURE:		SHELTERED	ASSUMED (Y/N):	Υ
HOUSE V	OLUME (ft³):		25725.0	ASSUMED (Y/N):	Υ
INTERNAI	L SHADING:	BLINDS	/CURTAINS	ASSUMED OCCUPANTS:	4
			•		
INTERIOR	LIGHTING LOAD (Btu/h	n/ft²):	1.27	DC BRUSHLESS MOTOR (Y/N):	Υ
FOUNDAT	TION CONFIGURATION		BCIN_1	DEPTH BELOW GRADE:	6.0 ft
LENGTH:	47.0 ft	WIDTH:	23.0 ft	EXPOSED PERIMETER:	92.0 ft

2012 OBC - COMPLIANCE PACKAGE		
	Compliance	Package
Component	SB-12 PERI	ORMANCE
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22+1.5	21.40
Basement Walls Minimum RSI (R)-Value	20	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	1.6	-
Skylights Maximum U-Value	2.6	-
Space Heating Equipment Minimum AFUE	96%	-
HRV/ERV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	0.9	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

We	eather Sta	tion Description
Province:	Ontario	•
Region:	Brampto	n
	Site D	escription
Soil Conductivity:	Normal o	conductivity: dry sand, loam, clay
Water Table:	Normal (7-10 m, 23-33 ft)
	Foundatio	n Dimensions
Floor Length (m):	14.3	
Floor Width (m):	7.0	
Exposed Perimeter (m):	28.0	
Wall Height (m):	2.7	
Depth Below Grade (m):	1.83	Insulation Configuration
Window Area (m²):	0.6	
Door Area (m²):	1.9	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	tion Loads
Heating Load (Watts):		897

TYPE: 2501 **LO#** 95317

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Sta	tion Des	cript	ion		
Province:	Ontai	io			
Region:	Bram	pton			
Weather Station Location:	Open	flat te	rrain, g	grass	
Anemometer height (m):	10				
	Shieldin	g			
Building Site:	Subui	ban, f	orest		
Walls:	Heav	/			
Flue:	Heav	/			
Highest Ceiling Height (m):	6.71				
Building (Configura	ation			
Туре:	Semi				
Number of Stories:	Two				
Foundation:	Full				
House Volume (m³):	728.5				
Air Leakag	ge/Venti	latior	1		
Air Tightness Type:	Energ	y Star	Attach	ed (3.0) ACH)
Custom BDT Data:	ELA @	9 10 Pa	Э.		816.0 cm ²
	3.00				ACH @ 50 Pa
Mechanical Ventilation (L/s):	To	tal Sup	ply		Total Exhaust
		30.0			30.0
Flu	ıe Size				
Flue #:	#1	#2	#3	#4	
Diameter (mm):	0	0	0	0	
Natural Inf	iltration	Rate	es		
Heating Air Leakage Rate (ACH/H	1):	().28	2	
Cooling Air Leakage Rate (ACH/H	I):	(0.08	8	

TYPE: 2501 **LO#** 95317

	<u> </u>			HVAC LE	EGEND			3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE	N	RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE PATH	APR/2022
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

ROYAL PINE HOMES

SUMMER RIDGE ESTATES INC BRAMPTON, ONTARIO

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca

Web: www.hvacdesigns.ca Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

	HEAT LC	SS 28826	BTU/H	# OF RUNS	S/A	R/A	FANS	Shee
		JN I T DATA		3RD FLOOR				
	MAKE C	ARRIER		2ND FLOOR	9	4	3	
	MODEL 595	SP5A-40-10		1ST FLOOR	5	2	2	
	INPUT	40	MBTU/H	BASEMENT	3	1	0	Date
_	OUTPUT	00	MBTU/H	ALL S/A DIFFU	SERS.	4 "x10)"	Scal
	COOLING	39	T0110	UNLESS NOTE ON LAYOUT. A				
е		2.0	TONS	UNLESS NOTE	D OTH	IERW		
	FAN SPEED	710	cfm @ 0.6" w.c.	ON LAYOUT. U DOORS 1" min.				L

IS	BASEMENT		
_			
	HEATING		
_	LAYOUT		
	Data		-
	Date MAR/2022		
	Scale	3/16" = 1'-0"	
Ø	BCIN# 19669		
	ΙO	[‡] 95317	

2501

SUPPLY AIR GRILLE N 14"x8" RETURN AIR GRILLE REVISED TO PERFORMANCE PATH 6" SUPPLY AIR BOOT ABOVE RETURN AIR STACK ABOVE APR/2022 30"x8" RETURN AIR GRILLE SUPPLY AIR GRILLE 6" BOOT 0 SUPPLY AIR STACK FROM 2nd FLOOR > <No. Description Date RETURN AIR STACK 2nd FLOOR SUPPLY AIR BOOT ABOVE FRA- FLOOR RETURN AIR GRILLE REDUCER **REVISIONS** 0 6" SUPPLY AIR STACK 2nd FLOOR

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.@ AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

ROYAL PINE HOMES

Project Name

SUMMER RIDGE ESTATES INC BRAMPTON, ONTARIO

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR **HEATING** LAYOUT MAR/2022

3/16" = 1'-0" BCIN# 19669 95317

LO#

2501

SUPPLY AIR GRILLE N 14"x8" RETURN AIR GRILLE RETURN AIR STACK ABOVE 6" SUPPLY AIR BOOT ABOVE 1. REVISED TO PERFORMANCE PATH APR/2022 30"x8" RETURN AIR GRILLE SUPPLY AIR GRILLE 6" BOOT 0 SUPPLY AIR STACK FROM 2nd FLOOR > <No. Description Date RETURN AIR STACK 2nd FLOOR FRA- FLOOR RETURN AIR GRILLE SUPPLY AIR BOOT ABOVE REDUCER **REVISIONS** 8 6" SUPPLY AIR STACK 2nd FLOOR

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

ROYAL PINE HOMES

Project Name

SUMMER RIDGE ESTATES INC BRAMPTON, ONTARIO

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR **HEATING LAYOUT**

MAR/2022 3/16" = 1'-0" BCIN# 19669

LO#

95317

2501