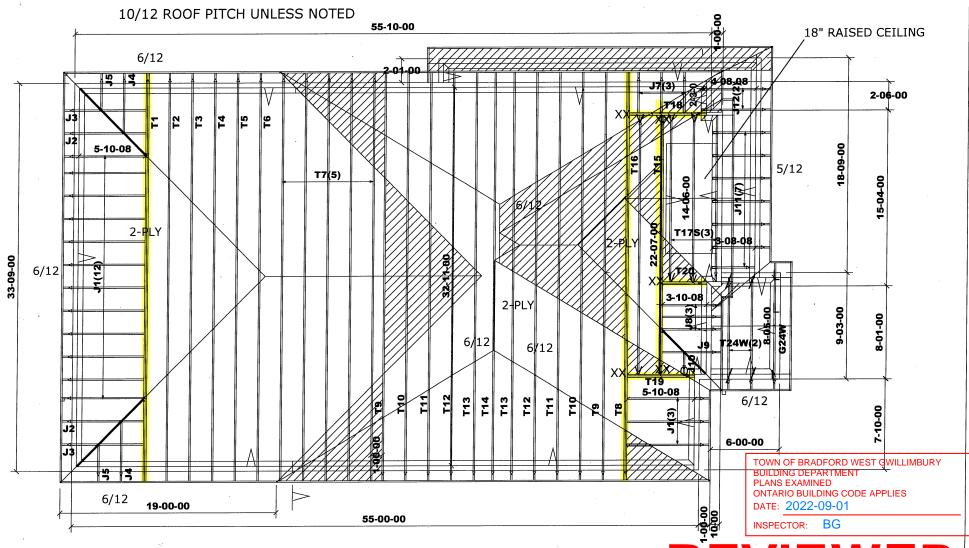
All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C. DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf


DESIGN LOADS:

TCSL = 32.5 psf TCDL = 6.0 psf BCLL = 0.0 psf BCDL = 7.4 psf

HARDWARE:

LUS24 - (**O**) LJS26DS - (**V**) HGUS26-2 - (**XX**) LSTA9- (L) H2.5T- (/)

Job Track: **50465**

Plan Log: **205577**

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

S42-21 / A

Model / Elevation:

REVIEWED

Project: GREEN VALLEY EAST

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER PURPOSE.

Mitch ver 8.5.3.23

Layout ID: **423666**

Date: 2022-07-11 Sales:

es:

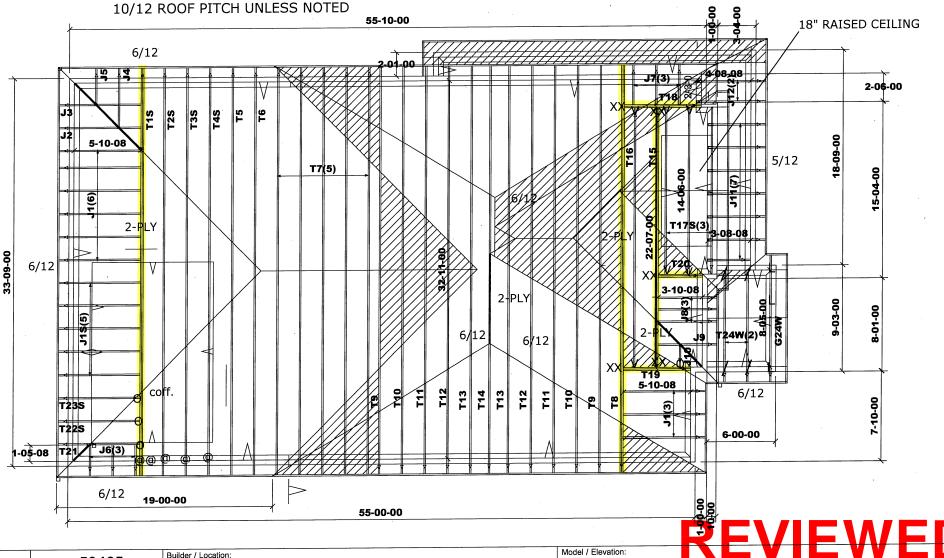
Rick DiCiano

Designer: JG

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf


DESIGN LOADS: TCSL = 32.5 psf

TCDL = 6.0 psf BCLL = 0.0 psfBCDL = 7.4 psf

DENOTES: CONVENTIONAL ☑ FRAMING

HARDWARE:

LUS24 - (O) LJS26DS - (V) HGUS26-2 - (XX) LSTA9- (L) H2.5T- (/) TC26-(@)

Job Track: 50465

Lavout ID: 423665

Plan Log: 205577

BAYVIEW WELLINGTON / BRADFORD

Designer: JG

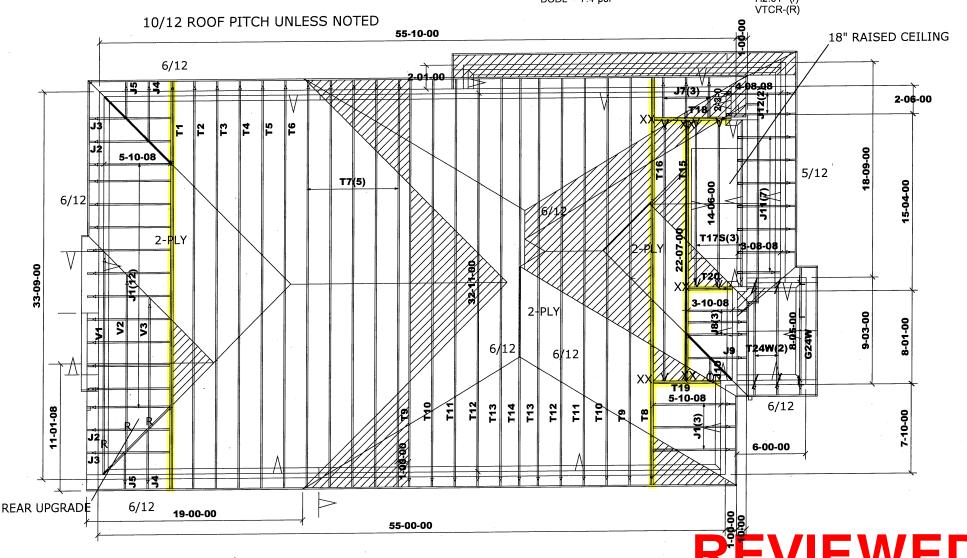
Project: GREEN VALLEY EAST

2022-07-11 Sales:

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER Mitek ver 8.5.3.233 All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C. DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:


TCSL = 32.5 psf TCDL = 6.0 psf BCLL = 0.0 psf

BCDL = 7.4 psf

HARDWARE:

LUS24 - (0) LJS26DS - (V) HGUS26-2 - (XX) LSTA9- (L) H2.5T- (/)

Job Track: **50465**

Plan Log: 205577

Lavout ID: 423667

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

Project: GREEN VALLEY EAST

2022-07-11 Sales: Rick DiCiano Designer: JG

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTILIZED FOR ANY OTHER

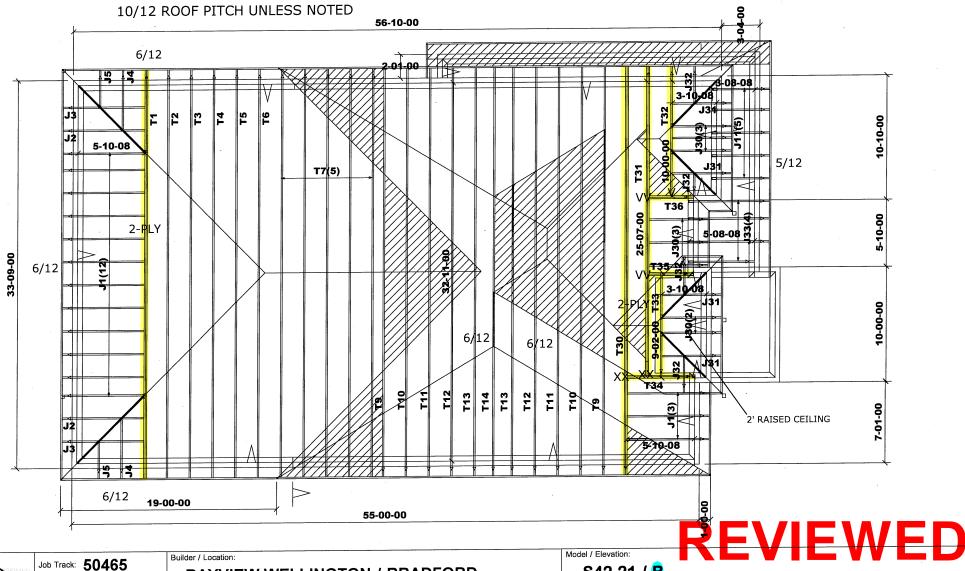
S42-21 / A-REAR UPGRADE

Model / Elevation:

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf


DESIGN LOADS: TCSL = 32.5 psf

TCDL = 6.0 psfBCLL = 0.0 psfBCDL = 7.4 psf

DENOTES: CONVENTIONAL **FRAMING**

HARDWARE:

LUS24 - (O) LJS26DS - (V) HGUS26-2 - (XX) LSTA9- (L) H2.5T- (/)

Plan Log: 205577

Date: 2022-07-11 Sales:

Layout ID: 423669

BAYVIEW WELLINGTON / BRADFORD

Rick DiCiano

S42-21 / B

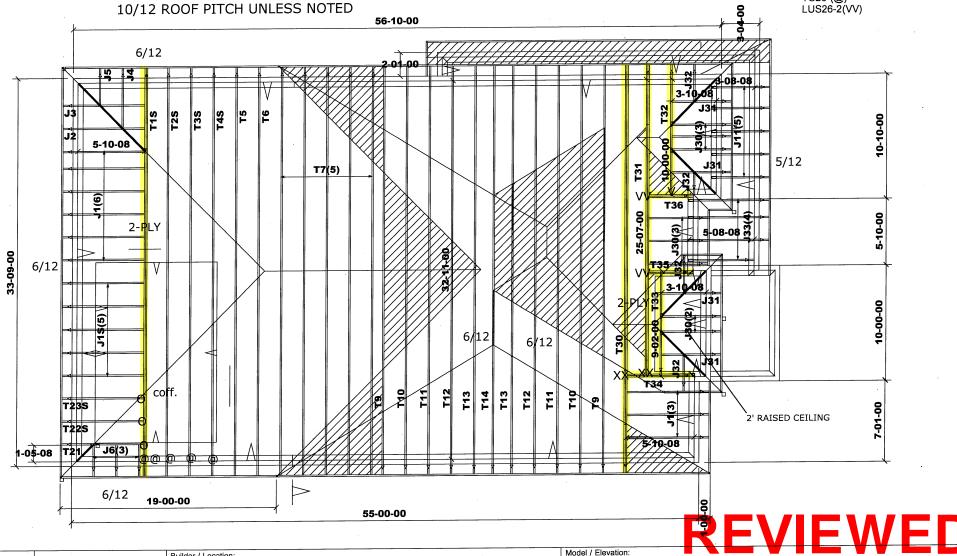
Project: GREEN VALLEY EAST

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER Designer: JG Mitek ver 8.5.3.233 PURPOSE.

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf


DESIGN LOADS: TCSL = 32.5 psf TCDL = 6.0 psf BCLL = 0.0 psf

BCDL = 7.4 psf

DENOTES: CONVENTIONAL **FRAMING**

HARDWARE:

LUS24 - (O) LJS26DS - (V) HGUS26-2 - (XX) LSTA9- (L) H2.5T- (/) TC26-(@)

Job Track: 50465

Plan Log: 205577

Layout ID: 423668

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

Project: GREEN VALLEY EAST

Designer: JG Date: 2022-07-11 Sales: Rick DiCiano

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER Mitek ver 8.5.3.233 All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

Project: GREEN VALLEY EAST

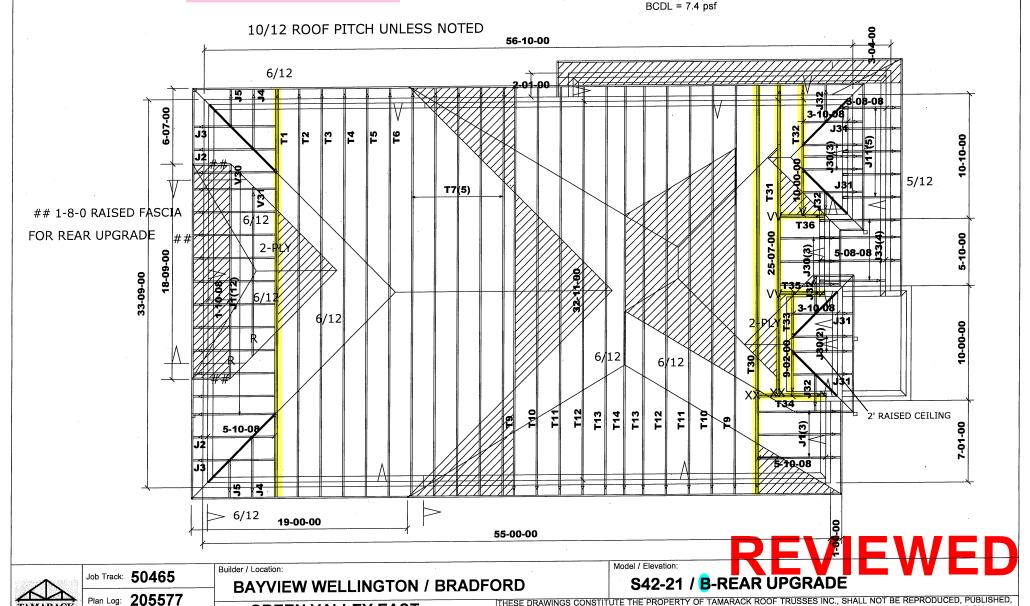
Rick DiCiano

Date: 2022-07-11 Sales:

Layout ID: 423670

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C. DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTILIZED FOR ANY OTHER


DESIGN LOADS:

TCSL = 32.5 psf TCDL = 6.0 psf BCLL = 0.0 psf

HARDWARE:

LUS24 - (**0**) LJS26DS - (**V**) HGUS26-2 - (**XX**) VTCR-(R)

Designer: JG

PURPOSE.

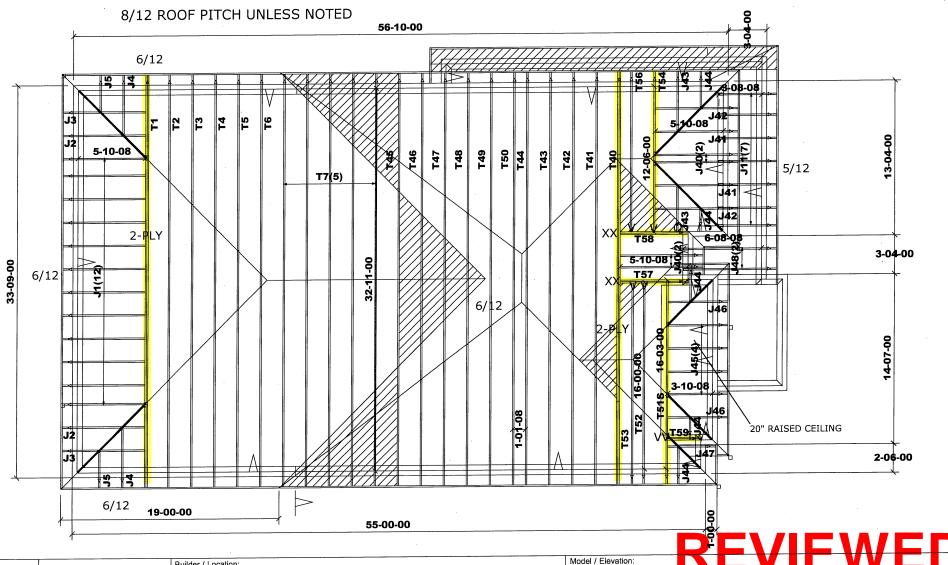
All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL I PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psfBCLL = 0.0 psfBCDL = 7.4 psf



HARDWARE: LUS24 - (O)

HGUS26-2 - (XX)

LJS26DS - (V)

LUS 26 -2 (VV)

Job Track: 50465

Plan Log: 205577

Layout ID: 423672

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

Designer: JG

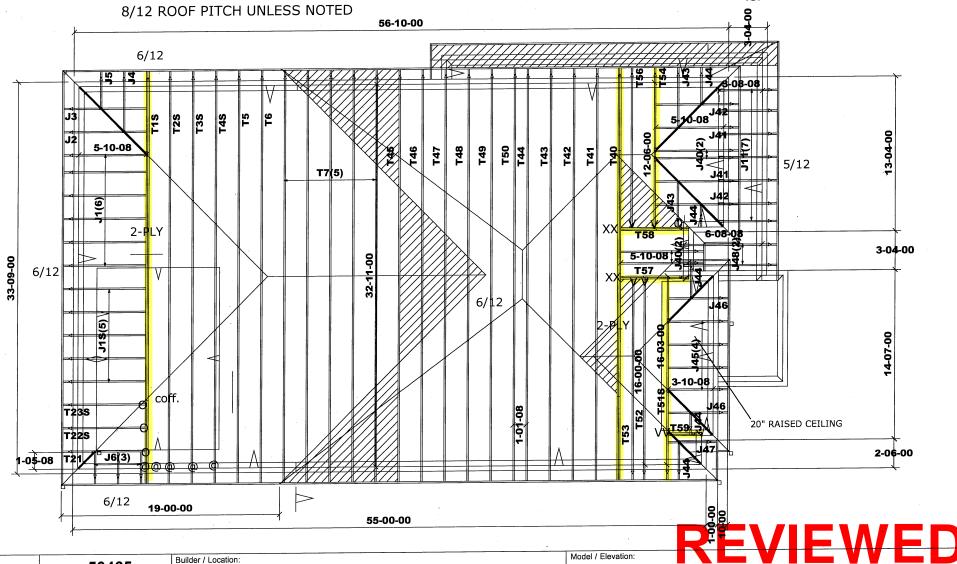
Project: GREEN VALLEY EAST

2022-07-11 Sales: Date:

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER Mitek ver 8.5.3.233 PURPOSE.

S42-21 / C

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.


ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C. DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9
Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psf TCDL = 6.0 psf BCLL = 0.0 psf BCDL = 7.4 psf DENOTES: CONVENTIONAL FRAMING

HARDWARE:

LUS24 - (**0**) LJS26DS - (**V**) HGUS26-2 - (**XX**) TC26-(**@**) LUS26-2 (VV)

Job Track: 50465

Plan Log: 205577

Layout ID: **423671**

BAYVIEW WELLINGTON / BRADFORD

Designer: JG

Project: GREEN VALLEY EAST

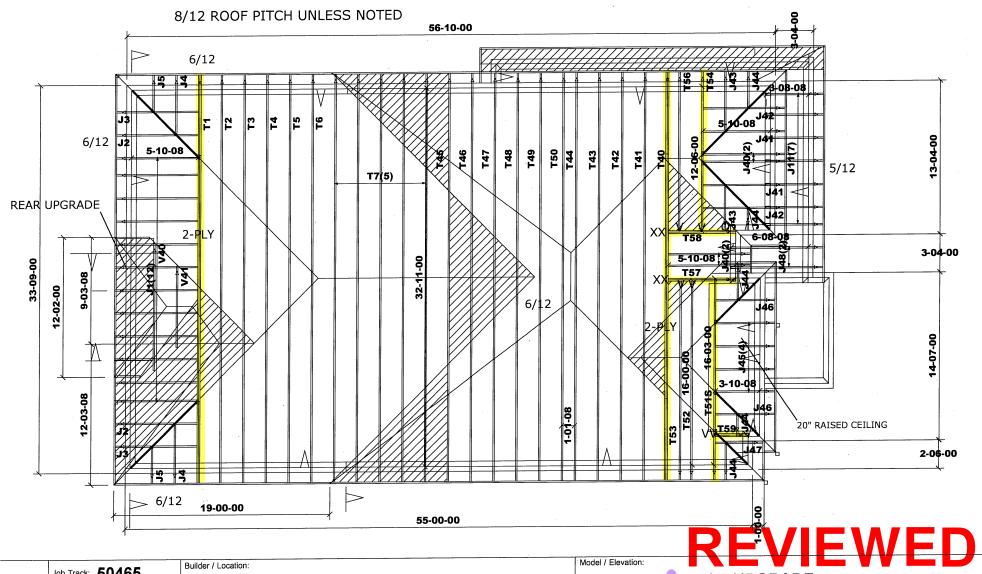
Date: 2022-07-11 Sales: Rick DiCiano

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER PURPOSE

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: **RESIDENTIAL | PART: 9** Ss = 43.8 psf | Sr = 8.4 psf


DESIGN LOADS:

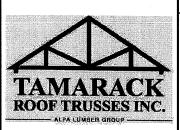
TCSL = 32.5 psfTCDL = 6.0 psfBCLL = 0.0 psf BCDL = 7.4 psf

HARDWARE:

LUS24 - (O) LJS26DS - (V) HGUS26-2 - (XX) LUS26-2(VV)

Job Track: 50465

Plan Log: 205577


Layout ID: 423673

BAYVIEW WELLINGTON / BRADFORD

Project: GREEN VALLEY EAST

Designer: JG Date: 2022-07-11 Sales: Rick DiCiano

HESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER PURPOSE

Lumber Yard:

TAMARACK LUMBER

Builder: Project: **BAYVIEW WELLINGTON GREEN VALLEY EAST**

Location:

Elevation:

BRADFORD

Model:

S42-21

Lot #:

Α

Job Track:

PlanLog:

50465 205577

Layout ID:

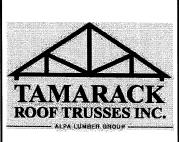
423666

Ref# Page:

1 of 3

Date:

07-11-2022


Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	. QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	32-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	292.31 185.33		
	1	T2 Hip	6 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.13 84.67		
	1	T3 Hip	6 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	132.01 83.00		
	1	T4 Hip	6 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.27 86.17		
	1	T5 Hip	6 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.67 87.50		
	1	T6 Hip	6 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.75 88.00		
	5	T7 Common	6 /12	32-11-00	9-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	717.12 451.67		
	1 2-ply	T8 Roof Special Girder	10 /12	32-11-00	7-04-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	359.92 226.67		
	2	T9 Hip	10 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	284.28 179.67		
	2	T10 Hip	10 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	287.31 180.67		
	2	T11 Hip	10 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	320.52 202.33		
	2	T12 Hip	10 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	310.24 196.67		-
	2	T13 Hip	10 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	324.22 202.33		
	1	T14 Hip	10 /12	32-11-00	9-11-02	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	160.12 101.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST**

Model:

S42-21

Α

BRADFORD

Lot #:

Elevation:

Job Track:

PlanLog:

50465 205577

Layout ID:

423666

Ref# Page:

2 of 3

Date:

07-11-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T15 Hip Girder	10 /12	22-07-00	4-10-07	2 x 4 2 x 6		1-07-11 1-07-11,	206.04 131.00		
	1	T16 Hip	10 /12	22-07-00	6-06-07	2 x 4		1-07-11 1-07-11	100.62 63.00		
	3	T17S Roof Special	10 /12	14-06-00	7-08-03	2 x 4		1-07-11 1-07-11	208.55 138.00		
	1 2-ply	T18 Half Hip Girder	6 /12	6-08-08	3-06-03	2 x 4 2 x 6		1-02-00 3-06-03	65.3 43.33		
	1 2-ply	T19 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T20 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	2	T24W Common	6 /12	8-05-00	3-00-15	2 x 4	1-03-08 1-03-08	5-07 5-07	53.73 35.33		
	1	G24W GABLE	6 /12	8-05-00	3-00-15	2 x 4	1-03-08 1-03-08	5-07 5-07	25.54 16.33		
	15	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	251.92 160.00		
	2	J2 Jack-Open	6 /12	3-09-07	. 3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
	3	J7 Jack-Open	10 /12	2-03-00	3-06-03	2 x 4	1-03-08	1-07-11 3-06-03	33.47 24.50		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

S42-21

Α

Model: Lot #:

Elevation:

Job Track:

PlanLog:

50465 205577

Layout ID:

423666

Ref#

Page: Date:

3 of 3 07-11-2022

Designer:

Sales Rep:

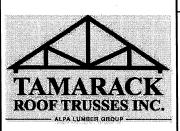
Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	3	J8 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	46.35 30.50		
	1	J9 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	1-07-11 3-01-09	12.02 8.33		
	1	J10 Jack-Open	10 /12	1-10-08	3-01-09	2 × 4		1-07-11 3-02-07	7.88 5.67		
	7	J11 Jack-Open	5 /12	3-08-08	2-04-13	2 x 4	1-03-08	4-01 1-10-09	73.81 46.67		
	2	J12 Jack-Open	5 /12	4-08-08	2-09-13	2 x 4	1-03-08	4-01 2-03-09	25.84 16.00		

TOTAL #TRUSS= 80

TOTAL BFT OF ALL TRUSSES= 3194.33


BFT.

TOTAL WEIGHT OF ALL TRSSES 5036.33 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	H2.5T	
5	Hardware	HGUS26-2	
6	Hardware	LJS26DS	
3	Hardware	LSTA9	
1	Hardware	LUS24	

TOTAL NUMBER OF ITEMS= 19

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON GREEN VALLEY EAST

A-OPT.WITH COFF.

Project: Location:

BRADFORD

Model:

S42-21

Lot #:

Elevation:

Job Track:

PlanLog:

50465 205577

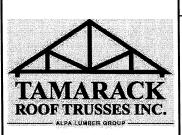
Layout ID:

423665

Ref#

Page: 1 of 3

Date:


07-11-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK	1				OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1S Hip Girder	6 /12	32-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	305.69 197.33		,
	1	T2S Hip	6 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	143.32 92.50		
	1	T3S Hip	6 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	143.68 91.83		-
	1	T4S Hip	6 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	145.48 92.67		
	1	T5 Hip	6 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	143.02 89.50	-	
	1	T6 Hip	6 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	143.6 90.00		
	5	T7 Common	6 /12	32-11-00	9-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	717.12 451.67		
	1 2-ply	T8 Roof Special Girder	10 /12	32-11-00	7-04-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	363.25 228.67		
	2	T9 Hip	10 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	284.28 179.67		
	2	T10 Hip	10 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	287.31 180.67		
	2	T11 Hip	10 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	320.52 202.33		
	2	T12 Hip	10 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	317.34 200.67		
	2	T13 Hip	10 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	329.75 205.67		
	1	T14 Hip	10 /12	32-11-00	9-11-02	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	167.42 105.33		

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON GREEN VALLEY EAST

A-OPT.WITH COFF.

Project: Location:

BRADFORD

Model:

S42-21

Lot #:

Elevation:

Job Track: PlanLog: 50465 205577

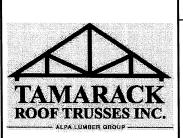
423665

Layout ID:

Ref# Page:

2 of 3

Date:


07-11-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T15 Hip Girder	10 /12	22-07-00	4-10-07	2 x 4 2 x 6		1-07-11 1-07-11	217.9 139.33		
	1	T16 Hip	10 /12	22-07-00	6-06-07	2 x 4		1-07-11 1-07-11	100.62 63.00		-
	3	T17S Roof Special	10 /12	14-06-00	7-08-03	2 x 4		1-07-11 1-07-11	208.55 138.00		
	1 2-ply	T18 Half Hip Girder	6 /12	6-08-08	3-06-03	2 x 4 2 x 6		1-02-00 3-06-03	65.3 43.33		
	1 2-ply	T19 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T20 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	1	T21 Half Hip Girder	6 /12	5-10-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	23.24 16.50		
	1	T22S Half Hip	6 /12	5-10-08	2-10-12	2 x 4	1-03-08	1-02-00 1-10-12	26.14 19.50		
	1	T23S Half Hip	6 /12	5-10-08	3-10-12	2 x 4	1-03-08	1-02-00 2-10-12	26.46 18.67		
	2	T24W Common	6 /12	8-05-00	3-00-15	2 x 4	1-03-08 1-03-08	5-07 5-07	53.73 35.33		
	1	G24W GABLE	6 /12	8-05-00	3-00-15	2 x 4	1-03-08 1-03-08	5-07 5-07	25.54 16.33		
	9	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	151.15 96.00		
	5	J1S Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 3-01-04	103.94 73.33		
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	14.13 8.67		

Lumber Yard: TAMARACK LUMBER

Builder: **BAYVIEW WELLINGTON**

Project: **GREEN VALLEY EAST**

Location: **BRADFORD** Model: S42-21

Lot #:

Elevation: A-OPT.WITH COFF.

Job Track: . PlanLog:

50465 205577

423665

Layout ID: Ref#

Page: 3 of 3

Date:

07-11-2022

Designer:

Sales Rep: Rick DiCiano

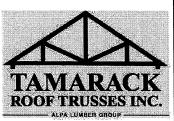
Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33		
	1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		
	1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	7.02 4.67		
	3	J6 Jack-Open	6 /12	1-05-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	18.38 14.00		
	3	J7 Jack-Open	10 /12	2-03-00	3-06-03	2 x 4	1-03-08	1-07-11 3-06-03	33.47 24.50		
	3	J8 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	46.35 30.50		
	1	J9 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	1-07-11 3-01-09	12.02 8.33		
	1	J10 Jack-Open	10 /12	1-10-08	3-01-09	2 x 4		1-07-11 3-02-07	7.88 5.67		
	7	J11 Jack-Open	5 /12	3-08-08	2-04-13	2 x 4	1-03-08	4-01 1-10-09	73.81 46.67		
	2	J12 Jack-Open	5 /12	4-08-08	2-09-13	2 x 4	1-03-08	4-01 2-03-09	25.84 16.00		

TOTAL #TRUSS= 81

TOTAL BFT OF ALL TRUSSES= 3306.5

BFT.


TOTAL WEIGHT OF ALL TRSSES 5175.19 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	H2.5T	
5	Hardware	HGUS26-2	
6	Hardware	LJS26DS	
3	Hardware	LSTA9	
4	Hardware	LUS24	
5	Hardware	TC26	

TOTAL NUMBER OF ITEMS= 27

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

Lot #:

Elevation:

S42-21

A-REAR UPGRADE

Job Track: PlanLog:

50465 205577

Layout ID:

423667

Ref# Page:

Date:

1 of 3 07-11-2022

Designer:

Sales Rep: Rick DiCiano

	QTY	MARK	-				OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	32-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	292.31 185.33		·
	. 1	T2 Hip	6 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.13 84.67		
	1	T3 Hip	6 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	132.96 83.67		
	1	T4 Hip	6 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.27 86.17		
	1	T5 Hip	6 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	143.02 89.50		
	1	T6 Hip	6 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.75 88.00		
	5	T7 Common	6 /12	32-11-00	9-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	717.12 451.67		
	1 2-ply	T8 Roof Special Girder	10 /12	32-11-00	7-04-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	359.92 226.67		
	2	T9 Hip	10 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	284.28 179.67		
	2	T10 Hip	10 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	287.31 180.67		
	2	T11 Hip	10 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	320.52 202.33		
	2	T12 Hip	10 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	310.24 196.67		
	2	T13 Hip	10 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	324.22 202.33		
	1	T14 Hip	10 /12	32-11-00	9-11-02	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	160.12 101.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

S42-21

Lot #: Elevation:

A-REAR UPGRADE

Job Track: PlanLog:

50465 205577

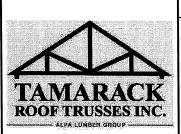
Layout ID:

423667

Ref#

Page: Date:

2 of 3 07-11-2022


Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T15 Hip Girder	10 /12	22-07-00	4-10-07	2 x 4 2 x 6		1-07-11 1-07-11	206.04 131.00		
	1	T16 Hip	10 /12	22-07-00	6-06-07	2 x 4		1-07-11 1-07-11	100.62 63.00		·
	3	T17S Roof Special	10 /12	14-06-00	7-08-03	2 x 4		1-07-11 1-07-11	208.55 138.00		
	1 2-ply	T18 Half Hip Girder	6 /12	6-08-08	3-06-03	2 x 4 2 x 6		1-02-00 3-06-03	65.3 43.33		
	1 2-ply	T19 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		-
	1 2-ply	T20 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6	·	1-07-11 4-10-07	43.15 29.33		
	2	T24W Common	6 /12	8-05-00	3-00-15	2 x 4	1-03-08 1-03-08	5-07 5-07	53.73 35.33	,	
	1	G24W GABLE	6 /12	8-05-00	3-00-15	2 x 4	1-03-08 1-03-08	5-07 5-07	25.54 16.33		
	1	V1 Valley	6 /12	19-02-00	4-09-08	2 x 4			58.89 39.50		
	1	V2 Valley	6 /12	15-02-00	3-09-08	2 x 4			39.54 25.33		
	1	V3 Valley	6 /12	11-02-00	2-09-08	2 x 4			27.06 17.50		
	15	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	. 1-02-00 4-01-04	251.92 160.00		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
CHICAGO CONTRACTOR CON	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location: Model:

BRADFORD

Lot #: Elevation: S42-21

A-REAR UPGRADE

Job Track: PlanLog:

50465 205577

Layout ID:

423667

Ref# Page:

3 of 3

Date:

07-11-2022

Designer:

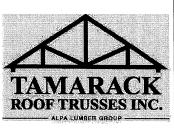
Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
	3	J7 Jack-Open	10 /12	2-03-00	3-06-03	2 x 4	1-03-08	1-07-11 3-06-03	33.47 24.50		
	3	J8 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	46.35 30.50		
	1	J9 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	1-07-11 3-01-09	12.02 8.33		
	1	J10 Jack-Open	10 /12	1-10-08	3-01-09	2 x 4		1-07-11 3-02-07	7.88 5.67		
	7	J11 Jack-Open	5 /12	3-08-08	2-04-13	2 x 4	1-03-08	4-01 1-10-09	73.81 46.67		
	2	J12 Jack-Open	5 /12	4-08-08	2-09-13	2 x 4	1-03-08	4-01 2-03-09	25.84 16.00		
TOTAL # TR	1166-	83	TOTAL				1		L	<u> </u>	

TOTAL # TRUSS= 83

TOTAL BFT OF ALL TRUSSES= 3279.33


BFT.

TOTAL WEIGHT OF ALL TRSSES 5166.13 LBS

HARDWARE

QTY	. TYPE	MODEL	LENGTH
4	Hardware	H2.5T	
5	Hardware	HGUS26-2	
6	Hardware	LJS26DS	
3	Hardware	LSTA9	
1	Hardware	LUS24	

TOTAL NUMBER OF ITEMS= 19

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model: Lot #:

Elevation:

S42-21

B-OPT.WITH COFF.

Job Track: PlanLog:

50465 205577

Layout ID:

423668

Ref# Page:

1 of 3

Date:

07-11-2022

Designer:

Sales Rep: Rick DiCiano

=	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1S Hip Girder	6 /12	32-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	305.7 197.33		·
	1	T2S Hip	6 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	143.46 92.50		
	1	T3S Hip	6 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	143.96 91.83		
	1	T4S Hip	6 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	145.62 92.67		
	1	T5 Hip	6 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.67 87.50		
	1	T6 Hip	6 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.75 88.00		
	5	T7 Common	6 /12	32-11-00	9-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	717.12 451.67		
	2	T9 Hip	10 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	284.28 179.67		
	2	T10 Hip	10 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	287.31 180.67		
	2	T11 Hip	10 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	320.52 202.33		
	2	T12 Hip	10 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	310.24 196.67		
	2	T13 Hip	10 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	324.22 202.33		
	1	T14 Hip	10 /12	32-11-00	9-11-02	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	167.42 105.33		
	1	T21 Half Hip Girder	6 /12	5-10-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	23.24 16.50		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location: Model:

BRADFORD

Lot #:

Elevation:

S42-21

B-OPT.WITH COFF.

Job Track: PlanLog: 50465 205577

Layout ID:

423668

2 of 3

Ref#

Page: Date:

07-11-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK				<u> </u>	OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T22S Half Hip	6 /12	5-10-08	2-10-12	2 x 4	1-03-08	1-02-00 1-10-12	24.63 18.17		
	1	T23S Half Hip	6 /12	5-10-08	3-10-12	2 x 4	1-03-08	1-02-00 2-10-12	25.33 17.67		
	1 2-ply	T30 Roof Special Girder	10 /12	32-11-00	6-04-12	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	362.83 222.00		
	1 2-ply	T31 Hip Girder	10 /12	25-07-00	4-10-07	2 x 4 2 x 6	1-03-08	1-07-11 3-10-03	246.37 153.33		
	1	T32 Hip Girder	10 /12	10-00-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	55.23 35.50		
	1	T33 Hip Girder	10 /12	9-02-00	4-10-07	2 x 4 2 x 6		1-07-11 1-07-11	50.4 34.83		
	1 2-ply	T34 Flat Girder	0 /12	5-10-08	2-00-00	2 x 6		2-00-00 2-00-00	57.82 37.33		
	1 2-ply	T35 Flat	0 /12	3-10-08	2-00-00	2 x 6		2-00-00 2-00-00	38.36 25.33		
	1 2-ply	T36 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	9	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	151.15 96.00		
	5	J1S Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 3-01-04	103.94 73.33		
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	14.13 8.67		
	1	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33		
	1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		:

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

Elevation:

BRADFORD

Model:

Lot #:

S42-21

B-OPT.WITH COFF.

Job Track: PlanLog:

50465 205577

Layout ID:

423668

Ref# Page:

3 of 3

Date:

07-11-2022

Designer:

Sales Rep:

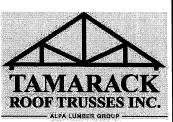
Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	7.02 4.67		
	3	J6 Jack-Open	6 /12	1-05-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	18.38 14.00		
	5	J11 Jack-Open	5 /12	3-08-08	2-04-13	2 x 4	1-03-08	4-01 1-10-09	52.72 33.33		
	8	J30 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	124.58 81.33		
	4	J31 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	1-07-11 3-01-09	48.06 33.33		
	4	J32 Jack-Open	10 /12	1-10-08	3-01-09	2 x 4	1-03-08	1-07-11 3-02-07	39.17 28.00		
	4	J33 Jack-Open	5 /12	5-08-08	3-02-13	2 x 4	1-03-08	4-01 2-08-09	61.18 37.33		

TOTAL #TRUSS= 84

TOTAL BFT OF ALL TRUSSES= 3181.81


BFT.

TOTAL WEIGHT OF ALL TRSSES 4998.14 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
1	Hardware	LJS26DS	
2	Hardware	LUS26-2	
2	Hardware	LUS26-2	
5	Hardware	TC26	

TOTAL NUMBER OF ITEMS= 12

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

S42-21

В

Lot #:

Elevation:

Job Track: PlanLog: 50465 205577

Layout ID:

423669

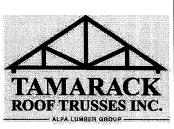
Ref#

Page:

1 of 3

Date:

07-11-2022


Designer:

Sales Rep: Ric

Rick DiCiano

Roof Trusses

-	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	32-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	292.31 185.33		
	1	T2 Hip	6 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.13 84.67		
	1	T3 Hip	6 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	132.96 83.67		
	1	T4 Hip	6 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.27 86.17		
	1	T5 Hip	6 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.67 87.50		
	1	T6 Hip	6 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.75 88.00		
	5	T7 Common	6 /12	32-11-00	9-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	717.12 451.67		
	2	T9 Hip	10 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	284.28 179.67		
	2	T10 Hip	10 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	287.31 180.67		
	2	T11 Hip	10 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	. 1-07-11 1-07-11	320.52 202.33		,
	2	T12 Hip	10 /12	32-11-00	8-01-04	·2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	310.24 196.67		
	2	T13 Hip	10 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	324.22 202.33		
	1	T14 Hip	10 /12	32-11-00	9-11-02	2 x 4	1-03-08 1-03-08	1-07-11 1-0.7-11	167.42 105.33		
	1 2-ply	T30 Roof Special Girder	10 /12	32-11-00	6-04-12	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	362.83 222.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON GREEN VALLEY EAST

Project: Location:

BRADFORD

Model:

S42-21

В

Lot #:

Elevation:

Job Track: PlanLog: 50465 205577 423669

Layout ID:

Ref# Page:

2 of 3

Date:

07-11-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK		·			OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T31 Hip Girder	10 /12	25-07-00	4-10-07	2 x 4 2 x 6	1-03-08	1-07-11 3-10-03	246.37 153.33		
	1	T32 Hip Girder	10 /12	10-00-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	55.23 35.50		
	1	T33 Hip Girder	10 /12	9-02-00	4-10-07	2 x 4 2 x 6		1-07-11 1-07-11	50.4 34.83		
	1 2-ply	T34 Flat Girder	0 /12	5-10-08	2-00-00	2 x 6		2-00-00 2-00-00	57.82 37.33		
	1 2-ply	T35 [·] Flat	0 /12	3-10-08	2-00-00	2 x 6		2-00-00 2-00-00	38.36 25.33		
	1 2-ply	T36 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6	-	1-07-11 4-10-07	43.15 29.33		
	15	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	251.92 160.00		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
8	5	J11 Jack-Open	5 /12	3-08-08	2-04-13	2 x 4	1-03-08	4-01 1-10-09	52.72 33.33		
	8	J30 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	124.58 81.33		
	4	J31 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	1-07-11 3-01-09	48.06 33.33		

Lumber Yard:

TAMARACK LUMBER Builder:

Project:

BAYVIEW WELLINGTON

Location:

GREEN VALLEY EAST

Model:

BRADFORD

Lot #: Elevation:

S42-21

В

Job Track: PlanLog:

50465 205577

Layout ID:

423669

Ref#

Page:

3 of 3

Date:

07-11-2022

Designer:

Sales Rep:

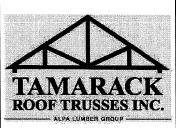
Rick DiCiano

Roof Trusses

١	ı	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
	PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
		4	J32 Jack-Open	10 /12	1-10-08	3-01-09	2 x 4	1-03-08	1-07-11 3-02-07	39.17 28.00		
		4	J33 Jack-Open	5 /12	5-08-08	3-02-13	2 x 4	1-03-08	4-01 2-08-09	61.18 37.33		·

TOTAL #TRUSS= 83

TOTAL BFT OF ALL TRUSSES= 3098.31


BFT.

TOTAL WEIGHT OF ALL TRSSES 4904.61 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
1	Hardware	LJS26DS	
2	Hardware	LUS26-2	

TOTAL NUMBER OF ITEMS= 5

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model: Lot #:

Elevation:

S42-21

542-21

B-REAR UPGRADE

Job Track: PlanLog: 50465 205577

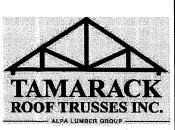
Layout ID:

423670

Ref# Page:

1 of 3

Date:


07-11-2022

Designer:

Sales Rep: Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	32-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	300.17 191.33		
	1	T2 Hip	6 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.13 84.67		
	1	T3 Hip	6 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	132.96 83.67		
	1	T4 Hip	6 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.27 86.17		
	1	T5 Hip	6 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.67 87.50		
	1	T6 Hip	6 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.75 88.00		
	5	T7 Common	6 /12	32-11-00	9-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	717.12 451.67		
	2	T9 Hip	10 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	284.28 179.67		
	2	T10 Hip	10 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	287.31 180.67		
	2	T11 Hip	10 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	320.52 202.33		
	2	T12 Hip	10 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	310.24 196.67		
	2	T13 Hip	10 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	324.22 202.33		
	15	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	251.92 160.00	-	
	1	T14 Hip	10 /12	32-11-00	9-11-02	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	167.42 105.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location: Model: BRADFORD

Lot #:

Elevation:

S42-21

B-REAR UPGRADE

Job Track: PlanLog: 50465 205577

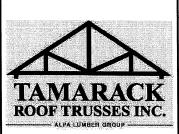
Layout ID:

423670

Ref# Page:

2 of 3

Date:


07-11-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY.	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	5	J11 Jack-Open	5 /12	3-08-08	2-04-13	2 x 4	1-03-08	4-01 1-10-09	52.72 33.33		
	4	J33 Jack-Open	5 /12	5-08-08	3-02-13	2 x 4	1-03-08	4-01 2-08-09	61.18 37.33		
	1 2-ply	T30 Roof Special Girder	10 /12	32-11-00	6-04-12	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	378.12 233.33	·	
	1 2-ply	T31 Hip Girder	10 /12	25-07-00	4-10-07	2 x 4 2 x 6	1-03-08	1-07-11 3-10-03	257.48 163.33		
	1 2-ply	T36 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	8	J30 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	124.58 81.33		
	1 2-ply	T35 Flat	0 /12	3-10-08	2-00-00	2 x 6		2-00-00 2-00-00	38.36 25.33		
	1	T33 Hip Girder	10 /12	9-02-00	4-10-07	2 x 4 2 x 6		1-07-11 1-07-11	50.4 34.83		
	1 2-ply	T34 Flat Girder	0 /12	5-10-08	2-00-00	2×6		2-00-00 2-00-00	57.82 37.33		
	1	T32 Hip Girder	10 /12	10-00-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	55.23 35.50		
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33	-	
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

Lot #: Elevation: S42-21

B-REAR UPGRADE

Job Track: PlanLog:

50465 205577 423670

Layout ID: Ref#

Page:

3 of 3

Date:

07-11-2022

Designer:

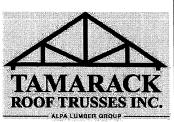
Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	4	J31 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	1-07-11 3-01-09	48.06 33.33		
	4	J32 Jack-Open	10 /12	1-10-08	3-01-09	2 x 4	1-03-08	1-07-11 3-02-07	39.95 28.00		
	1	V30 Valley	6 /12	18-07-00	2-08-07	2 x 4			47.34 30.50	٠	
	1	V31 Valley	6 /12	14-07-00	3-04-07	2 x 4			39.33 24.67		

TOTAL #TRUSS= 85

TOTAL BFT OF ALL TRUSSES= 3180.81


BFT.

TOTAL WEIGHT OF ALL TRSSES 5026.33 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
1	Hardware	LJS26DS	
2	Hardware	LUS26-2	
2		VTCR	

TOTAL NUMBER OF ITEMS= 7

Lumber Yard:

TAMARACK LUMBER

Builder: Project: **BAYVIEW WELLINGTON**

Location:

GREEN VALLEY EAST BRADFORD

Model:

S42-21

Lot #:

Elevation: C-OPT, WITH COFF.

Job Track: PlanLog:

50465 205577

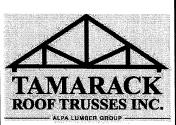
Layout ID:

423671

Ref# Page:

1 of 4

Date:


07-11-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1S Hip Girder	6 /12	32-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	311.56 200.67		
	1	T2S Hip	6 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	143.46 92.50		
	1	T3S Hip	6 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	143.83 91.83		
	1	T4S Hip	6 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02- <u>0</u> 0	145.55 92.17		
	1	T5 Hip	6 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.67 87.50		
	1	T6 Hip	6 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.75 88.00		
	5	T7 Common	6 /12	32-11-00	9-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	717.12 451.67		
	1	T21 Half Hip Girder	6 /12	5-10-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	23.24 16.50		
	1	T22S Half Hip	6 /12	5-10-08	2-10-12	2 x 4	1-03-08	1-02-00 1-10-12	24.63 18.17		
	1	T23S Half Hip	6 /12	5-10-08	3-10-12	2 x 4	1-03-08	1-02-00 2-10-12	25.33 17.67		
	1 2-ply	T40 Hip Girder	8 /12	32-11-00	5-03-15	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	360.37 219.00		
	1	T41 Hip	8 /12	32-11-00	6-07-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	145.8 94.17		
	1	T42 Hip	8 /12	32-11-00	7-11-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	145.92 93.00		
	1	T43 Hip	8 /12	32-11-00	9-03-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	154.75 97.83		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location: Model:

BRADFORD

Lot #:

Elevation:

S42-21

C-OPT.WITH COFF.

Job Track: PlanLog:

50465 205577

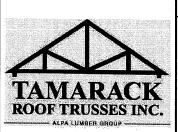
423671

Layout ID:

Ref# Page:

2 of 4

Date:


07-11-2022

Designer:

Sales Rep: Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T44 Hip	8 /12	32-11-00	10-07-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	167.1 106.00		
	1	T45 Hip	8 /12	32-11-00	5-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	142.25 91.33		
	1	T46 Hip	8 /12	32-11-00	6-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	145.44 94.17		
	1	T47 Hip	8 /12	32-11-00	7-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	143.58 90.33		
	1	T48 Hip	8 /12	32-11-00	8-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	149.9 95.50		
	1	T49 Hip	8 /12	32-11-00	9-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	156.78 98.67		
	1	T50 Hip	8 /12	32-11-00	10-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	166.79 106.00		
	1	T51S Hip Girder	8 /12	16-03-00	5-07-13	2 x 4 2 x 6	1-03-08	1-04-13 1-04-13	83.48 52.50		
	1	T52 Hip	8 /12	16-00-00	6-11-13	2 x 4	1-03-08	1-04-13 3-02-13	77.58 49.50		
	1	T53 Common	8 /12	16-00-00	7-07-13	2 x 4	1-03-08	1-04-13 3-02-13	73.48 47.33		
	1	T54 Hip Girder	8 /12	12-06-00	5-03-15	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	71.03 44.50		
	1	T56 Common	8 /12	12-06-00	5-06-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	54.88 35.83		
	1 2-ply	T57 Flat Girder	0 /12	5-10-08	1-08-00	2 x 6		1-08-00 1-08-00	55.39 33.67		
	1 2-ply	T58 Jack-Closed Girder	8 /12	5-10-08	5-03-13	2 x 4 2 x 6		1-04-13 5-03-13	64.23 40.67		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model: Lot #:

Elevation:

S42-21

C-OPT.WITH COFF.

Job Track: PlanLog:

50465 205577

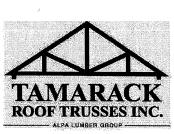
Layout ID:

423671

Ref# Page:

3 of 4

Date:


07-11-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

1	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T59 Flat	0 /12	2-10-08	1-08-00	2 x 4		1-08-00 1-08-00	22.18 16.33		
	6	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	100.77 64.00		
	5	J1S Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 3-01-04	103.94 73.33		
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	14.13 8.67		
	1	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33		
	1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		
	1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	7.02 4.67		
	3	J6 Jack-Open	6 /12	1-05-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	18.38 14.00		
	7	J11 Jack-Open	5 /12	3-08-08	2-04-13	2 x 4	1-03-08	4-01 1-10-09	73.81 46.67		
	4 .	J40 Jack-Open	8 /12	5-10-08	5-03-13	2 x 4	1-03-08	1-04-13 5-03-13	71.32 42.67		
	2	J41 Jack-Open	8 /12	3-09-08	3-11-02	2 x 4	1-03-08 2-01-00	1-04-13 3-11-02	33.12 20.67		
	2	J42 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 4-01-01	1-04-13 2-07-02	26.74 16.67		
	2	J43 Jack-Open	8 /12	1-10-08	3-11-02	2 x 4	1-03-08 1-10-15	1-04-13 2-07-13	23.41 15.33		
	5	J44 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01	1-04-13 2-07-02	44.52 28.33		

Lumber Yard:

TAMARACK LUMBER

Builder: Project: **BAYVIEW WELLINGTON GREEN VALLEY EAST**

Location:

BRADFORD

Model:

S42-21

Lot #:

Elevation:

C-OPT.WITH COFF.

Job Track: PlanLog:

50465 205577

Layout ID:

423671

Ref# Page:

4 of 4

Date:

07-11-2022

Designer:

Sales Rep:

Rick DiCiano

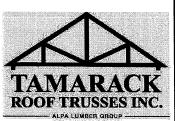
Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	4	J45 Jack-Open	8 /12	3-10-08	3-11-13	2 x 4	1-03-08	1-04-13 3-11-13	57.6 36.00		
	2	J46 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 2-01-01	1-04-13 2-07-02	22.18 14.00		
	1	J47 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01-01	1-04-13 2-07-02	9.95 6.33	·	
	2	J48 Jack-Open	5 /12	6-08-08	3-07-13	2 x 4	1-03-08	4-01 3-01-09	39.64 24.33		

TOTAL #TRUSS= 87

TOTAL BFT OF ALL TRUSSES= 3092.01

BFT.


TOTAL WEIGHT OF ALL TRSSES 4862.78 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
4	Hardware	LJS26DS	
4	Hardware	LUS24	
5	Hardware	TC26	

TOTAL NUMBER OF ITEMS= 15

LUS 26-2

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST**

Model:

BRADFORD S42-21

Lot #:

Elevation: C

Job Track: PlanLog: 50465 205577

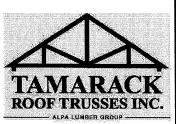
Layout ID:

423672

Ref#

Page: Date: 1 of 4

Designer:


Sales Rep:

Rick DiCiano

07-11-2022

Roof Trusses

-	QTY	MARK	I	1			OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	32-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	292.31 185.33		
	1	T2 Hip	6 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.13 84.67		
	1	T3 Hip	6 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	132.96 83.67		
	1	T4 Hip	6 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.27 86.17	÷	
	1	T5 Hip	6 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.67 87.50		
	1	T6 Hip	6 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.75 88.00		
	5	T7 Common	6 /12	32-11-00	9-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	717.12 451.67		
	1 2-ply	T40 Hip Girder	8 /12	32-11-00	5-03-15	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	360.37 219.00		
	1	T41 Hip	8 /12	32-11-00	6-07-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	145.8 94.17	·	
	1	T42 Hip	8 /12	32-11-00	7-11-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	145.92 93.00		
	1	T43 Hip	8 /12	32-11-00	9-03-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	154.75 97.83		
	1	T44 Hip	8 /12	32-11-00	10-07-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	167.1 106.00		
	1	T45 Hip	8 /12	32-11-00	5-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	142.25 91.33		
	1	T46 Hip	8 /12	32-11-00	6-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	145.44 94.17		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: GREEN VALLEY EAST BRADFORD

Model:

S42-21

С

Lot #:

Elevation:

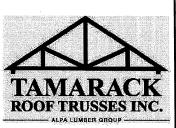
Job Track: PlanLog: 50465 205577

Layout ID:

423672

Ref#

Page: Date: 2 of 4 07-11-2022


Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

1	QTY	MARK					OVERHANG	HEEL BEIOUET	LDC	DUNE: 5 "	1045 511
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER .	OVERHANG LEFT RIGHT	HEEL HEIGHT LEFT RIGHT	LBS. BFT.	BUNDLE#	LOAD BY REMARKS
	. 1	T47 Hip	8 /12	32-11-00	7-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	143.58 90.33		
	1	T48 Hip	8 /12	32-11-00	8-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	149.9 95.50		
	1	T49 Hip	8 /12	32-11-00	9-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	156.78 98.67		
	1	T50 Hip	8 /12	32-11-00	10-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	166.79 106.00		
	1	T51S Hip Girder	8 /12	16-03-00	5-07-13	2 x 4 2 x 6	1-03-08	1-04-13 1-04-13	83.48 52.50		
	1	T52 Hip	8 /12	16-00-00	6-11-13	2 x 4	1-03-08	1-04-13 3-02-13	77.58 49.50		
	1	T53 Common	8 /12	16-00-00	7-07-13	2 x 4	1-03-08	1-04-13 3-02-13	73.48 47.33		
	1	T54 Hip Girder	8 /12	12-06-00	5-03-15	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	71.03 44.50		
	1	T56 Common	8 /12	12-06-00	5-06-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	54.88 35.83		
	1 2-ply	T57 Flat Girder	0 /12	5-10-08.	1-08-00	2 x 6		1-08-00 1-08-00	55.39 33.67		
	1 2-ply	T58 Jack-Closed Girder	8 /12	5-10-08	5-03-13	2 x 4 2 x 6		1-04-13 5-03-13	64.23 40.67		
	1 2-ply	T59 Flat	0 /12	2-10-08	1-08-00	2 x 4		1-08-00 1-08-00	22.18 16.33		
	12	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	201.53 128.00		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

S42-21

С

Lot#:

Elevation:

Job Track: PlanLog: 50465 205577

Layout ID:

423672

Ref#

Page: Date:

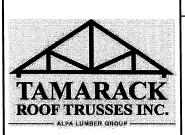
3 of 4 07-11-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses


	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33	·	
	7	J11 Jack-Open	5 /12	3-08-08	2-04-13	2 x 4	1-03-08	4-01 1-10-09	73.81 46.67		
	4	J40 Jack-Open	8 /12	5-10-08	5-03-13	2 x 4	1-03-08	1-04-13 5-03-13	71.32 42.67		
	2	J41 Jack-Open	8 /12	3-09-08	3-11-02	2 x 4	1-03-08 2-01-00	1-04-13 3-11-02	33.12 20.67		
	2	J42 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 4-01-01	1-04-13 2-07-02	26.74 16.67	-	
	2	J43 Jack-Open	8 /12	1-10-08	3-11-02	2 x 4	1-03-08 1-10-15	1-04-13 2-07-13	23.41 15.33	,	
	5	J44 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01	1-04-13 2-07-02	44.52 28.33		
	4	J45 Jack-Open	8 /12	3-10-08	3-11-13	2 x 4	1-03-08	1-04-13 3-11-13	57.6 36.00		
	2	J46 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 2-01-01	1-04-13 2-07-02	22.18 14.00		
	1	J47 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01-01	1-04-13 2-07-02	9.95 6.33		
	2	J48 Jack-Open	5 /12	6-08-08	3-07-13	2 x 4	1-03-08	4-01 3-01-09	39.64 24.33	-	

TOTAL #TRUSS= 86

TOTAL BFT OF ALL TRUSSES= 3005.67

BFT.

TOTAL WEIGHT OF ALL TRSSES 4763.59 LBS

Lumber Yard: TAMARACK LUMBER

Builder: BAYVIEW WELLINGTON

Project: GREEN VALLEY EAST

Location: BRADFORD

Model: S42-21

Lot #:

Elevation: C

Job Track: PlanLog: 50465 205577 423672

Layout ID:

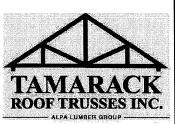
Ref# Page:

4 of 4

Date:

07-11-2022

Designer:


Sales Rep: Rick DiCiano

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
4	Hardware	LJS26DS	
1	Hardware	LUS24	

TOTAL NUMBER OF ITEMS= 7

LUS 26-2

Lumber Yard:

TAMARACK LUMBER

C-REAR UPGRADE

Builder:

BAYVIEW WELLINGTON GREEN VALLEY EAST

Project: Location:

BRADFORD

Model:

S42-21

Lot #:

Elevation:

Job Track: PlanLog:

ack: 50465 g: 205577

Layout ID:

423673

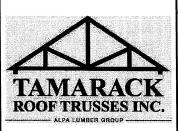
Ref#

Page:

1 of 4

Date:

07-11-2022


Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	32-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	292.31 185.33		
	1	T2 Hip	6 /12	32-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.13 84.67		
	1	T3 Hip	6 /12	32-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	132.96 83.67	·	
	1	T4 Hip	6 /12	32-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.27 86.17		
	1	T5 Hip	6 /12	32-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.67 87.50		
	1	T6 Hip	6 /12	32-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.75 88.00		
	5	T7 Common	6 /12	32-11-00	9-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	717.12 451.67		
	1 2-ply	T40 Hip Girder	8 /12	32-11-00	5-03-15	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	398.71 242.67		
	1	T41 Hip	8 /12	32-11-00	6-07-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	145.8 94.17		
	1	T42 Hip	8 /12	32-11-00	7-11-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	145.92 93.00		
	1	T43 Hip	8 /12	32-11-00	9-03-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	154.75 97.83		
	1	T44 Hip	8 /12	32-11-00	10-07-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	170.83 108.00		
	1	T45 Hip	8 /12	32-11-00	5-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	142.25 91.33		
	1	T46 Hip	8 /12	32-11-00	6-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	145.44 94.17		

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: GREEN VALLEY EAST BRADFORD

Model:

S42-21

Lot #:

Elevation: C-REAR UPGRADE

Job Track: PlanLog: 50465 205577

Layout ID:

423673

Ref#

Page:

2 of 4

Date:

07-11-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T47 Hip	8 /12	32-11-00	7-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	143.58 90.33	William	
	1	T48 Hip	8 /12	32-11-00	8-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	149.9 95.50		
	1	T49 Hip	8 /12	32-11-00	9-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	156.78 98.67		
	1	T50 Hip	8 /12	32-11-00	10-07-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	170.5 108.00		
	1	T51S Hip Girder	8 /12	16-03-00	5-07-13	2 x 4 2 x 6	1-03-08	1-04-13 1-04-13	82.32 52.00		
	1	T52 Hip	8 /12	16-00-00	6-11-13	2 x 4	1-03-08	1-04-13 3-02-13	77.58 49.50		
	1	T53 Common	8 /12	16-00-00	7-07-13	2 x 4	1-03-08	1-04-13 3-02-13	73.48 47.33		
	1	T54 Hip Girder	8 /12	12-06-00	5-03-15	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	72.45 45.33		
	1	T56 Common	8 /12	12-06-00	5-06-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	54.88 35.83		
	1 2-ply	T57 Flat Girder	0 /12	5-10-08	1-08-00	2 x 6		1-08-00 1-08-00	55.39 33.67		
	1 2-ply	T58 Jack-Closed Girder	8 /12	5-10-08	5-03-13	2 x 4 2 x 6		1-04-13 5-03-13	64.23 40.67		
	1 2-ply	T59 Flat	0 /12	2-10-08	1-08-00	2 x 4		1-08-00 1-08-00	22.18 16.33		
	1	V40 Valley	6 /12	11-01-00	2-00-01	2 x 4			27 17.33		
	1	V41 Valley	6 /12	7-01-00	1-09-04	2 x 4			16.37 11.00		

REVIEWED

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

C-REAR UPGRADE

Builder:

BAYVIEW WELLINGTON GREEN VALLEY EAST

Project: Location:

Model:

S42-21

Lot #: Elevation: **BRADFORD**

Page:

3 of 4

50465

205577

423673

Date:

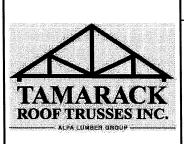
Ref#

07-11-2022

Designer:

Job Track:

PlanLog:


Layout ID:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	12	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	201.53 128.00		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33	-	
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
	7	J11 Jack-Open	5 /12	3-08-08	2-04-13	2 x 4	1-03-08	4-01 1-10-09	73.81 46.67		
	4	J40 Jack-Open	8 /12	5-10-08	5-03-13	2 x 4	1-03-08	1-04-13 5-03-13	76.29 49.33		
	2	J41 Jack-Open	8 /12	3-09-08	3-11-02	2 x 4	1-03-08 2-01-00	1-04-13 3-11-02	33.12 20.67		
	2	J42 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 4-01-01	1-04-13 2-07-02	26.74 16.67		
	2	J43 Jack-Open	8 /12	1-10-08	3-11-02	2 x 4	1-03-08 1-10-15	1-04-13 2-07-13	23.41 15.33		
	5	J44 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01	1-04-13 2-07-02	44.52 28.33		
	4	J45 Jack-Open	8 /12	3-10-08	3-11-13	2 x 4	1-03-08	1-04-13 3-11-13	57.6 36.00		
	2	J46 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 2-01-01	1-04-13 2-07-02	22.18 14.00		
	1	J47 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01-01	1-04-13 2-07-02	9.95 6.33		

DELIVERY SHIPLIST

Lumber Yard: TAMARACK LUMBER

Builder: BAYVIEW WELLINGTON

Project: GREEN VALLEY EAST

Location: BRADFORD

Model: S42-21

Lot #:

Elevation: C-REAR UPGRADE

Job Track: PlanLog: 50465 205577

Layout ID: 423673

Ref#

Page:

4 of 4

Date:

07-11-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

PROFILE	QTY PLY	MARK TYPE	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT RIGHT	HEEL HEIGHT LEFT RIGHT	LBS. BFT.	BUNDLE#	LOAD BY REMARKS
	2	J48 Jack-Open	5 /12	6-08-08	3-07-13	2 x 4	1-03-08	4-01 3-01-09	39.64 24.33		

TOTAL #TRUSS=

88

TOTAL BFT OF ALL TRUSSES= 3068.66

BFT.

TOTAL WEIGHT OF ALL TRSSES 4857.95 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
4	Hardware	LJS26DS	
1	Hardware	LUS24	
1	Hardware	LUS26-2	

TOTAL NUMBER OF ITEMS= 8

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC 423667 T1 Tamarack Roof Truss Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:54:16 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-eFJQpSS?e5dqhlrPVYEM6K?pMMrJWzok25vKJvz_8vL 1-3-8 5-10-8 21-2-0 5-10-8 1-3-8 Scale = 1:57.3 5x8 = 4x₁4 = 2x4 || | 3x8 = 5x8 = 6.00 12 Ε **∤**B 5x8 = 5x8 <> R Q 0 AC ΔD ΑE AG AM Α٨ AO 3x8 || 5x6 =5x6 3x8 || 5x6 5x6 = 5x6 =1-11-4 2-0-0 2-0-0 21-0-8 2-0-0 2-0-0 1-11-4 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 2 X 146 = 292 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY A. RULES BUILDING DESIGNER DESIGN CRITERIA BEARINGS FACTORED CHORDS SIZE LUMBER DESCE ACF DRY DRY DRY SPF No.2 MAXIMUM FACTORED REQRD SPECIFIED LOADS: BRG IN-SX 2x4 No.2 GROSS REACTION GROSS REACTION BRG TOP CH. 32.5 PSF Н 2x4 No.2 SPF VERT HORZ DOWN HORZ UPLIFT IN-SX DRY BOT CH. 5-8 LL 0.0 PSF В SPF 2x6 No.2 3637 0 0 5-8 5-8 DL 2x6 DRY No.2 SPF TOTAL LOAD 45.9 246 DRY No.2 No.2 SPF SPF UNFACTORED REACTIONS SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE N -Κ 2x6 DRY No.2 SPF COMBINED LIVE 0/0 PERM.LIVE 0/0 WIND DEAD SOIL 0/0 ALL WEBS DRY 2x3 No.2 SPF 756 / 0 754 / 0 LOADING IN FLAT SECTION BASED ON A SLOPE **EXCEPT** 2550 1796 / 0 0/0 0/0 0/0 OF 6.00/12 DRY: SEASONED LUMBER. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, K THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS 9, NBCC 2015 TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.80 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CHORDS #ROWS SURFACE SPACING (IN) LOAD(PLF) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED CSA 086-14 TOP CHORDS: (0.122"X3") SPIRAL NAILS LOADING TOTAL LOAD CASES: (4) TPIC 2014 12 12 SIDE(61.0) SIDE(61.0) (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. 12 CHORDS WEBS SIDE(61.0) RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED H-J 12 SIDE(61.0) MAX. FACTORED FACTORED MAX. FACTORED ROOF LIVE LOAD S-B K-I MEMB. FORCE VERT. LOAD LC1 MAX FORCE ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.25")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/906 (0.44") CSI (LC) UNBRAC (LBS) (PLF) (LBS) CSI (LC) FR-TÓ BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS FROM TO *ROM TO -112.4 -112.4 0.08 (1) -112.4 -112.4 0.64 (1) 0.71 (1) 0.71 (1) 0.71 (1) LENGTH FR-TO 0/34 SIDE(183.1) SIDE(0.1) -5466 / 0 R-C -436 / 47 0.06(1)SIDE(183.1 7378 / 0 C- Q 0 / 3051 0.38 (1 -112.4 -112.4 -112.4 -112.4 3.02 Q- D D- O WEBS: (0.122"X3") SPIRAL NAILS 7378 / 0 -1574 / 0 0.20 (1 CSI: TC=0.78/1.00 (E-G:1), BC=0.55/1.00 (M-O:1), 0/859 0.11(1) WB=0.61/1.00 (B-R:1), SSI=0.24/1.00 (E-G:1) D- V -8078 / 0 -112.4 -112.4 0.76 (1 2.82 O-F -863 / 0 0.11 (1 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 NAILS TO BE DRIVEN FROM ONE SIDE ONLY. V- W -8078 / 0 0.76 0- G M- G 0 / 868 -1578 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 w-GIRDER NAILING ASSUMES NAILED HANGERS ARE 0/3057 -8078 / 0 0.38 (1) 0.78 (1) 2.80 M- H FASTENED WITH MIN. 3-0 INCH NAILS. -8078 / 0 -1124 -1124 0.78 (1 2.80 -436 / 45 0 / 4914 0.06 (1 COMPANION LIVE LOAD FACTOR = 1.00 TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR Y- Z Z- G -112.4 -112.4 -8078 / 0 0.78(1)2.80 AUTOSOLVE HEELS OFF -8078 / 0 -112.4 -112.4 0.78 (1 2.80 -112.4 -112.4 -112.4 -112.4 THE LOAD TO BE TRANSFERRED TO EACH PLY G-AA -7370 / 0 TRUSS PLATE MANUFACTURER IS NOT -7370 / 0 0.73 (1) 2.99 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. -112.4 -112.4 AB- H -7370 / 0 0.73 (1) 2 99 -5452 / 0 -112 / -112 / 0.64 3.62 0.04 10.00 I- J S- B NAIL VALUES O7-08-22 -3566 / 0 0.0 0.0 0.13 (1) PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 K-1 -3558 / 0 0.0 0.0 0.13 (1) 7.43 S-AC 0/0 -18.5 -18.5 0.06 (4) 10.00 MT20 AC-AD -18.5 0/0 -18.5 0.06 (4) 10.00 AD- R -18.5 0.06 PLATE PLACEMENT TOL. = 0.250 inches R-AE -18.5-18.50.36(1)10.00 AE-AF 0 / 4874 -18.5 -18.5 0.36 (1) 10.00 PLATE ROTATION TOL. = 5.0 Deg. AF- Q Q- P P-AG 0 / 4874 -18.5 -18.5 JSI GRIP= 0.90 (C) (INPUT = 0.90) 0 / 7378 -18.5-18.5 0.55 (1) 10.00 JSI METAL= 0.67 (P) (INPUT = 1.00) 100009024 AG-AH 0 / 7378 -18.5 0.55 0 / 7378 -18.5 -18.5 O-AI 0 / 7371 -18.5-18.50.55 (1) 10.00 TO NO OF ONTARIO AI-AJ 0 / 7371 -18.5 -185 0.55 (1) 10.00 AJ- N N-AK 0 / 7371 -18.5-18.50.55(1) 10.00 AK- M 0 / 7371 -18.5 -185 0.55 (1) 10.00 M-AL AL-AM AM- L 0 / 4862 0 / 4862 -18.5 -18.5 0.36 (1) 0.36 (1) 10.00 -18.50 / 4862 -18.5-18.5 0.36 (1) 10.00

L-AN AN-AO

AO- K

Structural component only

DWG# T-2216627

0/0

0/0

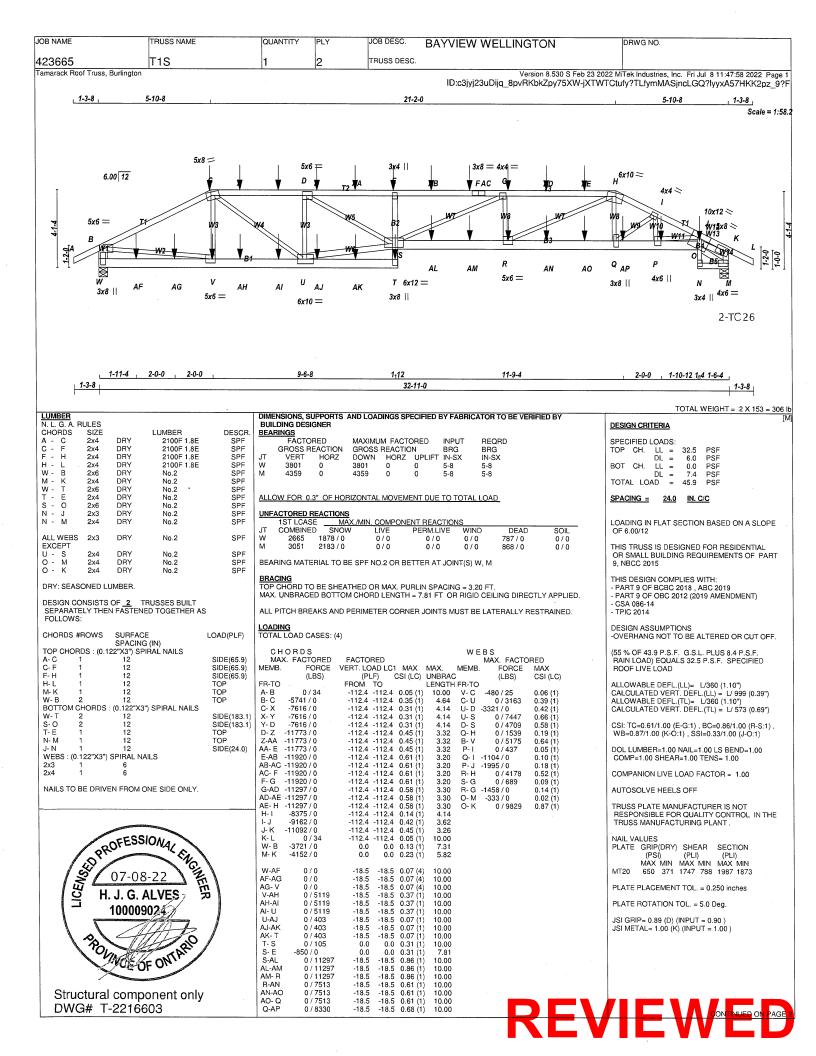
-18.5 0.06

-18.5 0.06 (4)

-18.5 0.06 (4)

10.00

-18.5


ONTINUED ON

JOB NAME TRUSS NAME	QUANTITY	PLY	JOE	B DESC.	BA	YVIEV	V WELLI	NGTO	N	DRWG NO.
423667 T1	1	2	TRI	USS DESC) .					
Tamarack Roof Truss, Burlington	-	_ 						.,		
Tamarack Roof Huss, Bullington						ID . 61 . 10	o D.: o			2 MiTek Industries, Inc. Fri Jul 8 11:54:16 2022 Page 2
	1					ID:03[y]2	Subild 8by	HKDKZD	//5xvv-erJQpSS	?e5dqhlrPVYEM6K?pMMrJWzok25vKJvz 8vL
PLATES (table is in inches)									1	
JT TYPE PLATES W LEN Y X	SPECIFIED CO	NCENTRAT		e /I Be\					1	
B TMVW-t MT20 5.0 8.0	JT LOC.				FACE	DIR.	TYPE	HEEL	CONN.	•
C TTWW-m MT20 5.0 8.0 2.00 3.00	C 5-10-8	-308	-308		RONT	VERT	TOTAL	11000	C1	
D TMWW-t MT20 4.0 4.0	D 11-4-12	-93	-93		RONT	VERT	TOTAL		C1	
E TMW+w MT20 2.0 4.0	H 27-0-8	-308	-308		RONT	VERT	TOTAL		Č1	
F TS-t MT20 3.0 8.0	L 26-11-12	-21	-21		RONT	VERT	TOTAL		C1	
G TMWW-t MT20 4.0 4.0	Q 11-4-12	-21	-21	F	FRONT	VERT	TOTAL		C1	
H TTWW-m MT20 5.0 8.0 2.00 3.00	R 5-11-4	-21	-21	F	FRONT	VERT	TOTAL		C1	
1 TMVW-t MT20 5.0 8.0	T 7-4-12	-93	-93		FRONT	VERT	TOTAL		C1	
K BMV1+p MT20 3.0 8.0 4.50 Edge	U 9-4-12	-93	-93		FRONT	VERT	TOTAL		C1	*
L BMWW-t MT20 5.0 6.0 2.50 2.50	V 13-4-12	-93	-93		FRONT	VERT	TOTAL		C1	
M BMWW-t MT20 5.0 6.0	W 15-4-12	-93	-93		FRONT	VERT	TOTAL		C1	
N BS-t MT20 5.0 6.0	X 17-4-12	-93	-93		FRONT	VERT	TOTAL		C1	
O BMWWW-t MT20 5.0 6.0	Y 19-4-12	-93	-93		FRONT	VERT	TOTAL		C1	
P BS-t MT20 5.0 6.0 Q BMWW-t MT20 5.0 6.0	Z 21-4-12	-93	-93		FRONT	VERT	TOTAL		C1	
	AA 23-4-12	-93	-93		RONT	VERT	TOTAL		C1	
R BMWW-t MT20 5.0 6.0 2.50 2.50 S BMV1+p MT20 3.0 8.0 4.50	AB 25-4-12 AC 1-11-4	-93	-93		FRONT	VERT	TOTAL		C1	
3 BWV1+p W120 3.0 8.0 4.50	AD 3-11-4	-20 -21	-20		FRONT	VERT VERT	TOTAL		C1	
Edge - INDICATES REFERENCE CORNER OF PLATE	AE 7-4-12	-21	-21 -21		FRONT	VERT	TOTAL		C1	
TOUCHES EDGE OF CHORD.	AF 9-4-12	-21	-21		FRONT	VERT	TOTAL		C1 C1	
TOO STILL EDGE OF GRIOTIES.	AG 13-4-12	-21	-21		FRONT	VERT	TOTAL		C1	
	AH 15-4-12	-21	-21		FRONT	VERT	TOTAL		C1 ·	
NOTES- (1)	Al 17-4-12	-21	-21		FRONT	VERT	TOTAL		C1	
1) Lateral braces to be a minimum of 2X4 SPF #2.	AJ 19-4-12	-21	-21		FRONT	VERT	TOTAL		C1	
	AK 21-4-12	-21	-21		FRONT	VERT	TOTAL		C1	
	AL 23-4-12	-21	-21		FRONT	VERT	TOTAL		Č1	
	AM 25-4-12	-21	-21		FRONT	VERT	TOTAL		C1	
	AN 28-11-12	-21	-21	F	FRONT	VERT	TOTAL		C1	
	AO 30-11-12	-20	-20	F	FRONT	VERT	TOTAL		C1	
	CONNECTION	REQUIREME	NTS							

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2216627

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
423665	T1S	1	2	TRUSS DESC.		·
Tamarack Roof Truss, Bui	rlington				Version 8.530 S Feb 2 ID:c3jyj23uDijq 8pvRKbkZpy75XW-j	23 2022 MiTek Industries, Inc. Fri Jul 8 11:47:58 2022 Page 2 KTWTCtufy?TLfymMASincLGQ?lyyxA57HKK2pz 9?F

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

PL	ATES (table is	in inches)				
JT		PLATES	W	LEN	Υ	Х
В	q-WVMT	MT20	5.0	6.0	1.75	2.75
С	TTWW-m	MT20	5.0	8.0	2.00	2.75
D	TMWW-t	MT20	5.0	6.0	2.50	2.50
Ε	TMV+p	MT20	3.0	4.0		
F	TS-t	MT20	3.0	8.0		
G	TMWW-t	MT20	4.0	4.0		
Н	TTWW-m	MT20	6.0	10.0	2.00	4.50
1	TMWW-t	MT20	4.0	4.0	2.00	1.75
J						
J	TMBVWWW*		10.0	12.0	Edge	4.00
K	TMVW-t	MT20	5.0	8.0	2.00	3.75
М	BMVW1-t	MT20	4.0	6.0		
Ν	BMV+p	MT20	3.0	4.0		
0						
Ρ	BMWW+t	MT20	4.0	6.0		
Q	BMWW+t	MT20	3.0	8.0		
R	BMWW-t	MT20	5.0	6.0	2.50	2.50
S	BVMWWW-I	MT20	6.0	12.0	4.50	3.50
Т	BMV+p	MT20	3.0	8.0		
U	BMWWW-t	MT20	6.0	10.0	3.00	3.50
٧	BMWW-t	MT20	5.0	6.0	2.50	2.50
W	BMV1+p	MT20	3.0	8.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

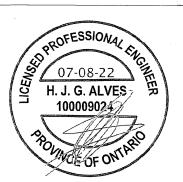
LOADING TOTAL LOAD CASES: (4)

1 0	HORDS						w i	BS		
	AX. FACTO	ORED	FACTOR	RED				MAX. FAC	TORED	
MEM			VERT. LO.	AD LC1	MAX	MAX.	. MEMB			
		BS)	(PL	F) C	SI (LC)	UNBI	RAC	(LBS)	CSI (LC)
FR-T			FROM	ΤΌ	, ,	LENC	3TH FR-TC		(/
AP- F		8330	-18.5	-18.5 (0.68 (1)	10.	00			
P- O	0/	10272	-18.5		0.80 (1)	10.	00			
N-O			0.0		0.43 (1)	10.	00			
0-J		1772	0.0	0.0	0.65 (1)	10.	00			
N- M	0/:	271	-18.5	-18.5 (0.03 (1)	10.	00			
005	015155 001									
JT	CIFIED CON LOC.						B. ID			
C		LC1	MAX-	MAX+		CE	DIR.	TYPE	HEEL	CONN.
E	5-10-8	-308	-308			TNC	VERT	TOTAL		C1
G	15-4-12	-93	-93			TNC	VERT	TOTAL		C1
0	21-4-12	-90	-90			TNC	VERT	TOTAL		C1
P	31-4-12	-228	-228			TNC	VERT	TOTAL		C1
	29-4-12	-243	-243			TNC	VERT	TOTAL		C1
T	21-4-12	-76	-76			TNC	VERT	TOTAL		C1
ľ	15-5-12 5-11-4	-28	-28			TNC	VERT	TOTAL		C1
		-21	-21			TNC	VERT	TOTAL		C1
X	7-4-12	-93	-93			TNC	VERT	TOTAL		C1
Ž	9-4-12	-93	-93			TNC	VERT	TOTAL		C1
ĀA	11-4-12	-93	-93			TNC	VERT	TOTAL		C1
AB	13-4-12	-93	-93			TNC	VERT	TOTAL		C1
AC	17-4-12	-90	-90			TNC	VERT	TOTAL		C1
	19-4-12	-90	-90			TNC	VERT	TOTAL		C1
AD AE	23-4-12	-90	-90			TNC	VERT	TOTAL		C1
	25-4-12	-90	-90			TNC	VERT	TOTAL		C1
AF AG	1-11-4	-20	-20			TNC	VERT	TOTAL		C1
AG	3-11-4 7-4-12	-21	-21			TNC	VERT	TOTAL		C1
AH		-21	-21			TNC	VERT	TOTAL		C1
	9-4-12	-21	-21			TNC	VERT	TOTAL		Ç1
AJ	11-4-12	-21	-21			TNC	VERT	TOTAL		C1
AK	13-4-12	-21	-21			TNC	VERT	TOTAL		C1
AL	17-4-12	-76	-76			TNC	VERT	TOTAL		C1
AM	19-4-12	-76	-76			TNC	VERT	TOTAL		C1
AN	23-4-12	-76	-76			TNC	VERT	TOTAL.		C1
AO	25-4-12	-76	-76			TNC	VERT	TOTAL		C1
AP	27-4-12	-243	-243		FRO	TNC	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2216603


JOB NAME TRUSS NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. 423667 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:54:17 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-6Sto0oTdPPlhJuQb3GlbfXXz9m92FQptHletrLz_8vk 7-10-8 1-3-8 17-2-0 7-10-8 Scale = 1:57.2 5x8 = 4x4 = 3x8 = 2x4 | 1_H5x8 = D Ε G 6.00 12 T2 4x4 / 4x4 > c 5x8 = K [0:7: 7 ₩ U R 0 s Q N М 3x8 3x8 = 3x8 | 5x6 = 4x4 = 4x4 = 4x10 =4y4 = 5x6 == 3x8 || 32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 133 II LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER
N. L. G. A. RULES
CHORDS SZ4
D - F Z24
F - H Z24
H - K Z24
U - B Z26
L - J Z26 BUILDING DÉSIGNER DESIGN CRITERIA LUMBER DESCR. FACTORED MAXIMUM FACTORED No.2 SPF INPUT REORD SPECIFIED LOADS: DRY DRY DRY DRY GROSS REACTION DOWN HORZ L BRG IN-SX No.2 **GROSS REACTION** PSF PSF CH. LL = DL = SPF SPF SPF HORZ UPLIFT 6.0 2307 5-8 5-8 BOT CH. LL 0.0 7.4 PSF No.2 2307 ō 5-8 5-8 DL TOTAL LOAD JRO SPF SPF SPF 2x6 2x4 DRY No.2 45.9 PSF DRY UNFACTORED REACTIONS 2x4 No.2 SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND 0 - L 2×4 DRY No.2 SPF COMBINED DEAD SOIL UVE 0/0 ALL WEBS 2x3 DRY SPF No.2 1157 / 0 0/0 457 / 0 457 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE EXCEPT 1157 / 0 DRY: SEASONED LUMBER. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U. L THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.91 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED CSA 086-14 LOADING TOTAL LOAD CASES: (4)

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Y X					
В	TMVW-p	MT20	5.0	8.0	Edge					
С	TMWW-t	MT20	4.0	4.0	2.00 1.75					
D	TTWW-m	MT20	5.0	8.0	2.25 3.00					
E	TMWW-t	MT20	4.0	4.0						
F	TS-t	MT20	3.0	8.0						
G	TMW+w	MT20	2.0	4.0						
Н	TTWW-m	MT20	5.0	8.0	2.25 3.00					
1	TMWW-t	MT20	4.0	4.0	2.00 175					
J	TMVW-p	MT20	5.0	8.0	Edge					
L	BMV1+p	MT20	3.0	8.0	Edge					
М	BMWW-t	MT20	5.0	6.0	2.50 1.75					
N	BMWW-t	MT20	4.0	4.0						
0	BS-t	MT20	3.0	8.0						
P	BMWWW-t	MT20	4.0	10.0						
Q	BMWW-t	MT20	4.0	4.0	2.00 1.50					
R	BS-t	MT20	3.0	8.0						
s	BMWW-t	MT20	4.0	4.0						
T	BMWW-t	MT20	5.0	6.0	2.50 1.75					
U	BMV1+p	MT20	3.0	8.0	Edge					
1										

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)

Structural component only DWG# T-2216628

СН	ORDS					WE	BS	
MA)	K. FACTORED	FACTOR	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO.	AD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	F)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		• •
A-B	0/34	-112.4	-112.4	0.15(1)	10.00	T- C	-519 / 0	0.10(1)
B- C	-3013 / 0	-112.4	-112.4	0.40(1)	3.67	C-S	-23 / 4	0.01(1)
C-D	-3037 / 0	-112.4	-112.4	0.39(1)	3.66	S- D	0/117	0.04 (4)
D-E	-3656 / 0	-112.4	-112.4	0.84(1)	2.91	D-Q	0 / 1248	0.28 (1)
E-F	-3654 / 0	-112.4	-112.4	0.83 (1)	2.91	Q-E	-696 / 0	0.27 (1)
F-G	-3654 / 0	-112.4	-112.4	0.83 (1)	2.91	E-P	-2/0	0.00(1)
G- H	-3654 / 0			0.83 (1)		P- G	-695 / 0	0.27 (1)
H-I	-3037 / 0			0.39 (1)			0 / 1245	0.28 (1)
I- J	-3013 / 0			0.40 (1)		N- H	0/119	0.04 (4)
J-K	0/34			0.15(1)		N- I	-22 / 4	0.01 (1)
U-B	-2267 / 0	0.0	0.0	0.15 (1)	6.81	M- I	-519 / 0	0.10(1)
L-J	-2267 / 0	0.0	0.0	0.15(1)	6.81	B-T	0 / 2774	0.62(1)
						M- J	0 / 2774	0.62(1)
U-T	0/0	-18.5						
T-S	0 / 2713			0.49 (1)				
S-R	0 / 2698			0.49 (1)				
R-Q	0 / 2698			0.49 (1)				
Q-P	0 / 3656			0.64 (1)				
P- 0	0 / 2698	-18.5		0.49 (1)				
O- N	0 / 2698			0.49 (1)				
N- M	0 / 2713			0.50 (1)				
M- L	0/0	-18.5	-18.5	0.07 (4)	10.00			

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.21")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.38")

CSI: TC=0.84/1.00 (D-E:1) , BC=0.64/1.00 (P-Q:1) , WB=0.62/1.00 (B-T:1) , SSI=0.30/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

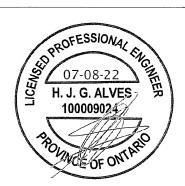
NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (D) (INPUT = 0.90) JSI METAL= 0.83 (O) (INPUT = 1.00)


REVIEW

JOB NAME TRUSS NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. 423665 TRUSS DESC T2S Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:00 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-fwbGuuv9BaFBay58TaUBt1QatoSkQuWObbpQ6iz_9?D 7-10-8 1-3-8 17-2-0 7-10-8 Scale = 1:58. 4x6 = 3x4 || 3x8 = 4x4 = 4x6 || 5x8 = Н 6.00 12 F G 4x4 / 4x10 < С W6 W10 8x12 == 5x8 = ₩1**5**×7 = 6x16 = R ۵ 4x6 =4x4 =2x4 || W U 0 3x8 || 4x4 || 5x6 = 10x12 =3x4 || 3x4 || TC26 15-7-8 15-8-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 143 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING BEARINGS
FACTORED BUILDING DESIGNER **DESIGN CRITERIA** MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: N BRG UPLIFT IN-SX BRG IN-SX LL = DL = LL = PSF PSF **GROSS REACTION GROSS REACTION** 32.5 HORZ 0 DOWN 2304 HORZ 6.0 BOT CH. 5-8 5-8 PSF 5-8 7.4 45.9 TOTAL LOAD ALLOW FOR 0.3" OF HORIZONTAL MOVEMENT DUE TO TOTAL LOAD SPACING = 24.0 IN. C/C

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
G - I	2x4	DRY	No.2	SPF
I - M	2x4	DRY	No.2	SPF
X - B	2x6	DRY	No.2	SPF
N - L	2x4	DRY	No.2	SPF
X - U	2x4	DRY	No.2	SPF
U - F.	2x4	DRY	No.2	SPF
T - P	2x4	DRY	No.2	SPF
0 - K	2x3	DRY	No.2	SPF
O - N	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
V - T	2x4	DRY	No.2	SPF
P - L	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)									
밝		PLATES	w	LEN	Υ	х			
В	TMVW-p	MT20	5.0	8.0	Edge	^			
С	TMWW-t	MT20	4.0	4.0	2.00	1.75			
D	TTW-I	MT20	4.0	6.0					
Е	TMWW+t	MT20	4.0	6.0					
F	TMV+p	MT20	3.0	4.0					
G	TS-t	MT20	3.0	8.0					
H	TMWW-t	MT20	4.0	4.0					
1	TTWW-m	MT20	5.0	8.0	2.00	3.25			
J	TMWWW-t	MT20	4.0	10.0					
K									
K	TMBVWWW*		8.0	12.0	Edge				
L	TMVW-p	MT20	6.0	7.0	Edge				
N	BMVW1+p	MT20	4.0	4.0	2.00	1.75			
0	BMV+p	MT20	3.0	4.0					
Р									
Q	BMW+w	MT20	2.0	4.0					
R	BMWW-t	MT20	4.0	4.0					
S	BMWW-t	MT20	4.0	6.0					
T	BVMWWW-I		6.0	16.0	Edge	7.50			
U	BMV+p	MT20	3.0	4.0					
V	BMWWWW*i	mivi i 20	10.0	12.0	3.00	6.00			

Structural component only DWG# T-2216604

UNF	UNFACTORED REACTIONS 1ST LCASEMAX/MIN. COMPONENT REACTIONS								
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
Х	1612	1155 / 0	0/0	0/0	0/0	457 / 0	0/0		
N	1617	1159 / 0	0/0	0/0	0/0	458 / 0	0/0		
BEA	BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) X, N								

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.52 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-V.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

		V -7					
СН	ORDS			WEBS			
MAX	K. FACTORED	FACTORED				MAX. FACTO	ORED
MEMB.	FORCE	VERT. LOAD LO	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
A-B	0/34	-112.4 -112.4	0.15 (1)	10.00	W-C	-535 / 0	0.10(1)
B-C	-3003 / 0	-112.4 -112.4				-5 / 27	0.01 (4)
C-D	-3042 / 0	-112.4 -112.4			V- D	0 / 1001	0.23(1)
D- E	-2718 / 0	-112.4 -112.4		3.94	V-T	0/3624	0.58 (1)
E-F	-4609 / 0	-112.4 -112.4	0.48 (1)	2.92	E-T	0 / 1208	0.27(1)
F- G	-4654 / 0	-112.4 -112.4			T- H	0 / 247	0.06(1)
G-H	-4654 / 0	-112.4 -112.4	0.74 (1)		S-H	-766 / 0	0.20(1)
H-I	-4461 / 0	-112.4 -112.4			S-I	0 / 1373	0.31(1)
I- J	-3793 / 0	-112.4 -112.4			R-I		0.10(1)
J-K	-4931 / 0	-112.4 -112.4			R-J	-794 / 0	0.25 (1)
K-L	-4869 / 0	-112.4 -112.4				0/62	0.02 (4)
L- M	0/34				B- W		0.62(1)
X-B	-2261 / 0	0.0 0.0	0.15 (1)	6.81		-1691 / 0	0.43 (1)
N-L	-2214 / 0	0.0 0.0	0.22 (1)	5.71	P-N	-149 / 0	0.02(1)
						0 / 4273	
X-W		-18.5 -18.5			J- P	0 / 483	0.11 (1)
W-V	0 / 2704						
V- U .	0 / 171	-18.5 -18.5					
U-T	0 / 64		0.24 (1)				
	-441 / 0	0.0 0.0					
T-S	0 / 4461		5 0.78 (1)				
S-R	0 / 3385		0.60 (1)				
R-Q	0 / 4089		0.72 (1)				
Q-P	0 / 4089		0.71 (1)				
O- P	0 / 16	0.0 0.0	0.34 (1)	10.00			
P-K	0 / 102	0.0 0.0					
O- N	0 / 125	-18.5 -18.5	5 0.03 (1)	10.00			

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.32")
ALLOWABLE DEFL.(TL)= L/360 (1.10") CALCULATED VERT. DEFL.(TL) = L/ 700 (0.56")

CSI: TC=0.74/1.00 (F-H:1) , BC=0.78/1.00 (S-T:1) , WB=0.69/1.00 (L-P:1) , SSI=0.25/1.00 (H-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

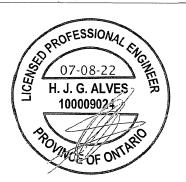
JSI GRIP= 0.89 (I) (INPUT = 0.90) JSI METAL= 0.85 (E) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
423665 Tamarack Roof Truss, Burlington	T2S	1	1	TRUSS DESC.		
Tamarack Roof Truss, Burlington				1	Version 8.530 S Feb 23 2022 I ID:c3jyj23uDijq 8pvRKbkZpy75XW-fwbGuuv9E	MiTek Industries, Inc. Fri Jul 8 11:48:00 2022 Page 2
PLATES (table is in inches) JT TYPE	LEN Y X 0 6.0 2.50 1.75 0 8.0 Edge					a saysorassi dalasingawesspasiz 5.0
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE					
NOTES- (1)						
1) Lateral braces to be a minimum	of 2X4 SPF #2.					
					·	
ROFESSI	ONALE					
1 1 07 0°						
07-08- H. J. G. A 1000090	LVES					
1000090	1247					
1 3 An	A Jol		•			
Poundelle	ONTARIO					

Structural component only DWG# T-2216604

REVIEWED

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423667 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:54:18 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-beRAD8UFAjtYx2?odzGqBl49IAX5_sm0VPORNoz_8vJ 1-3-8 9-10-8 13-2-0 1-3-8 Scale = 1:57.2 5x6 =2x4 || 5x6 = D F 6.00 12 4x4 / G C 5x8 = 5x8 = Н 0 М R ۵ Ρ Ν 3x8 =3x8 =3x8 || 5x6 =4x4 = 5x6 =4x4 =5x6 =3x8 || 32-11-0 1-3-8 TOTAL WEIGHT = 133 lb [M][F


LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - 1	2x4	DRY	No.2	SPF
R - B	2x6	DRY	No.2	SPF
J - H	2x6	DRY	No.2	SPF
R - O	2x4	DRY	No.2	SPF
O - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL/	ATES (table i	s in inches)				
JΤ	TYPE	PLATES	W	LEN	Υ	Х
В	q-WVMT	MT20	5.0	8.0	Edge	
С	TMWW-t	MT20	4.0	4.0	2.00	1.75
D	TTWW-m	MT20	5.0	6.0	2.25	2.00
Ε	TMW+w	MT20	2.0	4.0		
F	TTWW-m	MT20	5.0	6.0	2.25	2.00
G	TMWW-t	MT20	4.0	4.0	2.00	1.75
Н	TMVW-p	MT20	5.0	8.0	Edge	
J	BMV1+p	MT20	3.0	8.0	Edge	
K	BMWW-t	MT20	5.0	6.0	2.50	1.75
L	BMWW-t	MT20	4.0	4.0		
М	BS-t	MT20	3.0	8.0		
N	BMWWW-t	MT20	5.0	6.0		
0	BS-t	MT20	3.0	8.0		
Р	BMWW-t	MT20	4.0	4.0		
Q	BMWW-t	MT20	5.0	6.0	2.50	1.75
R	BMV1+p	MT20	3.0	8.0	Edge	
	ZBODEFGIJKLZZOPQ	JT TYPE B TMVW-p C TMWW-t D TTWW-m F TTWW-m G TMWW-t H TMW-p J BMV1+p K BMWW-t M BS-t N BMWW-t O BS-t P BMWW-t O BMWW-t O BMWW-t	B TM/W-p MT20 C TM/W-t MT20 D TT/WV-m MT20 E TM/W-w MT20 G TM/W-m MT20 G TM/W-p MT20 J BM/1+p MT20 K BM/W-t MT20 L BM/W-t MT20 M BS-t MT20 M BS-t MT20 O BS-t MT20 O BS-t MT20 O BM/W-t MT20 O BM/W-t MT20 O BS-t MT20 O BM/W-t MT20	JT TYPE	JT TYPE	JT TYPE

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2216629

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY F	ARRICATOR TO BE VERIFIED BY
	THE ESTERITOR OF ESTIVED BY	ADDITION OF THE PERMITED BY
BUILDING DESIGNER		
DUILDING DEGIGNER		
BEARINGS	the state of the s	
DEARINGS		

<u> SEA</u>	HING5						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRE	
	GROSS R	EACTION	GROSS	REACTIC	BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
7	2307	0	2307	0	0	5-8	5-8
J	2307	0	2307	0	0	5-8	5-8

UNFACTORED REACTIONS

	ISILUASE	IVIAA./I	VIIIN. CONFO	VENT REACTION	40			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
R	1615	1157 / 0	0/0	0/0	0/0	457 / 0	0/0.	
J	1615	1157 / 0	0/0	0/0	0/0	457 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.99 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

C 11	CHORDS WEBS								
						W E			
	K. FACTORED	FACTORE					MAX. FACTO		
MEMB.		VERT. LOAI						MAX	
	(LBS)	(PLF)		CSI (LC)			(LBS)	CSI (LC)	
FR-TO		FROM TO	0		LENGTH	FR-TO			
A-B	0 / 34	-112.4 -1	12.4	0.15(1)	10.00	Q-C	-395 / 0	0.09(1)	
B- C	-3122 / 0	-112.4 -1	12.4	0.48 (1)	3.54	C-P	-297 / 0	0.18 (1)	
C-D	-2906 / 0	-112.4 -1	12.4	0.45 (1)	3.68	P-D	0 / 283	0.06 (1)	
D- E	-3161 / 0	-112.4 -1	12.4	0.82 (1)	2.99	D- N	0 / 778	0.18 (1)	
E-F	-3161 / 0	-112.4 -1	12.4	0.82 (1)	2.99	N-E	-910 / 0	0.53(1)	
F-G	-2906 / 0	-112.4 -1	12.4	0.45 (1)	3.68	N-F	0 / 778	0.18(1)	
G-H	-3122 / 0	-112.4 -1	12.4	0.48 (1)	3.54	L- F	0 / 283	0.06 (1)	
H-1	0/34						-297 / 0	0.18 (1)	
R-B	-2263 / 0			0.15 (1)			-395 / 0	0.09(1)	
J- H	-2263 / 0	0.0		0.15 (1)			0 / 2858	0.64 (1)	
				(-,			0 / 2858	0.64 (1)	
R-Q	0/0	-18.5 -	18.5	0.10 (4)	10.00			0.0 . (.,	
Q-P	0 / 2817			0.53 (1)					
P- O	0 / 2577			0.49 (1)					
0- N	0 / 2577			0.49 (1)					
N-M	0 / 2577			0.49 (1)					
M-L	0 / 2577			0.49 (1)					
L-K	0 / 2817			0.53 (1)					
K-J	0/0	-18.5							
	- / •	, 0.0			. 5.00				

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = 32.5

LL = DL = LL = DL = PSF 6.0 PSF PSF CH. 7.4 45.9 TOTAL LOAD

SPACING = IN. C/C 24.0

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.18")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.31")

CSI: TC=0.82/1.00 (D-E:1) , BC=0.53/1.00 (P-Q:1) , WB=0.64/1.00 (B-Q:1) , SSI=0.36/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR ≈ 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL I) (PL I) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (D) (INPUT = 0.90) JSI METAL= 0.80 (O) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423665 TRUSS DESC T3S Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:01 2022 Page 1 Tamarack Roof Truss, Burlington ID:c3jyj23uDijq_8pvRKbkZpy75XW-769f5EwnytN2C6gL1I?QPEznNCpe9LjXpFZ_f8z_9?C 9-10-8 1-3-8 9-10-8 1-3-8 Scale = 1:58.2 5x8 = 3x4 || 5x6 = 4x4 = D E F G 6.00 12 4x4 < 4x4 / Н С 4x4 < 8x12 =₩1**5**×7= TO THE 7 [1-2.0] R1 B57 Q P 5x6 = 4x4 S Ν 3x8 || 4x4 | 5x6 =6x10 =3x4 || 3x4 || TC26 15-7-8 15-8-0 1-7-8 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 144 I LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY [M][F N.I. G. A. BULES BUILDING DESIGNER **DESIGN CRITERIA** N. L. G. A CHORDS A - D D - G G - L V - B M - K V - S DESCR SPF SPF SIZE LUMBER FACTORED MAXIMUM FACTORED INPUT REQRD No.2 SPECIFIED LOADS: BRG IN-SX LL = DL = LL = PSF PSF 2x4 DRY No.2 **GROSS REACTION** GROSS REACTION BRG CH. 32.5 SPF HORZ 0 HORZ 0 DRY DOWN UPLIFT 6.0 No.2 BOT CH. 2304 5-8 0.0 PSF 2x4 DRY No.2 SPF 2311 DI KSEO SPF SPF SPF 2x4 DRY No 2 2x4 DRY No.2 ALLOW FOR 0.3" OF HORIZONTAL MOVEMENT DUE TO TOTAL LOAD SPACING = <u>24.0</u> IN. C/C 2x3 DRY No 2 SPE SPF UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND LOADING IN FLAT SECTION BASED ON A SLOPE SOIL 0/0 0/0 ALL WEBS 2x3 DRY No.2 SPF COMBINED DEAD EXCEPT 1612 1617 458 / 0 THIS TRUSS IS DESIGNED FOR RESIDENTIAL 1159 / 0 0/0 0/0 0/0 2x4 DRY No.2 SPF OR SMALL BUILDING REQUIREMENTS OF PART BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) V, M DRY: SEASONED LUMBER. <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.68 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 PLATES (table is in inches)
JT TYPE PLATES
B TMVW-p MT20 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED LEN Y LOADING TOTAL LOAD CASES: (4) 5.0 8.0 Edge DESIGN ASSUMPTIONS OVERHANG NOT TO BE ALTERED OR CUT OFF. TMWW-t MT20 40 2 00 1 75 2.00 2.75 CHORDS MAX. FACTORED 5.0 8.0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F WEBS MAX. FACTORED FACTORED q+VMT MT20 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FORCE FORCE TMWW-t MT20 40 MEMB. мемв. MAX CSI (LC) 5.0 (LBS) (LBS) FR-TO ALLOWABLE DEFL.(LL) = L/360 (1.10") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.25") ALLOWABLE DEFL.(TL) = L/360 (1.10") CALCULATED VERT. DEFL.(TL) = L/ 788 (0.50") LENGTH FR-TO -112.4 -112.4 0.15 (1) -112.4 -112.4 0.48 (1) -112.4 -112.4 0.45 (1) 0.09 (1) 0.18 (1) TMBVWWW*-IMT20 8.0 12.0 3.25 4.75 0/34 10.00 -397 / 0 TMVW-p BMVW1+p 7.0 Edge 2.00 1.75 -3117/0 -2905 / 0 3.68 -158 / 360.09 (1) 0 / 2526 0 / 1494 0 / 1161 0.63 (1) 0.47 (1) BMV+p MT20 3.0 4.0 D- F -3705 / 0 -1124 -1124 E- F F- G G- H H- I -3722 / 0 -3119 / 0 -112.4 -112.4 -112.4 -112.4 D-R Q-G Q-H CSI: TC=0.63/1.00 (D-E:1) , BC=0.74/1.00 (O-P:1) , WB=0.69/1.00 (K-O:1) , SSI=0.29/1.00 (D-E:1) 0.31 0.26 (1) BMWWW-t MT20 5.0 6.0 -3476 / 0 -112.4 -112.4 0.39 (1) 3.47 -783 / 0 0.33 (1) 12.0 3.00 4.50 4.0 10.0 3.00 2.25 6.0 2.50 1.75 BVMWWW-I MT20 6.0 3.0 -4175 / 0 -4957 / 0 -112.4 -112.4 -112.4 -112.4 0.32 0.54 0/315 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 BMV+p BMWWW-t 2.68 0 / 2853 COMP=1.10 SHEAR=1.10 TENS= 1.10 J- K K- L V- B 6.0 5.0 MT20 -4882 / 0 -112.4 -112.4 0.51 (1 2.75 R-F 0/244 0.05 (1) BMWW-t MT20 6.0 8.0 0 / 34 -112.4 -112.4 0.15 (1) 0.0 0.0 0.15 (1) 10.00 F- Q O- M 0.48 (1) 0.02 (1) COMPANION LIVE LOAD FACTOR = 1.00 BMV1+p Edge -2259 / 0 -150 / 0 M-K AUTOSOLVE HEELS OFF -2214 / 0 0.0 0.0 0.22 (1) 5.71 O- K 0 / 4287 0.69 (1) I- O P- I 0 / 477 V- U U- T T- S S- R R- E R- Q 0/0 0/2812 -18.5 -18.5 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE -18.5 0.53 (1) 10.00 -18.5 -18.5 0/84 0.13 (4) 10.00 TRUSS MANUFACTURING PLANT. 0/47 -622 / 0 0.0 0.0 0.20(1)0 / 3572

Structural component only DWG# T-2216605

1) Lateral braces to be a minimum of 2X4 SPF #2.

-18.5-18.5 0.70 (1)

-18.5 -18.5 -18.5 -18.5

0.0

0.0 -18.5 0.0 -18.5 0.36 (1)

0.0 0.34 (1)

0 / 3751 0/16

0 / 100 0 / 125

Q- P P- O N- O

O- J N- M

10.00

10.00

10.00

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.87 (J) (INPUT = 0.90) JSI METAL= 0.80 (K) (INPUT = 1.00)

CONTINUED ON

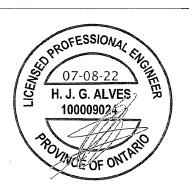
JOB NAME TRUSS NAME QUANTIT JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423667 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:54:19 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-3q?YRUVux0?PYCa_Ahn3kydLiatQjltAk37_wEz_8vI 1-3-8 11-10-8 9-2-0 11-10-8 5x6 = 2x4 | 5x6 = D F 6.00 12 4x4 / 4x4 > G C 5x8 = 5x8 = Н W W2 Ρ Q Κ 3x8 =3x8 || 5x6 =4x4 = 3x8 || 4x6 =4x4 =5x6 =32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 139 II LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS FACTORED **DESIGN CRITERIA** LUMBER DESCR A -D -F -SPF SPF D F No.2 No.2 MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: DRY DRY DRY GROSS REACTION VERT HORZ 2307 0 GROSS REACTION DOWN HORZ UPLIFT BRG IN-SX BRG IN-SX 2x4 CH. LL = No.2 No.2 SPF 6.0 PSF 2x6 2307 0 5-8 5-8 BOT CH. 0.0 7.4 J -R -P -H P 2x6 DRY No.2 SPF 2307 SPF SPF SPF DRY TOTAL LOAD 45.9 DRY No.2 UNFACTORED REACTIONS SPACING = 24.0 IN. C/C 1ST LCASE COMBINED MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND ALL WEBS No.2 SPF DEAD SOIL 1157 / 0 EXCEPT 1615 0/0 0/0 0/0 457 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 1157 / 0 DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R. J CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.23 FT.
 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW-p
 MT20

 C
 TMWW-t
 MT20
 MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) LEN 5.0 4.0 8.0 Edge 2.00 1.75 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. LOADING TOTAL LOAD CASES: (4) TTWW-m MT20 2.50 2.25

6.0 4.0 6.0 TMW+w 2.0 2.50 2.25 TMWW-t MT20 4.0 4.0 2.00 1.75 5.0 3.0 5.0 8.0 8.0 6.0 TMVW-p MT20 Edge BMV1+p BMWW-t Edge 2.50 2.00 MT20 3.0 4.0 4.0 BS-t MT20 BMWW-t BMWWW-t MT20 MT20 6.0 BMWW-t MT20 4.0 MT20 MT20 2.50 2.00 5.0 6.0


INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

3.0 8.0 Edge

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2

MT20

BMV1+p

Structural component only DWG# T-2216630

L-K K-J

	ORDS K. FACTORED	FACTORED			WE	BS MAX. FACTO	ORED
MEMB.		VERT. LOAD L	C1 MAX	MAX.	MEMB.		MAX
	(LBS)	(PLF)				(LBS)	CSI (LC)
FR-TO		FROM TO					
A-B		-112.4 -112.			Q- C	-291 / 24	0.08(1)
	-3175 / 0					-556 / 0	0.54 (1)
C-D	-2726 / 0				O- D	0 / 408	0.09(1)
D-E	-2645 / 0	-112.4 -112.			D- N	0/419	0.09(1)
E-F	-2645 / 0	-112.4 -112.	4 0.38 (1)	3.91	N- E	-625 / 0	0.55(1)
F-G	-2726 / 0	-112.4 -112.	4 0.64 (1)	3.55	N-F	0/419	0.09(1)
G-H	-3175 / 0	-112.4 -112			M-F	0 / 408	0.09(1)
H-1	0 / 34				M- G	-556 / 0	0.54 (1)
R-B	-2258 / 0	0.0			K- G	-291 / 24	0.08 (1)
J- H	-2258 / 0	0.0	0 0.15 (1)	6.81	B-Q	0 / 2899	0.65(1)
1.					K- H	0 / 2899	0.65(1)
R-Q	0/0	-18.5 -18					
Q-P	0 / 2871	-18.5 -18	5 0.52 (1)	10.00			
P- O	0 / 2871	-18.5 -18	5 0.52 (1)	10.00			
O- N	0 / 2411		5 0.45 (1)				
N-M	0 / 2411	-18.5 -18	5 0.45 (1)	10.00			
M-L	0 / 2871	-18.5 -18	5 0.52 (1	10.00			
L-K	0 / 2871	-18.5 -18	.5 0.52 (1)	10.00			

-18.5 0.15 (4)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL)= L/999 (0.16")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL)= L/999 (0.28")

CSI: TC=0.71/1.00 (G-H:1), BC=0.52/1.00 (O-Q:1), WB=0.65/1.00 (B-Q:1) , SSI=0.29/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (K) (INPUT = 0.90) JSI METAL= 0.88 (P) (INPUT = 1.00)

EVIEWE

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC 423665 T4S Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:02 2022 Page 1 $ID: c3jyj23uDijq_8pvRKbkZpy75XW-blj1JZxPjBVvqGFXb?WfySVwrc97uotg2vIXBaz_9?BVvqGFXb?WfySVwrc97uotg2vIXBaz_9?BVvqGFXb?WfySVwrc97uotg2vIXBaz_9.$ 1-3-8 11-10-8 11-10-8 1-3-8 Scale = 1:58.2 5x8 = 3x4 || 5x6 = F F D 6.00 12 4x4 < G С 4x4 < 8x12 =5x8 = 1 6x7 = W2 0 6x12 == × 4x4 = 4x4 =Τ s R 3x8 || 4x4 || 5x6 =6x10 == 3x4 || TC26 15-7-8 1-7-8 15-8-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 145 I LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** BEARINGS FACTORED LUMBER SIZE DESCR No.2 No.2 SPF DFKBJR MAXIMUM FACTORED SPECIFIED LOADS: DRY **GROSS REACTION** GROSS REACTION DOWN HORZ U LL BRG BRG CH. 32.5 PSF SPF 6.0 0.0 PSF PSF 2x4 No.2 VERT HORZ UPLIFT IN-SX IN-SX U-2x6 DRY SPF SPF BOT CH. 2x4 2x4 DRY DL No.2 SPF TOTAL LOAD R -E N 2x4 DRY No.2 SPF 2x4 2x3 DRY SPF ALLOW FOR 0.3" OF HORIZONTAL MOVEMENT DUE TO TOTAL LOAD SPACING = 24.0 IN. C/C No.2 DRY No.2 SPF ./MIN. COMPONENT REACTIONS

PERM.LIVE WIND LOADING IN FLAT SECTION BASED ON A SLOPE SNOW COMBINED ALL WEBS 2x3 No.2 SPF DEAD SOIL OF 6.00/12 **EXCEPT** 1155 / 0 0/0 457 / 0 458 / 0 0/0 0/0 Q 2×4 DRY SPF 1159 / 0 THIS TRUSS IS DESIGNED FOR RESIDENTIAL SPF OR SMALL BUILDING REQUIREMENTS OF PART BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, L 9, NBCC 2015 DRY: SEASONED LUMBER BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.59 FT. THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED. - CSA 086-14 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED - TPIC 2014 DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED

PL	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Y X				
В	TMVW-p	MT20	5.0	8.0	Edge				
C,	G, H				•				
С	TMWW-t	MT20	4.0	4.0	2.00 1.75				
D	TTWW-m	MT20	5.0	8.0	1.75 3.50				
Ε	TMV+p	MT20	3.0	4.0					
F	TTWW-m	MT20	5.0	6.0	2.50 2.25				
1									
1	TMBVWWW*	-IMT20	8.0	12.0	Edge 4.50				
J	TMVW-p	MT20	6.0	7.0	Edge				
L	BMVW1+p	MT20	4.0	4.0	2.00 1.75				
М	BMV+p	MT20	3.0	4.0					
N	•		-						
0	BMWW-t	MT20	4.0	4.0					
Р	BMWW-t	MT20	4.0	4.0					
Q	BVMWWW-I	MT20	6.0	12.0	3.00 4.50				
R	BMV+p	MT20	3.0	4.0					
s	BMWWW-t	MT20	6.0	10.0	3.00 2.50				
Т	BMWW-t	MT20	5.0	6.0	2.50 2.00				
U	BMV1+p	MT20	3.0	8.0	Edge				
i					•				

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2216606

LOADIN TOTAL	<u>VG</u> LOAD CASES:	(4)					
	ORDS X. FACTORED	FACTORED			WE	B S MAX. FACTO)RED
MEMB.		VERT. LOAD L	C1 MAX	MAX.	MEMB		MAX
10121012	(LBS)		CSI (LC)			(LBS)	
FR-TO	(220)	FROM TO		LENGTH		(LDO)	OOI (LO)
A-B	0/34	-112.4 -112				-293 / 23	0.08 (1)
B- C	-3169 / 0	-112.4 -112				-552 / 0	0.53 (1)
C-D	-2727 / 0	-112.4 -112			S- D	-246 / 0	0.22 (1)
Ď-E	-3076 / 0	-112.4 -112			S-Q		0.39 (1)
E-F	-3085 / 0					0 / 1272	0.29 (1)
F-G		-112.4 -112				0/386	0.09 (1)
G-H	-4026 / 0	-112.4 -112	4 0.42 (1)	3.16	P-F	0 / 625	0.14 (1)
H-1	-5004 / 0	-112.4 -112			P- G	-967 / 0	0.64 (1)
I- J	-4915 / 0	-112.4 -112			0- G		0.08 (1)
J-K	0/34				B-T	0 / 2894	0.65 (1)
U-B	-2254 / 0	0.0	.0 0.15 (1)	6.82	N-L	-151 / 0	0.02 (1)
L-J	-2214 / 0	0.0	.0 0.22 (1)	5.71	N- J	0 / 4323	0.69 (1)
					O- H	-464 / 0	0.10 (1)
U-T	0/0	-18.5 -18			H- N	0 / 640	0.14 (1)
_ T- S	0 / 2865		.5 0.53 (1)				
S-R	0 / 49		.5 0.10 (4)				
R-Q	0 / 25		.0 0.07 (1)				
Q-E	-644 / 0		.0 0.34 (1)				
Q-P	0 / 2817		.5 0.53 (1)				
P- 0	0 / 3629		.5 0.66 (1)				
0- N	0 / 4004	-18.5 -18					
M- N	0 / 16	0.0	.0 0.34 (1)	10.00			
N- I	0/36	0.0					
M- L	0 / 126	-18.5 -18	.5 0.03 (1)	10.00			

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2. ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL)= L/999 (0.22")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL)= L/987 (0.40")

CSI: TC=0.71/1.00 (B-C:1) , BC=0.72/1.00 (N-O:1) , WB=0.69/1.00 (J-N:1) , SSI=0.29/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL I) (PL I) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

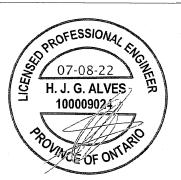

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (D) (INPUT = 0.90) JSI METAL= 0.80 (J) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423665 TRUSS DESC T5 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:03 2022 Page 1 1-3-8 13-10-8 13-10-8 Scale = 1:58.3 4x6 = 4x6 = 6.00 12 F G 4x4 > Н 3x8 < D 5x6 / 5x6 < 4x4 || 4x4 || κ R S 0 Ν $\overline{75x8} =$ M 4x4 =3x8 = 3x8 =4x4 4x6 = 32-11-0 1-3-8 32-11-0 TOTAL WEIGHT = 143 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES CHORDS SIZE BEARINGS FACTORED DESIGN CRITERIA SIZE LUMBER DESCR SPF SPF SPF D No.2 No.2 MAXIMUM FACTORED SPECIFIED LOADS: DRY **GROSS REACTION** GROSS REACTION DOWN HORZ L 32.5 6.0 BRG BRG CH. PSF Ġ 2x4 No.2 VERT HORZ UPLIFT IN-SX IN-SX DL G-DRY No 2 SPF 5-8 5-8 CH. LL 0.0 7.4 PSF DRY SPF 2307 5-8 DL В 2x6 No.2 SPF TOTAL LOAD M -T -R -KROM 2x6 DRY No.2 SPF UNFACTORED REACTIONS

1ST LCASE MAX SPF SPACING = 24.0 IN. C/C SPF /MIN. COMPONENT REACTIONS No.2 SNOW 0 -2x4 DRY No 2 SPF COMBINED WIND DEAD 457 / 0 457 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE ALL WEBS 2x3 No.2 SPF 1157 / 0 1615 0/0 0/0 0/0 OF 6.00/12 EXCEPT С DRY SPF BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T, M THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.70 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 9, NBCC 2015 DRY: SEASONED LUMBER THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED CSA 086-14 PLATES (table is in inches)
JT TYPE PLATES 1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-T, J-M. - TPIC 2014 LEN Y TMV+p TMWW-t END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW MT20 BCDEF (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. 2.50 1.75 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED MT20 3.0 8.0 ROOF LIVE LOAD 4.0 4.0 4.0 4.0 TMWW-t MT20 LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL)= L/999 (0.14")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.27") TTW-m TTWW-m MT20 1.75 2.25 6.0 4.0 TMWW-t MT20 CHORDS MT20 MT20 TS-t TMWW-t MAX. FACTORED FACTORED MAX. FACTORED 2.50 1.75 MEMB. FORCE VERT. LOAD LC1 MAX 5.0 6.0 MAX. MEMB. FORCE MAX (PLF) CSI (LC) FROM TO -112.4 -112.4 0.15 (1) -112.4 -112.4 0.29 (1) TMV+p MT20 4.0 4.0 (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) CSI: TC=0.45/1.00 (F-G:1) , BC=0.55/1.00 (S-T:1) , WB=0.68/1.00 (H-P:1) , SSI=0.23/1.00 (F-G:1) BMVW1-t FR-TO LENGTH FR-TO -53 / 53 A-B 10.00 C-S S-E 0.02 (4) BMWW-t 0.29 (1) 0.38 (1) 0.02 (4) MT20 4.0 4.0 B-C 0 / 20 10.00 0 / 201 -666 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 BS-t MT20 3.0 4.0 8.0 -3041 / 0 BMWWW-MT20 MT20 3.0 8.0 ANION LIVE LOAD FACTOR = 1.00 E F G H I-BMVW1-t MT20 SOLVE HEELS OFF NOTES-S PLATE MANUFACTURER IS NOT 1) Lateral braces to be a minimum of 2X4 SPF #2. ONSIBLE FOR QUALITY CONTROL IN THE S MANUFACTURING PLANT /ALUES | SHEAR | SECTION (PLI) (PLI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

Structural component only DWG# T-2216607

D- E	-3041/0	-112.4 -112.4	0.30(1)	3.70	Q- r	0/616	0.14(1)	I	
E-F	-2501 / 0	-112.4 -112.4	0.35 (1)	4.06	Q-G	0/2	0.00 (1)	COMPANION LIVE LOAD FACTO	R = :
F- G	-2224 / 0	-112.4 -112.4	0.45 (1)	4.10	P-G	0/614	0.14 (1)		
G- H	-2500 / 0	-112.4 -112.4	0.35 (1)	4.06	P- H	-667 / 0	0.68 (1)	AUTOSOLVE HEELS OFF	
H- I	-3042 / 0	-112.4 -112.4	0.38 (1)	3.70	H- N	0 / 202	0.05 (4)		
l- J	-3042 / 0	-112.4 -112.4	0.38 (1)	3.70	N- J	-53 / 54	0.02 (4)	TRUSS PLATE MANUFACTURER	RISN
J-K	0 / 20	-112.4 -112.4	0.29(1)	10.00	T- C	-3337 / 0	0.54 (1)	RESPONSIBLE FOR QUALITY O	ONT
K-L	0/34	-112.4 -112.4	0.15(1)	10.00	J- M	-3337 / 0	0.54 (1)	TRUSS MANUFACTURING PLAN	
T-B	-368 / 0	0.0 0.0	0.02(1)	7.81					
M- K	-368 / 0	0.0 0.0	0.02(1)	7.81				NAIL VALUES	
								PLATE GRIP(DRY) SHEAR S	SECT
T-S	0 / 2754	-18.5 -18.5	0.55 (1)	10.00				(PSI) (PLI)	(PLI)
S-R	0 / 2645		0.53 (1)	10.00				MAX MIN MAX MIN N	иÀХ́
R-Q	0 / 2645	-18.5 -18.5	0.53 (1)	10.00				MT20 650 371 1747 788 1	987
Q-P	0 / 2223	-18.5 -18.5	0.43 (1)	10.00				· ·	
P- O	0 / 2645		0.53 (1)	10.00			1	PLATE PLACEMENT TOL. = 0.25	0 incl
O- N	0 / 2645		0.53 (1)	10.00					
N- M	0 / 2754	-18.5 -18.5	0.55 (1)	10.00				PLATE ROTATION TOL. = 5.0 De	g.
								ISLOCALD A OF AN ANDLET A OF	
								JSI GRIP= 0.85 (M) (INPUT = 0.90 JSI METAL= 0.84 (O) (INPUT = 1.	

REVIEWE

PLACEMENT TOL. = 0.250 inches ROTATION TOL. = 5.0 Deg.

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423665 TRUSS DESC T6 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:03 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-3VHPWvx1UVdmRQqj9j2uUf2980XKdFrqHZ24j1z 9?A 1-3-8 15-10-8 1-2-0 15-10-8 Scale = 1:58.2 4x4 = 4x4 = 6.00 12 F 3x8 / 4x4 / 4x4 < Н 3x8 < D 5x6 / 5x6 < С W5 4x4 || κ R Q 0 Ν 4x4 = 3x8 =6x10 = 3x8 = 4x4 = 5x8 = 32-11-0 <u>1-3-8</u> 32-11-0 1-3-8 TOTAL WEIGHT = 144 I LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY RULES BUILDING DESIGNER **DESIGN CRITERIA** CHORDS SIZE LUMBER DESCR A D F DRY DRY DRY SPF MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS No.2 BRG IN-SX LL DL 2x4 2x4 **GROSS REACTION** GROSS REACTION BRG PSF 32.5 HORZ 0 G No.2 SPF VERT HORZ DOWN UPLIFT IN-SX PSF 6.0 . G -DRY SPF S M 5-8 5-8 BOT CH. LL 0.0 PSF No.2 2307 0 5-8 5-8 В 2x6 DRY No.2 SPF M - 0 -SPF SPF SPF К Q О М 2x6 2x4 DRY DRY No.2 No.2 UNFACTORED REACTIONS SPACING = <u>24.0</u> IN. C/C LIVE PERM.LIVE 2x4 DRY No.2 SNOW DRY No.2 SPF COMBINED DEAD SOIL 0/0 0/0 457 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE ALL WEBS DRY SPF 2x3 M No.2 1615 1157 / 0 EXCEPT DRY BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, M THIS TRUSS IS DESIGNED FOR RESIDENTIAL SPF DRY No.2 OR SMALL BUILDING REQUIREMENTS OF PART <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.63 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. DRY: SEASONED LUMBER. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED CSA 086-14 PLATES (table is in inches) 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-P, H-P, C-S, J-M. LEN BCD TMV+p TMWW-t MT20 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN (55 % OF 43 9 P.S.F. G.S.I. PLUS 8 4 P.S.F. MT20 5.0 2.50 2.00 THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD 6.0 3.0 4.0 4.0 TS-t MT20 TMWW-t LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (1.10") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.15") ALLOWABLE DEFL.(TL)= L/360 (1.10") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.29") TTW-m MT20 4.0 4.0 TMWW-t MT20 4.0 3.0 CHORDS WEBS TS-t TMWW-t MAX. FACTORED FACTORED MAX. FACTORED FORCE MT20 5.0 6.0 2.50 2.00 MEMB. FORCE VERT. LOAD LC1 MAX MAX MEMB TMV+p BMVW1-t BMWW-t (PLF) FROM TO MT20 40 40 (LBS) CSI (LC) CSI: TC=0.48/1.00 (C-E:1), BC=0.59/1.00 (M-N:1), CSI (LC) LENGTH FR-TO WB=0.65/1.00 (J-M:1) , SSI=0.25/1.00 (E-F:1) 0 / 34 -1124 -1124 0 15 (1) MT20 4.0 4.0 A- B 10.00 C-R -182 / 27 0.06(1) BS-t MT20 3.0 8.0 10.0 0/24 -112.4 -112.4 -112.4 -112.4 0.40 0.48 0 / 336 -841 / 0 0.08 (1) 0.41 (1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 RMWWWW MT20 MT20 6.0 3.0 -3001/0 E- P P- H BS-t BMWW-t -112.4 -112.4 8.0 -3001 / 0 0.48 3.63 -841 / 0 0.41 (1 MT20 4.0 4.0 -2239 / 0 -112.4 -112.4 0.44 H- N N- J 0 / 336 -182 / 27 0.08 (1) 0.06 (1) COMPANION LIVE LOAD FACTOR = 1.00 BMVW1-I G- H H- I -112.4 -112.4 0.44 -2239 / 0 4.14 S-C -3353 / 0 0.65 (1 AUTOSOLVE HEELS OFF -3001 / 0 -112.4 -112.4 0.48 3 63 J- M F- P -3353 / 0 0 / 692 0.65 (1 -3001 / 0 -3001 / 0 0 / 24 0 / 34 -112.4 -112.4 -112.4 -112.4 0.48 (1) 0.40 (1) NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. TRUSS PLATE MANUFACTURER IS NOT J- K K- L 10.00 P-G 0 / 692 0.16 (1) RESPONSIBLE FOR QUALITY CONTROL IN THE -1124 -1124 0.15 (1) 10.00 TRUSS MANUFACTURING PLANT 0.03 (1) 0.03 (1) -397 / 0 NAIL VALUES PROFESSIONAL ENGINE O7-08-22 PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MAX MIN -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 0.59 (1) 0.56 (1) 0.56 (1) 10.00 10.00 10.00 S- R 0 / 2796 R-Q Q-P P-O O-N N-M 0 / 2555 0 / 2555 650 371 1747 788 1987 1873 0 / 2555 -18.5-18.5 0.56 (1) 10.00 PLATE PLACEMENT TOL. = 0.250 inches 0 / 2796 -18.5-18.5 0.59 (1) 10.00 PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.88 (F) (INPUT = 0.90) JSI METAL= 0.87 (Q) (INPUT = 1.00) 100009024 ROMACE OF ONTARIO

REVIEWE

Structural component only

DWG# T-2216608

JOB NAME TRUSS NAME JOB DESC. QUANTIT **BAYVIEW WELLINGTON** DRWG NO 423665 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:04 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-XhrnkFyfFomc3aPviQZ71tbJDPt6MiQzVDneFTz 9?9 1-3-8 16-5-8 16-5-8 4x6 || Scale: 3/16"=1 6.00 12 4x4 <> 3x8 / G 3x8 < D Н 5x6 / 5x6 ≥ 4x4 || 4x4 || R Q 4x4 =3x8 =4x6 || 4x4 =5x8 = 4x6 || 3x8 = 32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 5 X 143 LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS **DESIGN CRITERIA** LUMBER 2x4 No.2 SPECIFIED LOADS

N. L. G. A. RULES CHORDS SIZE DESCR. SPF SPF SPF SPF A -D -F -H -S -D F DRY DRY DRY 2x4 No.2 H K B No.2 2x6 DRY No.2 SPF SPF SPF SPF JQN 2x6 2x4 DRY DRY No.2 No.2 2x4 DRY No.2 No.2 SPF ALL WEBS DRY SPF 2x3 No.2 EXCEPT SPF 2x4 No.2

PL/	PLATES_(table is in inches)												
JT	TYPE	PLATES	W	LEN	Υ	X							
В	TMV+p	MT20	4.0	4.0									
С	TMWW-t	MT20	5.0	6.0	2.25	1.75							
D	TS-t	MT20	3.0	8.0									
Ε	TMWW-t	MT20	4.0	4.0									
F	TTWW+p	MT20	4.0	6.0	Edge								
G	TMWW-t	MT20	4.0	4.0									
Н	TS-t	MT20	3.0	8.0									
1	TMWW-t	MT20	5.0	6.0	2.25	1.75							
J	TMV+p	MT20	4.0	4.0									
L	BMVW1-t	MT20	5.0	8.0									
M	BMWW-t	MT20	4.0	4.0									
Ν	BS-t	MT20	3.0	8.0									
0	BMWW+t	MT20	4.0	6.0									
Ρ	BMWW+t	MT20	4.0	6.0									
Q	BS-t	MT20	3.0	8.0									
R	BMWW-t	MT20	4.0	4.0									
S	BMVW1-t	MT20	5.0	8.0									

DRY: SEASONED LUMBER

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)

Structural component only DWG# T-2216609

_~	ninas						
	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2307	0	2307	0	0	5-8	5-8
	2307	0	2307	0	0	5-8	5-8

OIN	ACTURED RE	ACTIONS					
	1ST LCASE	MAX./	MIN. COMPOR	VENT REACTION	IS.		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	
S	1615	1157 / 0	0/0	0/0	0/0	457 / 0	
L	1615	1157 / 0	0/0	0/0	0/0	457 / 0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S. L

OP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.55 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-S, I-L.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E	BS	
	K. FACTORED						MAX. FACTO	RED
MEMB.								MAX
	(LBS)						(LBS)	CSI (LC)
FR-TO		FROM T	2		LENGTH	FR-TO		
A-B	0/34	-112.4 -1	12.4	0.15 (1)	10.00	F-O	0 / 944	0.21(1)
0 0	0 / 25	-112.4 -1	12.4	0.43 (1)	10.00	0- G	-811 / 0	0.69(1)
	-3074 / 0					G- M	0 / 400	0:09 (1)
	-3074 / 0	-112.4 -1				M- I	-212 / 22	0.05(1)
E-F	-2560 / 0	-112.4 -1	12.4	0.49 (1)	3.86	P-F	0/944	0.21 (1)
F-G	-2560 / 0	-112.4 -1	12.4	0.49 (1)	3.86	E-P	-811 / 0	0.69 (1)
G-H	-3074 / 0	-112.4 -1	12.4	0.53 (1)	3.55	R-E	0 / 400	0.09(1)
H-I	-3074 / 0	-112.4 -1	12.4	0.53 (1)	3.55	C-R	-212 / 22	0.05 (1)
1- J	0 / 25	-112.4 -1	12.4	0.43 (1)	10.00	S-C	-3370 / 0	0.68 (1)
J- K	0/34	-112.4 -1	12.4	0.15 (1)	10.00	I- L	-3370 / 0	0.68 (1)
S-B	-405 / 0	0.0	0.0	0.03(1)	7.81			• • •
L-J	-405 / 0	0.0						
}								
S-R	0 / 2818	-18.5	18.5	0.56(1)	10.00			
R-Q	0 / 2526	-18.5	18.5	0.49 (1)	10.00			
Q-P	0 / 2526	-18.5	18.5	0.49 (1)				
P- 0	0 / 1947			0.40 (1)				
O- N	0 / 2526	-18.5						
N-M		-18.5						
M-L		-18.5						
1				- ()				

OF EC		LOAL	JO.		
TOP	CH.	LL	=	32.5	PSI
		DL	=	6.0	PSI
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.4	PS
TOTA	1 10	ΔD	_	45 9	PSI

SPACING = 24.0 IN. C/C

SOIL

0/0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.15") ALLOWABLE DEFL.(TL)= L/360 (1.10") CALCULATED VERT. DEFL.(TL)= L/999 (0.28")

CSI: TC=0.53/1.00 (C-E:1) , BC=0.56/1.00 (R-S:1) , WB=0.69/1.00 (E-P:1) , SSI=0.26/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

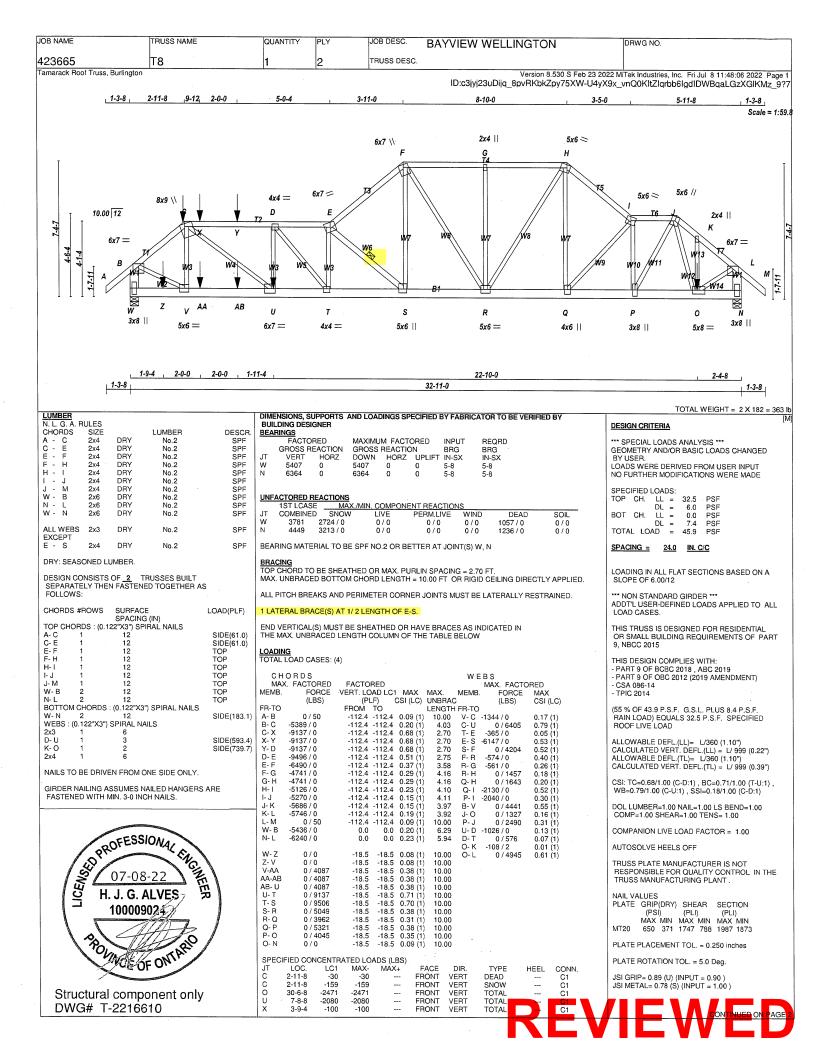

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (C) (INPUT = 0.90) JSI METAL= 0.77 (C) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
423665	Т8	1	2	TRUSS DESC.		
Tamarack Roof Truss, Burl	lington					23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:06 2022 Page 2 U4yX9x vnQ0KltZlqrbb6lqdIDWBqaLGzXGlKMz 9?7

W LEN Y X
6.0 7.0 Edge
8.0 9.0 Edge 2.75
4.0 4.0
6.0 7.0 1.75 2.75
2.0 4.0
5.0 6.0 2.00 2.00
5.0 6.0 Edge
2.0 4.0
6.0 7.0 Edge
3.0 8.0 2.50 1.75
3.0 8.0
4.0 6.0
5.0 6.0 2.50 2.00
4.0 4.0 2.50 2.00
4.0 4.0 2.50 2.00
6.0 7.0 3.00 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50
6.0 3.00 2.50 υ V W BMV1+p MT20

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

SPEC	IFIED CON	CENTRA	TED LOA	ADS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
Υ	5-9-4	-93	-93		FRONT	VERT:	TOTAL		C1
Z	1-9-4	-21	-21		FRONT	VERT	TOTAL		C1
AA	3-9-4	-21	-21		FRONT	VERT	TOTAL		C1
AB	5-9-4	-21	-21		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2216610

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC **BAYVIEW WELLINGTON** DRWG NO 423665 TRUSS DESC Т9 Tamarack Roof Truss Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:07 2022 Page 1 1-3-8 4-1-14 4-1-14 1-3-8 Scale = 1:57.3 2x4 || 4x4 =4x4 = 3x8 4x4 =6x7 \\ 6x7 // D Ε G Н 10.00 12 5x8 = 5-1-4 В i U 莨 R 0 т s Q P Ν М 3x8 || 3x8 =3x8 =3x8 11 4x6 = 4x6 || 4x4 =5x6 =4x6 || 4x6 =32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 2 X 142 = 284 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER . RULES DESIGN CRITERIA BEARINGS FACTORED CHORDS SIZE LUMBER DESCR A C F DRY DRY DRY SPF MAXIMUM FACTORED REQRD SPECIFIED LOADS: No.2 No.2 BRG IN-SX 2x4 **GROSS REACTION** GROSS REACTION BRG TOP CH. 32.5 PSF 2x4 SPF VERT HORZ DOWN HORZ UPLIFT IN-SX DL DRY SPF 5-8 BOT CH. 0.0 7.4 PSF В No.2 2311 0 5-8 5-8 DL 2x6 DRY No.2 SPF TOTAL LOAD 45.9 R DRY No.2 SPF SPF UNFACTORED REACTIONS
1ST LCASE MA SPACING = 24.0 IN. C/C 0 -MAX/MIN. COMPONENT REACTIONS 2x4 DRY No.2 SPF SNOW PERM.LIVE 0 / 0 SOIL 0/0 0/0 COMBINED LIVE 0/0 WIND DEAD ALL WEBS DRY SPF No.2 LOADING IN FLAT SECTION BASED ON A SLOPE 458 / 0 458 / 0 **EXCEPT** 1159 / 0 0/0 0/0 0/0 OF 6.00/12 DRY: SEASONED LUMBER. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, L THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.11 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 9, NBCC 2015 THIS DESIGN COMPLIES WITH PLATES (table is in inches)
IT TYPE PLATES - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) W LEN Χ ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED TMVW-p TTWW+m Edge 2.00 2.00 8.0 7.0 CSA 086-14 LOADING TOTAL LOAD CASES: (4) MT20 6.0 - TPIC 2014 TMWW-t MT20 4.0 4.0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. CHORDS MT20 WEBS 3.0 8.0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED G TMW+w MT20 2.0 4.0 MAX. FACTORED FACTORED MAX. FACTORED ROOF LIVE LOAD VERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO TTWW+m TMVW-p MT20 MT20 6.0 5.0 7.0 8.0 2.00 2.00 Edge MEMB ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.20")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.36") UNBRAC (LBS) (LBS) CSI (LC) FR-TO BMV1+p MT20 8.0 3.0 Edge LENGTH ER-TO 4.0 6.0 2.00 2.75 2.75 1.50 -112.4 -112.4 0.15 (1) -112.4 -112.4 0.45 (1) -112.4 -112.4 0.57 (1) BMWW-t MT20 0 / 50 BMWW+t -2156 / 0 0 / 1906 0.43 (1) BS-t BMWWW-t MT20 3.0 8.0 -3017 / 0 S-D -1234/0CSI: TC=0.65/1.00 (G-H:1) , BC=0.64/1.00 (P-Q:1) , WB=0.47/1.00 (D-S:1) , SSI=0.26/1.00 (H-I:1) D- F 0.65 0.53 D-Q Q-E 0 / 888 -532 / 0 MT20 5.0 6.0 -3649 / 0 -112.4 -112.4 0.20 (1 4.0 E-F F-G BMWW-t -3647 0.20 (1) MT20 -112.4 -112.4 BS-t 8.0 -3647 / 0 0.53 (1 3.28 E-P -2/0 0.00 (1 0.65 (1) 0.58 (1) 0.45 (1) P-G P-H BMWW+t MT20 4.0 6.0 2.75 1.50 G- H H- I -3647 / 0 -112.4 -112.4 3.11 -531 / 0 0 / 884 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 BMWW-40 6.0 2.00 2.75 -3018 / 0 -2157 / 0 -112.4 -112.4 -112.4 -112.4 BMV1+p Edge 3.0 4.18 N- H -1233 / 0 0.47 (1) 0 / 50 -1124 -1124 0.15 (1) 10.00 N-I 0 / 1906 0.43 (1) COMPANION LIVE LOAD FACTOR = 1.00 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. U-B -2281 / 0 408 0 / 1728 0.0 0.0 0.16(1) 6.79 B-T 0.39(1AUTOSOLVE HEELS OFF M-J 0 / 1728 0.39 (1) U- T T- S S- R R- Q Q- P P- O 0/0 -18.5 -18.5 0.09 (4) 10.00 TRUSS PLATE MANUFACTURER IS NOT NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. -18.5 -18.5 -18.5 -18.5 0.32 (1) 10.00 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0 / 3017 10.00 0/3017 0/3649 0/3018 -18.5 -18.5 -18.5 10.00 10.00 -18.5 0.53 0.64 (1) 0.53 (1) NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION 10.00 -18.5 O- N N- M M- L (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 0 / 3018 -185 -18.5 0.53 (1) 10.00 PROFESSIONAL ENGINEERS H. J. G. ALVES 0 / 1644 0 / 0 0.32 (1) 0.09 (4) -18.5 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.90 (M) (INPUT = 0.90) JSI METAL= 0.93 (O) (INPUT = 1.00) 100009024 ROLLICE OF ONTARIO

Structural component only

DWG# T-2216611

REVIEWED

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423665 TRUSS DESC T10 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:08 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-QS4IZd?Al1G2YBjhxGd3Bjlw01G0IXIZQrlrOEz_9?5 1-3-8 22-2-7 1-3-8 Scale = 1:57.7 2x4 || 4×4 = 3x8 = 4x4 =6x7 \\ 6x7 // C ח E G F 10.00 12 6x7 =6x7 = 1-7-11 N R ۵ O L 3x8 || 3x8 == 3x8 || 5x6 =4x6 =5x6 = 5x6 = 5x6 =3x8 = 32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 2 X 144 = 287 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES DESIGN CRITERIA BUILDING -BEARINGS FACTORED DESCR SPF SPF CHORDS SIZE 2x4 LUMBER A -C -F -DRY DRY DRY MAXIMUM FACTORED REORD SPECIFIED LOADS: BRG IN-SX 32.5 6.0 2x4 No.2 GROSS REACTION GROSS REACTION BRG CH. PSF DOWN 2311 HORZ 0 2x4 No.2 SPE VERT HORZ UPLIFT IN-SX H J B DRY SPF 5-8 BOT CH. 0.0 7.4 LL. PSF 2x6 No.2 0 5-8 5-8 DL 2x6 DRY No.2 SPF TOTAL LOAD 2×4 DRY No.2 No.2 SPF SPF UNFACTORED REACTIONS
1ST LCASE MA SPACING = 24.0 IN. C/C Ν -K 2x4 DRY No.2 SPF MAX./MIN. COMPONENT REACTIONS SNOW 1159 / 0 LIVE 0/0 PERM.LIVE 0/0 WIND COMBINED DEAD ALL WEBS DRY 2x3 No.2 SPF LOADING IN FLAT SECTION BASED ON A SLOPE 458 / 0 0/0 **EXCEPT** 1617 1159 / 0 0/0 0/0 0/0 OF 6.00/12 DRY: SEASONED LUMBER. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, K THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.20 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 9, NBCC 2015 THIS DESIGN COMPLIES WITH: PLATES (table is in inches) - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) LEN 7.0 7.0 Х ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. TMVW-p MT20 Edge 2.00 2.25 CSA 086-14 TTWW+m MT20 6.0 TPIC 2014 LOADING TOTAL LOAD CASES: (4) TMWW-t MT20 4.0 40 TMW+w (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. CHORDS TS-t TMWW-t 3.0 8.0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED G H MT20 4.0 4.0 ROOF LIVE LOAD TTWW+m TMVW-p MT20 MT20 7.0 7.0 2.00 2.25 Edge ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.16")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.27") BMV1+p MT20 3.0 8.0 Edge Q. R MT20 5.0 6.0 BS-t MT20 3.0 8.0 BMWWW-t MT20 4.0 6.0 CSI: TC=0.79/1.00 (H-I:1) , BC=0.50/1.00 (M-O:1) , WB=0.61/1.00 (D-Q:1) , SSI=0.30/1.00 (C-D:1) BS-t BMV1+p s 3.0 Edge MT20 8.0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE HEELS OFF 1) Lateral braces to be a minimum of 2X4 SPF #2. TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT NAIL VALUES

Structural component only DWG# T-2216612

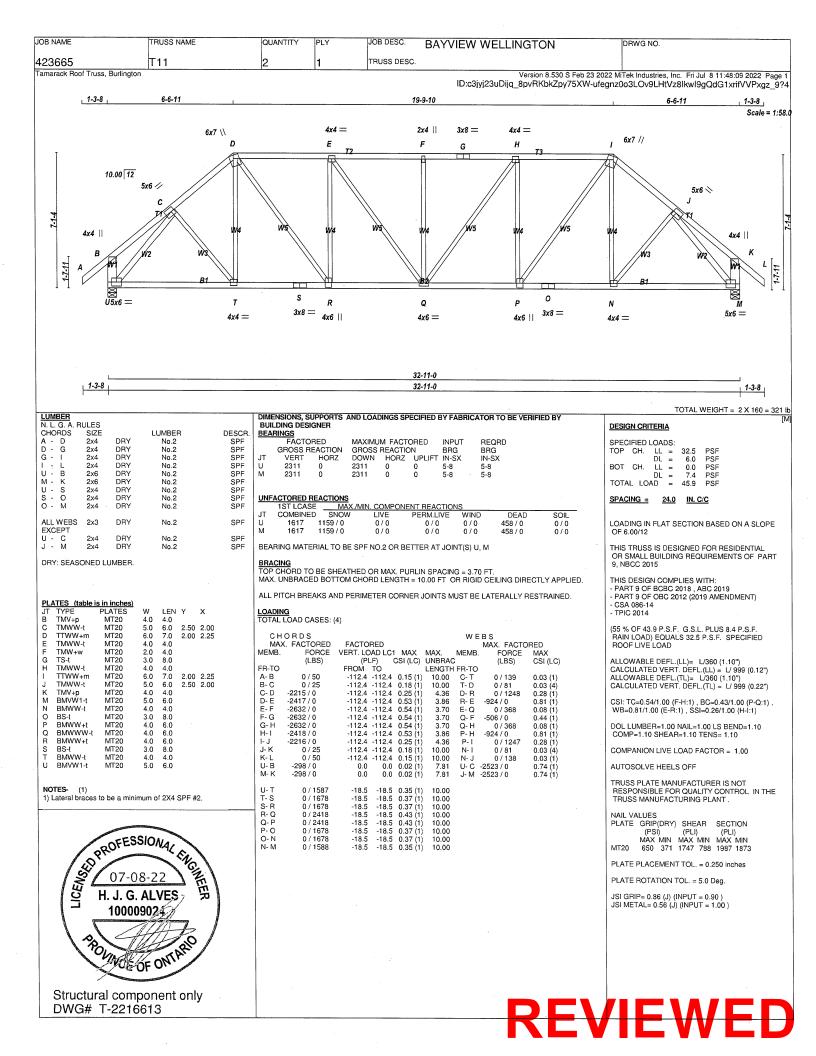
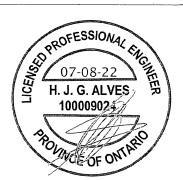

ı	- Сп	ORDS				VV E	:85	
	MAX	C. FACTORED	FACTORED				MAX. FACTO	DRED
ı	MEMB.	FORCE	VERT. LOAD LO	1 MAX				
ı		(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
	FR-TO		FROM TO					
ı	A- B	0 / 50	-112.4 -112.4	4 0.15 (1)	10.00	R- C	-287 / 11	0.17(1)
			-112.4 -112.4					0.36(1)
			-112.4 -112.4					
			-112.4 -112.4				0 / 461	
ı	E-F		-112.4 -112.4				-569 / 0	
			-112.4 -112.4				0 / 461	
	G-H		-112.4 -112.4				-1037 / 0	0.61 (1)
			-112.4 -112.4				0 / 1579	
		0 / 50					-286 / 12	
			0.0 0.0					
	K-1	-2270 / 0	0.0 0.0	0.16 (1)	6.80	L-1	0 / 1733	0.39 (1)
		2 / 2						
	S-R		-18.5 -18.5					
	R-Q			0.35 (1)				
	Q-P	0 / 2778		0.50 (1)				
	P- 0	0 / 2778		0.50 (1)				
	O- N	0 / 2778						
	N- M	0 / 2778						
	M-L		-18.5 -18.					
	L-K	0/0	-18.5 -18.	5 0.13 (4)	10.00			

PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.85 (R) (INPUT = 0.90) JSI METAL= 0.80 (P) (INPUT = 1.00)


REVIEWE

JOB NAME TRUSS NAME JOB DESC. QUANTIT **BAYVIEW WELLINGTON** DRWG NO. 423665 T12 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:10 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-MrC2_I1QqeWmnVs33hgXH8rlOqyfmNnsu9EyT7z_9?3 1-3-8 7-9-1 17-4-13 7-9-2 Scale = 1:61.3 4x4 = 3x8 = 2x4 | |5x6 \\ 5x6 // Ε G F 10.00 12 5x6 // 5x6 < С 3x4 || Q N 0 3x8 =5x6 = 4x4 4x4 = 5x6 =4x4 =32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 2 X 159 = 317 lb | N. L. G. A. RULES | CHORDS | SIZE | SIZE | A - D | 2x4 | D - F | 2x4 | F - H | 2x4 | DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS FACTORED DESIGN CRITERIA LUMBER DESCR SPF No.2 MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: DRY DRY DRY SPF SPF SPF GROSS REACTION VERT HORZ GROSS REACTION
DOWN HORZ UPLIFT
2311 0 0 BRG IN-SX BRG IN-SX No 2 CH. 32.5 LL = DL = HKB PSF 6.0 H -S -No.2 5-8 5-8 BOT CH. 0.0 7.4 PSF 2x6 DRY No.2 SPF L -S -Q -N -SPF SPF SPF DRY DRY No.2 No.2 TOTAL LOAD 45.9 PSF UNFACTORED REACTIONS
1ST LCASE MAX
T COMBINED SNOW N 2x4 DRY No.2 SPACING = 24.0 IN. C/C SPF (./MIN. COMPONENT REACTIONS WIND PERM.LIVE DEAD SOIL ALL WEBS DRY SPF 2x3 No.2 1159 / 0 0/0 0/0 0/0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE **EXCEPT** С DRY SPF SPF THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 No.2 BEARING MATERIAL TO BE SPENO 2 OR BETTER AT JOINT(S) S. I. DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	X						
В	TMV+p	MT20	3.0	4.0								
С	TMWW-t	MT20	5.0	6.0	2.50	2.25						
D	TTWW+m	MT20	5.0	6.0	2.00	1.75						
Е	TMWW-t	MT20	4.0	4.0								
F	TS-t	MT20	3.0	8.0								
G	TMW+w	MT20	2.0	4.0								
Н	TTWW+m	MT20	5.0	6.0	2.00	1.75						
1	TMWW-t	MT20	5.0	6.0	2.50	2.25						
J	TMV+p	MT20	3.0	4.0								
L	BMVW1-t	MT20	5.0	6.0								
M	BMWW-t	MT20	4.0	4.0								
Ν	BS-t	MT20	3.0	8.0								
0	BMWWW-t	MT20	5.0	6.0								
Ρ	BMWW-t	MT20	4.0	4.0	2.00	1.50						
Q	BS-t	MT20	3.0	8.0								
R	BMWW-t	MT20	4.0	4.0								
S	BMVW1-t	MT20	5.0	6.0								

NOTES-Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2216614

CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.78 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-O, C-S, I-L.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

Сн	ORDS					W E	BS	
MA)	C. FACTORED	FACTOR	ED				MAX, FACTO	RED
MEMB.	FORCE	VERT. LOA	AD LC1	MAX	MAX.	MEMB	FORCE	MAX
	(LBS)	(PLF					(LBS)	CSI (LC)
FR-TO	. ,	FROM 7						
A-B	0 / 50	-112.4 -	112.4	0.15(1)	10.00	C-R	0 / 55	0.02 (4)
B- C	0/32	-112.4 -	112.4	0.26 (1)	10.00		0 / 141	0.04 (4)
C-D	-2187 / 0	-112.4 -	112.4	0.36 (1)	4.27	D- P	0/999	0.22 (1)
D-E	-2252 / 0	-112.4 -	112.4	0.67(1)	3.78	P-E	-704 / 0	0.89 (1)
E-F	-2251 / 0	-112.4 -	112.4	0.67 (1)	3.78	E-O	-3 / 0	0.00 (1)
F-G	-2251 / 0	-112.4 -	112.4	0.67 (1)	3.78	O- G	-703 / 0	0.89 (1)
G-H	-2251 / 0	-112.4 -	112.4	0.66 (1)	3.80	O- H	0/996	0.22 (1)
H- I	-2188 / 0		112.4	0.36 (1)	4.27	M- H	0 / 144	0.04 (4)
I- J	0 / 32	-112.4 -	112.4	0.26(1)	10.00	M- I	0 / 54	0.02 (4)
J- K	0 / 50	-112.4 -	112.4	0.15(1)	10.00	S- C	-2534 / 0	0.44(1)
S-B	-322 / 0	0.0	0.0	0.02(1)	7.81	I- L	-2535 / 0	0.44 (1)
L-J	-322 / 0	0.0	0.0	0.02(1)	7.81			
S-R	0 / 1644	-18.5	-18.5	0.40(1)	10.00			
R-Q	0 / 1654			0.40(1)				
Q-P	0 / 1654	-18.5	-18.5	0.40(1)	10.00			
P- O	0 / 2253			0.42 (1)				
O- N	0 / 1654	-18.5						
N-M	0 / 1654			0.40 (1)				
M- L	0 / 1645	-18.5	-18.5	0.40(1)	10.00			
1								

- THIS DESIGN COMPLIES WITH:
 PART 9 OF BCBC 2018 , ABC 2019
 PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.19")

CSI: TC=0.67/1.00 (D-E:1) , BC=0.42/1.00 (O-P:1) , WB=0.89/1.00 (E-P:1) , SSI=0.31/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

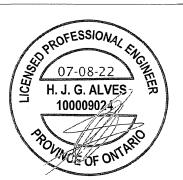
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (D) (INPUT = 0.90) JSI METAL= 0.57 (I) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423665 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:10 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-MrC2_I1QqeWmnVs33hgXH8rEEqzMmSysu9EyT7z_9?3 8-11-8 , 1-3-8 15-0-0 8-11-8 1-3-8 Scale = 1:58.3 2x4 || 5x6 < 5x6 = n F 10.00 12 4x4 // 4x4 < G С 6x7 6x7 =W2 K 0 М Р Q Ν L ĸ 3x8 = 3x8 =3x8 || 5x6 = 4x4 =4x10 =4y4 = 5x6 = 32-11-0 1-3-8 32-11-0 TOTAL WEIGHT = 2 X 165 = 330 lb [M][F LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE A - D 2x4 D - F 2x4 F - I 2x4 **BUILDING DÉSIGNER** DESIGN CRITERIA BEARINGS FACTORED DESCR. SPF SPF SIZE 2x4 LUMBER MAXIMUM FACTORED REQRD SPECIFIED LOADS GROSS REACTION VERT HORZ 2311 0 GROSS REACTION DOWN HORZ L BRG IN-SX 32.5 6.0 PSF PSF DRY No.2 BRG TOP CH. LL DL DRY DRY SPF SPF HORZ 0 UPLIFT В No.2 BOT CH. 2311 5-8 5-8 LL 0.0 PSF J -R -2x6 DRY No.2 SPF 2311 0 5-8 5-8 DI О 2x4 DRY No 2 SPF DRY SPF 2x4 No.2 UNFACTORED REACTIONS SPACING = <u>24.0</u> IN. C/C MAX SNOW ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE ALL WERS 2x3 DRY No.2 SPF COMBINED DEAD SOIL 1159 / 0 **EXCEPT** 0/0 0/0 0/0 458 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE D - N 2x4 DRY No.2 SPF 1159 / 0 No.2 No.2 SPF SPF 2x4 DRY BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J THIS TRUSS IS DESIGNED FOR RESIDENTIAL 2x4 DRY No.2 SPF OR SMALL BUILDING REQUIREMENTS OF PART $\frac{\textbf{BRACING}}{\textbf{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 3.05 \ \textbf{FT}. \\ \textbf{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \ \textbf{FT} \ \textbf{OR RIGID CEILING DIRECTLY APPLIED}. \\ \end{cases}$ DRY: SEASONED LUMBER. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED CSA 086-14

PLATES (table is in inches)
JT TYPE PLATES
B TMVW-p MT20 LEN 7.0 4.0 Х Edge 2.00 1.25 6.0 TMWW-t MT20 4.0 6.0 4.0 6.0 TTWW-m MT20 5.0 2.0 2.00 2.00 2.00 2.00 5.0 TTWW-m MT20 TMWW-t MT20 40 2.00 1.25


4.0 7.0 8.0 TMVW-p BMV1+p MT20 MT20 Edge 3.0 Edge 5.0 4.0 3.0 4.0 6.0 4.0 8.0 10.0 BMWW-t MT20 BMWW-MT20 N O P BMWWW-t MT20 BS-t MT20 3.0 4.0 BMWW-t BMWW-t QR MT20 5.0 6.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

8.0 Edge

NOTES- (1)

BMV1+p

Structural component only DWG# T-2216615

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING
TOTAL LOAD CASES: (4)

СН	ORDS				W E	BS	
MAX	K. FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC	I MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO	,	FROM TO		LENGTH			
A-B	0 / 50	-112.4 -112.4	0.15(1)	10.00	Q-C	-410 / 0	0.18(1)
B- C	-2195 / 0	-112.4 -112.4	0.36 (1)		C-P	-170 / 0	0.15 (1)
C-D	-2131 / 0	-112.4 -112.4	0.35 (1)			0 / 244	0.05 (1)
D- E	-2110 / 0	-112.4 -112.4	0.94 (1)			0 / 777	0.12(1)
E-F	-2110 / 0	-112.4 -112.4	0.94 (1)	3.05	N-E	-1038 / 0	0.56 (1)
F- G	-2131 / 0	-112.4 -112.4	0.35 (1)	4.33		0 / 777	0.12 (1)
G- H	-2195 / 0	-112.4 -112.4	0.36 (1)		L-F	0 / 244	0.05 (1)
H- I	0 / 50	-112.4 -112.4			L- G		0.15 (1)
R-B	-2272 / 0	0.0 0.0	0.16(1)	6.80	K- G	-410 / 0	0.18 (1)
J- H	-2272 / 0	0.0 0.0	0.16 (1)	6.80	B-Q	0 / 1783	0.29 (1)
			٠,		K- H	0 / 1783	0.29 (1)
R-Q	0/0	-18.5 -18.5	0.08 (4)	10.00			()
Q-P	0 / 1715	-18.5 -18.5	0.36 (1)	10.00			
P- O	0 / 1606	-18.5 -18.5	0.38 (1)	10.00			
O- N	0 / 1606	-18.5 -18.5	0.38 (1)	10.00			
N- M	0 / 1606	-18.5 -18.5	0.38 (1)	10.00			
M- L	0 / 1606	-18.5 -18.5	0.38 (1)	10.00			
L-K	0 / 1715	-18.5 -18.5	0.36 (1)	10.00			
K-J	0/0	-18.5 -18.5	0.08 (4)	10.00			

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8 4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.08") ALLOWABLE DEFL.(TL)= L/360 (1.10") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.17")

CSI: TC=0.94/1.00 (D-E:1), BC=0.38/1.00 (L-N:1), WB=0.56/1.00 (E-N:1) , SSI=0.41/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

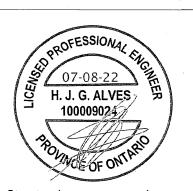
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (F) (INPUT = 0.90) JSI METAL= 0.58 (O) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTIT **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC 423665 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:11 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-q1mQCe22byedPfRGdOBmpLNT0EJ4Vub?6p_W?Zz_9?2 1-3-8 9-11-5 13-0-5 9-11-6 2x4 || 5x6 // 5x6 \\ 10.00 12 4x4 // 4x4 < C 6x7 =6x7 =В Н 1-7-11 W2 鬟 0 Μ Q N 1 3x8 || 3x8 = 3x8 =3x8 || 4x6 =4x10 = 4x4 =444 = 4x6 =32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 167 II


LUMBER				
N. L. G. A. P	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
R - B	2x6	DRY	No.2	SPF
J - H	2x6	DRY	No.2	SPF
R - O	2x4	DRY	No.2	SPF
O - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
D - N	2x4	DRY	No.2	SPF
N - F	2x4	DRY	No.2	SPF
1				

DRY: SEASONED LUMBER.

PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Y X					
В	TMVW-p	MT20	6.0	7.0	Edge					
С	TMWW-t	MT20	4.0	4.0	2.00 1.25					
D	TTWW+m	MT20	5.0	6.0	2.25 1.50					
Ε	TMW+w	MT20	2.0	4.0						
F	TTWW+m	MT20	5.0	6.0	2.25 1.50					
G	TMWW-t	MT20	4.0	4.0	2.00 1.25					
Н	TMVW-p	MT20	6.0	7.0	Edge					
J	BMV1+p	MT20	3.0	8.0	Edge					
K	BMWW-t	MT20	4.0	6.0	2.00 2.50					
L	BMWW-t	MT20	4.0	4.0						
M	BS-t	MT20	3.0	8.0						
N	BMWWW-t	MT20	4.0	10.0						
0	BS-t	MT20	3.0	8.0						
P	BMWW-t	MT20	4.0	4.0						
Q	BMWW-t	MT20	4.0	6.0	2.00 2.50					
R	BMV1+p	MT20	3.0	8.0	Edge					
1										

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2216616

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	AND ECABINGS OF CONTED BY LABORICATION TO BE VEHILLED BY
BUILDING DESIGNER	
BUILDING DESIGNER	
DEADINGS	
BEARINGS	

EA	<u>RINGS</u>						
	FACTOR	RED	MAXIMUI	M FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSS I	REACTIO	N	BRG	BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
}	2311	0	2311	0	0	5-8	5-8
	2311	0	2311	0	0	5-8	5-8

UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	NS.						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
R	1617	1159 / 0	0/0	0/0	0/0	458 / 0	0/0				
J	1617	1159 / 0	0/0	0/0	0/0	458 / 0	0/0				

BEARING MATERIAL TO BE SPE NO.2 OR BETTER AT JOINT(S) B. J.

DP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.97 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	CHORDS WEBS									
MAX	(. FACTORED	FACTORE	0				MAX. FACTO	RED		
MEMB.	FORCE	VERT. LOAD	LC	1 MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PLF)		CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO	, ,	FROM TO			LENGTH		, ,	(-/		
A-B	0 / 50	-112.4 -1	2.4	0.15(1)	10.00	Q-C	-352 / 0	0.19(1)		
B- C		-112.4 -11				C-P	-268 / 0	0.29 (1)		
C- D	-2077 / 0					P- D	0/306	0.07 (1)		
D- E	-1907 / 0	-112.4 -1					0/617	0.10(1)		
E-F	-1907 / 0	-112.4 -1	2.4	0.68 (1)	3.97	N-E	-898 / 0	0.60 (1)		
F-G	-2077 / 0	-112.4 -1	12.4	0.43 (1)	4.28	N-F	0/617	0.10(1)		
G-H	-2220 / 0	-112.4 -1	12.4	0.45 (1)	4.15	L-F	0/306	0.07(1)		
H-I	0 / 50	-112.4 -1				L- G	-268 / 0	0.29 (1)		
R-B	-2270 / 0	0.0	0.0	0.16(1)	6.80	K-G	-351 / 0	0.19 (1)		
J- H	-2270 / 0	0.0	0.0	0.16 (1)	6.80	B-Q	0 / 1794	0.40 (1)		
				` '		K- H	0 / 1794	0.40 (1)		
R-Q	0/0	-18.5 -	18.5	0.10(4)	10.00			(-/		
Q-P	0 / 1737	-18.5 -	18.5	0.35 (1)	10.00					
P- 0	0 / 1561	-18.5 -	18.5	0.34 (1)	10.00					
O- N	0 / 1561	-18.5 -	18.5	0.34 (1)	10.00					
N- M	0 / 1562	-18.5 -	18.5	0.34 (1)	10.00					
M-L	0 / 1562	-18.5 -	18.5	0.34 (1)	10.00					
L-K	0 / 1738			0.35 (1)						
K-J	0/0	-18.5 -	18.5	0.10 (4)	10.00					

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
ГОР	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
ЗОТ	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	۸n		4E O	DOE

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.15")

CSI: TC=0.68/1.00 (D-E:1) , BC=0.35/1.00 (K-L:1) , WB=0.60/1.00 (E-N:1) , SSI=0.36/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (F) (INPUT = 0.90) JSI METAL= 0.51 (O) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 423665 2 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:13 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-nQtBdK3I7ZuLeybekpDEumSvp20wzt2la7Tc4Sz_9?0 3-10-8 12-8-4 1-0-0 , 1-1-12 3-10-8 Scale = 1:39.0 2x4 || 2x4 || 5x6 // 5x6 \\ 4x4 =С 10.00 12 5x6 || G W2 Q R s М L κ N Н 5x6 = 5x6 =5x6 = 5x6 5x6 = 3x8 | 3x8 || 14-7-8 1-0-0 1-1-0 2-0-0 22-7-0 TOTAL WEIGHT = 2 X 109 = 218 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER **DESIGN CRITERIA** LUMBER BEARINGS FACTORED SIZE 2x4 DESCR MAXIMUM FACTORED No.2 SPF SPF INPUT REQRD A B SPECIFIED LOADS PSF PSF 2x4 DRY No.2 **GROSS REACTION** GROSS REACTION BRG BRG CH. LL DL 32.5 G A G SPF HORZ 0 244 DRY VERT DOWN UPLIFT 6.0 MECHANICAL BOT CH. LL 0.0 PSF 2x4 DRY No.2 SPF 2752 0 2752 0 0 MECHANICAL 2x6 DRY No 2 SPE SPF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT N, H. MINIMUM BEARING LENGTH AT JOINT N = 4-0, JOINT H = 4-0. SPACING = <u>24.0</u> IN. C/C ALL WEBS 2x3 DRY No 2 SPE EXCEPT LOADING IN FLAT SECTION BASED ON A SLOPE UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW DRY: SEASONED LUMBER. C./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS DEAD SOIL THIS TRUSS IS DESIGNED FOR RESIDENTIAL 1434 1023 / 0 0/0 0/0 0/0 411/0 0/0 OR SMALL BUILDING REQUIREMENTS OF PART FOLLOWS: 1927 1376 / 0 CHORDS #ROWS SURFACE LOAD(PLF) <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.67 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) SPACING (IN) TOP CHORDS: (0.122"X3") SPIRAL NAILS A- B B- F 12 12 - CSA 086-14 SIDE(61.0) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED F- G N- A SIDE(61.0) TOP LOADING TOTAL LOAD CASES: (4) (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS CHORDS MAX. FACTORED WEBS MAX. FACTORED ALLOWABLE DEFL.(LL)= L/360 (0.75") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.05") ALLOWABLE DEFL.(TL)= L/360 (0.75") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.09") FACTORED SIDE(183.1 VERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO WEBS: (0.122"X3") SPIRAL NAILS MEMB FORCE MAX МЕМВ. MAX CSI (LC) (LBS) 2x3 E- K CSI (LC) UNBRAC (LBS) FR-TO 6 SIDE(158.3) LENGTH FR-TO -112.4 -112.4 0.18 (1) 5.95 5.36 -2050 / 0 -399 / 0 0.07 (1) -2743 / 0 -2743 / 0 -112.4 -112.4 -112.4 -112.4 NAILS TO BE DRIVEN FROM ONE SIDE ONLY. 0 / 1753 0.22 (1) CSI: TC=0.28/1.00 (E-F:1), BC=0.26/1.00 (K-L:1), 0.15 (1) 475 / 0 5.36 L- C L- D 0.08 (1 WB=0.28/1.00 (G-I:1) , SSI=0.16/1.00 (E-F:1) GIRDER NAILING ASSUMES NAILED HANGERS ARE D- F -3584 / 0 -1124 -1124 0.21 (1) 4 75 -888 / 0 0 24 /1 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 D- K K- E K- F FASTENED WITH MIN. 3-0 INCH NAILS. -3584 / 0 -3584 / 0 0 / 524 -586 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 0.10(1) COMP=1.00 SHEAR=1.00 TENS= 1.00 TOP - COMPONENTS ARE LOADED FROM THE TOP AND -3584 / 0 0.28 (1) 4.67 0 / 2097 0.26 (1 MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR F- G N- A -2849 / 0 -112.4 -112.4 0.20 (1) 0.12 (1) -511 / 0 0 / 1643 COMPANION LIVE LOAD FACTOR = 1.00 THE LOAD TO BE TRANSFERRED TO EACH PLY 0.0 0.20(1)0.28 (1) H-G -2719 / 0 0.0 0.0 0.16(1) 6.93 I- G 0 / 2283 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE N- M M- L -18.5 -18.5 0 / 1561 -18.5 -18.5 -18.5 -18.5 0.11 (1) 10.00 TRUSS MANUFACTURING PLANT -18.5 0.26 (1) -18.5 0.17 (1) -18.5 0.17 (1) -18.5 0.17 (1) 1 - K 0 / 3272 10.00 NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL I) (PL II) K- J J- Q Q- R R- I 0/2171 -18.5 -18.5 -18.5 10.00 (PSI) (PLI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 0 / 2171 10.00 0/2171 0/0 -18.5 PROFESSIONAL ENGINEERS PROFESSIONAL ENGINEERS -18.5 0.02 (4) -18.5 0.02 (4) 10.00 S-H 0/0 -18.5PLATE PLACEMENT TOL. = 0.250 inches TED LOADS (LBS) SPECIFIED CONCENTRA TYPE JT LOC LC1 MAX-MAX+ FACE DIR HEEL CONN PLATE ROTATION TOL. = 5.0 Deg. BACK BACK BACK 18-8-8 -175 -175 -14 VERT TOTAL C1 C1 C1 C1 C1 C1 C1 JSI GRIP= 0.83 (F) (INPUT = 0.90) JSI METAL= 0.50 (A) (INPUT = 1.00) -14 -913 -72 -72 -14 -913 -72 -72 -14 KOP TOTAL VERT 16-6-12 BACK VERT TOTAL 100009024 17-6-12 16-6-12 17-6-12 BACK VERT QRS VERT TOTAL -14 -14 BACK VERT TOTAL 20-7-12 BACK POLYACE OF ONTARIO CONNECTION REQUIREMENTS C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. Structural component only

DWG# T-2216617

PEVIE V GONI

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELL	LINGTON	DRWG NO.	
423665	T15	1	2	TRUSS DESC.				
Tamarack Roof Truss, Burlington					ID 0: 100 D::	Version 8.530 S Feb 2	23 2022 MiTek Industries	, Inc. Fri Jul 8 11:48:13 2022 Page DEumSvp20wzt2Ia7Tc4Sz 9?
					ID:c3jyj23uDijq	8pvHKbk∠py75XW-n	QtBdK3I7ZuLeybekr	DEumSvp20wzt2la7Tc4Sz 9?
B TTWW+m MT20 5. C TMW+w MT20 2. D TMWW+t MT20 4. E TMW+w MT20 2. F TTWW+m MT20 5. H BMV+p MT20 5. I BMWW+t MT20 5. K BMWW+t MT20 5. L BMWW+t MT20 5. N BMV1+p MT20 3.	0 6.0 Edge 0 6.0 2.00 1.50 0 4.0 0 4.0 0 6.0 2.00 1.50 0 6.0							
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE							
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.							
	,							
ROFESSI	DNA							
U) PR	16				•		-	
07-08-	22							
07-08- H. J. G. Al 1000090	LVES B							
1000090								
1 41 41	the l					•		
POMACEOF	ONTARIU							
UE OF	011							

Structural component only DWG# T-2216617

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423665 TRUSS DESC. T16 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:13 2022 Page 1 $ID: C3jyj23uDijq_8pvRKbkZpy75XW-nQtBdK3I7ZuLeybekpDEumStC211zoCla7Tc4Sz_\~9?0$ 5-10-8 10-10-0 5-10-8 5x6 \\ 2x4 || 5x6 // Scale = 1:42.5 С Ε 10.00 12 5x6 // 5x6 <> 3x4 || 3x4 || G κ M 4x6 || Н

ULES			
SIZE		LUMBER	DESCR.
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x3	DRY	No.2	SPF
	SIZE 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4	SIZE 2x4 DRY	SIZE LUMBER 2x4 DRY No.2

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Х						
Α	TMV+p	MT20	3.0	4.0								
В	TMWW-t	MT20	5.0	6:0								
C	TTWW+m	MT20	5.0	6.0	2.25	1.50						
D	TMW+w	MT20	2.0	4.0								
E	TTWW+m	MT20	5.0	6.0	2.25	1.50						
F	TMWW-t	MT20	5.0	6.0								
G	TMV+p	MT20	3.0	4.0								
H	BMVW1+p	MT20	4.0	6.0								
1	BMWW-t	MT20	4.0	4.0								
J	BS-t	MT20	3.0	8.0								
K	BMWWW-t	MT20	4.0	6.0								
L	BMWW-t	MT20	4.0	4.0								
M	BMVW1+p	MT20	4.0	6.0								
1												

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER**

4x6 =

22-7-0 22-7-0

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
M	1478	0	1478	0	0	MECHANI	CAL .
Н	1478	0	1478	0	0	MECHANI	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT M, H. MINIMUM BEARING LENGTH AT JOINT M = 3-8, JOINT H = 3-8.

UNFACTORED REACTIONS

4x4 =

	IST LUASE	IVIAX./I	VIIN. COMPO	NENT REACTION	48		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
M	1036	733 / 0	0/0	0/0	0/0	303 / 0	0/0
Н	1036	733 / 0	0/0	0/0	0/0	303 / 0	0/0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.95 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

Сн	ORDS				W E	BS	
MAX	K. FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB	FORCE	MAX
	(LBS)	(PLF)					CSI (LC)
FR-TO		FROM TO			I FR-TO		
A-B		-112.4 -112.4				0 / 49	0.02 (4)
B- C	-1383 / 0				L- C	0 / 98	0.03 (4)
C-D	-1404 / 0	-112.4 -112.4				0 / 549	0.12(1)
D-E	-1404 / 0	-112.4 -112.4				-744 / 0	0.52(1)
E-F	-1383 / 0	-112.4 -112.4					0.12(1)
F-G	0 / 22	-112.4 -112.4				0 / 98	0.03 (4)
	-129 / 0	0.0 0.0					0.02 (4)
H- G	-129 / 0	0.0 0.0	0.01 (1)	7.81	M-B	-1654 / 0	0.59(1)
					F- H	-1654 / 0	0.59(1)
M-L	0 / 1017						
L- K	0 / 1044						
K-J	0 / 1044						
J- I	0 / 1044	-18.5 -18.5					
I- H	0 / 1017	-18.5 -18.5	0.25 (1)	10.00			

DESIGN CRITERIA

3x8 =

4y4 =

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSI
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.4	PSI
TOTA	L LO	AD	=	45.9	PS

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

4x6 ||

TOTAL WEIGHT = 101 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019 ,
- PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.75")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.75")
CALCULATED VERT. DEFL.(TL)= L/999 (0.08")

CSI: TC=0.45/1.00 (C-D:1) , BC=0.25/1.00 (I-K:1) , WB=0.59/1.00 (B-M:1) , SSI=0.29/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

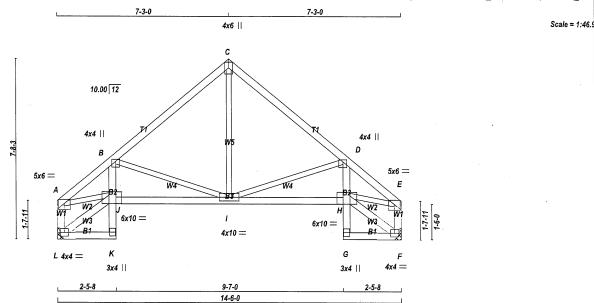
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

Structural component only DWG# T-2216618



JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. BAYVIEW WELLINGTON DRWG NO.

423665 T17S 3 1 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 11:48:14 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-FcRZqg4xut0CG6AqIXkTR_?3cRMnilNRpnCAcuz_9??

LUMBER N. L. G. A. RULES N. L. G. A. CHORDS A - C C - E L - A F - E DESCR SPF SPF SIZE 2x4 LUMBER DRY DRY DRY No.2 No.2 CEAEK 2x4 2x4 No.2 SPF DRY SPF No.2 В 2x4 DRY No.2 SPF SPF SPF SPF 2x4 2x4 DRY No.2 No.2 G -DRY No.2 ALL WEBS DRY SPF 2x3 No.2 **EXCEPT** 2x4 DRY SPE

DRY: SEASONED LUMBER.

BVMWW-I

BMV+n

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	X				
Α	TMVW-p	MT20	5.0	6.0	Edge					
В	TMVW+p	MT20	4.0	4.0	1.00	2.00				
С	TTW+p	MT20	4.0	6.0	Edge					
D	TMVW+p	MT20	4.0	4.0	1.00	2.00				
Ε	TMVW-p	MT20	5.0	6.0	Edge					
F	BMVW1-t	MT20	4.0	4.0	_					
G	BMV+p	MT20	3.0	4.0						
Н	BVMWW-I	MT20	6.0	10.0	4.25	6.50				

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

6.0

3.0

10.0 4.25 6.50

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

MT20

MT20

H. J. G. ALVES 100009024

Structural component only DWG# T-2216619

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DEADINGS	•

FACTOR	RED	MAXIMUI	M FACTO	ORED	INPUT	REQRD
GROSS RE	ACTION	GROSS REACTION			BRG	BRG
VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
949	0	949	0	0	MECHANIC	CAL
949	0	949	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT L, F. MINIMUM BEARING LENGTH AT JOINT L = 3-8, JOINT F = 3-8.

UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	4S						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
L	665	471 / 0	0/0	0/0	0/0	194 / 0	0/0				
l E	665	471 / D	0/0	0.70	0.70	104/0	0/0				

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.96 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

JT.

СН	ORDS				WEBS				
MAX	C. FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PI	_F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A- B	-1595 / 0	-112.4	-112.4	0.26(1)	4.96	I- C	0 / 532	0.12(1)	
B- C	-807 / 0	-112.4	-112.4	0.34(1)	6.25	I- D	-747 / 0	0.34 (1)	
C-D	-807 / 0	-112.4	-112.4	0.34(1)	6.25	B- 1	-747 / 0	0.34 (1)	
D- E	-1595 / 0	-112.4	-112.4	0.26(1)	4.96	L- J	-35 / 0	0.00(1)	
	-907 / 0	0.0	0.0	0.10(1)	7.81	A- J	0 / 1287	0.29(1)	
F-E	-907 / 0	0.0	0.0	0.10(1)	7.81	H- F	-35 / 0	0.00(1)	
						H- E	0 / 1287	0.29(1)	
L-K	0 / 29	-18.5	-18.5	0.03 (4)	10.00				
K-J	0 / 24	0.0	0.0	0.07(1)	10.00				
J- B	0 / 260	0.0	0.0	0.11(1)	10.00				
J- I	0 / 1303	-18.5	-18.5	0.28 (1)	10.00				
I- H	0 / 1303	-18.5	-18.5	0.28 (1)	10.00				
G-H	0 / 24	0.0	0.0	0.07(1)	10.00				
H- D	0 / 260	0.0	0.0	0.11 (1)	10.00				
G-F	0 / 29	-18.5	-18.5	0.03 (4)	10.00				

DESIGN CRITERIA

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 3 X 70 = 209 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF DBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.48")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.48")
CALCULATED VERT. DEFL.(TL)= L/999 (0.07")

CSI: TC=0.34/1.00 (B-C:1) , BC=0.28/1.00 (I-J:1) , WB=0.34/1.00 (B-I:1) , SSI=0.19/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

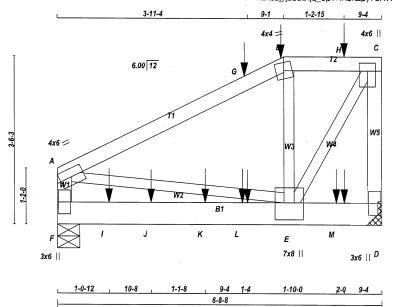
COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.61 (A) (INPUT = 0.90) JSI METAL= 0.28 (J) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** DRWG NO 423665 T18 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:15 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-jo?x105ZfA83uGl1sEFi_BYE4rcxRigb1Ryj8Kz_9?

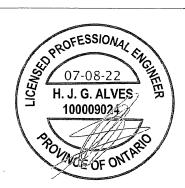
TOTAL WEIGHT = 2 X 33 = 65 lb

Scale = 1:23.0

ULES			
SIZE		LUMBER	DESCR.
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x6	DRY	No.2	SPF
2x3	DRY	No.2	SPF
	2x4 2x4 2x4 2x4 2x6	SIZE 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x6 DRY	SIZE LUMBER 2x4 DRY No.2 2x6 DRY No.2

DRY: SEASONED LUMBER

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:


CHORE	S #ROWS		LOAD(PLF)
TOP CH	HORDS : (0.1	SPACING (I 22"X3") SPIRA	
A-B	1	12	SIDE(61.0
B- C	1	12	SIDE(61.0
C-D	1	12	TOP
F- A	1	12	TOP
BOTTO	M CHORDS	: (0.122"X3") 5	SPIRAL NAILS
F- D	2	12	SIDE(0.0)
WEBS	: (0.122"X3")	SPIRAL NAIL	S
2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMANNING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

Structural component only DWG# T-2216620

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

<u>=A</u>	RINGS						
	FACTORED		MAXIMU	M FACTO	INPUT	REQRD	
GROSS REACTION			GROSS REACTION			BRG E	BRG
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	3556	0	3556	0	0	MECHANIC	CAL
	2856	0	2856	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./	<u>MIN. COMPO</u>	NENT REACTION	4S			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	. SOIL	-
D	2486	1794 / 0	0/0	0/0	0/0	692 / 0	0/0	
F	1997	1440 / 0	0/0	0/0	0/0	557 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.48 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHORDS				WEBS							
MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED			
ΛΕΜΒ.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX			
	(LBS)	(PI	_F) (CSI (LC)	UNBRAG		(LBS)	CSI (LC)			
R-TO		FROM			LENGTH		,	(/			
A-G	-2393 / 0	-112.4	-112.4	0.28(1)	5.48	E-B	0 / 538	0.07(1)			
G-B	-2393 / 0	-112.4	-112.4	0.28 (1)	5.48	E-C	0 / 4274	0.53 (1)			
B- H	-2171 / 0						0 / 2170				
	-2171 / 0			0.07 (1)				,			
D- C	-3803 / 0	0.0	0.0	0.36(1)	6.04						
F- A	-1685 / 0	0.0	0.0	0.09 (1)	7.81						
F-I	0/0	-18.5	-18 5	0.67 (1)	10.00						
i- j	0/0			0.67 (1)							
J- K	0/0	-18.5									
K- L	0/0			0.67 (1)							
L-E	0/0			0.67 (1)							
E-M		-18.5									
M- D	0/0			0.67 (1)							
SPECIF	SPECIFIED CONCENTRATED LOADS (LBS)										

SPEC	PECIFIED CONCENTRATED LOADS (LBS)										
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.		
В	4-8-5	-13	-13		FRONT	VERT	DEAD		C1		
В	4-8-5	-68	-68		FRONT	VERT	SNOW		C1		
G	3-11-4	-19	-19	***	FRONT	VERT	TOTAL		C1		
Н	5-11-4	-18	-18		FRONT	VERT	TOTAL		C1		
1	1-0-12	-650	-650		BACK	VERT	TOTAL		C1		
J	1-11-4	-2	-2		FRONT	VERT	TOTAL		C1		
K	3-0-12	-650	-650		BACK	VERT	TOTAL		C1		
L	3-10-0	-1419	-1419		BACK	VERT	TOTAL		C1		
L	3-11-4	-2	-2		FRONT	VERT	TOTAL		C1		
M	5-9-4	-1022	-1022		BACK	VERT	TOTAL		C1		
M	5-11-4	-4	-4		FRONT	VERT	TOTAL		C1		

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER. LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS

TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	ΔD	_	45 9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

*** NON STANDARD GIRDER *** ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.22")
CALCULATED VERT. DEFL.(LL)= L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.22")
CALCULATED VERT. DEFL.(TL) = L/716 (0.11")

CSI: TC=0.36/1.00 (C-D:1) , BC=0.67/1.00 (D-E:1) , WB=0.53/1.00 (C-E:1) , SSI=0.93/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

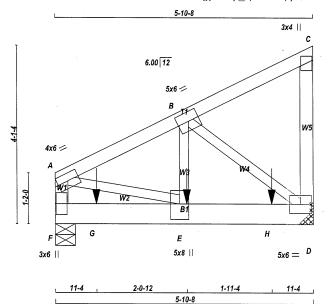
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) .(PLI)
MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (C) (INPUT = 0.90) JSI METAL= 0.48 (C) (INPUT = 1.00)

JOB NAME TRUSS NAME	QUANTITY	PLY JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
423665 T18	1	2 TRUSS DESC.		
Tamarack Roof Truss, Burlington			Version 8.530 S Feb 23 20 ID:c3jyj23uDijg 8pvRKbkZpy75XW-B?ZJFM5B0	22 MiTek Industries, Inc. Fri Jul 8 11:48:16 2022 Page 2 QUGvVQKDPynxWP4PqFyAA9wkG5hHfmz 9 z
PLATES (table is in inches)	dge 00 50			
			·	
PROFESSIONAL FROM 107-08-22 H. J. G. ALVES 100009024 PROMINICATION OF ONTARIO				


Structural component only DWG# T-2216620

REVIEWED

JOB NAME TRUSS NAME QUANTIT JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423665 T19 TRUSS DESC

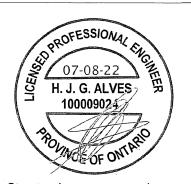
Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:16 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-B?ZJFM5BQUGvVQKDPynxWP4TjF?mACakG5hHfmz_9_z

N. L. G. A. RULES CHORDS SIZE F - A LUMBER DRY ACCD No.2 SPF DRY DRY DRY 2x4 No 2 SPE SPF No.2 ALL WEBS 2x3 No.2 SPF DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD:	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	ORDS: (0.1	22"X3") SPIRAL NAIL	_S
F- A	1	12	TOP
A-C	1	12	TOP
C-D	1	12	TOP
BOTTO	A CHORDS	: (0.122"X3") SPIRAL	NAILS
F- D	2	9	SIDE(305.2)
WEBS:	(0.122"X3")	SPIRAL NAILS	, ,
B- E	1	2	SIDE(408.0)
2^3	1	6	, ,


NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.
REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PL	ATES (table	is in inches)			
JT	TYPE	PLATES	W	LEN Y	Χ
Α	TMVW-t	MT20	4.0	6.0	Edge
В	TMWW-t	MT20	5.0	6.0	
C	TM\/_n	MT20	3.0	4.0	

Structural component only DWG# T-2216621

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DE400100	

EA	RINGS						
	FACTOR	ED	MAXIMUN	1 FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTION	BRG	BRG	
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2071	0	2071	0	0	5-8	5-8
)	2995	0	2995	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MIN. COMPO	VENT REACTION	4S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	1447	1045 / 0	0/0	0/0	0/0	403 / 0	0/0
D	2095	1504 / 0	0/0	0/0	0/0	591 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.49 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTO	RED			W E	BS MAX. FACTO	ORED	
мемв.	FORCE (LBS)	VERT. LC			MAX. UNBRAC	MEMB		MAX CSI (LC)	
FR-TO	· /	FROM		(,	LENGTH			00.(-0)	
F- A	-1972 / 0	0.0	0.0	0.11(1)	7.81	A-E	0 / 2477	0.31 (1)	
A-B	-2668 / 0	-112.4	-112.4	0.09(1)	5.49	E-B	0 / 2652	0.33 (1)	
B- C	-10 / 0	-112.4	-112.4	0.07(1)	10.00	B- D	-3014 / 0	0.36 (1)	
D- C	-143 / 0	0.0	0.0	0.02 (1)	7.81			. ,	
F- G	0/0	-18.5	-18.5	0.03 (1)	10.00				
G-E	0/0	-18.5	-18.5	0.03 (1)	10.00				
E- H	0 / 2395	-18.5	-18.5	0.51 (1)	10.00				
H- D	0 / 2395	-18.5	-18.5	0.51 (1)	10.00				

SPEC	OFIED CON	NCENTRA	ATED LOA	ADS (LBS)					
JΤ	LOC.	LC1	. MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
Ε	3-0-0	-1912	-1912		FRONT	VERT	TOTAL		C1
3	11-4	-70	-70		FRONT	VERT	TOTAL		C1
4	4-11-4	-1022	-1022		EDONT	VEDT	TOTAL		01

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:									
TOP	CH.	LL	=	32.5	PSF				
		DL	=	6.0	PSF				
BOT	CH.	LL	=	0.0	PSF				
		DL	=	7.4	PSF				
TOTAL LOAD = 45.9 PSF									

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 29 = 58 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.03")

CSI: TC=0.11/1.00 (A-F:1) , BC=0.51/1.00 (D-E:1) , WB=0.36/1.00 (B-D:1) , SSI=0.34/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

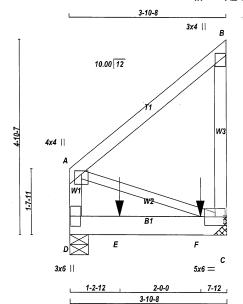
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 MT20

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Dea

JSI GRIP= 0.82 (B) (INPUT = 0.90) JSI METAL= 0.45 (E) (INPUT = 1.00)



JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	•	DRWG NO.	
423665	T19	1	2	TRUSS DESC.				
Tamarack Roof Truss, Burlington					Version 8.530 ID:c3ivi23uDiia 8pvRKhkZpv75XW-F	S Feb 23 2022 I		age 2
					ID.OOJYJZSaDija apvi ii tokzpy / 5/24V-L	S:201 WSBQO	GVVQRDF YIIXWF41 [F :IIIAGakGSHHIIII2	9 2
D BMVW1-t MT20 5	N LEN Y X 5.0 6.0 5.0 8.0 4.25 2.50							
E BMWW+t MT20 5 F BMV1+p MT20 3 Edge - INDICATES REFERENC TOUCHES EDGE OF CHORD.	3.0 6.0				·			
NOTES- (1) 1) Lateral braces to be a minimu	m of 2X4 SPF #2.						•	
							v.	
							*	
*								
						·		
					•			
	10:							
PROFESS.	IONALE							
07.00	33 18							
W 1 1 G	ALVES: FI							
QROFESS QUI 07-08 H. J. G. A 100009	10243 10243							
18/1	1/20							
Pounces	FONTAL							
	Name of the last o							
Structural comp DWG# T-22166	onent only							
DVVG# 1-22166	o∠I	1				_ \ \		

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO T20 423665 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 11:48:17 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-fB7iSi6pBoOm7avPzflA3cddhfM7vkRuVlRqCDz_9_y

TOTAL WEIGHT = 2 X 22 = 43 lb

Scale = 1:27.5

	LUMBER	,			
	N. L. G. A.	RULES			
	CHORDS	SIZE		LUMBER	DESCR.
Į	D - A	2x4	DRY	No.2	SPF
	A - B	2x4	DRY	No.2	SPF
	C - B	2x4	DRY	No.2	SPF
	D - C	2x6	DRY	No.2	SPF
	ALL WEBS	2x3	DRY	No.2	SPF
	DRY: SEAS	SONED L	UMBER.		

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #F		URFACE	LOAD(PLF)
	S	PACING (IN)	
TOP CHORE	DS: (0.122")	X3") SPIRAL NAILS	
D- A 1		12	TOP
A-B 1		12	TOP
B- C 1		12	TOP
BOTTOM CH	HORDS: (0.	122"X3") SPIRAL NAILS	
D- C 2		12	SIDE(0.0)
WEBS: (0.1	22"X3") SPI	RAL NAILS	` '
2 1		6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLA	TES	(table	is in	inches	Į
	T) (D)			ATEC	-

1 1 1 1	TIED ITABIC	13 111 11101103/				
JT	TYPE	PLATES	W	LEN	Υ	Х
Α	TMVW+p	MT20	4.0	4.0	1.00	2.00
В	TMV+p	MT20	3.0	4.0		
C	BMVW1-t	MT20	5.0	6.0		
םו	BMV1+p	MT20	3.0	6.0		

Structural component only DWG# T-2216622

DIMENCIONE CUIDDODTE	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	

RINGS						
FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
GROSS F	REACTION	GROSS	REACTIO	N	BRG	BRG
VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
1045	0	1045	0	0	5-8	5-8
1327	0	1327	0	0	MECHA	NICAL
	FACTO GROSS F VERT 1045	FACTORED GROSS REACTION VERT HORZ 1045 0	FACTORED MAXIMU GROSS REACTION GROSS VERT HORZ DOWN 1045 0 1045	FACTORED MAXIMUM FACTOR GROSS REACTION GROSS REACTION VERT HORZ DOWN HORZ 1045 0	FACTORED	FACTORED MAXIMUM FACTORED INPUT GROSS REACTION BRG VERT HORZ DOWN HORZ UPLIFT IN-SX 1045 0 5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS .		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	731	526 / 0	0/0	0/0	0/0	205 / 0	0/0
С	928	668 / 0	0/0	0/0	0/0	261 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS						W E	BS		
MAX.	FACTOR	ED FAC	TORE	D				MAX. FACT	ORED	
MEMB.	FOR	CE VERT	. LOAD	LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	(SI (LC)	UNBR/	AC.	(LBS)	CSI (I	LC)
FR-TO	•	FRC	M TC)	,	LENGT	H FR-TO		(/
D- A	-218 / 0		0.0	0.0	0.01(1)	7.81	A- C	0/0	0.00	(1)
A-B	0/0	-11	2.4 -11	12.4	0.16(1)	10.00)			
C-B	-218 / 0		0.0	0.0	0.04(1)	7.81				
D- E	0/0	-1	8.5 -1	18.5	0.37(1)	10.00)			
E-F	0/0	-1	8.5 -1	18.5	0.37(1)	10.00)			
F- C	0/0	-1	8.5 -1	18.5	0.37 (1)	10.00) .			
SPECIFI	ED CONC	ENTRATED	LOAD:	S (LE	IS)					
JT	LOC.	LC1 M	۱ -X۶	MAX-	F /	ACE	DIR.	TYPE	HEEL	CONN.
E 1	-2-12	-650 -6	550		- FR	/ TAC	VERT	TOTAL		C1
F 3	-2-12	-653 -6	353		- FR	/ TNC	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOADS	S:		
TOP	CH.	LL :	= 32	.5 PSI	F
		DL :	= 6	.0 PSI	F
BOT	CH.	LL :	= 0	.0 PSI	ř
		DL :	= 7	.4 PSI	F
TOTA	1 10	ΛD	45	0 00	_

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.02") ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.04")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.37/1.00 (C-D:1) , WB=0.00/1.00 (A-C:1), SSI=0.37/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

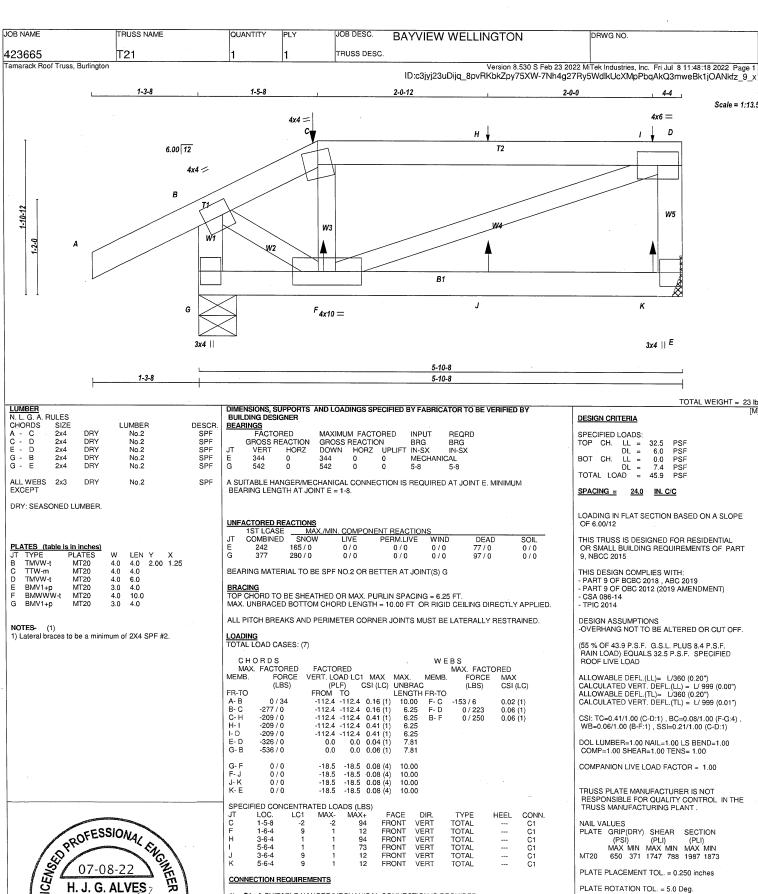

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.08 (A) (INPUT = 0.90) JSI METAL= 0.04 (B) (INPUT = 1.00)

Structural component only DWG# T-2216623

) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

REVIEWED

JSI GRIP= 0.36 (B) (INPUT = 0.90) JSI METAL= 0.13 (B) (INPUT = 1.00) JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423665 T22S TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 11:48:19 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-baFStN83jPeUMt2o54Ke81izMS6VNd4By2wxG5z_9_w Tamarack Roof Truss, Burlington 1-3-8 Scale = 1:18.8 4x4 = 4x4 =D Ε 6.00 12 4x4 🖊 W7 С 4x4 / 4x10 = 4x6 = 3x4 || B1 13x4 || 1-7-8 5-10-8 TOTAL WEIGHT = 26 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **DESIGN CRITERIA** BEARINGS FACTORED SPECIFIED LOADS: TOP CH. LL = MAXIMUM FACTORED INPUT REQRD LL = 32.5 DL = 6.0 LL = 0.0 GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX BRG IN-SX 6.0 0.0 7.4 PSF 367 0 367 MECHANICAL BOT CH. LL PSF PSF TOTAL LOAD 45.9 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8. SPACING = 24.0 IN. C/C

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
F - E	2x4	DRY	No.2	SPF
J - B	2x4	DRY	No.2	SPF
J - 1	2x4	DRY	No.2	SPF :
1 - C	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
1				
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
1				1

DRY: SEASONED LUMBER.

PL/	ATES (table i	s in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Χ
В	TMVW-t	MT20	4.0	4.0	2.00	1.25
С	TMVW-t	MT20	4.0	4.0	2.00	1.25
D	TTW-m	MT20	4.0	4.0		
Ε	TMVW-t	MT20	4.0	4.0		
F	BMV1+p	MT20	3.0	4.0		
G	BMWWW-t	MT20	4.0	6.0		
Н	BVMWW-I	MT20	4.0	10.0	2.75	5.50
1	BMV+p	MT20	3.0	4.0		
J	BMVW1-t	MT20	4.0	4.0		
1						

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN, COMPONENT REACTIONS								
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
F	257	181 / 0	0/0	0/0	0/0	77 / 0	0/0				
J	386	289 / 0	0/0	0/0	0/0	97 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHORDS		WEBS							
MAX.	FACTORED	FACTO	RED				MAX. FACTO	DRED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PI	_F) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A- B	0/34	-112.4	-112.4	0.15(1)	10.00	C-G	-364 / 0	0.06(1)	
B- C	-627 / 0	-112.4	-112.4	0.15(1)	6.25	G- D	-110 / 4	0.02(1)	
C-D	-339 / 0	-112.4	-112.4	0.10(1)	6.25	G-E	0 / 365	0.08 (1)	
D- E	-296 / 0	-112.4	-112.4·	0.11(1)	6.25	J- H	-73 / 0	0.01(1)	
F-E	-348 / 0	0.0	0.0	0.04(1)	7.81	B- H	0 / 532	0.12(1)	
J- B	-497 / 0	0.0	0.0	0.05 (1)	7.81				
J- I	0 / 58	-18.5	-18.5	0.02 (1)	10.00				
I- H	0 / 15	0.0		0.09 (1)					
H- C	0/117	0.0		0.11 (1)					
H- G	0 / 661	-18.5	-18.5	0.12 (1)	10.00				
G-F	0/0	-18.5	-18.5	0.02 (4)	10.00				

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

- THIS DESIGN COMPLIES WITH:
 PART 9 OF BCBC 2018 , ABC 2019
 PART 9 OF OBC 2012 (2019 AMENDMENT)
- TPIC 2014

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

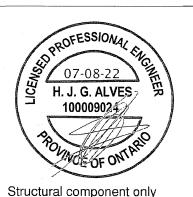
ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL (TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.02")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.12/1.00 (G-H:1) , WB=0.12/1.00 (B-H:1) , SSI=0.12/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

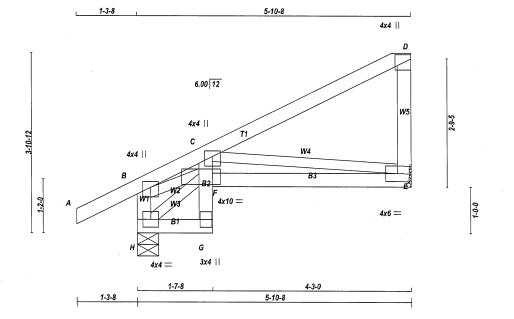
NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.64 (B) (INPUT = 0.90) JSI METAL= 0.25 (B) (INPUT = 1.00)

DWG# T-2216624


EVIEW

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423665 T23S TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:20 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-3mpq5j8hUjnL_1d_enrthFF6jsQE61bKBifUpYz_9_v

Scale: 1/2"=1

LUMBER N. L. G. A. RULES CHORDS SIZE DESCR. SPF A -E -H -D D B DRY 2x4 No.2 DRY DRY DRY No.2 No.2 SPF SPF SPF GCE 2x4 No.2 G -2x4 DRY No.2 SPF ALL WEBS 2x3 DRY No.2 SPE

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Χ				
В	TMVW+p	MT20	4.0	4.0	1.50	2.00				
С	TMVW+p	MT20	4.0	4.0	1.50	2.00				
D	TMV+p	MT20	4.0	4.0		Edge				
E	BMVW1-t	MT20	4.0	6.0						
F	BVMWW-I	MT20	4.0	10.0	2.75	5.50				
G	BMV+p	MT20	3.0	4.0						
н	BMVW1-t	MT20	4.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	· · · · · · · · · · · · · · · · · · ·
REARINGS	

BEAL	RINGS						
	FACTOR	ED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS REACTION			BRG	BRG
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
=	367	0	367	0	0	MECHANIC	AL
+	555	0	555	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

UNFACTORED REACTIONS 1ST LCASE MAX/MIN. COMPONENT REACTIONS

JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
Е	257	181 / 0	0/0	0/0	0/0	77 / 0	0/0	
Н	386	289 / 0	0/0	0/0	0/0	97 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 6.25 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4) CHORDS

CHC	RDS					W E	BS	
MAX.	FACTORED	FACTORE	ΞD				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAI	D LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM T	0		LENGTH	FR-TO		
A-B	0/34	-112.4 -1	12.4	0.15(1)	10.00	C-E	-964 / 0	0.29(1)
B- C	-856 / 0	-112.4 -1	12.4	0.16(1)	6.25	H-F	-101 / 0	0.01(1)
	-11/0	-112.4 -1	12.4	0.30(1)	6.25	B-F	0 / 779	0.18 (1)
E- D	-222 / 0	0.0	0.0	0.03(1)	7.81			
H-B	-480 / 0	0.0	0.0	0.05 (1)	7.81			
H-G	0 / 80	-18.5	-18.5	0.02(1)	10.00			
G-F	0 / 15	0.0	0.0	0.12(1)	10.00			
F- C	0 / 155	0.0	0.0	0.15 (1)	10.00			
F-E	0 / 956	-18.5	-18.5	0.21 (1)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOAD	DS:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 26 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.05")

CSI: TC=0.30/1.00 (C-D:1) , BC=0.21/1.00 (E-F:1) , WB=0.29/1.00 (C-E:1) , SSI=0.19/1.00 (C-D:1)

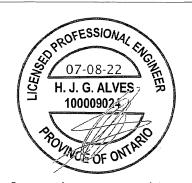
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)


MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.73 (C) (INPUT = 0.90) JSI METAL= 0.32 (C) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. 423665 T24W TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:48:21 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-YyMCl39KE0vCcBCBCVM6DSol7GlnrYITQMP1L_z_9_u 1-3-8 4-2-8 Scale = 1:20.0 4x4 = 6.00 12 ж HW1 2-7 B1 2x4 || 3x8 = H2.5T H2.5T 1-3-8 TOTAL WEIGHT = 2 X 27 = 54 lb

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF ·
B - D	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED L	UMBER.		

PL/	ATES (table	is in inches)				
JΤ	TYPE	PLATES	W	LEN	Υ	Χ
В	TMBH1-m	MT20	3.0	8.0	1.50	3.50
С	TTW-p	MT20	4.0	4.0		
D	TMBH1-m	MT20	3.0	8.0	1.50	3.50
F	RMW+w	MT20	2.0	4.0		

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

<u>ULA</u>	niivas							
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD	
	GROSS RE	ACTION	GROSS REACTION			BRG	BRG	HEEL
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX	WEDGE
В	704	0	704	53	-276	5-8	5-8	2x4 L
D	704 .	0	704	0	-222	5-8	5-8	2x4 R

PROVIDE FOR 53 LBS FACTORED HORIZONTAL REACTION AT JOINT B

	UNF	ACTORED RE	ACTIONS								
1		1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
	В	491	361 / 0	0/0	0/0	0 / -280	129 / 0	0/0			
	D	491	361 / 0	0/0	0/0	0 / -242	129 / 0	0/0			
	HORIZONTAL REACTIONS										
	В		0/0	0/0	0/0	38 / -38	0/0	0 /0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (12)

	R D S FACTORED	FACTORED			W E	BS MAX. FACTO	IRED	
MEMB.	FORCE	VERT. LOAD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO			
A-B	0 / 28	-112.4 -112.4	0.15(1)	10.00	F- C	-151 / 193	0.04(1)	
B- H	-645 / 225	-112.4 -112.4	0.06(1)	6.25	G- H	-236 / 78	0.00(1)	
H- C	-633 / 271	-112.4 -112.4	0.19 (1)	6.25	l- J	-226 / 114	0.00(1)	
C- J	-633 / 290	-112.4 -112.4	0.19 (1)	6.25				
J- D	-645 / 272	-112.4 -112.4	0.06(1)	6.25				
D-E	0 / 28	-112.4 -112.4	0.15 (1)	10.00				
п О	007/500	405 405	0.00 (4)	0.05			,	
B- G	-207 / 560	-18.5 -18.5					•	
G-F	-207 / 560	-18.5 -18.5						
F-1	-207 / 560	-18.5 -18.5						
I- D	-207 / 560	-18.5 -18.5	0.26 (1)	6.25				

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF { 7.5} PSF AT WIND LOAD APPLIED IS DETINED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (15-0.0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM). INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 6.0 PSF AND 7.4 PSF RESPECTIVELY.

DESIGN CRITERIA

SPECIFIED LOADS:								
TOP	CH.	LL	=	32.5	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LL	=	0.0	PSF			
		DL	=	7.4	PSF			
TOTA	L LO	AD	=	45.9	PSF			

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL) = L/399 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.28") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.03")

CSI: TC=0.19/1.00 (C-H:1) , BC=0.26/1.00 (B-G:1) , WB=0.04/1.00 (C-F:1) , SSI=0.15/1.00 (C-J:1)

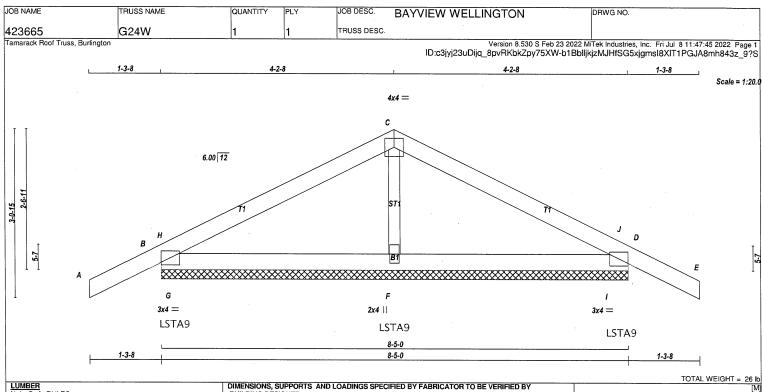
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

MT20

JSI GRIP= 0.31 (B) (INPUT = 0.90) JSI METAL= 0.12 (B) (INPUT = 1.00)

LUMBER									
N. L. G. A. RULES									
CHORDS	SIZE		LUMBER	DESCR.					
A - C	2x4	DRY	No.2	SPF					
C - E	2x4	DRY	No.2	SPF					
B - D	2x4	DRY	No.2	SPF					
ALL WEBS	2x3	DRY	No.2	SPF					
ALL GABLE	WEBS			• • • •					
	2x3	DRY	No.2	SPF					
DRY: SEASO				01 1					
2		J							

GABLE STUDS SPACED AT 2-0-0 OC.

PL/	ATES (table	is in inches)			
JΤ	TYPE	PLATES	W	LEN Y	Х
В	TMB1-l	MT20	3.0	4.0	Edge
С	TTW-p	MT20	4.0	4.0	-
D	TMB1-I	MT20	3.0	4.0	Edge
F	BMW1+w	MT20	2.0	4.0	_

Edge - INDICATES REFERENCE CORNER OF PLATE

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

BUILDING DESIGNER BEARINGS

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE.

PROVIDE ANCHORAGE AT ALL BEARING JOINTS FOR 150 LBS FACTORED UPLIFT.

PROVIDE FOR 53 LBS FACTORED HORIZONTAL REACTION AT JOINT B

HORIZONTAL REACTIONS

	1ST LCASE	MAX./N					
	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
В		0/0	0/0	0/0	38 / -38	0/0	0 /0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (12)

СНС	RDS				WEBS				
MAX.	FACTORED	FACTORED					MAX. FACTO	DRED	
MEMB.	FORCE	VERT. LOAD I	_C1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CS	SI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM TO			LENGTH	FR-TO			
A-B	0 / 28	-112.4 -112	2.4 0	1.15 (1)	10.00	F- C	-85 / 8	0.01(1)	
B- H	-145 / 8	-112.4 -112					-540 / 321	0.00(1)	
	-364 / 139	-112.4 -112	2.4 0	1.24 (1)	6.25	I- J	-539 / 315	0.00(1)	
	-360 / 121	-112.4 -112	2.4 0	1.24 (1)	6.25				
J- D	-141 / 0	-112.4 -112	2.4 0).15 (1)	6.25				
D- E	0 / 28	-112.4 -112	2.4 0).15 (1)	10.00				
B- G	-56 / 316	-18.5 -18	3.5 0).22 (1)	6.25				
G-F	-56 / 316	-18.5 -18							
F- I	-56 / 316	-18.5 -18	3.5 C).22 (1)	6.25				
I- D	-56 / 316	-18.5 -18							

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT WIND LOAD APPLIED IS DEVIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (15-0-0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM): INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE. TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 6.0 PSF AND 7.4 PSF RESPECTIVELY.

DESIGN CRITERIA

SPECIFIED LOADS: CH. LL = DL =

6.0 0.0 7.4 PSF BOT CH. LL DL TOTAL LOAD PSF 45.9 PSF

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

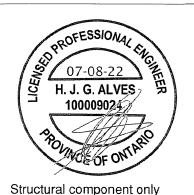
THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.24/1.00 (C-H:1) , BC=0.22/1.00 (B-G:1) , WB=0.01/1.00 (C-F:1) , SSI=0.39/1.00 (D-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

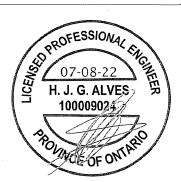
JSI GRIP= 0.50 (B) (INPUT = 0.90) JSI METAL= 0.15 (B) (INPUT = 1.00)

DWG# T-2216589

EVIEW

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC. 423670 T30 Tamarack Boof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:10:28 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-BF2tppDikl5wl79DRhgIVIFyOBZ9FZCoZJMmQZz_8g9 1-3-8 2-11-8 9-12 2-0-0 1-10-7 2-9-0 5-8-8 1-3-8 Scale = 1:58.7 2x4 || 3x8 = 4x4 =5x8 = 6x7 // Ε F н G 5x6 = 8x9 \\ 10.00 12 5x6 || Κ \aleph s Q 0 М 4x6 || 5x6 = 3x8 || 5x6 || 5x6 = 3x8 || 5x6 = 5x6 || 5x8 = 4x6 || 1-9-4 2-0-0 2-0-0 1-5-4 25-8-8 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 2 X 189 = 378 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER** DESIGN CRITERIA SPECIAL LOADS ANALYSIS *** JΤ

LUMBER				
N. L. G. A. R	ULES			l.
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
G - I	2x4	DRY	No.2	SPF
1 - K	2x4	DRY	No.2	SPF
U - B	2x6	DRY	No.2	SPF
L - J	2x6	DRY	No.2	SPF
U - Q	2x6	DRY	No.2	SPF
Q - N	2x6	DRY	No.2	SPF
N - L	2x6	DRY	No.2	SPF
ALL WEBS	2x4	DRY	No.2	SPF
EXCEPT				


DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS **FOLLOWS**

CHORDS	#ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CHO	DRDS : (0.1	22"X3") SPIRAL N	AII S
A- C	1	12	SIDE(61.0)
C-D	1	12	SIDE(61.0)
D-E	1	12	TOP
E-G	1	12	TOP
G-I	1	12	TOP
I-K	1	12	TOP
U-B	2	12	TOP
L-J	2	12	TOP
BOTTOM	CHORDS	: (0.122"X3") SPIR	AL NAILS
U-Q	2	12	SIDE(183.1)
N-Q	2	12	TOP
N-L	2	12	TOP
WEBS : (0.122"X3")	SPIRAL NAILS	
2x4	.1	6	
D-S	1	3	SIDE(544.6)

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE

Structural component only DWG# T-2216638

EA.	RINGS						
	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	5053	0	5053	0	0	5-8	5-8
	2993	0	2993	0	0	5-8	5-8

UNFACTORED REACT	TIONS
10710405	NAA.V

	IOI LUMOL	- IVIAX./I	VIIIA. GOIVIF O	MEINT MEACHOL	<u> </u>			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
J	3539	2517 / 0	0/0	0/0	0/0	1022 / 0	0/0	
-	2095	1497 / 0	0/0	0/0	0/0	599 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, L

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.86 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	TOTAL	LOND CASES. (+)						
		ORDS					W E	BS	
l		. FACTORED	FACTOR					MAX. FACTO	RED
l	MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	. FORCE	MAX
I		(LBS)	(PL	.F) . (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
I	FR-TO		FROM	TO		LENGTH	FR-TO		
Ì	A-B	0 / 50			0.09 (1)		T- C	-1229 / 0	0.11(1)
Į	B- C	-5014/0	-112.4	-112.4	0.19(1)	4.17	R-E	0 / 4014	0.35(1)
I	C- V	-7819 / 0	-112.4	-112.4	0.70(1)	2.86	M- I	-371 / 0	0.08 (1)
ļ	V-W	-7819 / 0			0.70 (1)		B-T	0 / 4125	0.36 (1)
1	W- D	-7819 / 0			0.70(1)		M- J	0/2414	0.21(1)
ı	D- E	-6561 / 0			0.23 (1)		O- I	0/2411	0.21(1)
ı	E- F	-4911/0	-112.4	-112.4	0.41 (1)	4.00	E-P	-300 / 0	0.15 (1)
	F- G	-4911 / 0			0.41 (1)		O- H	-1661 / 0	0.37 (1)
	G- H	-4911/0			0.41 (1)		P-F	-665 / 0	0.15(1)
	H- I	-4008 / 0			0.37 (1)		P- H	0 / 1339	0.12(1)
	I- J	-3082 / 0	-112.4	-112.4	0.48 (1)	4.78	S- D	-893 / 0	0.08(1)
	J- K	0 / 50			0.09(1)		C-S	0 / 5360	0.47(1)
ı	U- B	-5060 / 0	0.0		0.19 (1)		D- R	-4813 / 0	0.62(1)
	L- J	-2948 / 0	0.0	0.0	0.11 (1)	7.81			
	U- X	0/0			0.05 (1)				
	X-T	0/0	-18.5		0.05 (1)				
	T- Y	0 / 3789	-18.5		0.38 (1)				
į	Y- Z	0 / 3789	-18.5		0.38 (1)				
	Z-S	0:/ 3789	-18.5		0.38 (1)				
	S-R	0 / 7939	-18.5		0.65 (1)				
	R-Q	0/5117	-18.5		0.36 (1)				
	Q-P	0/5117	-18.5		0.36 (1)				
	P- 0	0 / 4008			0.28 (1)				
	O- N	0 / 2354	-18.5		0.17 (1)				
	N- M	0 / 2354	-18.5		0.17 (1)				
	M- L	0/0	-18.5	-18.5	0.04 (4)	10.00			
	1								

SPEC	SPECIFIED CONCENTRATED LOADS (LBS)										
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.		
С	2-11-8	-30	-30		FRONT	VERT	DEAD		C1		
С	2-11-8	-159	-159		FRONT	VERT	SNOW		C1		
S	7-2-8	-1957	-1957		FRONT	VERT	TOTAL		C1		
V	3-9-4	-100	-100		FRONT	VERT	TOTAL		C1		
W	5-9-4	-93	-93		FRONT	VERT	TOTAL		C1		
X	1-9-4	-21	-21		FRONT	VERT	TOTAL		C1		
Υ	3-9-4	-21	-21		FRONT	VERT	TOTAL		C1		
Z	5-9-4	-21	-21		FRONT	VERT	TOTAL		C1		

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

GEOMETRY AND/OR BASIC LOADS CHANGED BY USER. LOADS WERE DERIVED FROM USER INPUT

NO FURTHER MODIFICATIONS WERE MADE

SPEC	IFIED	LOAL	JS:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	ΛD		45.0	001

SPACING = 24.0 IN. C/C

LOADING IN ALL FLAT SECTIONS BASED ON A SLOPE OF 6 00/12

*** NON STANDARD GIRDER *** ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , ABC 2019
PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.14")
ALLOWABLE DEFL.(TL)= L/360 (1.10") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.24")

CSI: TC=0.70/1.00 (C-D:1) , BC=0.65/1.00 (R-S:1) , WB=0.62/1.00 (D-R:1) , SSI=0.19/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES | PLATE | GRIP(DRY) | SHEAR | SECTION (PSI) | (PLI) | (PLI) | (PLI) | MAX | MIN | MAX | MIN | MT20 | 650 | 371 | 1747 | 788 | 1987 | 1873 |

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (S) (INPUT = 0.90) JSI METAL= 0.75 (S) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.	
423670	T30	1	2	TRUSS DESC.	•		
Tamarack Boof Truss Bur	rlington				Varsian 9 F20 C Fab	20 2022 MiTale Indicatains Inc. Ed. Ind. 0.40	10.00 0000 5

Version 8.530 S Feb 23 2022 MTCk Industries, Inc. Fri Jul 8 12:10:28 2022 Page 2 ID:c3jvj23uDijq 8pvRKbkZpy75XW-BF2tppDikl5wl79DRhqIVIFyOBZ9FZCoZJMmQZz 8g9

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	w	LEN	Υ	Х					
В	TMVW-p	MT20	5.0	8.0	Edge						
С	TTWW+m	MT20	8.0	9.0	Edge	2.75					
D	TTWW-m	MT20	5.0	6.0	3.25	2.75					
Ε	TTWW-m	MT20	5.0	8.0	Edge	3.00					
F	TMW+w	MT20	2.0	4.0							
G	TS-t	MT20	3.0	8.0							
Н	TMWW-t	MT20	4.0	4.0							
1	TTWW+m	MT20	6.0	7.0	2.00	1.75					
J	TMVW+p	MT20	5.0	6.0	2.00	2.25					
L	BMV1+p	MT20	3.0	8.0							
M	BMWW+t	MT20	4.0	6.0							
N	BS-t	MT20	5.0	6.0							
0	BMWW+t	MT20	4.0	6.0							
Ρ	BMWWW-t	MT20	5.0	8.0							
Q	BS-t	MT20	5.0	6.0							
R	BMWW+t	MT20	5.0	6.0							
S	BMWW+t	MT20	5.0	6.0	3.00	2.00					
T	BMWW-t	MT20	5.0	6.0							
U	BMV1+p	MT20	3.0	8.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

JOB NAME TRUSS NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 423670 T31 2 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:10:30 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-7eAdDVFyGMLeYQJcZ6imajKHC?JWjUG50drtVSz 8g7 3-10-8 1-3-8 2x4 || 4x4 =3x8 4x4 =6x7 \\ 6x7 ≥ D G н 5x6 || 10.00 12 5x6 || 3-10-3 U M 0 N L κ 3x8 | 5x6 =5x6 =5x6 =5x6 = 5x6 =4x6 | 3x8 | 10-1-8 6-8-0 8-9-8 1-3-8 25-7-0 TOTAL WEIGHT = 2 X 129 = 257 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE A - C 2x4 C - E 2x4 E - H 2x4 H - I 2x4 BUILDING DÉSIGNER DESIGN CRITERIA LUMBER DESCR FACTORED MAXIMUM FACTORED No.2 SPF INPUT REORD SPECIFIED LOADS: DRY DRY DRY BRG IN-SX No.2 GROSS REACTION **GROSS REACTION** PSF PSF LL DL 32.5 No.2 No.2 SPF HORZ UPLIFT 6.0 BOT CH. 2789 2789 5-8 5-8 LL 0.0 PSF Q-В 2x6 DRY No.2 SPF 2780 2780 Ō ō MECHANICAL DL 2x4 DRY No 2 SPF TOTAL LOAD 45.9 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J. MINIMUM 2x6 DRY No.2 SPF BEARING LENGTH AT JOINT J = 4-0. SPACING = 24.0 IN. C/C ALL WEBS DRY No.2 SPF EXCEPT LOADING IN FLAT SECTION BASED ON A SLOPE UNFACTORED REACTIONS
1ST LCASE MA DRY: SEASONED LUMBER. ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE V MAX SNOW COMBINED WIND DEAD SOIL THIS TRUSS IS DESIGNED FOR RESIDENTIAL DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 1951 1402 / 0 0/0 0/0 0/0 549 / 0 0/0 1374 / 0 FOLLOWS: BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CHORDS #ROWS SURFACE LOAD(PLF) SPACING (IN)
TOP CHORDS: (0.122"X3") SPIRAL NAILS ERACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.80 FT CSA 086-14 TOP MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. SIDE(0.0) SIDE(0.0) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (55 % OF 43 9 P.S.F. G.S.I. PILIS 8 4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD H-1 12 TOP 12 TOP LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (0.85")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (0.85") BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(183.1) SIDE(183.1) Q-M CHORDS MAX. FACTORED FACTORED MAX. FACTORED WEBS: (0.122"X3") SPIRAL NAILS MEMB. CALCULATED VERT. DEFL.(TL) = L/ 999 (0.18") FORCE VERT, LOAD LC1 MAX MAX. MEMB **FORCE** MAX (PLF) M TO D-O SIDE(27.2) (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) G- L 2x3 FROM TO -112.4 -112.4 SIDE(49.0) FR-TO LENGTH FR-TO CSI: TC=0.74/1.00 (G-H:1) , BC=0.34/1.00 (L-N:1) 0 / 50 0.09 (1) A-B 10.00 -493 / 0 0.08(1) WB=0.52/1.00 (H-L:1) , SSI=0.22/1.00 (G-H:1) 0.20 0.48 0.39 C- O O- D D- N 0 / 2978 -873 / 0 0.37 (1) 0.15 (1) B- C -2739 / 0 -1124 -1124 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 NAILS TO BE DRIVEN FROM ONE SIDE ONLY. 4508 / 0 4588 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 0/134 4.06 0.02 (1) COMP=1.00 SHEAR=1.00 TENS= 1.00 GIRDER NAILING ASSUMES NAILED HANGERS ARE R-E -4588 / 0 0.39 4 06 N- F -219/0 0.04 (1) N- G L- H K- P FASTENED WITH MIN. 3-0 INCH NAILS 4588 / 0 -112.4 -112.4 -112.4 -112.4 0.39 0.54 4.06 3.80 0 / 284 COMPANION LIVE LOAD FACTOR = 1.00 4588 / 0 -1200 / 0 0.20 (1) TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR S-T T-G G-H -4588 / 0 -112.4 -112.4 0.54 3.80 0 / 4226 0.52 (1) AUTOSOLVE RIGHT HEEL ONLY -4588 / 0 -1124 -1124 0.54 -1878 / 0 0 / 2195 -112.4 -112.4 -112.4 -112.4 THE LOAD TO BE TRANSFERRED TO EACH PLY. TRUSS PLATE MANUFACTURER IS NOT -1083 / 0 6.25 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0.02 (1) 0 / 2281 0.28 (1 0.10 (1) 0.34 (1) Q-B -2778 / 0 0.0 0.0 NAIL VALUES Q- P P- O O- U U- N PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) 0/0 -18.5-18.5 0.04 (4) 10.00 PROFESSIONAL FIRE 0 / 2087 0 / 4508 0 / 4508 -18.5 -18.5 10.00 10.00 0.18 MAX MIN MAX MIN MAX MIN -18.5 0.33 (1) -18.5-18.5 0.33 (1) 10.00 MT20 650 371 1747 788 1987 1873 N- V V- M M- L -18.5 -18.5 -18.5 -18.5 0.34 (1) 10.00 0 / 4419 PLATE PLACEMENT TOL. = 0.250 inches 0 / 4419 -18.5-18.5 0.34 (1) 10.00 0 / 781 -185 PLATE ROTATION TOL. = 5.0 Deg. 0/0 -18.5 JSI GRIP= 0.88 (H) (INPUT = 0.90) JSI METAL= 0.43 (M) (INPUT = 1.00) SPECIFIED CONCENTRATED LOADS (LBS) 100009024 MAX--627 LOC LC1 -627 CONN. 16-9-8 BACK BACK VERT TOTAL L M C1 C1 C1 C1 C1 C1 C1 16-0-12 -14 VERT TOTAL -14 -561 -72 -72 -14 -561 -72 -72 10-1-8 12-0-12 BACK VERT VERT POLYACE OF ONTARIO ORST ---TOTAL 14-0-12 BACK VERT TOTAL 16-0-12 12-0-12 -72 -14 BACK VERT VERT TOTAL -72 -14 14-0-12 -14 -14 BACK VER1 TOTAL Structural component only CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DWG# T-2216639

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON		DRWG NO.
423670	T31	1	2	TRUSS DESC.			
Tamarack Roof Truss, Burlingt	on				Version 8.530 S Feb 23 ID:c3jyj23uDijq 8pvRKbkZpy75XW-7eAd	2022 M DVFyC	liTek Industries, Inc. Fri Jul 8 12:10:30 2022 Page GMLeYQJcZ6imajKHC?JWjUG50drtVSz 8c
PLATES (table is in inches)	W LEN Y X 5.0 6.0 2.00 2.25 6.0 7.0 2.00 1.75 4.0 4.0 3.0 8.0 2.0 4.0 4.0 4.0 6.0 7.0 1.75 2.00 5.0 6.0 Edge	CONNECTION RI		MECHANICAL CC	ONNECTION IS REQUIRED.		
I TMVW+p MT20 J BMV1+p MT20 K BMWW+t MT20 L BMWW-t MT20 M BS-t MT20 N BMWW-t MT20 O BMWW-t MT20 O BMWW-t MT20 Q BMV1+p MT20	5.0 6.0 Edge 3.0 8.0 4.0 6.0 5.0 6.0 2.50 2.75 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 3.0 8.0						
Edge - INDICATES REFEREI TOUCHES EDGE OF CHOR	NCE CORNER OF PLATE D.						
NOTES- (1) 1) Lateral braces to be a mini	mum of 2X4 SPF #2.						
	OSIONAL ENGLISH OSE OF ONTARIO						

Structural component only DWG# T-2216639

REVIEWED

JOB NAME TRUSS NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. 423670 TRUSS DESC T32 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:10:31 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-bqk?RrFa1gTVAato7pD?7wtYAOjUS13EFHaQ1uz_8g6 3-10-8 1-3-8 1-0-12 1-3-8 Scale = 1:30.2 5x6 \\ 4x4 = 10.00 12 4x6 || 4x6 || В 1-7-11 L N Н 3x6 || 5x6 =5×8 = 3x6 || 1-1-8 2-0-0 1-11-4 10-0-0 TOTAL WEIGHT = 55 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N I G A RULES **BUILDING DÉSIGNER DESIGN CRITERIA** BEARINGS FACTORED CHORDS A - C C - D D - F SIZE LUMBER DESCR MAXIMUM FACTORED INPUT No.2 No.2 SPF SPF REQRD SPECIFIED LOADS: BRG IN-SX LL = DL = LL = 2x4 DRY **GROSS REACTION** GROSS REACTION 32.5 PSF DRY SPF SPF HORZ 0 DOWN UPLIFT PSF 6.0 No.2 1162 BOT CH. 0.0 7.4 45.9 J -G -1162 5-8 PSF 2x4 DRY No.2 SPF G 1160 0 1160 Ō ō MECHANICAL DL G DRY SPF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM ALL WEBS DRY SPF 2x3 No.2 BEARING LENGTH AT JOINT G = 3-8. SPACING = 24.0 IN. C/C EXCEPT DRY: SEASONED LUMBER. LOADING IN FLAT SECTION BASED ON A SLOPE UNFACTORED REACTIONS
1ST LCASE MAX (./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND MAX SNOW COMBINED DEAD SOIL THIS TRUSS IS DESIGNED FOR RESIDENTIAL 812 588 / 0 0/0 0/0 0/0 223 / 0 223 / 0 0/0 OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) 4.0 6.0 Edge

5.0 4.0 4.0 2.25 1.50 TTWW+m MT20 6.0 TTW-m TMVW+p Edge MT20 6.0 BMV1+p BMWWW-t MT20 3.0 6.0 MT20 5.0 5.0 6.0 BMV1+p MT20 3.0 6.0

INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

PROFESSIONAL ENGINEERS 107-08-22
H. J. G. ALVES 1

100009024

POLYACE OF ONT ARIO

Structural component only DWG# T-2216640

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.12 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

WERS

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4) CHORDS

CH.	0000				vv ⊢	85		
MAX	. FACTORED	FACTORED				MAX. FACTO	ORED	
MEMB.	FORCE	VERT. LOAD I	LC1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC) UNBRAG	0	(LBS)	CSI (LC)	
FR-TO		FROM TO						
	0 / 50						0.03(1)	
B- C	-848 / 0	-112.4 -112				-9 / 1	0.00(1)	
C-K	-643 / 0					-107 / 52	0.04(1)	
	-643 / 0							
	-843 / 0					0 / 676	0.17(1)	
	0 / 50							
		0.0						
G-E	-1114/0	0.0	0.0 0.13 (1) 7.48				
	0/0							
L-1	0/0		3.5 0.05 (·					
I- M	0 / 647		3.5 0.10 (
	0 / 647		3.5 0.10 (
	0/0	-18.5 -18	8.5 0.05 (·	4) 10.00				
N- G	0/0	-18.5 -18	B.5 0.05 (-	4) 10.00				
SPECIF	TED CONCENT	RATED LOADS	(LBS)					

SPEC	IFIED CON	ICENTRA	TED LOA	ADS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
С	3-10-8	-175	-175		BACK	VERT	TOTAL		C1
D	6-1-8	-175	-175		BACK	VERT	TOTAL		C1
H	6-0-12	-14	-14		BACK	VERT	TOTAL		C1
1	3-11-4	-14	-14		BACK	VERT	TOTAL		C1
K	4-11-4	-72	-72		BACK	VERT	TOTAL		C1
L	1-11-4	-14	-14		BACK	VERT	TOTAL		C1
M	4-11-4	-14	-14		BACK	VERT	TOTAL		C1
N	8-0-12	-14	-14		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CSA 086-14

(55 % OF 43 9 P.S.F. G.S.I. PLUS 8 4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.33") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01") ALLOWABLE DEFL.(TL)= L/360 (0.33") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.02")

CSI: TC=0.34/1.00 (B-C:1), BC=0.10/1.00 (H-I:1), WB=0.17/1.00 (B-I:1) , SSI=0.16/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

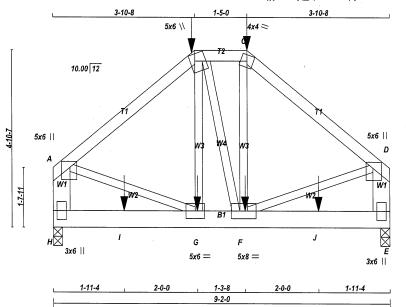
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL I) (PL II) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.70 (B) (INPUT = 0.90) JSI METAL= 0.45 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423670 TRUSS DESC T33

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:10:32 2022 Page 1

TOTAL WEIGHT = 50 lb

Scale = 1:30.2

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
H - A	2x6	DRY	No.2	SPF
E - D	2x6	DRY	No.2	SPF
H - E	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
i				

DRY: SEASONED LUMBER.

PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х				
Α	TMVW+p	MT20	5.0	6.0	2.00	2.25				
В	TTWW+m	MT20	5.0	6.0	2.25	1.50				
С	TTW-m	MT20	4.0	4.0						
D	TMVW+p	MT20	5.0	6.0	2.00	2.25				
Ε	BMV1+p	MT20	3.0	6.0						
F	BMWWW-t	MT20	5.0	8.0						
G	BMWW-t	MT20	5.0	6.0						
Н	BMV1+p	MT20	3.0	6.0						

1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

FACTOR		MAXIMUN			INPUT	REQRD
GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
889	0	889	0	0	3-0	3-0
889	0	889	0	0	3-0	3-0

UNFACTORED REACTIONS

JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Н	623	441/0	0/0	0/0	0/0	183 / 0	0/0
E	623	441 / 0	0/0	0/0	0/0	183 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H, E

JT H E

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS							BS		
MAX.	FACTORED	FACTOR	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	-716 / 0	-112.4	112.4	0.34(1)	6.25	G-B	-80 / 37	0.03(1)	
B- C	-544 / 0	-112.4	112.4	0.05(1)	6.25	B- F	-12/5	0.00(1)	
C-D	-713 / 0	-112.4	-112.4	0.34(1)	6.25	F- C	-94 / 43	0.03 (1)	
H- A	-847 / 0	0.0	0.0	0.06(1)	7.81	A- G	0 / 574	0.14(1)	
E- D	-843 / 0	0.0	0.0	0.06(1)	7.81	F- D	0 / 571	0.14(1)	
H- I	0/0			0.05 (4)					
I- G	0/0	-18.5	-18.5	0.05(4)	10.00				
G-F	0 / 547	-18.5	-18.5	0.08(1)	10.00				
F-J	0/0	-18.5	-18.5	0.05 (4)	10.00				
J- E	0/0	-18.5	-18.5	0.05 (4)	10.00				

SPECIFIED CONCENTRATED LOADS (LBS)

Γ	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
	3-10-8	-175	-175		FRONT	VERT	TOTAL		C1
	5-3-8	-175	-175		FRONT	VERT	TOTAL		C1
	5-2-12	-14	-14		FRONT	VERT	TOTAL		C1
	3-11-4	-14	-14		FRONT	VERT	TOTAL		C1
	1-11-4	-14	-14		FRONT	VERT	TOTAL		C1
	7-2-12	-14	-14		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

G

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.31")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.31")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.34/1.00 (A-B:1) , BC=0.08/1.00 (F-G:1) , WB=0.14/1.00 (A-G:1) , SSI=0.14/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.42 (A) (INPUT = 0.90) JSI METAL= 0.14 (A) (INPUT = 1.00)

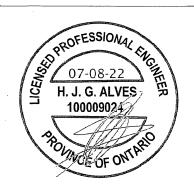
JOB NAME TRUSS NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. 423670 2 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:10:33 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-YDrmsWHrYHjCPu1BEEGTCLyxkCGDwtyXib3X6nz_8g4 11-4 2-0-0 2-11-4 5x6 = 5x6 =3x6 || С G W1 W1 W3 **B1** Н $E_{6x10} =$ D_{3x6.||}

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
F - A	2x4	DRY	No.2	SPF
A - C	2x6	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	DNED L	UMBER.		

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #RO	OWS SURFACE	LOAD(PLF)
	SPACING	(IN)
TOP CHORDS	S: (0.122"X3") SPIF	ÀAL NAILS
F- A 1	12	TOP
C-D 1	12	TOP
A- C 2	12	TOP
BOTTOM CHO	DRDS: (0.122"X3")	SPIRAL NAILS
F- D 2	` 12	SIDE(14.0)
WEBS: (0.12	2"X3") SPIRAL NAI	ĽS `´´
2022 1	, ,	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.


GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES	_(table	<u>e is in</u>	inches	١
IT TV			ATEC	

JT	TYPE	PLATES	w	IFN Y	Х
A	TMVW-t	MT20	5.0	6.0	^
В	TMW+w	MT20	3.0	6.0	
C	TMVW-t	MT20	5.0	6.0	
D	BMV1+p	MT20	3.0	6.0	

Structural component only DWG# T-2216642

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	AND LOAD INGO OF CONTED BY TABINGATOR TO BE VEHILLED BY
BUILDING DESIGNER	
BEARINGS	
DEARINGS	

5-10-8

3EA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
-	1850	0	1850	0	0	5-8	5-8
)	2808	0	2808	0	0	MECHANIC	CAL

4-2-0

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

1ST LCA	SE <u>MAX./N</u>	IIN. COMPO	NENT REACTION	NS		
JT COMBINE	ED SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F 1302	890 / 0	0/0	0/0	0/0	412 / 0	0/0
D 1971	1375 / 0	0/0	0/0	0/0	597 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					W E	BS		
MAX	. FACTORED	FACTORE	D				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD	LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	(CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM TO)		LENGTH	FR-TO			
F- A	-1918 / 0	0.0	0.0	0.11(1)	7.81	A-E	0 / 3225	0.40(1)	
A- G	-2856 / 0	-112.4 -1	12.4	0.14(1)	6.25	E-B	-1013 / 0	0.08 (1)	
G-B	-2856 / 0	-112.4 -1	12.4	0.14(1)	6.25	E- C	0 / 3225	0.40 (1)	
B- C	-2856 / 0	-112.4 -1	12.4	0.11(1)	6.25				
D- C	-1750 / 0	0.0	0.0	0.10 (1)	7.81				
F-E	0/0	-43.5 -	43.5	0.14 (1)	10.00				
E- H	0/0			0.65 (1)					
H- D	0/0			0.65 (1)					

SPECIFIED CONCENTRATED LOADS (LBS)

JΤ	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
3	2-11-4	-546	-546		TOP	VERT	. TOTAL		C1
3	11-4	-170	-170		TOP	VERT	TOTAL		C1
4	4-2-0	-1934	-1934		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

1-8-8

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED
BY USER. LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

TOTAL WEIGHT = 2 X 29 = 58 lb

SPECIFIED LOADS:

OADS. LL = 32 DL = 6.0 LL = 0.0 PL = 7.4 45.9 TOP CH. BOT CH. PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

*** NON STANDARD GIRDER *** ADDT'L USER-DEFINED LOADS APPLIED TO ALL

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.05")

CSI: TC=0.14/1.00 (A-B:1) , BC=0.65/1.00 (D-E:1) , WB=0.40/1.00 (A-E:1) , SSI=0.59/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

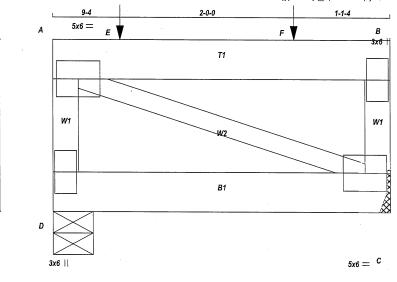
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.84 (C) (INPUT = 0.90) JSI METAL= 0.32 (C) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
423670	T34	1	2	TRUSS DESC.		
Tamarack Roof Truss, Burlin	gton				Version 8.530 S Feb ID:c3jyj23uDijq 8pvRKbkZpy75XW-YD	o 23 2022 MTek Industries, Inc. Fri Jul 8 12:10:33 2022 Page 2 DrmsWHrYHjCPu1BEEGTCLyxkCGDwtyXib3X6nz 8g4
DIATEO Mala la la la la la la						
PLATES (table is in inchedule) JT TYPE PLATES E BMWWW-t MT20 F BMV1+p MT20	S) W LEN Y X 6.0 10.0 3.0 6.0					
NOTES- (1) 1) Lateral braces to be a m	inimum of 2X4 SPF #2.					
		,				
	·					
OROFF	ESSIONALE					
CENSED 1	SSIONAL ENGINEERS SIONAL ENGINEERS SIONA					
1 1						
Romo	OF ONTARIO					
Structural co DWG# T-22	mponent only 16642				DE	VIEWED

JOB NAME TRUSS NAME QUANTIT JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423670 T35 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:10:34 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-0PP83sITJbr312cNoynilZV4vcmtfQQhxFp4eDz_8g3

TOTAL WEIGHT = 2 X 19 = 38 lb

Scale = 1:12.8

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
D - A	2x4	DRY	No.2	SPF
A - B	2x6	DRY	No.2	SPF
C - B	2x4	DRY	No.2	SPF
D - C	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED LI	UMBER.		

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	ORDS: (0.1	22"X3") SPIRAL NAILS	
D- A	1 .	12	TOP
B- C	1	12	TOP
A-B	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
D- C	2	12	SIDE(14.0)
WEBS:	(0.122"X3")	SPIRAL NAILS	
2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLA	TES	(table	is in	inches)	ŀ
IT	TYPE		PI	ATES	

J١	TYPE	PLATES	w	LEN Y	Х
Α	TMVW-t	MT20	5.0	6.0	
В	TMV+p	MT20	3.0	6.0	
С	BMVW1-t	MT20	5.0	6.0	
D	BMV1+p	MT20	3.0	6.0	

NOTES- (1)

Structural component only DWG# T-2216643

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
REARINGS	

3-10-8 3-10-8

3EA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS REACTION		GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
)	727	0	727	0	0	5-8	5-8
0	908	0	908	0	0	MECHANIC	CAL

A SUITABLE HÁNGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	513	343 / 0	0/0	0/0	0/0	170 / 0	0/0
С	642	422 / 0	0/0	0/0	0/0	220 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	HORDS AX. FACTO	RED	FACTO	RED				W E	BS MAX. FA	CTOR	FD.	
MEME	B. FO	RCE '	VERT. LC	AD LC1	MAX	MAX	ί.	MEMB.	FORG		MAX	
	(LB	S)	(PI	_F) (CSI (LC) UNE	RAC	;	(LBS)		CSI (L	_C)
FR-TC			FROM	TO		LEN	GTH	FR-TO				′
D- A	-642 / 0		0.0		0.04 (.81	A- C	0/0		0.00 ((1)
A- E	0/0		-112.4	-112.4	0.31 (1) 10	.00					
E-F	0/0		-112.4	-112.4	0.31 (1) 10	.00					
F-B	0 / 0			-112.4								
C-B	-824 / 0		0.0	0.0	0.05 (1) 7	.81					
D- C	0 / 0		-43.5	-43.5	0.05 (4) 10	.00					
SPEC	IFIED CON	CENTR.	ATED LO	ADS (LE	3S)							
JT	LOC.	LC1	MAX-	MAX		FACE	С	IR.	TYPE	HE	EL	CONN.
E	9-4	-175	-175		T	OP	VE	RT	TOTAL			C1
F	2-9-4	-546	-546	-	T	OP	VE	RT	TOTAL			C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER. LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS:

TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	L LO	AD	=	45.9	PS

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

*** NON STANDARD GIRDER ***
ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.31/1.00 (A-B:1) , BC=0.05/1.00 (C-D:4) , WB=0.00/1.00 (A-C:1) , SSI=0.27/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

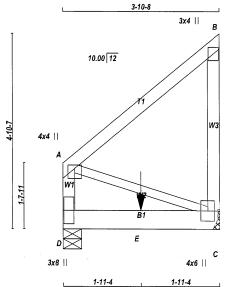
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.10 (C) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTIT JOB DESC **BAYVIEW WELLINGTON** DRWG NO. 423670 T36 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:10:35 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-UbzWHCl54uzweBBZMflxHm2H10?MOtgqAvYeAfz_8g2

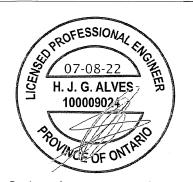
3-10-8 BUILDING DÉSIGNER В

LUMBER				
N. L. G. A. I	RULES			
CHORDS	SIZE		LUMBER	DESCR.
D - A	2x4	DRY	No.2	SPF
A - B	2x4	DRY	No.2	SPF
C - B	2x4	DRY	No.2	SPF
D - C	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEAS	SONED LI	JMBER.		

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #R	OWS SURFACE SPACING (II	LOAD(PLF)
TOP CHORD	S : (0.122"X3") SPIRA	
D- A 1	12	TOP
A-B 1	12	TOP
B- C 1	12	TOP
BOTTOM CH	ORDS: (0.122"X3") S	PIRAL NAILS
D- C 2	12	SIDE(0.0)
WEBS: (0.12	2"X3") SPIRAL NAILS	` '
2x3 1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.


GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES	(table is	in inches

ı	JT	TYPE	PLATES	W	LEN	Υ	Х	
ı	Α	TMVW+p	MT20	4.0	4.0	1.00	2.00	
Į	В	TMV+p	MT20	3.0	4.0			
ĺ	С	BMVW1+p	MT20	4.0	6.0			
	D	TMVW+p TMV+p BMVW1+p BMV1+p	MT20	3.0	8.0			

Structural component only DWG# T-2216644

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

BEAL	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
)	825	0	825	0	0	5-8	5-8
)	824	0	824	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 2-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./MIN. COMPONENT REACTIONS							
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
D	576	420 / 0	0/0	0/0	0/0	156 / 0	0/0		
С	576	420 / 0	0/0	0/0	0/0	156 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	CHORDS				WEBS						
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED			
MEMB.	FORCE	VERT. LC	AD LC1	I MAX	MAX.	MEMB.	FORCE	MAX			
	(LBS)	(PL	_F)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)			
FR-TO		FROM	TO		LENGTH	FR-TO					
D- A	-218 / 0	0.0	0.0	0.01(1)	7.81	A- C	0/0	0.00(1)			
A-B	0/0	-112.4	-112.4	0.16(1)	10.00			. ,			
C-B	-218 / 0	0.0	0.0	0.04 (1)	7.81						
D- E	0/0	-18.5	-18.5	0.42 (1)	10.00						
E- C	0/0			0.42 (1)							
CDECIEI	SPECIFIED CONCENTRATED LOADS (LPS)										

SEC	YLIED CON	ICENIE	VIED FOR	(FB2)					
JT	LOC.	LC1	MAX-	MÀX+	FACE	DIR.	TYPE	HEEL	CONN
E	1-11-4	-796	-796		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 22 = 43 lb

DESIGN CRITERIA

SPECIFIED LOADS:									
TOP	CH.	LL	=	32.5	PSF				
		DL	=	6.0	PSF				
BOT	CH.	LL	=	0.0	PSF				
		DL	=	7.4	PSF				
TOTAL LOAD = 45.9 PSF									

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.04")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.42/1.00 (C-D:1) , WB=0.00/1.00 (A-C:1) , SSI=0.20/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

MT20

JSI GRIP= 0.08 (A) (INPUT = 0.90) JSI METAL= 0.04 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTIT JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423673 T40 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc.: Fri Jul 8 12:26:31 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-UWkww5tmxdQHL6GIMRS71Neb_NBrO7jY?e7DkFz_8R6 Tamarack Roof Truss, Burlington 1-3-8 5-10-8 8-8-5 1-0-0 5-10-8 Scale = 1:57.3 8x9 \\ 4x6 || 3x8 || 5x6 = 4x6 || 8x9 // D C G 8.00 12 5x8 = 5x8 = M □ 83 Q ο^X ν W М R Р N 5x6 =5x6 =3x8 5x6 =6x7 =8x9 || 6x7 5x6 = 3x8 || 12-7-8 1-11-4 , 1-0-0, 1-2-12 16-1-8 1-3-8 1-3-8 TOTAL WEIGHT = 2 X 199 = 399 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER **DESIGN CRITERIA** DESCR BEARINGS A C F H C 2x6 DRY No.2 SPF FACTORED MAXIMUM FACTORED INPLIT REORD SPECIFIED LOADS: DRY DRY SPF SPF GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ BRG IN-SX CH. 32.5 PSF UPLIFT IN-SX 6.0 PSF 2x6 DRY No.2 SPF 5033 0 5033 0 5-8 5-8 5-8 BOT CH LL 0.0 7.4 В 2x6 DRY SPF SPF TOTAL LOAD 45.9 DRY 2x6 No.2 SPF DRY No 2 SPE UNFACTORED REACTIONS SPACING = 24.0 IN. C/C SPF MIN. COMPONENT REACTIONS SNOW COMBINED WIND LIVE PERM.LIVE DEAD SOIL ALL WEBS 2x4 DRY No.2 SPF 2539 / 0 0/0 0/0 979 / 0 892 / 0 LOADING IN FLAT SECTION BASED ON A SLOPE EXCEPT OF 6.00/12 DRY: SEASONED LUMBER BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S. K THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.46 FT.

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.46 FT.

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 1.40 00 FT. OR RIGID CE 9. NBCC 2015 FOLLOWS: THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. SURFACE CHORDS #ROWS LOAD(PLF) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED SPACING (IN) TOP CHORDS : (0.122"X3") SPIRAL NAILS A- C 2 12 LOADING TOTAL LOAD CASES: (4) TPIC 2014 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD 12 SIDE(0.0) TOP CHORDS WEBS MAX. FACTORED MAX. FACTORED FACTORED VERT. LOAD LC1 MAX S-B K-I 12 TOF MEMB. FORCE MAX MEMB FORCE (PLF) CSI (LC) FROM TO -112.4 -112.4 0.04 (1) ALLOWABLE DEFL.(LL)= L/360 (1.10") CALGULATED VERT. DEFL.(LL)= L/ 999 (0.20") ALLOWABLE DEFL.(TL)= L/360 (1.10") CALCULATED VERT. DEFL.(TL)= L/999 (0.35") TOP (LBS) LINERAC (LBS) CSI (LC) FR-TO BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS LENGTH FR-TO S-Q Q-M A-B 0 / 44 10.00 R- C C- P -645/00.09(1)-112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.27 0.40 0.34 0 / 6250 -1542 / 0 SIDE(183.1) B- C -6615 / 0 0.55 (1) -10556 / 0 -11077 / 0 0.21 (1) WEBS: (0.122"X3") SPIRAL NAILS CSI: TC=0.40/1.00 (C-D:1) , BC=0.82/1.00 (N-O:1) , WB=0.55/1.00 (C-P:1) , SSI=0.73/1.00 (N-O:1) D-O 0 / 842 SIDE(365.5) -502 / 0 0 / 2818 D- P E- O -11077 / 0 -1124 -1124 0.34 0- F 0.07 (1 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 SIDE(427.6 -11077 / 0 -11077 / 0 -11077 / 0 3.48 N- G N- H -2923 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 0.32 0.40(1)F-G 0.32 (1) 3.48 0 / 5482 0.48 (1 COMP=1.00 SHEAR=1.00 TENS= 1.00 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 G- H H- I -9331 / 0 -5892 / 0 NAILS TO BE DRIVEN FROM ONE SIDE ONLY. 3.75 -604/0 0 / 4947 COMPANION LIVE LOAD FACTOR = 1.00 GIRDER NAILING ASSUMES NAILED HANGERS ARE 0 / 44 0.04(1) 10.00 B-R 0 / 5555 0.49 (1 0.18 (1) FASTENED WITH MIN. 3-0 INCH NAILS. -4994 / 0 AUTOSOLVE HEELS OFF TOP - COMPONENTS ARE LOADED FROM THE TOP AND TRUSS PLATE MANUFACTURER IS NOT MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY. 0.05 (4) 0.42 (1) 0.42 (1) 0.75 (1) S- B RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0/0 -18.5 -18 5 10.00 R- Q Q- P P- V 0 / 5475 0 / 5475 -18.5 -18.510.00 NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION 0 / 10556 -18.510.00 0 / 10556 0 / 10556 (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PROFESSIONAL ENGINEERS O7-08-22
H. J. G. ALVES 7 -18.5 -18.5 0.75(1) 10.00 O- X X- N N- M M- L 0 / 9332 -18.5-18.5 0.82 (1) 10.00 0.82 0.34 10.00 0 / 9332 -18.5 -18.5 0 / 4875 0.34 -18.5-18.5 10.00 PLATE PLACEMENT TOL. = 0.250 inches 0.05 (4) I-K 0/0 PLATE ROTATION TOL. = 5.0 Deg. SPECIFIED CONCENTRATED LOADS (LBS) LOC LC₁ MAX MÀX+ FACE DIR TYPE CONN JSI GRIP= 0.89 (R) (INPUT = 0.90) -1465 -149 -1465 -149 BACK TOTAL JSI METAL= 0.62 (R) (INPUT = 1.00)

100009024

POLACE OF ONT ARIO

Structural component only

DWG# T-2216656

14-6-12

15-6-12

14-6-12 15-6-12

16-9-8

-149

-29 -29

-1640

CONNECTION REQUIREMENTS

-149

-29 -29

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

-1640

U

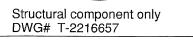
C1 C1 C1 C1 C1

GONTINUED ON PAGE

VERT

VERT

VERT


TOTAL

TOTAL TOTAL

BACK

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. BAYVIEW WELLINGTON DRWG NO.
423673 Tamarack Roof Truss, Burlington	T40	1	2	TRUSS DESC.
Tamarack Hoof Truss, Burlington				Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:31 2022 Page ID:c3jyj23uDijq 8pvRKbkZpy75XW-UWkww5tmxdQHL6GIMRS71Neb NBrO7jY?e7DkFz 8F
C TTWW+m MT20 8.0 D TMWW+t MT20 4.0 E TMW+w MT20 3.0	8.0 1.50 4.00 9.0 3.75 2.00 6.0 8.0		٠	
G TMWW+t MT20 4.0 H TTWW+m MT20 8.0 I TMVW-p MT20 5.0 K BMV1+p MT20 3.0	6.0 9.0 3.75 2.00 8.0 1.50 4.00			
L BMWW-t MT20 5.0 M BS-t MT20 5.0 N BMWW-t MT20 6.0 O BMWWW-t MT20 6.0 P BMWW-t MT20 6.0 Q BS-t MT20 5.0	6.0 7.0 3.25 3.25 9.0 7.0 3.25 3.25 6.0			
R BMWW-t MT20 5.0 S BMV1+p MT20 3.0	9 6.0 2.50 2.25 9 8.0			
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.			
.*				
PROFESSIO	DNAL EN			
07-08- H. J. G. Al 1000090	22 CINET			
POVINCE OF	ONTARIO			
Structural compo DWG# T-221665				
				KEVIEWEL

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 423673 T41 TRUSS DESC Tamarack Roof Truss, Burlingtor Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:32 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-yill7RuOixY8yGrUv8zMaaAhpnct7UVhEltnGhz_8R5 1-3-8 7-10-8 17-2-0 7-10-8 Scale = 1:57.4 5x8 = 4x4 =3x8 = 2x4 | 15x8 = D Ε G н T2 8.00 12 5x6 / 5x6 < С W5 3x4 || 3x4 || K 51.4-1 R1 Q Ν R S 5x6 P O 3x8 =3x8 =5x6 = 4x4 = 4y4 = 5x6 =4x4 =32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 146 li LUMBER DIMENSIONS, SUPPORTS, AND LOADINGS SPECIFIED BY FARRICATOR TO BE VERIFIED BY N. L. G. A. CHORDS RULES **BUILDING DESIGNER DESIGN CRITERIA** BEARINGS FACTORED LUMBER A - D D - F F - H DRY SPECIFIED LOADS: No.2 SPF MAXIMUM FACTORED INPLIT REORD GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ UPLIFT DRY No 2 BRG IN-SX CH. 32.5 PSF LL = DL = DRY SPF IN-SX 6.0 PSF 2x4 No.2 2309 0 2309 0 5-8 5-8 BOT CH. 0.0 PSF S - B 2x6 DRY No.2 SPF SPF SPF SPF 2309 2x6 DRY No.2 No.2 TOTAL LOAD 45.9 PSF 2x4 UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW N DRY No.2 SPACING = 24.0 IN. C/C SPF MIN. COMPONENT REACTIONS WIND LIVE PERM.LIVE DEAD SOIL ALL WEBS DRY SPF 2x3 No.2 1616 1158 / 0 0/0 0/0 0/0 458 / 0 458 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE EXCEPT DRY SPF DRY THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S. L 2x4 No.2 DRY: SEASONED LUMBER OP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.42 FT. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED PLATES (table is in inches) PLATES MT20 MT20 LEN Y 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-O. TPIC 2014 TMV+p TMWW-t BCD END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN 5.0 5.0 4.0 3.0 2.0 5.0 6.0 2.50 2.50 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED TTWW-m MT20 8.0 2 00 3 25 THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW E F G H TMWW-t MT20 ROOF LIVE LOAD MT20 MT20 LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.13")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.25") TMW+w 2.00 3.25 2.50 2.50 TTWW-m MT20 TMWW-t TMV+p CHORDS WEBS MT20 3.0 4.0 MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO 5.0 4.0 MEMB LMZOP BMVW1-t MT20 6.0 2.50 2.75 BMWW-t UNBRAC CSI: TC=0.71/1.00 (D-E:1) , BC=0.51/1.00 (O-P:1) , (LBS) (LBS) CSI (LC) 3.0 FR-TO MT20 8.0 LENGTH ER-TO WB=0.90/1.00 (I-L:1) , SSI=0.30/1.00 (D-E:1) 5.0 4.0 3.0 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.15 (1) 0.26 (1) 0.37 (1) 0 / 43 0 / 27 RMWWW-t MT20 6.0 2.50 1.50 2.00 1.50 0/62 0.02 (4) BMWW-t BS-t MT20 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 0 / 143 0 / 1065 0.04 (4) 10.00 -2494 / 0 4.01 D- P COMP=1.10 SHEAR=1.10 TENS= 1.10 BMWW-D- F 0.71 (1) 0.71 (1) -695 / 0 -2 / 0 MT20 4.0 -2767 / 0 -112.4 -112.4 0.51 (1 BMVW1-t 2.50 2.75 E-F F-G -112.4 -112.4 -112.4 -112.4 E- O O- G COMPANION LIVE LOAD FACTOR = 1.00 0.00(1)-2765 / 0 0.71(1)3.43 -694 / 0 0.51 (1 G- H H- I I- J 0 / 1061 0 / 145 0.24 (1) -2765 / 0 -112.4 -112.4 0.71 3.44 O- H AUTOSOLVE HEELS OFF NOTES--2494 / 0 0 / 27 -112.4 -112.4 -112.4 -112.4 1) Lateral braces to be a minimum of 2X4 SPF #2. 0.26(1) 10.00 M- I 0/61 0.02 (4) TRUSS PLATE MANUFACTURER IS NOT 10.00 7.81 7.81 S- C I- L 0.90 (1) 0.90 (1) RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0 / 43 -1124 -1124 0.15 (1) -2802 / 0 S-B L-J -326 / 0 -327 / 0 0.02 NAIL VALUES S- R R- Q Q- P P- O O- N N- M -18.5 -18.5 -18.5 10.00 10.00 PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) 0 / 2040 -18.5 0.47 (1) 0.47 (1) 0 / 2051 0 / 2051 -18.5 -18.5 PROFESSIONAL ENGINEER O7-08-22
H. J. G. ALVES 7 MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 0.47(1) 10.00 0 / 2767 -18.5 -18.5 0.51 (1) 10.00 0 / 2052 0 / 2052 -18.5-18.50.47(1)10.00 PLATE PLACEMENT TOL. = 0.250 inches 0.47 (1) M- I 0 / 2041 -18.5 -18.5 10.00

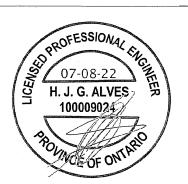
POLYACE OF ONTARIO

100009024

REVIEWE

PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.89 (C) (INPUT = 0.90) JSI METAL= 0.63 (I) (INPUT = 1.00) JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423673 T42 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:33 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-RvshLnu0TEg?aQQhTsUb6ojsFBzXs27rSycKo8z_8R4 9-10-8 1-3-8 13-2-0 9-10-8 Scale = 1:57.2 5x6 = 2x4 | 5x6 < D 8.00 12 4x4 / 4x4 < С G 5x8 = 5x8 = W2 W2 0 М Ŕ Q N κ 3x8 = 3x8 = 3x8 || 5x6 =4x4 = 4x6 =4x4 =5x6 =3x8 || 32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 146 II

LUMBER			-	
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
R - B	2x6	DRY	No.2	SPF
J - H	2x6	DRY	No.2	SPF
R - O	2x4	DRY	No.2	SPF
O - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				


DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW-p	MT20	5.0	8.0	Edge					
C	TMWW-t	MT20	4.0	4.0	2.00	1.50				
D	TTWW-m	MT20	5.0	6.0	2.25	2.00				
E	TMW+w	MT20	2.0	4.0						
F	TTWW-m	MT20	5.0	6.0	2.25	2.00				
G	TMWW-t	MT20	4.0	4.0	2.00	1.50				
H	TMVW-p	MT20	5.0	8.0	Edge					
J	BMV1+p	MT20	3.0	8.0	Edge					
K	BMWW-t	MT20	5.0	6.0	2.50	2.50				
L	BMWW-t	MT20	4.0	4.0						
M	BS-t	MT20	3.0	8.0						
N	BMWWW-t	MT20	4.0	6.0						
0	BS-t	MT20	3.0	8.0						
P	BMWW-t	MT20	4.0	4.0						
Q	BMWW-t	MT20	5.0	6.0		2.50				
R	BMV1+p	MT20	3.0	8.0	Edge					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-

1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2216658

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

EA	RINGS						
	FACTOR		MAXIMU	M FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
3	2309	0	2309	0	0	5-8	5-8
	2309	0	2309	0	0	5-8	5-8

UNFACTORED REACTIONS

	101 LUASE	IVIAX./I	MIN. COMPO	NENT REACTION	42			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
R	1616	1158 / 0	0/0	0/0	0/0	458 / 0	0/0	
J	1616	1158 / 0	0/0	0/0	0/0	458 / 0	0/0	
							•	•

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.52 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE		
	C. FACTORED						MAX. FACTO	RED
MEMB.							FORCE	MAX
	(LBS)	(PI	_F) '	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO					LENGTH			
A-B	0 / 43	-112.4	-112.4	0.15(1)	10.00	Q-C	-371 / 0	0.12(1)
B- C	-2546 / 0	-112.4	-112.4	0.45 (1)	3.91	C-P	-276 / 0	0.22 (1)
C-D	-2376 / 0	-112.4	-112.4	0.43 (1)	4.05	P- D	0 / 295	0.07 (1)
D-E	-2390 / 0	-112.4	-112.4	0.73 (1)	3.52	D- N	0 / 679	0.15 (1)
E-F	-2390 / 0	-112.4	-112.4	0.73 (1)	3.52	N-E	-909 / 0	0.37 (1)
F-G	-2376 / 0	-112.4	-112.4	0.43 (1)	4.05	N- F	0 / 679	0.15 (1)
G-H	-2548 / 0	-112.4	-112.4	0.45 (1)	3.91	L- F	0 / 296	0.07 (1)
H- I	0 / 43	-112.4	-112.4	0.15(1)	10.00	L- G	-276 / 0	0.22 (1)
R-B	-2267 / 0	0.0	0.0	0.15(1)	6.81	K-G	-370 / 0	0.12(1)
J- H	-2267 / 0	0.0	0.0	0.15(1)	6.81	B-Q	0/2197	0.49(1)
						K- H	0 / 2198	0.49(1)
R-Q	0/0	-18.5	-18.5	0.10 (4)	10.00			
Q-P	0 / 2148	-18.5	-18.5	0.42(1)	10.00			
P-O	0 / 1947	-18.5	-18.5	0.39 (1)	10.00			
O- N	0 / 1947	-18.5	-18.5	0.39 (1)	10.00			
N-M	0 / 1948	-18.5	-18.5	0.39 (1)	10.00			
M- L	0 / 1948	-18.5	-18.5	0.39(1)	10.00			
L-K	0 / 2149	-18.5	-18.5	0.42 (1)	10.00			
K-J	0/0	-18.5		0.10 (4)				

DESIGN CRITERIA

PSF PSF 32.5 6.0 0.0 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43 9 P.S.F. G.S.L. PHIS 8 4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10") CALCULATED VERT. DEFL.(LL)= L/999 (0.11") ALLOWABLE DEFL.(TL)= L/360 (1.10") CALCULATED VERT. DEFL.(TL)= L/999 (0.21")

CSI: TC=0.73/1.00 (D-E:1) , BC=0.42/1.00 (K-L:1) , WB=0.49/1.00 (H-K:1) , SSI=0.36/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR (PLI) (PLI) (PLI)

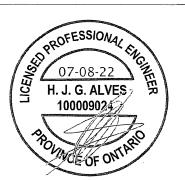
MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (Q) (INPUT = 0.90) JSI METAL= 0.62 (O) (INPUT = 1.00)



JOB NAME TRUSS NAME QUANTIT JOB DESC. **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC 423673 T43 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:34 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-v5Q3Y7veEYosCa?t1Z?qf?G1ubJibST_hcMtKaz_8R3 1-3-8 11-10-8 9-2-0 11-10-8 Scale = 1:60.6 5x6 \\ 2x4 || 5x6 // 8.00 12 G 3x8 / 3x8 < 4x4 / 5x8 = W2 W2 ۵ 0 s R P 3x8 | 3x8 =3x8 = 3x8 || 5x6 =4x4 = 4x4 =5x6 = 32-11-0 1-3-8 32-11-0 1-3-8 LUMBER N. L. G. A. RULES CHORDS SIZE TOTAL WEIGHT = 155 II DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING BEARINGS
FACTORED **BUILDING DESIGNER** DESIGN CRITERIA SIZE LUMBER A - D E G H T -DEGI No.2 SPF SPF MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS DRY DRY DRY GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ UPLIFT BRG IN-SX BRG IN-SX 2x4 No 2 CH. LL = DL = SPF PSF 6.0 2x4 No.2 2309 0 2309 5-8 5-8 BOT CH. 0.0 7.4 PSF 2x4 DRY No.2 SPF 2309 ō SPF SPF SPF В 2x6 DRY No.2 No.2 TOTAL LOAD 45.9 PSF 2x6 700 UNFACTORED REACTIONS

1ST LCASE MAX

JT COMBINED SNOW ./MIN. COMPONENT REACTIONS 2x4 DRY No.2 SPACING = 24.0 IN. C/C Q O 2×4 DRY SPF DEAD SOIL 1616 1158 / 0 0/0 0/0 0/0 458 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE ALL WEBS 2x3 DRY No.2 SPE 1158 / 0 EXCEPT THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T. L DRY: SEASONED LUMBER. <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.60 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) PLATES (table is in inches) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. LEN Y Х PLATES MT20 BCD 5.0 4.0 3.0 TMVW-n 8.0 Edge 2.00 1.50 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-P. TMWW-t (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN TTWW+m MT20 5.0 6.0 Edge 1.75 THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW 2.0 5.0 3.0 TMW+v MT20 TTWW+m LOADING TOTAL LOAD CASES: (4) Edge 1.75 6.0 8.0 ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.18") TS-t MT20 4.0 8.0 8.0 4.0 5.0 2.00 1.50 Edge TMWW-t MT20 TMVW-p BMV1+p MT20 MT20 3.0 Edge 6.0 4.0 BMWW-t MT20 2.50 2.50 BMWW-t MT20 CSI: TC=0.68/1.00 (I-J:1) , BC=0.42/1.00 (M-N:1) , MT20 3.0 8.0 WB=0.62/1.00 (I-N:1) , SSI=0.27/1.00 (I-J:1) RMWWW-t MT20 40 6.0 MT20 3.0 4.0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 BMWW-t COMP=1.10 SHEAR=1.10 TENS= 1.10 BMWW-t MT20 5.0 6.0 2.50 2.50 BMV1+p COMPANION LIVE LOAD FACTOR = 1.00 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. AUTOSOLVE HEELS OFF

NOTES- (1)

Structural component only DWG# T-2216659

		ORDS . FACTORED	EACTOR	ED			WE	B S MAX. FACTO	DED.
J		FORCE	VERT. LOA		NAAV	MAX.			MAX
	WILIVID.	(LBS)	(PLI						
	FR-TO	(LDG)	FROM .			LENGTH		(LBS)	CSI (LC)
	A-B	0 / 43						-270 / 30	0.10(4)
		-2581 / 0							0.12(1)
	C- D							-487 / 0	0.61 (1)
	D- E	-2230 / 0						0 / 417	0.09 (1)
		-2230 / 0			0.62 (1)			0/391	0.09 (1)
	E-F	-1997 / 0			0.34 (1)			-623 / 0	0.36 (1)
	F- G	-1997 / 0			0.34 (1)			0/390	0.09 (1)
	G-H	-2230 / 0			0.62 (1)			0 / 418	0.09 (1)
	H- I	-2230 / 0			0.62 (1)			-488 / 0	0.62 (1)
	I- J	-2582 / 0			0.68 (1)		M- I	-270 / 30	0.12 (1)
		0 / 43			0.15(1)			0 / 2219	0.50 (1)
		-2262 / 0					M- J	0 / 2220	0.50 (1)
	L- J	-2262 / 0	0.0	0.0	0.15(1)	6.81			
	T-S	0/0			0.16 (4)				
	S-R	0 / 2184	-18.5	-18.5	0.42 (1)	10.00			
	R-Q	0 / 1820	-18.5	-18.5	0.35 (1)	10.00			
	Q-P	0 / 1820	-18.5	-18.5	0.35 (1)	10.00			
	P- 0	0 / 1820	-18.5	-18.5	0.35(1)	10.00			
	O- N	0 / 1820	-18.5	-18.5	0.35(1)	10.00			
	N-M	0 / 2185	-18.5	-18.5	0.42(1)	10.00			
	M-L	0/0	-18.5	-18.5	0.16 (4)	10.00			

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

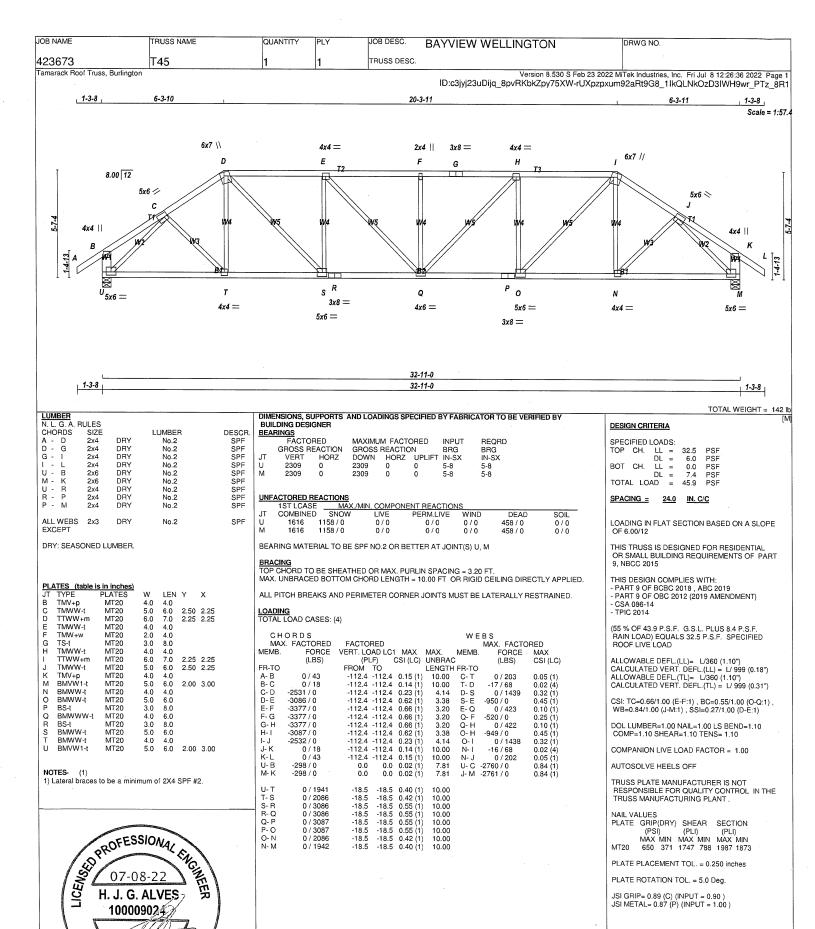
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.84 (S) (INPUT = 0.90) JSI METAL= 0.55 (Q) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. **BAYVIEW WELLINGTON** QUANTIT PLY DRWG NO. 423673 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:35 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-NH_RmTwG?swjpja3bHW3BDoGb_eTKw57wG5Rt0z_8R2 . 1-3-8 13-10-8 13-10-8 4x4 = 5x8 = G 8.00 12 4x4 🗸 4x4 < Н Е 3x8 / 3x8 💸 5x6 < 3x4 || 3x4 || L R1 s R 0 N M ۵ 3x8 = 4x4 =3x8 = 4x4 =5x6 = 4x10 = 32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 171 II LUMBER N. L. G. A DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS FACTORED DESIGN CRITERIA LUMBER DESCR A -D -F -D F 2x4 No.2 SPF MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS DRY DRY DRY GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ UPLIFT BRG IN-SX BRG IN-SX 2x4 No 2 SPF PSF PSF CH. LL = DL = SPF Ġ 6.0 . G -2x4 No.2 2309 2309 5-8 5-8 BOT CH. LL 0.0 7.4 PSF 2x4 DRY No.2 SPF М 2309 5-8 5-8 DL TOTAL LOAD SPF SPF SPF 2x6 2x6 DRY DRY 45.9 No.2 UNFACTORED REACTIONS


1ST LCASE MAX

JT COMBINED SNOW .../MIN. COMPONENT REACTIONS
PERM.LIVE WIND R 2x4 DRY No.2 SPACING = 24.0 IN. C/C Ŕ. O M DRY SPE No.2 SPF DEAD SOIL 1616 1158 / 0 0/0 0/0 458 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE ALL WEBS 2x3 DRY No.2 SPF 1158 / 0 Q -Q -P -BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T, M DRY No.2 SPF THIS TRUSS IS DESIGNED FOR RESIDENTIAL G 2x4 DRY No.2 SPF OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 GCM DRY No.2 No.2 SPF DRY TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.08 FT. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) DRY MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED DRY: SEASONED LUMBER ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. CSA 086-14 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-Q, H-P, C-T, J-M. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW LEN Y LOADING TOTAL LOAD CASES: (4) 3.0 5.0 4.0 6.0 ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL)= L/999 (0.19") TMWW-t MT20 2.50 1.75 TS-t TMWW-t 3.0 4.0 MT20 CHORDS WEBS 4.0 MAX. FACTORED TTW-m MT20 4.0 4.0 2.00 1.75 MAX. FACTORED FACTORED FORCE VERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO 5.0 4.0 8.0 4.0 TTWW-m MT20 2.00 3.00 MEMB. MAX MEMB. FORCE (LBS) TMWW-t UNBRAC CSI (LC) CSI: TC=0.42/1.00 (F-G:1), BC=0.45/1.00 (M-N:1), FR-TO TS-I MT20 3.0 8.0 LENGTH FR-TO WB=0.53/1.00 (J-M:1) , SSI=0.23/1.00 (F-G:1) -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.15 (1) 0.31 (1) 0.35 (1) 0 / 43 0 / 27 TMWW-t MT20 5.0 6.0 2.50 1.75 10.00 -65 / 44 0.03 (1) TMV+p BMVW1-t 3.0 5.0 0 / 211 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 10.00 0.05 (1) 2.50 2.75 -2481 / 0 6.0 C- D D- E E-Q 4.09 Q-F Q-G P-G 0 / 623 0 / 1 -2481 / 0 -112.4 -112.4 0.35 4.09 0.10 (1) BMWW-t MT20 4.0 4.0 -2037 / 0 -112.4 -112.4 -112.4 -112.4 0.32 (1) 0.42 (1) COMPANION LIVE LOAD FACTOR = 1.00 0.00 (1) MT20 3.0 8.0 10.0 4.64 0 / 621 BS-t BMWWW-t -1678 / 0 0.10 (1) G- H H- I I- J 0.32 (1) 0.35 (1) 0.35 (1) MT20 4.0 -2037 / 0 -112.4 -112.4 4.45 P-H -616/0 0.32 (1 AUTOSOLVE HEELS OFF BS-t MT20 3.0 8.0 2482 / 0 -112.4 -112.4 -112.4 -112.4 4.08 H- N 0 / 213 -66 / 44 0.05 (1) 0.03 (1) BMVW1-t 2.50 2.75 -2482 / 0 TRUSS PLATE MANUFACTURER IS NOT N-J J- K K- L T- B M- K -112.4 -112.4 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0 / 27 0.31 (1) 10.00 T- C -2823 / 0 0.53 (1 0/43 -112.4 -112.4 0.15 (1) 10.00 0.53 (1) NOTES-0.02 1) -366 / 0 0.0 0.0 0.02 (1) NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN T- S S- R R- Q Q- P P- O O- N -18.5 -18.5 -18.5 0 / 2098 -18.5 10.00 PROFESSIONAL ENGINEERS H. J. G. ALVES 0.43 (1) 0 / 2002 -18.5 -18.5 10.00 0 / 2002 0 / 1677 0 / 2002 10.00 650 371 1747 788 1987 1873 -18.5 -18.5 -18.5 -18.5 0.34 (1) PLATE PLACEMENT TOL. = 0.250 inches 10.00 0 / 2002 -18.5 -185 0 44 (1 10.00 N- M 0 / 2099 0.45 (1) PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.89 (M) (INPUT = 0.90) JSI METAL= 0.65 (O) (INPUT = 1.00) 100009024 ROLLOF ON THE

REVIEWE

Structural component only

DWG# T-2216660

POLACE OF ONTARIO

Structural component only

DWG# T-2216661

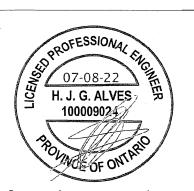
REVIEWED

JOB NAME JOB DESC. TRUSS NAME QUANTIT PLY **BAYVIEW WELLINGTON** DRWG NO. 423673 T46 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:37 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-Jg5BA8yWXTAQ31kSiiZXHeuXloK_ol_QNaaYxvz_8R0 1-3-8 7-9-10 17-3-12 7-9-10 Scale = 1:57.4 5x8 = 2x4 || 3x8 = 4x4 =5x8 < D F G 8.00 12 5x6 🗸 5x6 < 3x4 3x4 || XV3 Q N R 5x6 ٥ М 3x8 3x8 =5x6 = 4x4 =5x6 =4×4 = 4x4 =32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 145 lb LUMBER DIMENSIONS, SUPPORTS, AND LOADINGS SPECIFIED BY FARRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER **DESIGN CRITERIA** LUMBER DESCR BEARINGS FACTORED A -D -F -DRY D F 2x4 No.2 SPF MAXIMUM FACTORED INPLIT REORD SPECIFIED LOADS: DRY DRY DRY SPF SPF GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX BRG IN-SX CH. 32.5 PSF LL DL 6.0 PSF 2x4 No.2 SPF 2309 0 2309 0 5-8 5-8 5-8 BOT CH. 0.0 PSF S -L -S -Q -В 2x6 DRY No.2 SPF SPF SPF DRY TOTAL LOAD 45.9 PSF No.2 UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW Ñ 2x4 DRY No 2 SPF SPACING = 24.0 IN. C/C SPF MIN. COMPONENT REACTIONS WIND LIVE PERM.LIVE DEAD SOIL ALL WEBS 2x3 DRY No.2 SPF 1158 / 0 0/0 0/0 0/0 458 / 0 458 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE EXCEPT OF 6.00/12 SPF DRY BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S. L THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 2x4 No.2 DRY: SEASONED LUMBER 9. NBCC 2015 TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.39 FT. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED PLATES (table is in inches)
JT TYPE PLATES LEN Y **TPIC 2014** TMV+p TMWW-t END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN MT20 5.0 6.0 2.50 2.50 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED TTWW-m MT20 2.00 3.25 THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW TMW+w ROOF LIVE LOAD LOADING TOTAL LOAD CASES: (4) TS-t TMWW-t MT20 3.0 8.0 ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL)= L/999 (0.14")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.25") MT20 4.0 TTWW-m MT20 MT20 5.0 5.0 2.00 3.25 2.50 2.50 CHORDS 6.0 WEBS q+VMT MT20 3.0 4.0 MAX. FACTORED FACTORED MAX. FACTORED 5.0 4.0 3.0 BMVW1-MT20 2.50 2.75 MEMB VERT. LOAD LC1 MAX FORCE BMWW-t UNBRAC CSI: TC=0.73/1.00 (G-H:1), BC=0.51/1.00 (O-P:1), (LBS) (PLF) FROM TO CSI (LC) (LBS) CSI (LC) N O P MT20 FR-TO TO BS-t 8.0 LENGTH ER-TO WB=0.89/1.00 (I-L:1) , SSI=0.30/1.00 (G-H:1) 0 / 43 0 / 27 -2497 / 0 -112.4 -112.4 0.15 (1) -112.4 -112.4 0.26 (1) -112.4 -112.4 0.37 (1) 2.00 1.50 2.50 2.00 A- B B- C C- D RMWW-t MT20 4.0 5.0 0/63 0.02 (4) BMWWW-t DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 0 / 138 0 / 1079 10.00 0.04(4)Q R S MT20 3.0 BS-t BMWW-t 8.0 D-P 0.24 (1) COMP=1.10 SHEAR=1.10 TENS= 1.10 0.72 (1) 0.72 (1) -700 / 0 -3 / 0 MT20 40 D- E -2785 / 0 -112.4 -112.4 0.50 (1) BMVW1-t E-F F-G 2.50 2.75 COMPANION LIVE LOAD FACTOR = 1.00 0.00 (1) -112.4 -112.4 -701 / 0 -2785 / 0 0.72(1)3.39 0- G 0.50 (1) G-H H-I 0 / 1082 0 / 137 0.24 (1) -2787 / 0 -112.4 -112.4 0.73 3.39 0- H AUTOSOLVE HEELS OFF NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. -2497 / 0 -0 / 27 -112.4 -112.4 -112.4 -112.4 TRUSS PLATE MANUFACTURER IS NOT 0.26 (1) 10.00 M- I 0 / 63 0.02 (4 10.00 7.81 7.81 S- C I- L RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0 / 43 -1124 -1124 0.15 (1) -2801 / 0 0.89 /1 S-B -325 / 0 L-J NAIL VALUES S- R R- Q Q- P P- O O- N N- M -18.5 0.46 (1) -18.5 0.47 (1) -18.5 0.47 (1) -18.5 -18.5 PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) 0 / 2037 10.00 10.00 MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 0 / 2054 -18.5 10.00 0/2787-185 -18.5 0.51 (1) 10.00 -18.5 0.47 -18.5 0.47 0 / 2054 0 / 2054 -18.5 10.00 PLATE PLACEMENT TOL. = 0.250 inches 0.46 (1) M- I 0 / 2038 -18.5 -18.5 10.00

Structural component only DWG# T-2216662

REVIEWED

PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.89 (C) (INPUT = 0.90) JSI METAL= 0.63 (I) (INPUT = 1.00) JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423673 TRUSS DESC amarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:38 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-nsfZOUy9InIHgBJeGP4mprQgYCgaXlOacEK5TLz 8R? 1-3-8 9-3-10 14-3-12 9-3-10 Scale = 1:57.2 5x6 = 2x4 || 5x6 > D 8.00 12 4x4 // 4x4 < G С 5x8 = 5x8 =W2 0 M ٥ 3x8 = 3x8 = 3x8 || 5x6 = 4x4 =5x6 = 3x8 || 4x4 5x6 = 32-11-0 1-3-8 TOTAL WEIGHT =


LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
R - B	2x6	DRY	No.2	SPF
J - H	2x6	DRY	No.2	SPF
R - O	2x4	DRY	No.2	SPF
O - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
1				
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Y X					
В	TMVW-p	MT20	5.0	8.0	Edge					
С	TMWW-t	MT20	4.0	4.0	2.00 1.50					
D	TTWW-m	MT20	5.0	6.0	2.25 1.75					
E	TMW+w	MT20	2.0	4.0						
F	TTWW-m	MT20	5.0	6.0	2.25 1.75					
G	TMWW-t	MT20	4.0	4.0	2.00 1.50					
Н	TMVW-p	MT20	5.0	8.0	Edge					
J	BMV1+p	MT20	3.0	8.0	Edge					
K	BMWW-t	MT20	5.0	6.0	2.50 2.50					
L	BMWW-t	MT20	4.0	4.0						
M	BS-t	MT20	3.0	8.0						
N	BMWWW-t	MT20	5.0	6.0						
0	BS-t	MT20	3.0	8.0						
Р	BMWW-t	MT20	4.0	4.0						
Q	BMWW-t	MT20	5.0	6.0	2.50 2.50					
R	BMV1+p	MT20	3.0	8.0	Edge					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2216663

Ī	DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
l	BUILDING DESIGNER	
l	BEARINGS	

CA	RINGS						
	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2309	0	2309	0	0	5-8	5-8
	2309	0	2309	0	0	5-8	5-8

UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./N	MIN, COMPO	NENT REACTION	4S						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL				
R	1616	1158 / 0	0/0	0/0	0/0	458 / 0	0/0				
J	1616	1158 / 0	0/0	0/0	0/0	458 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R. J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.05 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					WE	BS	
MAX	K. FACTORED	FACTOR	ED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOA	D LC1	MAX	MAX.	MEMB.	FORCE	MAX
1	(LBS)	(PLF	-) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM T	Ō		LENGTH	FR-TO		
A-B	0 / 43	-112.4 -	112.4	0.15(1)	10.00	Q-C	-405 / 0	0.13(1)
B- C	-2529 / 0	-112.4 -	112.4	0.40(1)	3.99	C-P	-211 / 0	0.15(1)
C- D	-2413 / 0	-112.4 -				P- D	0 / 259	0.06(1)
D-E	-2531 / 0	-112.4 -	112.4	0.89 (1)	3.05	D- N	0 / 787	0.18(1)
E-F	-2531 / 0	-112.4 -	112.4	0.89 (1)	3.05	N-E	-990 / 0	0.36(1)
F- G	-2413 / 0	-112.4 -				N-F	0 / 787	0.18 (1)
G-H	-2530 / 0	-112.4 -				L-F	0 / 259	0.06(1)
H- I	0 / 43	-112.4 -	112.4	0.15 (1)	10.00	L- G	-212 / 0	0.15 (1)
R-B	-2268 / 0					K- G	-404 / 0	0.12(1)
J- H	-2268 / 0	0.0	0.0	0.15 (1)	6.81	B- Q	0 / 2186	0.49 (1)
						K- H	0 / 2187	0.49 (1)
R-Q	0/0			0.09 (4)				
Q-P	0 / 2132			0.42 (1)				
P- O	0 / 1980			0.42 (1)				
O- N	0 / 1980	-18.5	-18.5	0.42 (1)	10.00			
N- M	0 / 1980			0.42 (1)				
M-L	0 / 1980			0.42 (1)				
L-K	0 / 2133			0.42 (1)				
K-J	0/0	-18.5	-18.5	0.09 (4)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOA	DS:		
TOP	CH.	LL	=	32.5	PSI
		DL	=	6.0	PSI
BOT	CH.	LL	122	0.0	PS
		DL	=	7.4	PSF
TOTA	1 10	A D		45.0	001

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL)= L/999 (0.12")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.22")

CSI: TC=0.89/1.00 (E-F:1) , BC=0.42/1.00 (K-L:1) , WB=0.49/1.00 (H-K:1) , SSI=0.39/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

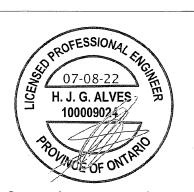
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (Q) (INPUT = 0.90) JSI METAL= 0.67 (O) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 423673 T48 TRUSS DESC Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:39 2022 Page 1 ID:c3jyj23uDija_8pvRKbkZpy75XW-F3Dybqzn34Q8lLurq6b?M3zwec01GlZjru3e0nz_8R Tamarack Roof Truss, Burlington 1-3-8 10-9-10 11-3-12 10-9-10 Scale = 1:61.4 5x6 \\ 2x4 || 5x6 // D 8.00 12 4x4 / 4x4 < C G 5x8 =5x8 = W2 W2 Ø 0 Q L Ν Κ 3x8 || 3x8 3x8 || 5x6 =4x6 =4x4 =5x6 =3x8 =32-11-0 32-11-0 1-3-8


LUMBER				
N. L. G. A. R	HES			
				55555
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - L	2x4	DRY	No.2	SPF
R - B	2x6	DRY	No.2	SPF
J - H	2x6	DRY	No.2	SPF
R - O	2x4	DRY	No.2	SPF
O - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMVW-p	MT20	5.0	8.0	Edge						
С	TMWW-t	MT20	4.0	4.0	2.00	1.50					
D	TTWW+m	MT20	5.0	6.0	Edge	1.75					
Ε	TMW+w	MT20	2.0	4.0							
F	TTWW+m	MT20	5.0	6.0	Edge	1.75					
G	TMWW-t	MT20	4.0	4.0	2.00	1.50					
Н	TMVW-p	MT20	5.0	8.0	Edge						
J	BMV1+p	MT20	3.0	8.0	Edge						
K	BMWW-t	MT20	5.0	6.0	2.50	2.50					
L	BMWW-t	MT20	4.0	4.0							
М	BS-t	MT20	3.0	8.0							
N	BMWWW-t	MT20	4.0	6.0							
0	BS-t	MT20	3.0	8.0							
P	BMWW-t	MT20	4.0	4.0							
Q	BMWW-t	MT20	5.0	6.0	2.50	2.50					
R	BMV1+p	MT20	3.0	8.0	Edge						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2216664

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	
READINGS	

EA	KINGS						
	FACTOR GROSS RE		MAXIMUM GROSS P			INPUT BRG	REQRD BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
₹	2309	0	2309	0	0	5-8	5-8
	2309	0	2309	0	0	5-8	5-8

UNFACTORED REACTIONS							
	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
R	1616	1158 / 0	0/0	0/0	0/0	458 / 0	0/0
J	1616	1158 / 0	0/0	0/0	0/0	458 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.78 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS FACTORED	FACTORED			W E B S MAX. FACTORED			
MEMB.	FORCE	VERT. LO	AD LC1				FORCE	MAX
ED TO	(LBS)						(LBS)	CSI (LC)
FR-TO		FROM			LENGTH			
A- B	0 / 43	-112.4					-320 / 4	0.12 (1)
B- C	-2567 / 0	-112.4	-112.4	0.55 (1)	3.78	C-P	-376 / 0	0.38(1)
C- D	-2311 / 0	-112.4	-112.4	0.51(1)	3.99	P-D	0 / 353	0.08(1)
D- E	-2190 / 0	-112.4	-112.4	0.53 (1)	4.02	D- N	0 / 531	0.12 (1)
E-F	-2190 / 0	-112.4	-112.4	0.53 (1)	4.02	N-E	-777 / 0	0.37 (1)
	-2311 / 0			0.51 (1)			0 / 531	0.12(1)
G-H	-2568 / 0				3.78		0 / 353	0.08 (1)
H-1	0 / 43	-112.4				L- G	-377 / 0	0.38 (1)
R-B	-2265 / 0·	0.0			6.81		-320 / 4	0.12 (1)
J- H	-2265 / 0			0.15 (1)			0 / 2210	0.50 (1)
		0.0	0.0	51.15 (1)	0.01		0 / 2211	0.50 (1)
R-Q	0/0	-18.5	-18.5	0.12 (4)	10.00		0,2211	0.50 (1)
Q-P	0 / 2169			0.41 (1)				
P- 0	0 / 1891			0.37 (1)				
0- N	0 / 1891							
				0.37 (1)				
N- M	0 / 1891			0.37 (1)				
M- L	0 / 1891			0.37 (1)				
L-K	0 / 2170	-18.5	-18.5	0.41(1)	10.00			
K-J	0/0	-18.5	-18.5	0.12 (4)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOAI	DS:		
OP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
3OT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
$\Gamma \cap T \Delta$	1 10	ΔD	_	450	DOE

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 150 lb [M][F]

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.11")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.19")

CSI: TC=0.55/1.00 (G-H:1) , BC=0.41/1.00 (K-L:1) , WB=0.50/1.00 (H-K:1) , SSI=0.31/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.86 (Q) (INPUT = 0.90) JSI METAL= 0.53 (M) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTIT **BAYVIEW WELLINGTON** DRWG NO. 423673 T49 TRUSS DESC Tamarack Roof Truss, Burlingtor Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:40 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-jFnKpA_PqOY?wVS1Nq6EuGW2V?My?89t3YpCXEz_8Qz 1-3-8 12-3-10 8-3-12 12-3-10 5x6 \\ 2x4 || 5x6 // 8.00 12 F G 348/ 3x8 < Н D 4x4 // 4x4 > 5x8 = 5x8 =W2 R1 W2 鬟 R N s ۵ 0 М 3x8 || 3x8 =3x8 = 3x8 || 5x6 = 4x4 = 4x6 = 4x4 = 5x6 =32-11-0 1-3-8 32-11-0 1-3-8 LUMBER
N. L. G. A. RULES
CHORDS SIZE
A - D 2x4
D - E 2x4
E - G 2x4
G - H 2x4
H - K 2x4 TOTAL WEIGHT = 157 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER DESIGN CRITERIA BEARINGS FACTORED LUMBER SPF No.2 MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS DRY DRY DRY GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ UPLIFT BRG IN-SX BRG IN-SX No 2 SPE LL = DL = PSF PSF CH. SPF 6.0 No.2 2309 2309 5-8 5-8 BOT CH. LL 0.0 7.4 DRY No.2 SPF 2309 5-8 5-8 DL TOTAL LOAD SPF SPF SPF В 2x6 DRY No.2 No.2 45.9 PSF 2x6 J R UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW 2x4 DRY No.2 SPACING = IN. C/C <u>24.0</u> N DRY ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND SPF DEAD SOIL 1616 1158 / 0 0/0 0/0 0/0 458 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE ALL WEBS 2x3 DRY No.2 SPE 1158/0 EXCEPT BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T. L THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 DRY: SEASONED LUMBER TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.52 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) PLATES (table is in inches) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. LEN TYPE TMVW-p PLATES MT20 Х CSA 086-14 8.0 Edge 2.00 1.50 TMWW-t END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD 3.0 8.0 TTWW+m MT20 5.0 6.0 Edge 1.75 THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW 2.0 5.0 3.0 TMW+w MT20 LOADING TOTAL LOAD CASES: (4) TTWW+m 6.0 8.0 Edge 1.75 ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL)= L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL)= L/999 (0.18") TS-t MT20 4.0 8.0 2.00 1.50 Edge TMWW-t MT20 TMVW-p BMV1+p MT20 MT20 CHORDS 3.0 8.0 Edge BMWW-t MT20 5.0 6.0 2.50 2.50 BS-t BMWW-t MT20 CSI: TC=0.73/1.00 (I-J:1) , BC=0.43/1.00 (M-O:1) MT20 4.0 4.0 WB=0.73/1.00 (I-O:1) , SSI=0.28/1.00 (I-J:1) RMWWW-t MT20 40 6.0 BMWW-t BS-t MT20 MT20 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 BMWW-t MT20 5.0 6.0 2.50 2.50 BMV1+p COMPANION LIVE LOAD FACTOR = 1.00 Edge - INDICATES REFERENCE CORNER OF PLATE AUTOSOLVE HEELS OFF TOUCHES EDGE OF CHORD. TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. NOTES- (1) NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

PROFESSIONAL ENGLAND O7-08-22 100009024 POLITICE OF ONT ARIO

Structural component only DWG# T-2216665

j	υп	0403				W E	85	
	MAX	. FACTORED	FACTORED				MAX. FACTO	ORED
	MEMB.	FORCE	VERT. LOAD L	.C1 MAX	MAX.	MEMB.	FORCE	MAX
		(LBS)	(PLF)	CSI (LC)	UNBRA()	(LBS)	CSI (LC)
	FR-TO		FROM TO		LENGTH	FR-TO		
	A-B		-112.4 -112					0.12(1)
		-2584 / 0						0.73(1)
		-2196 / 0	-112.4 -112	.4 0.66 (1)	3.85	Q-E	0 / 443	0.10(1)
		-2196 / 0	-112.4 -112	.4 0.66 (1)	3.85	E- P	0 / 341	0.08(1)
	E-F		-112.4 -112			P-F	-561 / 0	0.34(1)
	F-G	-1929 / 0	-112.4 -112	.4 0.28 (1	4.58	P-G	0/340	0.08(1)
	G-H	-2196 / 0	-112.4 -112	.4 0.66 (1	3.85	0- G	0 / 443	0.10(1)
	H- I		-112.4 -112			O- I	-530 / 0	0.73(1)
	I- J	-2585 / 0				M- I	-251 / 40	0.12(1)
		0 / 43		.4 0.15 (1	10.00	B-S	0 / 2221	0.50(1)
	T-B	-2261 / 0		.0 0.15 (1		M- J	0 / 2221	0.50(1)
_	L-J	-2261 / 0	0.0	.0 0.15 (1	6.81			
	T-S		-18.5 -18					
	S-R	0 / 2188		5 0.43 (1				
	R-Q	0 / 2188		1.5 0.43 (1				
	Q-P	0 / 1791		1.5 0.34 (1				
	P- 0	0 / 1791		1.5 0.34 (1				
	O- N	0 / 2189		1.5 0.43 (1				
	N- M	0 / 2189		1.5 0.43 (1				
	M-L	0/0	-18.5 -18	1.5 0.17 (4	10.00			

JSI GRIP= 0.84 (S) (INPUT = 0.90) JSI METAL= 0.71 (R) (INPUT = 1.00)

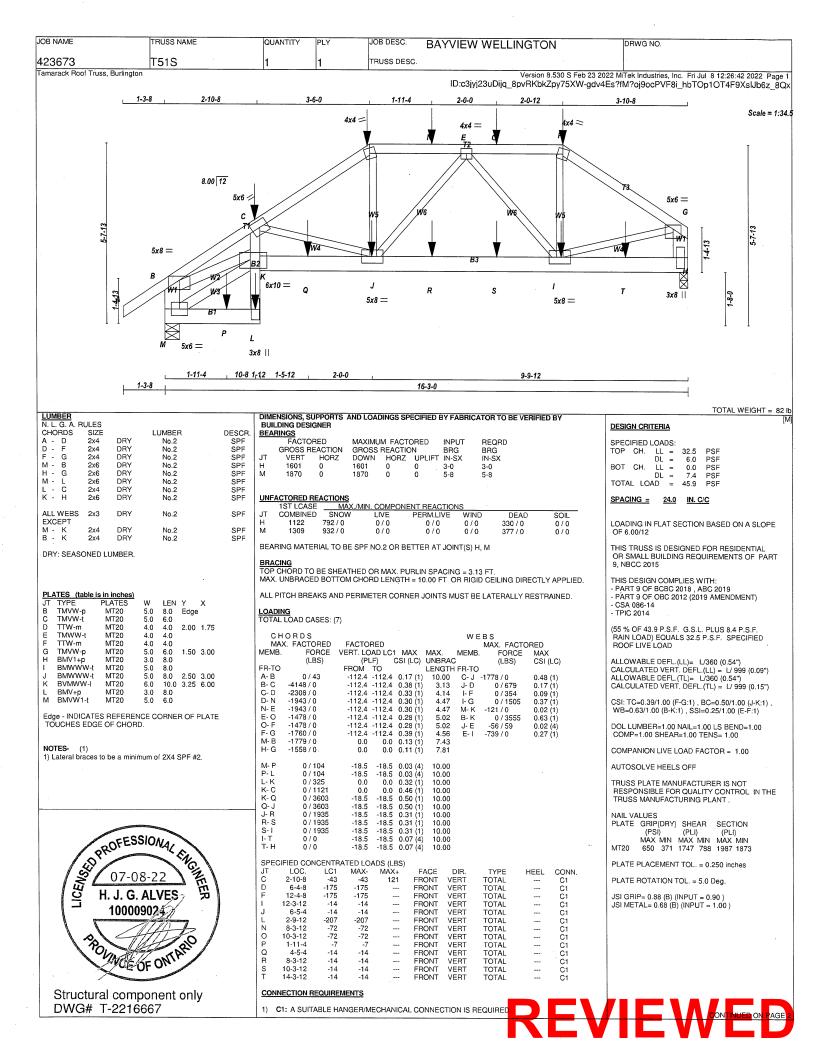
(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg.

REVIEW

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423673 T50 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 12:26:41 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-CRLi0W?1bigsXf1DxXdTRU2lkPhvkee0lCYl3gz_8Qy 1-3-8 13-9-10 1-3-8 Scale = 1:70.5 5x8 = 8.00 12 G 4x4 / 444 N Н 3x8 / 3x8 < 5x6 / 5x6 < W5 W5 3x4 || 3x4 || κ L **B**1 s Q М 4x4 = 4x4 =3x8 = 5x6 4x10 =4x4 =5x6 =32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 171 II DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER MILE N. L. G. A. RULES CHORDS SIZE **DESIGN CRITERIA** LUMBER DESCR SIZE BEARINGS FACTORED A -D -F -G -SPF SPF SPF MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLII INPUT D F 2x4 DRY No.2 REQRD SPECIFIED LOADS: DRY DRY GROSS REACTION VERT HORZ BRG BRG PSF CH. LL = DL = 32.5 Ġ No.2 UPLIFT IN-SX 6.0 IN-SX PSF 2x4 DRY No.2 SPF 2309 0 2309 5-8 5-8 5-8 2x4 DRY No 2 SPF SPF DL PSF TOTAL LOAD 45 9 DRY SPF M -T -K R 2x6 No.2 UNFACTORED REACTIONS

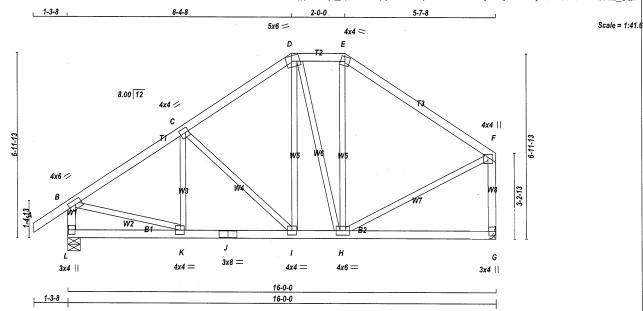
1ST LCASE MAX/MIN. COMPONENT REACTIONS 2×4 DRY No 2 SPE SPACING = 24.0 IN. C/C DRY SPF SNOW COMBINED No.2 LIVE PERM.LIVE WIND DEAD SOIL 1158 / 0 0/0 0/0 458 / 0 LOADING IN FLAT SECTION BASED ON A SLOPE ALL WEBS 2x3 DRY SPF 458 / 0 0/0 OF 6.00/12 **EXCEPT** Q -Q -P -T -DRY SPF 2x4 No.2 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T. M. THIS TRUSS IS DESIGNED FOR RESIDENTIAL GGC SPF SPF SPF 2x4 DRY OR SMALL BUILDING REQUIREMENTS OF PART 9 NBCC 2015 TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.09 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 2x4 DRY No.2 М 2×4 DRY THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019 DRY: SEASONED LUMBER ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. PART 9 OF OBC 2012 (2019 AMENDMENT) 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-Q, H-P, C-T, J-M. TPIC 2014 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 ROOF LIVE LOAD ВС 4.0 LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL) = L/360 (1.10") CALCULATED VERT. DEFL.(LL) = L/999 (0.10") ALLOWABLE DEFL.(TL) = L/360 (1.10") CALCULATED VERT. DEFL.(TL) = L/999 (0.19") TMWW-t MT20 6.0 2.50 1.75 TS-t TMWW-t 3.0 MT20 4.0 CHORDS WEBS FACTORED
VERT. LOAD LC1 MAX
(PLF) CSI (LC)
FROM TO 2.00 1.75 2.00 3.00 MAX. FACTORED FORCE TTW-m MT20 4.0 4.0 MAX. FACTORED 5.0 TTWW-m MEMB FORCE MAX TMWW-t CSI (LC) CSI: TC=0.45/1.00 (F-G:1) , BC=0.45/1.00 (M-N:1) , WB=0.52/1.00 (J-M:1) , SSI=0.23/1.00 (F-G:1) 4.0 (LBS) UNBRAC (LBS) CSI (LC) LENGTH TS-t MT20 3.0 8.0 FR-TO -112.4 -112.4 0.15 (1) -112.4 -112.4 0.30 (1) -112.4 -112.4 0.34 (1) TMWW-t MT20 2.50 1.75 0.02(1) J K M TMV+p BMVW1-t 0 / 207 -609 / 0 0 / 619 0 / 1 0.05 (1) 0.31 (1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 0/2610.00 S-E E-Q Q-F Q-G MT20 5.0 6.0 2.50 2.75 -2481 / 0 4.09 D- E E- F F- G -2481 / 0 -2044 / 0 -112.4 -112.4 -112.4 -112.4 0.34 0.10 (1) BMWW-t MT20 0.32 0.00 (1) COMPANION LIVE LOAD FACTOR = 1.00 0.10 (1) BS-t MT20 3.0 8.0 -1683 / 0 -112.4 -112.4 0.45 4.61 P-G 0/618 G- H H- I -112.4 -112.4 -112.4 -112.4 0.32 4.44 P- H H- N BMWWW-I MT20 4.0 10.0 -2043 / 0 -611/0 AUTOSOLVE HEELS OFF 0 / 209 0.05 (1 BMVW1-t 2.50 2.75 5.0 6.0 -2482 / 0 -112.4 -112.4 0.34 4 09 N-J -62 / 45 0.02 (1 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE 0 / 26 0 / 43 -112.4 -112.4 -112.4 -112.4 0.30 10.00 -2823 / 0 -2824 / 0 0.52 (1) 0.52 (1) J- K K- L T- B M- K TRUSS MANUFACTURING PLANT NOTES- (1) -365/00.0 0.0 0.02 0.02 (1) -365 / 0 0.0 0.0 PLATE GRIP(DRY) SHEAR SECTION -18.5 -18.5 -18.5 -18.5 -18.5 0 / 2096 (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PROFESSIONAL ENGINEER


07-08-22

H. J. G. ALVES -18.5 0.45(1)10.00 -18.5 -18.5 -18.5 0.43 (1) 0.43 (1) 0.34 (1) 10.00 10.00 S-R 0 / 2004 R- Q Q- P P- O 0 / 2004 0 / 1683 10.00 0 / 2004 -18.5 0.43 (1) 10.00 PLATE PLACEMENT TOL. = 0.250 inches O- N N- M 0.43 (1) 0.45 (1) 0 / 2004 PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.89 (M) (INPUT = 0.90 JSI METAL= 0.65 (O) (INPUT = 1.00) 100009024 SOUNCE OF ONT ARIO

Structural component only

DWG# T-2216666


REVIEWED

JOB NAME TRUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** DRWG NO. 423673 T52 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTrek Industries, Inc. Fri Jul 8 12:26:43 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-8qTSRC0H7JwanyBc3yfxWv8dyDSWCdxJmW1s8Zz_8Qw

ULES			
SIZE		LUMBER	DESCR.
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x3	DRY	No.2	SPF
	SIZE 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4	SIZE 2x4 DRY	SIZE LUMBER 2x4 DRY No.2

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW-t	MT20	4.0	6.0						
С	TMWW-t	MT20	4.0	4.0	2.00	1.50				
D	TTWW-m	MT20	5.0	6.0	2.25	2.25				
E	TTW-m	MT20	4.0	4.0						
F	TMVW+p	MT20	4.0	4.0	1.25	2.00				
G	BMV1+p	MT20	3.0	4.0						
Н	BMWWW-t	MT20	4.0	6.0						
1	BMWW-t	MT20	4.0	4.0						
J	BS-t	MT20	3.0	8.0						
K	BMWW-t	MT20	4.0	4.0	2.00	1.75				
L	BMV1+p	MT20	3.0	4.0						

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DEADINGS	

ΞΑ	<u>rings</u>						
	FACTOR	RED	MAXIMUN	Λ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	N .	BRG	BRG
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1202	0	1202	0	0	5-8	5-8
	1047	0	1047	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 3-8.

UNFACTORED REAC	TIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
L	840	609 / 0	0/0	0/0	0/0	231 / 0	0/0		
G	734	520 / 0	0/0	0/0	0/0	214 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.82 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS		WEBS					
IVIA	K. FACTORED	FACTORED					MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD I					FORCE	MAX
	(LBS)	(PLF)	. (CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM TO			LENGTH	FR-TO	/	(-/
A-B	0 / 43	-112.4 -112	2.4	0.15(1)	10.00	K- C	-135 / 40	0.04(1)
B- C	-1053 / 0	-112.4 -112	2.4	0.26(1)	5.82	C-1	-384 / 0	0.22 (1)
C- D	-780 / 0	-112.4 -112	2.4	0.25(1)	6.25	I- D	0 / 280	0.06 (1)
D-E	-584 / 0	-112.4 -112	2.4	0.06(1)	6.25	D- H	-154 / 0	0.14(1)
E-F	-703 / 0	-112.4 -112	2.4	0.46(1)	6.25	H- E	-37 / 52	0.03 (1)
L- B	-1169 / 0	0.0	0.0	0.12(1)	7.37	B-K	0 / 930	0.21 (1)
G-F	-1005 / 0	0.0	0.0	0.18 (1)	7.80	H-F	0 / 656	0.15 (1)
L- K	0.70	105 10	٠.	0.00 (4)	40.00			
	0/0			0.08 (4)				
K- J	0 / 901	-18.5 -18	3.5	0.18(1)	10.00			
J- l	0 / 901	-18.5 -18	3.5	0.18(1)	10.00			
I- H	0 / 626	-18.5 -18	3.5	0.18 (4)	10.00			
H- G	0/0	-18.5 -18	3.5	0.14 (4)	10.00			

DESIGN CRITERIA

SPEC	IFIED I	LOAD	OS:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	1 10	ΔD	_	150	PS

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 78 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

- THIS DESIGN COMPLIES WITH:
 PART 9 OF BCBC 2018 , ABC 2019
 PART 9 OF OBC 2012 (2019 AMENDMENT)
- TPIC 2014

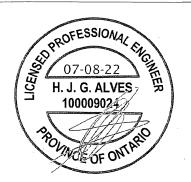
(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.53")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.53")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04")

CSI: TC=0.46/1.00 (E-F:1) , BC=0.18/1.00 (I-K:1) , WB=0.22/1.00 (C-I:1) , SSI=0.21/1.00 (E-F:1)

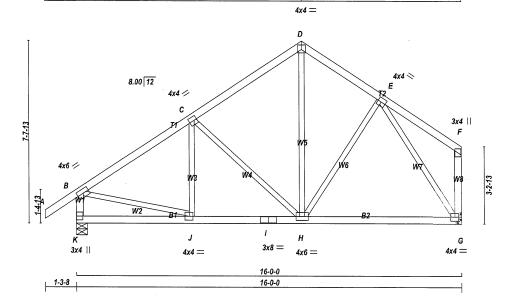
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (K) (INPUT = 0.90) JSI METAL= 0.31 (J) (INPUT = 1.00)

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423673 T53 TRUSS DESC. Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:44 2022 Page 1 Tamarack Roof Truss, Burlington ID:c3jyj23uDijq_8pvRKbkZpy75XW-c00reY1vtd2RO6mocgBA36gqodmux_cS_AnPg?z 8Qv 1-3-8

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER SIZE DESCR SPF SPF SPF D F B No.2 No.2 2×4 DRY DRY 2x4 No.2 G -K -2x4 DRY No.2 SPF SPF G DRY No.2

No.2

2x3 DRY: SEASONED LUMBER

ALL WEBS

EXCEPT

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW-t
 MT20

 C
 TMWW-t
 MT20
 LEN Y 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.00 1.50 2.25 2.00 q-WTT MT20 4.0 3.0 4.0 TMWW-t MT20 2.00 1.75 TMV+p BMVW1-t MT20 4.0 BMWWW-t MT20 4.0 BS-t BMWW-t MT20 MT20 3.0 4.0 4.0 2.00 1.75 BMV1+p MT20 3.0

DRY

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEARINGS FACTORED MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLI INPUT REQRD GROSS REACTION VERT HORZ BRG BRG HORZ UPLIFT IN-SX IN-SX 1202 1047 0 1202 MECHANICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 3-8.

UNFACTORED REACTIONS

	151 LUASE	IVIAX./IV	<u>/IIN. COMPO</u>	NENT REACTION	45			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
K	840	609 / 0	0/0	0/0	0/0	231 / 0	0/0	
G	734	520 / 0	0/0	0/0	0/0	214 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K

SPF

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.74 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS MAX. FACTORED FORCE FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBI мемв. FORCE CSI (LC) UNBRAC (LBS) (LBS) CSI (LC) FR-TO LENGTH ER-TO 0.15 (1) 0.33 (1) 0.32 (1) 0.15 (1) 0.19 (1) A- B B- C C- D D- E -112.4 -112.4 -112.4 -112.4 10.00 5.74 6.25 0 / 43 J- C C- H -121 / 37 0.04 (1) -1044 / 0 -455 / 0 0.32(1)0 / 417 0 / 49 0 / 920 -714 / 0 -702 / 0 -112.4 -112.4 H- D 0.09 (1) 6.25 10.00 -112.4 -112.4 E-F K-B -112.4 -112.4 -1162 / 0 0.12 (1) 0.0 0.0 7.39 E-G -1015/0 0.03(1) G-F -146 / 0 0.0 0.0 7.81 -18.5 -18.5 -18.5 0.09 (4) -18.5 0.24 (1) -18.5 0.24 (1) -18.5 0.20 (4) K-J 0/0 10.00 0 / 897 10.00 0 / 897

DESIGN CRITERIA

ECIFIED LOADS: LL = DL = LL = DL = AD = 32.5 PSF CH. 6.0 PSF PSF PSF TOTAL LOAD 45 9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

Scale = 1:46.2

TOTAL WEIGHT = 73 lb [M][F]

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.53")
CALCULATED VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.53") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.07")

CSI: TC=0.33/1.00 (B-C:1) , BC=0.24/1.00 (H-J:1) , WB=0.64/1.00 (E-G:1) , SSI=0.22/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

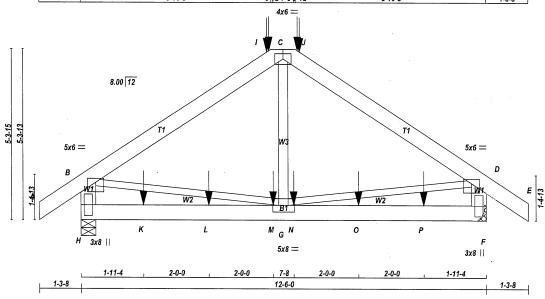
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (J) (INPUT = 0.90) JSI METAL= 0.32 (E) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTIT JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 423673 T54 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:45 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-4CaDsu2YewBl0GL_ANiPbKDyC06jgVlcDqWzCRz_8Qu 1-3-8 5-10-8 0-12 7-8 0-12 5-10-8 1-3-8 Scale = 1:34.3 4x6 =

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x6	DRY	No.2	SPF
C - E	2x6	DRY	No.2	SPF
H - B	2x6	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
H - F	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
G - C	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL/	ATES (table i	s in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Χ
В	TMVW-p	MT20	5.0	6.0	1.50	3.00
С	TTW-p	MT20	4.0	6.0		
D	TMVW-p	MT20	5.0	6.0	1.50	3.00
F	BMV1+p	MT20	3.0	8.0		
G	BMWWW-t	MT20	5.0	8.0		
Н	BMV1+p	MT20	3.0	8.0		

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

				AND LOAD	INGS SP	ECIFIED E	BY FABRICA	TOR TO BE VERIFIED BY
	BUIL	DING DESI	GNER					
DESCR.	BEAF	RINGS						
SPF		FACTO	RED	MAXIMU	Λ FACTO	RED	INPUT	REQRD
SPF		GROSS RI	EACTION	GROSS F	REACTIO	N	BRG	BRG
SPF	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
SPF	Н	1776	0	1776	0	0	5-8	5-8
SPF	F	1769	0	1769	0	0	MECHANIC	CAL

SEAF	RINGS						
	FACTORED		MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	GROSS REACTION			BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
┥	1776	0	1776	0	0	5-8	5-8
=	1769	0	1769	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 3-8.

UNFACTORED REACTIONS 1ST LCASE MAX./MIN. COMPONENT REACTIONS

JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
Н	1242	897 / 0	0/0	0/0	0/0	344 / 0	0/0	
F	1237	893 / 0	0/0	0/0	0/0	344 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.47 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CH	ORDS				W E	BS		
MAX	. FACTORED	FACTORED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO	. ,	, ,	
A-B	0 / 44	-112.4 -112.4	0.09(1)	10.00	B- G	0 / 1427	0.35(1)	
B-I	-1530 / 0	-112.4 -112.4	0.54(1)	5.47	G-D	0 / 1427	0.35 (1)	
I- C		-112.4 -112.4			G-C	-118 / 225	0.06 (4)	
C- J	-1526 / 0	-112.4 -112.4	0.53(1)	5.52				
J- D	-1526 / 0	-112.4 -112.4	0.53(1)	5.52				
	0 / 44	-112.4 -112.4	0.09(1)	10.00				
	-1697 / 0	0.0 0.0	0.12 (1)	7.57				
F- D	-1690 / 0	0.0 0.0	0.12 (1)	7.58				
H-K	0/0	-18.5 -18.5						
K-L	0/0	-18.5 -18.5						
L- M	0/0	-18.5 -18.5						
M- G	0/0	-18.5 -18.5						
G-N	0/0	-18.5 -18.5						
N- O	0/0		0.20 (4)					
O- P	0/0		0.20 (4)					
P- F	0/0	-18.5 -18.5	0.20 (4)	10.00				

O- P	0/0)	-18.5	-18.5 0.2	(0 (4) 10.	.00			
P-F	0/0)	-18.5	-18.5 0.2	0 (4) 10	.00			
					- ()				
SPE	CIFIED CON	CENTRA	TED LOA	DS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
1	5-10-8	-295	-295		BACK	VERT	TOTAL		C1
i	5-11-4	-175	-175		BACK	VERT	TOTAL		C1
J	6-6-12	-176	-176		BACK	VERT	TOTAL		C1
J	6-7-8	-295	-295		BACK	VERT	TOTAL		C1
K	1-11-4	-29	-29		BACK	VERT	TOTAL	***	C1
L	3-11-4	-29	-29		BACK	VERT	TOTAL		C1
M	5-11-4	-29	-29		BACK	VERT	TOTAL		C1
N	6-6-12	-29	-29		BACK	VERT	TOTAL		C1
0	8-6-12	-29	-29		BACK	VERT	TOTAL		C1
Ρ	10-6-12	-29	-29		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	SPECIFIED LOADS:								
TOP	CH.	LL	=	32.5	PSF				
		DL	=	6.0	PSF				
BOT	CH.	LL	=	0.0	PSF				
		DL	=	7.4	PSF				
TOTA	L LO	AD	=	45.9	PSF				

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

TOTAL WEIGHT = 72 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.42") .
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.42") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.04")

CSI: TC=0.54/1.00 (B-C:1) , BC=0.20/1.00 (G-H:4) , WB=0.35/1.00 (B-G:1) , SSI=0.55/1.00 (C-D:1)

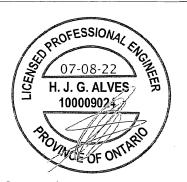
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES


PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (G) (INPUT = 0.90) JSI METAL= 0.36 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTIT JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423673 T56 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:46 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-YP8b3D3APEJ9eQwBk5De8XmDoQSEPzglSUGWktz_8Qt 1-3-8 6-3-0 4x4 =Scale = 1:34.7 D 8.00 12 4x4 // 4x4 < E 3x4 || 3x4 || R G 1-4-13

LUMBER N. I N. L. G. A. RULES CHORDS SIZE LUMBER DESCR. SPF D G B F DRY A -D -2x4 No.2 SPF SPF SPF DRY DRY DRY 2×4 No 2 No.2 J - H 2x4 DRY No.2 SPF ALL WEBS 2x3 DRY SPF No.2 EXCEPT

DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 C
 TMWW-t
 MT20
 LEN 3.0 4.0 4.0 4.0 4.0 4.0 TTW-p TMWW-t 4.0 MT20 2.25 2.00 q+VMT MT20 3.0 4.0 4.0 BMVW1-t MT20 BMWWW-t BMVW1-t MT20 4.0 4.0

1) Lateral braces to be a minimum of 2X4 SPF #2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

B1 1

4y10 =

12-6-0 12-6-0

BEARINGS FACTORED MAXIMUM FACTORED INPUT REQRD GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX BRG IN-SX 0 973 0 5-8 ō 973 ŏ Õ MECHANICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8

UNFACTORED REACTIONS

AND MANY /MIN COMPONENT REACTIONS

	131 LUASE		IIIA. COMPO	MEINT MEACHOL	40			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
J	679	495 / 0	0/0	0/0	0/0	184 / 0	0/0	
Н	679	495 / 0	0/0	0/0	0/0	184 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

H

4Y4

<u>BRACING</u> TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS MAX. FACTORED MAX. FACTORED **FACTORED** VERT. LOAD LC1 MAX MAX. (PLF) CSI (LC) UNBF FROM TO LENG -112.4 -112.4 0.15 (1) 10.0 MEMB. FORCE MEMB FORCE MAX CSI (LC) UNBRAC LENGTH FR-TO CSI (LC) (LBS) C- I I- D I- E J- C E- H A- B B- C C- D D- E E- F 0 / 43 10.00 -179 / 0 0.06(1) -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.13 (1) 0.13 (1) 0.13 (1) 0.13 (1) 0 / 395 -179 / 0 -895 / 0 0.09 (1) 0/22 10.00 6.25 6.25 -626 / 0 0.28 (1 0 / 22 0 / 43 -112.4 -112.4 -112.4 -112.4 0.17 (1) 0.15 (1) 10.00 F- G J- B -290 / 0 0.0 0.0 0.03(1) 0.0 0.03 (1) H-F -290 / 0 0.0 7.81 0 / 629 -18.5 -18.5 0.25 (4) -18.5 -18.5 0.25 (4) 10.00 I- H

DESIGN CRITERIA

1-3-8

Н

4y4 =

SPECIFIED LOADS: CH. LL = DL = 6.0 PSF BOT CH. LL 0.0 7.4 PSF = TOTAL LOAD 45.9 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 55 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.42")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.42") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.04")

CSI: TC=0.17/1.00 (E-F:1), BC=0.25/1.00 (H-I:4), WB=0.28/1.00 (E-H:1), SSI=0.14/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

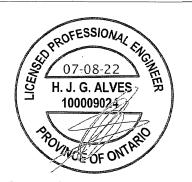

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 MT20

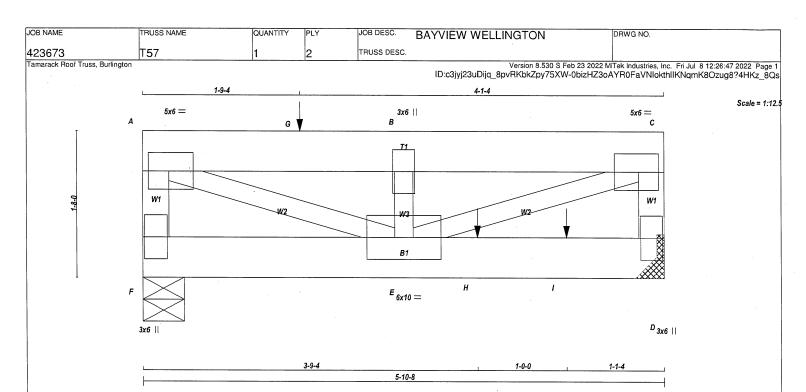

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

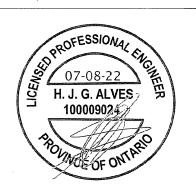
JSI GRIP= 0.76 (E) (INPUT = 0.90) JSI METAL= 0.29 (E) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
F - A	2x4	DRY	No.2	SPF
A - C	2x6	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEAS	ONED L	UMBER.		

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)							
		SPACING (IN)								
TOP CH	TOP CHORDS : (0.122"X3") SPIRAL NAILS									
F- A	1	12	TOP							
C- D	1	12	TOP							
A- C	2	12	TOP							
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS								
F- D	2	12	SIDE(14.0)							
WEBS:	(0.122"X3")	SPIRAL NAILS								
2x3	· 1	6								

NAILS TO BE DRIVEN FROM ONE SIDE ONLY


GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PLA	TES	(table	is	in	inc	hes)	į
	TD (D.E.						

JT	TYPE TMVW-t TMW+w TMVW-t	PLATES	w	LEN	Υ	Х		
Α	TMVW-t	MT20	5.0	6.0	2.50	2.75		
В	TMW+w	MT20	3.0	6.0				
С	TMVW-t	MT20	5.0	6.0	2.50	2.75		
n	DMM/1 . n	MTON	2.0	0.0				

Structural component only DWG# T-2216672

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
REARINGS	

BEAF	RINGS							
	FACTOR	RED	MAXIMUM FACTORED			INPUT	REQRD	
	GROSS RE	EACTION	GROSS REACTION			BRG	BRG	
IT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX	
=	2050	0	2050	0	0	5-8	5-8	
)	2360	0	2360	0	0	MECHANIC	CAL	

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	131 LUASE	LUASE WAX./WIN. COMPONENT REACTIONS								
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
F	1444	983 / 0	0/0	0/0	0/0	461 / 0	0/0			
D	1655	1166 / 0	0/0	0/0	0/0	489 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.66 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHOBDE

CH	ORDS				WEBS							
MAX	. FACTORED	FACTORED		MAX. FACTORED								
MEMB.	FORCE	VERT. LO.	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX				
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)				
FR-TO		FROM	TO		LENGTH	FR-TO						
F- A	-1995 / 0	0.0	0.0	0.11(1)	7.80	A- E	0 / 3277	0.41(1)				
A- G	-3031 / 0	-112.4	-112.4	0.44(1)	5.66	E- B	-1243 / 0	0.10(1)				
G-B	-3031 / 0	-112.4	-112.4	0.44(1)	5.66	E- C	0 / 3277	0.41(1)				
B- C	-3031 / 0	-112.4	-112.4	0.05 (1)	6.25							
D- C	-1404 / 0	0.0	0.0	0.08 (1)	7.81							
F-E	. 0/0	-43.5	-43.5	0.02 (4)	10.00							
E- H	0/0	-43.5	-43.5	0.38 (1)	10.00							
H- I	0/0	-18.5	-18.5	0.38 (1)	10.00							
I- D	0/0	-18.5	-18.5	0.38 (1)	10.00							
SPECIE	SPECIFIED CONCENTRATED LOADS (LRS)											

JI	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL,	CONN.
G	1-9-4	-1045	-1045		TOP .	VERT	TOTAL		C1
Н	3-9-4	-719	-719		BACK	VERT	TOTAL		C1
ł	4-9-4	-719	-719		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER. LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

TOTAL WEIGHT = 2 X 28 = 55 lb

SPECIFIED LOADS:

OADS LL = SL DL = 6.0 L = 0.0 7.4 5 9 CH. PSF BOT CH. PSF TOTAL LOAD PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

** NON STANDARD GIRDER *** ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.05")

CSI: TC=0.44/1.00 (A-B:1) , BC=0.38/1.00 (D-E:1) , WB=0.41/1.00 (A-E:1) , SSI=0.39/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

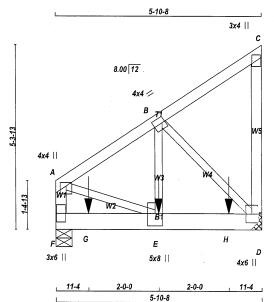
NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (C) (INPUT = 0.90) JSI METAL= 0.34 (C) (INPUT = 1.00)



OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
23673	T57	1	2	TRUSS DESC.		
amarack Roof Truss, Burling	gton			·	Version 8.530 S Feb 23 2022 ID:c3jyj23uDijq 8pvRKbkZpy75XW-0bizHZ3	2 MiTek Industries, Inc. Fri Jul 8 12:26:47 2022 Page 2 BoAYR0FaVNlokthIIKNqmK8Ozug8?4HKz 8Qs
PLATES (table is in inches JT TYPE PLATES E BMWWW-t MT20 F BMV1+p MT20	W LEN Y X 6.0 10.0 3.0 6.0					
NOTES- (1) 1) Lateral braces to be a min	nimum of 2X4 SPF #2.					
				*.		•
		-				
						•
UD PROFE	OS-22 G. ALVES					
H. J. C.	08-22 G. ALVES ₂ 第					
1						
Pound	OF ONTARIO					
Structural cor DWG# T-22						
DVVG# 1-22	10072				KEV	ILWLD

JOB DESC. JOB NAME RUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 423673 T58 TRUSS DESC

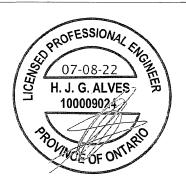
Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:48 2022 Page 1 ID:c3jyj23uDija_8pvRKbkZpy75XW-UnGLUv4QxrZttj4ZrVF6DyrafE7lttO2vnldpmz_8Qr

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER SPF SPF SPF SPF A C C DRY 2x4 No.2 DRY D 2x6 DRY No.2 ALL WEBS 2x3 DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE SPACING (IN) LOAD(PLF) TOP CHORDS: (0.122"X3") SPIRAL NAILS F- A A- C C- D 12 TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(183.1) WEBS: (0.122"X3") SPIRAL NAILS SIDE(273.6)


NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.
REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL	ATES (table	is in inches)				
ĴΤ	TYPE	PLATES	W	LEN	Υ	Χ
Α	TMVW+p	MT20	4.0	4.0	1.25	2.00
В	TMWW-t	MT20	4.0	4.0	2.00	1.00
С	q+VMT	MT20	3.0	4.0		

Structural component only DWG# T-2216673

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DEADINGS	

EΑ	RINGS						
	FACTOR	RED	MAXIMUI	M FACTO	ORED	INPUT	REQRD
	GROSS RE	EACTION	GROSS REACTION			BRG	BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1723	0	1723	0	0	5-8	5-8
)	2121	0	2121	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

ı	151 LUASE	<u> </u>	VIIN. COMPO	NENT REACTION	45		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	1200	895 / 0	0/0	0/0	0/0	305 / 0	0/0
D	1480	1087 / 0	0/0	0/0	0/0	392 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

H- D

0 / 1332

CHORDS				WEBS				
MAX	K. FACTORED	FACTORED	MAX. FACTORED					
MEMB.	FORCE	VERT. LOAD LO	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO			
F- A	-1472 / 0	0.0 0.0	0.08(1)	7.81	A-E	0 / 1406	0.17(1)	
A- B	-1582 / 0	-112.4 -112.4	4 0.08 (1)	6.25	E-B	0 / 1832	0.23(1)	
B- C	-18 / 0	-112.4 -112.4	4 0.07 (1)	6.25	B- D	-1889 / 0	0.27 (1)	
D- C	-133 / 0	0.0 0.0	0.03 (1)	7.81			. ,	
F- G	0/0	-18.5 -18.5	5 0.08 (1)	10.00				
G-E	0/0	-18.5 -18.5	5 0.08 (1)	10.00				
E- H	0 / 1332	-18.5 -18.5	5 0.31 (1)	10.00				

-18.5 -18.5 0.31 (1) 10.00

SPE	CIFIED COI	NCENTRA	ATED LOA	ADS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
E	2-11-4	-1222	-1222		FRONT	VERT	TOTAL		C1
G	11-4	-254	-254		TOP	VERT	TOTAL		C1
LI	4 4 4 4	CCE	CCE		EDONIT	VEDT	TOTAL		0.4

CONNECTION REQUIREMENTS C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. TOTAL WEIGHT = 2 X 32 = 64 lb

Scale: 3/8"=1

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 32.5 CH. PSF 6.0 PSF BOT CH 0.0 7.4 PSF PSF TOTAL LOAD 45.9 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.02")

CSI: TC=0.08/1.00 (A-F:1), BC=0.31/1.00 (D-E:1), WB=0.27/1.00 (B-D:1), SSI=0.22/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

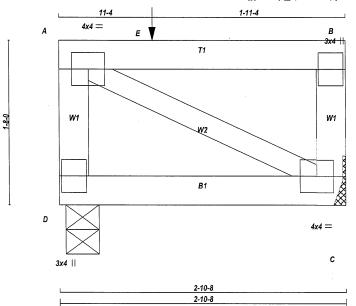
NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.77 (B) (INPUT = 0.90) JSI METAL= 0.30 (D) (INPUT = 1.00)



OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
123673 amarack Roof Truss, Burlingto	T58	1	2	TRUSS DESC.	V	
amarack Roof Huss, builingto	on				Version 8.530 S Feb 23 2022 ID:c3jyj23uDijq 8pvRKbkZpy75XW-UnG	MiTek Industries, Inc. Fri Jul 8 12:26:48 2022 Page 2 LUv4QxrZttj4ZrVF6DyrafE7lttO2vnldpmz 8Qr
PLATES (table is in inches) JT TYPE PLATES D BMVW1+p MT20 E BMWW+t MT20 F BMV1+p MT20	W LEN Y X 4.0 6.0 5.0 8.0 4.25 2.50 3.0 6.0					·
NOTES- (1) 1) Lateral braces to be a minit	mum of 2X4 SPF #2.					
	,					·
						:
						٠.
ROFES	SSIONALS					
	OSIONAL ENGINE OS-22 ALVES SO 09024			*.		
POLINGE	OF ONTARIO					
Structural com DWG# T-221	ponent only 6673				DEV/	IEWED

JOB NAME TRUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** PLY DRWG NO. 423673 T59 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:49 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-z_qkiF52i9hjVtemPDmLmANjheXucOoB8RUALCz_8Qq

TOTAL WEIGHT = 2 X 11 = 22 II

Scale = 1:11.

LUMBER				
N. L. G. A. P	HIES			
CHORDS	SIZE		LUMBER	DESCR.
D - A	2x4	DRY	No.2	SPF
A - B	2x4	DRY	No.2	SPF
С - В	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEAS	ONEDI	IMBER		-

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS	#ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CHO	DRDS: (0.1	22"X3") SPIRAL NAILS	
D- A	1	12	TOP
A-B	1	12	TOP
B- C	1	12	TOP
BOTTOM	CHORDS	: (0.122"X3") SPIRAL NAILS	
D- C	1	12	SIDE(14.0)
WEBS: (0.122"X3")	SPIRAL NAILS	
242	· .	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PLATES	(table	<u>ıs ın</u>	inches)
JT TYP	F	PI.	ATES

TYPE	PLATES	W	LEN Y	Х
TMVW-t	MT20	4.0	4.0	
TMV+p	MT20	3.0	4.0	
BMVW1-t	MT20	4.0	4.0	
BMV1+p	MT20	3.0	4.0	
E	TMVW-t TMV+p BMVW1-t	TMVW-t MT20 TMV+p MT20 BMVW1-t MT20	TMVW-t MT20 4.0 TMV+p MT20 3.0 BMVW1-t MT20 4.0	TMVW-t MT20 4.0 4.0 FMV+p MT20 3.0 4.0 BMVW1-t MT20 4.0 4.0

NOTES-(1) 1)

Structural component only DWG# T-2216674

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
DINILIAGIONO, GOFFORTS	AND LOADINGS SELCIFIED BY LADRICATION TO BE VERIFIED BY
BUILDING DESIGNER	
DUILDING DESIGNER	
DEADINGS	

BEA	RINGS						
	FACTO	RED	MAXIMUN	I FACTO	DRED	INPUT	REQRD
	GROSS RI	EACTION	GROSS REACTION			BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
)	389	0	389	0	0	4-0	4-0
0	304	0	304	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	1S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	· DEAD	SOIL
D	275	182 / 0	0/0	0/0	0/0	93 / 0	0/0
С	216	136 / 0	0/0	0/0	0/0	80 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

СНО			555			W E			
	FACTORED						MAX. FACT		
MEMB.	FORCE	VERT. LC	OAD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PI	_F) (CSI (LC)	UNBRAG	0	(LBS)	CSI (L	_C)
FR-TO		FROM	ΤΌ		LENGTH	FR-TO	` '	,	,
D- A	-327 / 0	0.0	0.0	0.02(1)	7.81	A- C	0/0	0.00 ((1)
A-E	0/0	-112,4	-112.4	0.19(1)	10.00		•		
E-B	0/0	-112.4	-112.4	0.19 (1)	10.00				
C-B	-242 / 0	0.0	0.0	0.01 (1)	7.81				
D- C	0/0	-43.5	-43.5	0.06 (4)	10.00				
SPECIFIE	SPECIFIED CONCENTRATED LOADS (LBS)								
	LOC. LO		MÀX-		ACE	DIR.	TYPE	HEEL	CONN.
E	11-4 -17		-	- то		ERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER. LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS:

TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	ΔD	_	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

*** NON STANDARD GIRDER ***
ADDT'L USER-DEFINED LOADS APPLIED TO ALL
LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.19/1.00 (A-B:1) , BC=0.06/1.00 (C-D:4) , WB=0.00/1.00 (A-C:1) , SSI=0.14/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.09 (A) (INPUT = 0.90) JSI METAL= 0.02 (A) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423667 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:54:20 2022 Page 1 ID:Wf1py42Pek5E0xRWzZrcVUzyU_V-X1ZwepVWiK7GAM9AkOIIGA9fR_J7SuwJzitXSqz_8vH 9-7-0 4x4 =Scale = 1:34.8 Ε 2x4 || 2x4 || 6.00 12 F D 2x4 || 2x4 || 2x4 || 2x4 || В М ٥ P 0 N 3x8 =3x4 / 2x4 || 2x4 || 2x4 || 2x4 || 2x4 || 2x4 || 3x4 > 2x4 || 19-2-0 <u>0</u>18 TOTAL WEIGHT = 59 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER **DESIGN CRITERIA** SIZE LUMBER DESCR **BEARINGS** A - E 2x4 DRY No.2 SPF FACTORED MAXIMUM FACTORED INPLIT REQRD SPECIFIED LOADS: DRY DRY SPF GROSS REACTION DOWN HORZ U BRG BRG TOP CH. 32.5 LL = DL = HORZ UPLIFT IN-SX IN-SX 6.0 0.0 7.4 PSF 2x4 DRY No.2 SPF 164 164 19-1-0 (5-1-4 19-1-0 BOT CH. PSF PSF LL DL 164 297 164 297 19-1-0 (5-1-4)19-1-0 19-1-0 (5-1-4)19-1-0 ALL WEBS SPF TOTAL LOAD 45.9 PSF 19-1-0 (5-1-4)9-1-0 19-1-0 (5-1-4)9-1-0 19-1-0 (5-1-4)9-1-0 19-1-0 (5-1-4)9-1-0 DRY: SEASONED LUMBER. 313 313 175 175 449 SPACING = 24.0 IN. C/C 313 313 THIS TRUSS IS DESIGNED FOR RESIDENTIAL 175 175 OR SMALL BUILDING REQUIREMENTS OF PART 19-1-0 (5-1-4)9-1-0 PLATES (table is in inches) 9. NBCC 2015 TYPE TBM1-h THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) 3.0 MT20 4.0 VALUE IN PARENTHESIS INDICATES EFFECTIVE BEARING LENGTH C, D, F, G, H TMW+w TTW-p MT20 4.0 4.0 UNFACTORED REACTIONS 4.0 1ST LCASE COMBINED MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND TBM1-h MT20 3.0 , M, N, O, P, Q BMW1+w LIVE 0/0 MT20 4.0 115 82/0 0/0 0/0 32 / 0 0/0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F 0/0 0/0 0/0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD BS-t MT20 3.0 8.0 115 82/0 32/0 NOP 0/0 65 / 0 158 / 0 219 0/0 0/0 61 / 0 0/0 0/0 0/0 0/0 NOTES-(1) 122 86 / 0 0/0 0/0 37/0 315 219 0/0 1) Lateral braces to be a minimum of 2X4 SPF #2. Q M 222 / 0 CSI: TC=0.14/1.00 (B-S:1) , BC=0.11/1.00 (Q-R:1) , 158 / 0 0/0 61 / 0 WB=0.09/1.00 (E-N:1) , SSI=0.13/1.00 (B-S:1) 122 86 / 0 0/0 0/0 0/0 37 / 0 222 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, I, N, O, P, Q, M, L, J COMPANION LIVE LOAD FACTOR = 1.00 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. TRUSS MANUFACTURING PLANT LOADING TOTAL LOAD CASES: (4) PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 CHORDS WEBS MAX. FACTORED **FACTORED** MAX. FACTORED MT20 MEMB. VERT. LOAD LC1 MAX (PLF) CSI (LC) FORCE MAX MEMB FORCE MAX (LBS) CSI (LC) UNBRAC PLATE PLACEMENT TOL. = 0.250 inches FROM TO -112.4 -112.4 0.06 (1) -112.4 -112.4 0.14 (1) FR-TO 0 / 51 A-S S-B 10.00 N-E -265/00.09(1)PLATE ROTATION TOL. = 5.0 Deg O- D P- C 0.06 (1) 0.03 (1) 0 / 88 10.00 -266 / 0 0 / 67 0 / 93 -112.4 -112.4 0.13 -112.4 -112.4 0.09 B-CDE-FGHU JSI GRIP= 0.39 (E) (INPUT = 0.90) PROFESSIONAL ENGINEERS H. J. G. ALVES 0.09(1) 10.00 Q-B M-F -326 / 0 0.05 (1) JSI METAL= 0.14 (B) (INPUT = 1.00) 0.06 (1) 0.03 (1) 0.05 (1) 0 / 81 -112.4 -112.4 0.08 (1) 10.00 -266 / 0 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.08 (1) 0.09 (1) 0.13 (1) L-G J-H R-S 10.00 -175 / 0 -326 / 0 0/81 0/93 0 / 67 10.00 -105/30.00 (1 0 / 88 -1124 -1124 -105/3 U- I 0 / 51 -112.4 -112.4 A-R -70/0-18.5 -18.5 0.11 (1) 6 25 R- Q Q- P P- O O- N N- M M- L -59 / 0 -73 / 0 -18.5 100009024 -18.5 -18.5 0.07 (1) 6.25 -78 / 0 -18.5 -18.5 0.02 (4) 6.25 -83 / 0 -83 / 0 -83 / 0 -78 / 0 -18.5 -18.5 -18.5 -18.5 0.02 (4) 0.02 (4) POLYACE OF ONTARIO 6.25 -18.5-18.5 0.02 (4) 6 25 6.25 6.25 6.25 -73 / 0 -73 / 0 -18.5 -18.5 -18.5 0.07 (1) -18.5 0.07 (1) -59/0-18.5-18.5 0.11 (1)

REVIEWE

Structural component only

DWG# T-2216631

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423667 V2 TRUSS DESC. Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 11:54:21 2022 Page 1 ID:Wf1py42Pek5E0xRWzZrcVUzyU_V-2PDIs9W8TeF7oWkNI6qXpNio3Nf0BL8TCNc5_6z 8vG Tamarack Roof Truss, Burlington 7-7-0 Scale = 1:25.5 4x4 =C 6.00 12 2x4 || 2x4 || D 3x4 / 244 || 2x4 || 2x4 || 3x4 < 15-2-0 0₁8 15-1-0 018 TOTAL WEIGHT = 40 lb LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** LUMBER DESCR SIZE BEARINGS FACTORED SPF SPF SPF MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLI No.2 No.2 INPUT BRG C 244 DRY REQRD SPECIFIED LOADS: DRY LL = DL = LL = DL = AD = GROSS REACTION 32.5 PSF BRG IN-SX CH. UPLIFT 6.0 0.0 7.4 E 2x4 No.2 VERT HORZ IN-SX PSF 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 15-1-0 0 154 154 n A E G ALL WEBS 2x3 DRY DRY: SEASONED LUMBER SPF No.2 PSF 468 Ō 468 0 TOTAL LOAD 45.9 PSF 600 n 600 0 SPACING = 24.0 IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES
A TBM1-h MT20 UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PEDMINT 9. NBCC 2015 4.0 4.0 4.0 COMBINED WIND DEAD 3.0 SOIL THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) 2.0 4.0 108 78 / 0 78 / 0 0/0 0/0 0/0 30 / 0 30 / 0 0/0 TMW+w MT20 AEGHE TTW-p TMW+w 0/0 MT20 2.0 4.0 330 220 / 0 0/0 0/0 111 / 0 0/0 0/0 0/0 TBM1-h MT20 3.0 40 419 303 / 0 BMW1+w MT20 2.0 4.0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, E, G, H, F NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. CHORD TO BE SHEATHED OR MAX, PUBLIN SPACING = 10 00 FT MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. CSI: TC=0.27/1.00 (B-J:1), BC=0.07/1.00 (H-I:1), ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED WB=0.09/1.00 (C-G:1), SSI=0.19/1.00 (B-C:1) LOADING TOTAL LOAD CASES: (4) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 CHORDS WEBS COMPANION LIVE LOAD FACTOR = 1.00 MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED MEMB. FORCE MEMB FORCE (PLF) CSI (LC) FROM TO -112.4 -112.4 0.06 (1) CSI (LC) UNBRAC LENGTH FR-TO (LBS) (LBS) CSI (LC) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE 0 / 12 G- C H- B F- D 0.09 (1) 0.07 (1) 0.07 (1) -405 / 0 A-J 10.00 TRUSS MANUFACTURING PLANT 0 / 65 0 / 26 0 / 26 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.27 (1) 0.26 (1) 0.26 (1) 10.00 10.00 -499 / 0 -499 / 0 J- B B- C C- D D- L NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 10.00 -53 / 6 0.00(1) 0 / 65 -1124 -1124 0.27 10.00 -53 / 6 -112.4 -112.4 0.06 (1) A- 1 -27 / 0 -185 -185 0.07(1) 6 25 I- H H- G G- F F- K -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 0.07 (1) 0.07 (1) 0.06 (4) 0.06 (4) 6.25 6.25 6.25 -20 / 0 -42 / 0 PLATE PLACEMENT TOL. = 0.250 inches -42/0 PLATE ROTATION TOL. = 5.0 Deg. -20 / 0 JSI GRIP= 0.29 (D) (INPUT = 0.90) JSI METAL= 0.21 (B) (INPUT = 1.00)

Structural component only DWG# T-2216632

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423667 V3 TRUSS DESC. Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:54:22 2022 Page 1 ID:Wf1py42Pek5E0xRWzZrcVUzyU_V-TPgh3VXmDxN_PglZspLmMbFx4nyiwnvcQ1MeWZz_8VF Tamarack Roof Truss, Burlington 5-7-0 4x4 = Scale = 1:19.4 6.00 12 3x4 <> E D G 2x4 || 3x4 < 11-2-0 11-1-0 0-8 TOTAL WEIGHT = 27 lb

RULES	
SIZE LUMBER DESC	CR.
2x4 DRY No.2 SP	F
2x4 DRY No.2 SP	F
2x4 DRY No.2 SP	F
	F
ONED LUMBER.	
SIZE LUMBER DESC 2x4 DRY No.2 SP 2x4 DRY No.2 SP 2x4 DRY No.2 SP 2x4 DRY No.2 SP	FFF

PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Х		
Α	TBM1-h	MT20	3.0	4.0				
В	TTW-p	MT20	4.0	4.0				
С	TBM1-h	MT20	3.0	4.0				
D	BMW1+w	MT20	2.0	4.0				

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	<u>RINGS</u>						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS REACTION GROSS RE				N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Α	41	0	41	0	0	11-1-0	11-1-0
С	41	0	41	0	0	11-1-0	11-1-0
D	1368	0	1368	0	0	11-1-0	11-1-0

UNF	ACTORED RE	<u>ACTIONS</u>					
	1ST LCASE	MAX./N	MIN. COMPO	VENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Α	29	19/0	0/0	0/0	0/0	11/0	0/0
С	29	19/0	0/0	0/0	0/0	11/0	0/0
D	958	683 / 0	0/0	0/0	0/0	276 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, C, D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

<u>LOADING</u> TOTAL LOAD CASES: (4)

CHC	RDS			WEBS			
MAX.	FACTORED	FACTORED		M	AX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD LC1 M	AX MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF) CSI	(LC) UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM TO	LENGTH	FR-TO			
A-F	0/711	-112.4 -112.4 0.2	3 (1) 10.00	D-B -11	109 / 0	0.19(1)	
F-B	0 / 708	-112.4 -112.4 0.4	5 (1) 10.00	E-F -3	328 / 0	0.00 (1)	
B- H	0 / 708	-112.4 -112.4 0.4	5 (1) 10.00	G- H -3	328 / 0	0.00 (1)	
H- C	0 / 711	-112.4 -112.4 0.2	3 (1) 10.00			. , ,	
A-E	-676 / 0	-18.5 -18.5 0.2	9 (1) 6.25				
E- D	-641 / 0	-18.5 -18.5 0.2	9 (1) 6.25				
D- G	-641 / 0	-18.5 -18.5 0.2	9 (1) 6.25				
G-C	-676 / 0	-18.5 -18.5 0.2	9 (1) 6.25				

DESIGN CRITERIA

SPEC	IFIED	LOAE	DS:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	AΠ	_	45 9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.45/1.00 (B-F:1) , BC=0.29/1.00 (D-E:1) , WB=0.19/1.00 (B-D:1) , SSI=0.19/1.00 (B-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

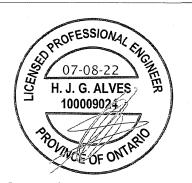

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.59 (B) (INPUT = 0.90) JSI METAL= 0.33 (B) (INPUT = 1.00)

Structural component only DWG# T-2216633

JOB NAME JOB DESC. TRUSS NAME QUANTITY **BAYVIEW WELLINGTON** DRWG NO. 423670 V30 TRUSS DESC. Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 12:10:35 2022 Page 1 ID:zoSDmrmKtN2Qs9fEkwL?SkzySAg-UbzWHCl54uzweBBZMflxHm2D_01VOs1qAvYeAfz_8g2 Tamarack Roof Truss, Burlington 5-4-14 Scale = 1:29. 4x4 = 2x4 || 4x4 = В c D 6.00 12 1 н G F L3x4 > 3x4 / 2x4 || 2x4 3x8 = 2x4 || 18-7-0 18-6-0 <u>0</u>18 TOTAL WEIGHT = 47 I DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES CHORDS SIZE **DESIGN CRITERIA** LUMBER SIZE DESCR BEARINGS FACTORED A -B -D -SPF SPF SPF No.2 No.2 B D 244 DRY MAXIMUM FACTORED INPUT SPECIFIED LOADS: DRY **GROSS REACTION** LL = DL = LL = GROSS REACTION BRG BRG TOP CH 32.5 PSF UPLIFT 6.0 0.0 7.4 PSF PSF 2x4 No.2 VERT HORZ DOWN HORZ IN-SX IN-SX 18-6-0 (11-114826-0 18-6-0 (11-114826-0 G DRY No.2 SPF 111 SPF DL PSF 832 832 537 18-6-0 (11-111826-0 TOTAL LOAD 45.9 18-6-0 (11-114826-0 18-6-0 (11-114826-0 ALL WERS 2x3 DRY No.2 SPF 537 0 DRY: SEASONED LUMBER SPACING = 24.0 IN. C/C VALUE IN PARENTHESIS INDICATES EFFECTIVE BEARING LENGTH LOADING IN FLAT SECTION BASED ON A SLOPE OF 6 00/12 PLATES (table is in inches)
JT TYPE PLATES
 UNFACTORED REACTIONS

 1ST LCASE
 MAX./MIN. COMPONENT REAC

 JT
 COMBINED
 SNOW
 LIVE
 PERM.LIV
 W LEN Y THIS TRUSS IS DESIGNED FOR RESIDENTIAL A TB
B TT
C TM
D TT
E TB
F, H, I
F BM TBM1-h TTW-m 3.0 4.0 WIND DEAD UVE 0/0 SOIL OR SMALL BUILDING REQUIREMENTS OF PART 55 / 0 55 / 0 407 / 0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4.0 MT20 78 23 / 0 9. NBCC 2015 2.0 0/0 23 / 0 177 / 0 TMW+w MT20 40 TTW-m TBM1-h MT20 THIS DESIGN COMPLIES WITH: 3.0 4.0 MT20 374 278 / 0 0/0 0/0 0/0 96 / 0 0/0 - PART 9 OF BCBC 2018, ABC 2019 407 / 0 0/0 0/0 0/0 - PART 9 OF OBC 2012 (2019 AMENDMENT) BMW1+w 2.0 3.0 MT20 CSA 086-14 BS-t MT20 8.0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, E, F, H, I TPIC 2014

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

LOADING TOTAL LOAD CASES: (4) CHORDS WEBS MAX. FACTORED FACTORED VERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO MAX. FACTORED мемв. MAX. мемв. FORCE MAX CSI (LC) UNBRAC (LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO A- K K- B B- C D- M -112.4 -112.4 0.15 (1) -112.4 -112.4 0.42 (1) 0 / 536 0 / 544 F- D 10.00 H-C 0.09 (1) 0.11 (1) 10.00 -549/00 / 518 0 / 518 -112.4 -112.4 0.37 (1) -112.4 -112.4 0.37 (1) -112.4 -112.4 0.42 (1) 10.00 I- B J- K L- M -642 / 0 -288 / 0 10.00 0.00 (1) 0 / 544 -288 / 0 M- E 0 / 536 -112.4 -112.4 0.15 (1) 10.00 -18.5 6.25 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 0.28 (1) 0.18 (1) 0.18 (1) J- I I- H -490 / 0 6.25 -518 / 0 -518 / 0 6.25 6.25 H- G G- F F- L -518 / 0 -18.5 -18.5 0.18 (1) 6.25 490 / 0 -18.5 -18.5

MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN

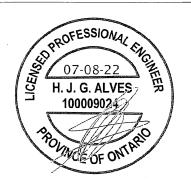
650 371 1747 788 1987 1873

% OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F

RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED

CSI: TC=0.42/1.00 (D-M:1) , BC=0.28/1.00 (F-L:1) , WB=0.11/1.00 (D-F:1) , SSI=0.21/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10


COMP=1.10 SHEAR=1.10 TENS= 1.10

ROOF LIVE LOAD

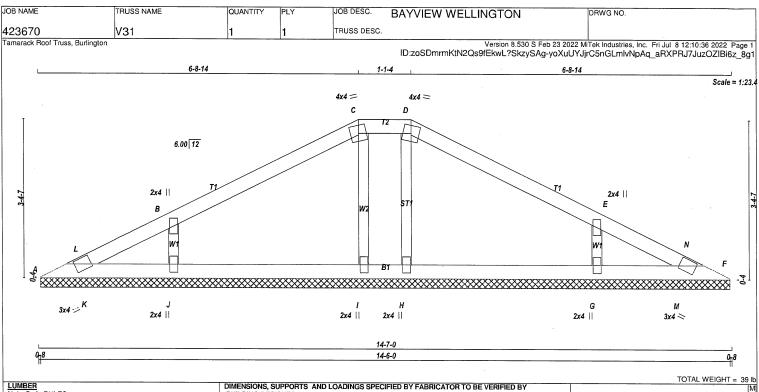

MT20

PLATE PLACEMENT TOL. = 0.250 inches
PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.59 (B) (INPUT = 0.90) JSI METAL= 0.29 (D) (INPUT = 1.00)

Structural component only DWG# T-2216645

LUMBER					
N. L. G. A. R	ULES				
CHORDS	SIZE		LUMBER	DESCR.	
A - C	2x4	DRY	No.2	SPF	
C - D	2x4	DRY	No.2	SPF	
D - F	2x4	DRY	No.2	SPF	
A - F	2x4	DRY	No.2	SPF	
ALL WEBS	2x3	DRY	No.2	SPF	
DRY: SEASO	ONED L	UMBER.			

PLATES (table is in inches)								
JΤ	TYPE	PLATES	w	LEN	Υ	Х		
Α	TBM1-h	MT20	3.0	4.0				
В	TMW+w	MT20	2.0	4.0				
С	TTW-m	MT20	4.0	4.0				
D	TTW-m	MT20	4.0	4.0				
Е	TMW+w	MT20	2.0	4.0				
F	TBM1-h	MT20	3.0	4.0				
G, H, I, J								
G	BMW1+w	MT20	2.0	4.0				

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADINGS SPECIFIED	BY FABRIC	CATOR TO BE	VERIFIED BY
BEARINGS				
FACTORED	MAXIMUM FACTORED	INPUT	REQRD	

	FACTO GROSS R		MAXIMUM FACTORED GROSS REACTION			INPUT BRG	REQRD BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
4	120	0	120	0	0	14-6-0	14-6-0
F	120	0	120	0	0	14-6-0	14-6-0
Н	283	0	283	0	0	14-6-0	14-6-0
	283	0	283	0	0	14-6-0	14-6-0
G	546	0 -	546	0	0	14-6-0	14-6-0
J	546	0	546	0	0	14-6-0	14-6-0

UNF	UNFACTORED REACTIONS									
	1ST LCASE	MAX./	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD .	SOIL			
Α	84	60 / 0	0/0	0/0	0/0	24 / 0	0/0			
F	84	60 / 0	0/0	0/0	0/0	24 / 0	0/0			
Н	199	137 / 0	0/0	0/0	0/0	62 / 0	0/0			
1	199	137 / 0	0/0	0/0	0/0	62 / 0	0/0			
G	382	274 / 0	0/0	0/0	0/0	108 / 0	0/0			
J	382	274 / 0	0/0	0/0	0/0	108 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, F, H, I, G, J

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS							
MAX.	FACTORED	FACTORED				MAX. FACTO	ORED
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
A-L	-44 / 0	-112.4 -112.4	0.05 (1)	6.25	H- D	-240 / 0	0.05(1)
L-B	0/19	-112.4 -112.4	0.24 (1)	10.00	I- C	-240 / 0	0.05 (1)
B- C	-23 / 0	-112.4 -112.4	0.23 (1)	6.25	G-E	-468 / 0	0.07 (1)
C- D	0/5	-112.4 -112.4			J- B	-468 / 0	0.07(1)
D- E	-23 / 0	-112.4 -112.4	0.23 (1)	6.25	K-L	-8 / 5	0.00(1)
E- N	0/19	-112.4 -112.4			M- N	-8 / 5	0.00(1)
N-F	-44 / 0	-112.4 -112.4	0.05 (1)	6.25			
A- K	0 / 30		5 0.03 (1)				
K- J	0 / 31		0.05 (4)				
J- I	-3 / 3	-18.5 -18.5	0.05 (4)	10.00			
1- H	-5 / 0	-18.5 -18.5	0.05 (4)	10.00			
H- G	-3/3	-18.5 -18.5	0.05 (4)	10.00			
G- M	0/31	-18.5 -18.5	0.05 (4)	10.00			
M- F	0 / 30	-18.5 -18.5	5 0.03 (1)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSI
		DL	=	6.0	PSI
BOT	CH.	LL	= '	0.0	PS
		DL	=	7.4	PSI
TOTA		A D		45.0	DC

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6 00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019

- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.24/1.00 (B-L:1) , BC=0.05/1.00 (I-J:4) , WB=0.07/1.00 (E-G:1) , SSI=0.19/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

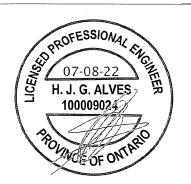
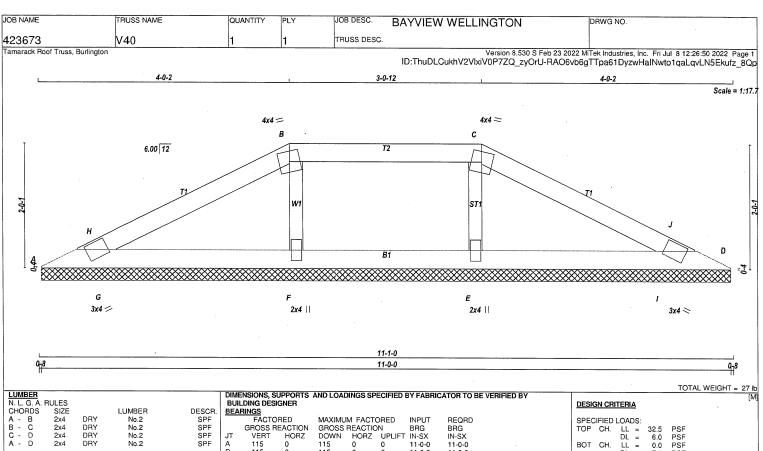

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.27 (E) (INPUT = 0.90) JSI METAL= 0.19 (E) (INPUT = 1.00)

Structural component only DWG# T-2216646

ı			2.44	Ditti		140.2		
		_ WEBS Y: SEASC	2x3 ONED LI	DRY JMBER.		No.2		
	PL) TABCDEF	ATES (ta TYPE TBM1-h TTW-m TTW-m TBM1-h BMW1+ BMW1+	PL M M M	inches) ATES IT20 IT20 IT20 IT20 IT20 IT20	W 3.0 4.0 4.0 3.0 2.0 2.0	LEN 4.0 4.0 4.0 4.0 4.0	Υ	x

V	OIES-	(1)								
1)	Lateral	braces	to be	а	minimum	of	2X4	SPF	#2.	

	ENSIONS, SI LDING DESI		AND LOAD	NINGS SP	ECIFIED E	BY FABRIC	CATOR TO BE VERIFIED BY
BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Α	115	0	115	0	0	11-0-0	11-0-0
D	115	0	115	0	0	11-0-0	11-0-0
Ε	605	0	605	0	0	11-0-0	11-0-0
F	605	0 .	605	0	0	11-0-0	11-0-0

DIAL	DINFACTORED REACTIONS											
	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS									
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
Α	81	58 / 0	0/0	0/0	0/0	23 / 0	0/0					
D	81	58 / 0	0/0	0/0	0/0	23 / 0	0/0					
E	424	300 / 0	0/0	0/0	0/0	124 / 0	0/0					
F	424	300 / 0	0/0	0/0	0/0	124 / 0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, D, E, F

SPF

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

0110000

CHC	RDS				W E	BS		
MAX.	FACTORED	FACTORED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO			
A- H	0 / 327	-112.4 -112.4	0.08 (1)	10.00	E-C	-496 / 0	0.07(1)	
H- B	0 / 347	-112.4 -112.4	0.23 (1)	10.00	F-B	-496 / 0	0.07(1)	
B- C	0 / 340	-112.4 -112.4	0.23(1)	10.00	G- H	-171 / 0	0.00(1)	
C- J	0 / 347	-112.4 -112.4	0.23 (1)	10.00	I- J	-171 / 0	0.00(1)	
J- D	0 / 327	-112.4 -112.4	0.08 (1)	10.00				
A- G	-328 / 0	-18.5 -18.5	0.16(1)	6.25				
G-F	-309 / 0	-18.5 -18.5	0.16(1)	6.25				
F-E	-340 / 0	-18.5 -18.5	0.08 (1)	6.25		1.		
E-1	-309 / 0	-18.5 -18.5	0.16(1)	6.25				
I- D	-328 / 0	-18.5 -18.5	0.16(1)	6.25				

DL = DL = DL = DL = DD = 32.5 6.0 0.0 7.4 вот сн. PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

PART 9 OF BCBC 2018 , ABC 2019 PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.23/1.00 (B-C:1) , BC=0.16/1.00 (E-I:1) , WB=0.07/1.00 (B-F:1) , SSI=0.13/1.00 (B-C:1)

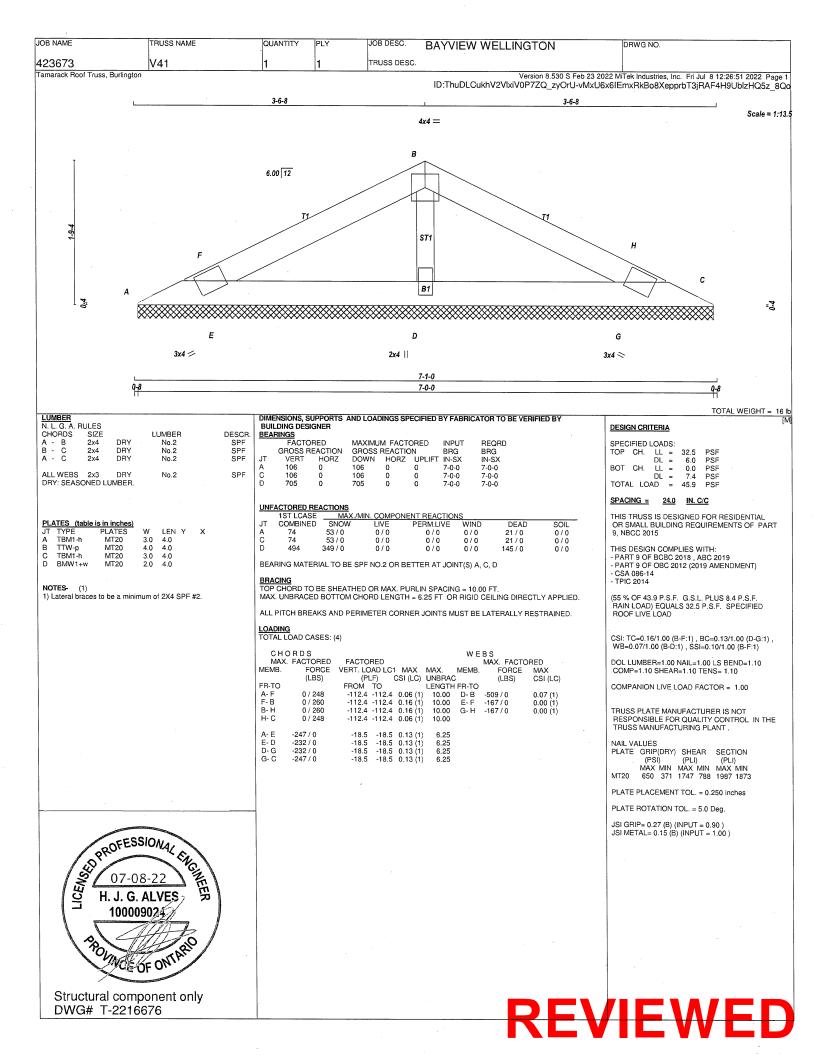
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

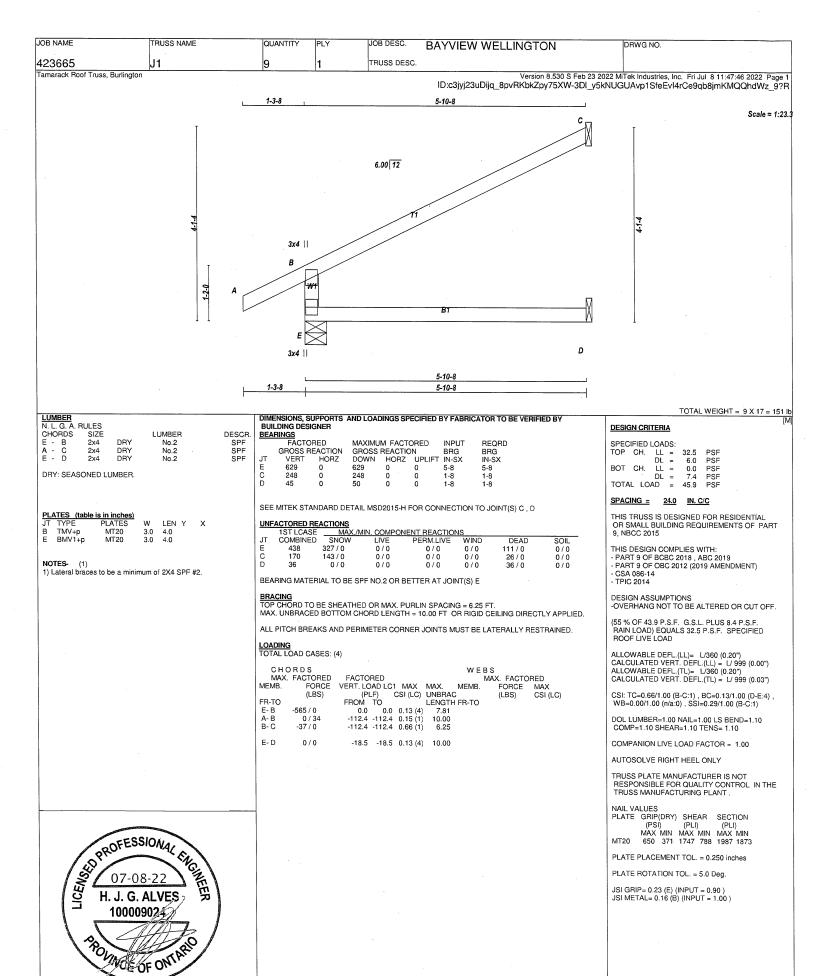
COMPANION LIVE LOAD FACTOR = 1.00

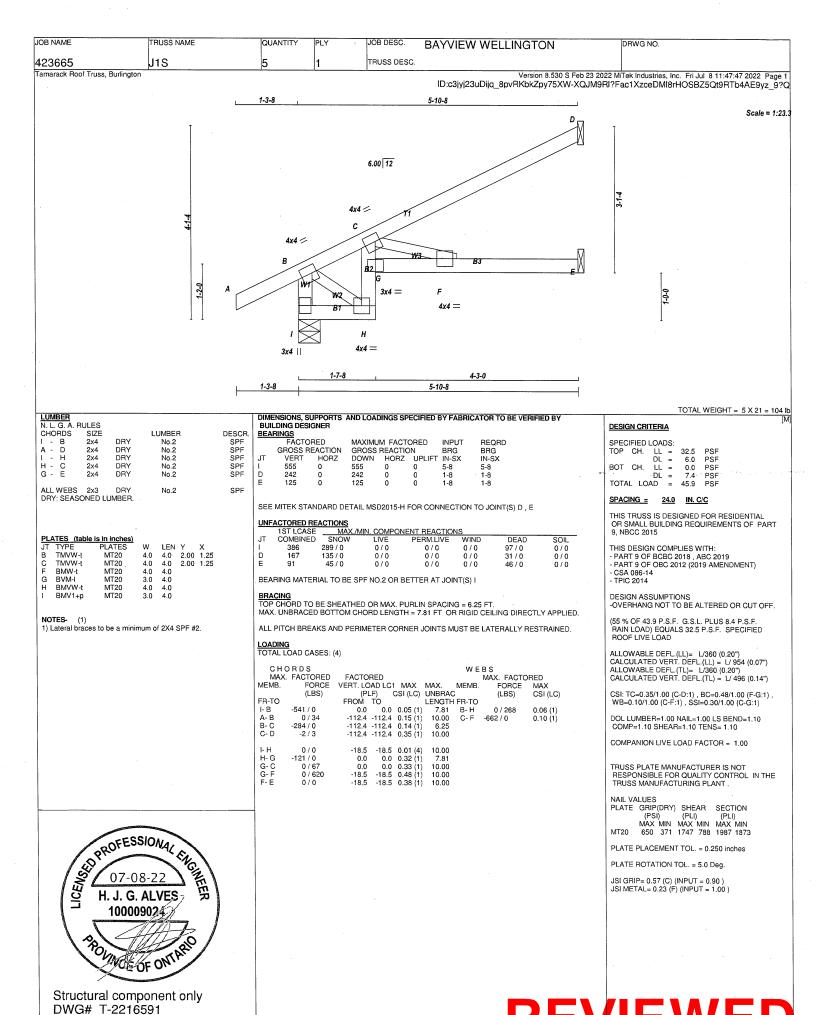
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

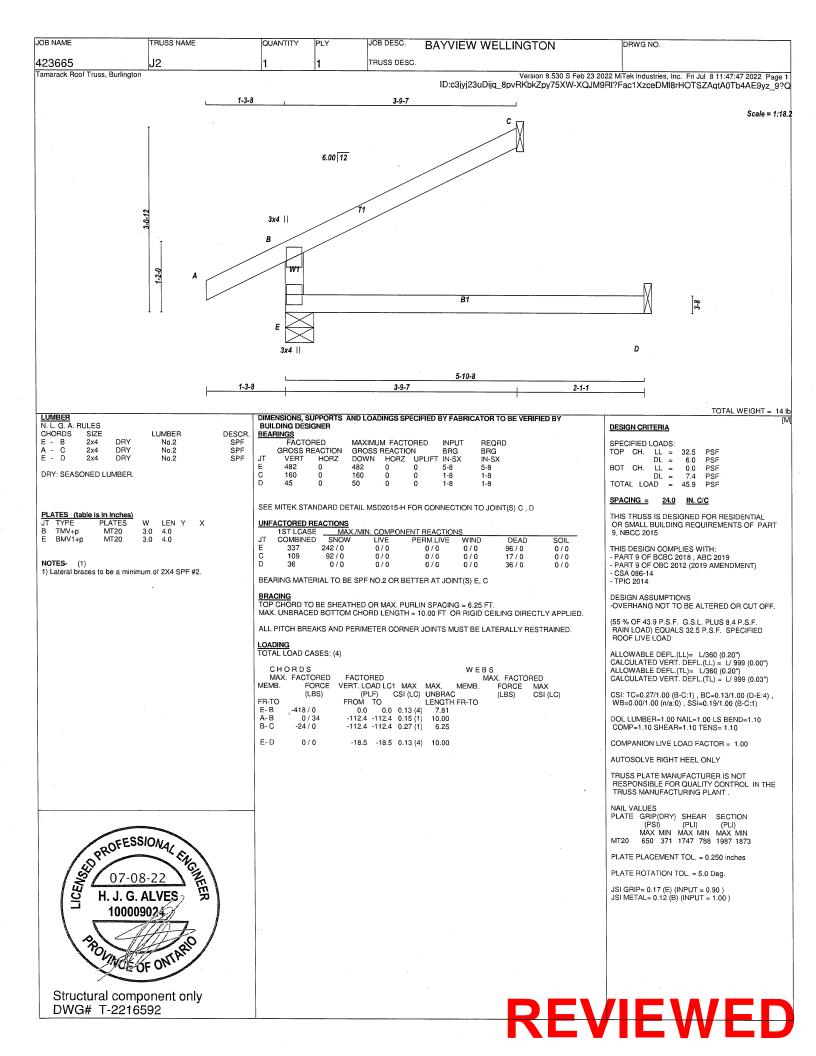
NAIL VALUES

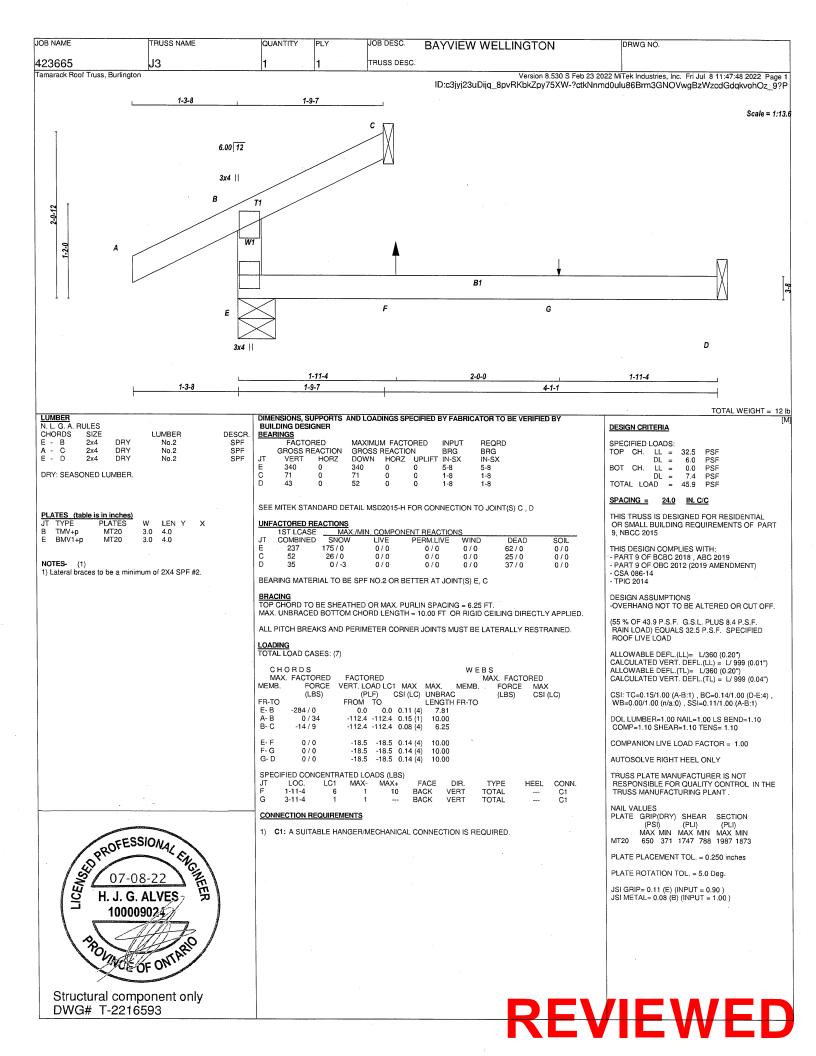
PLATE PLACEMENT TOL. = 0.250 inches

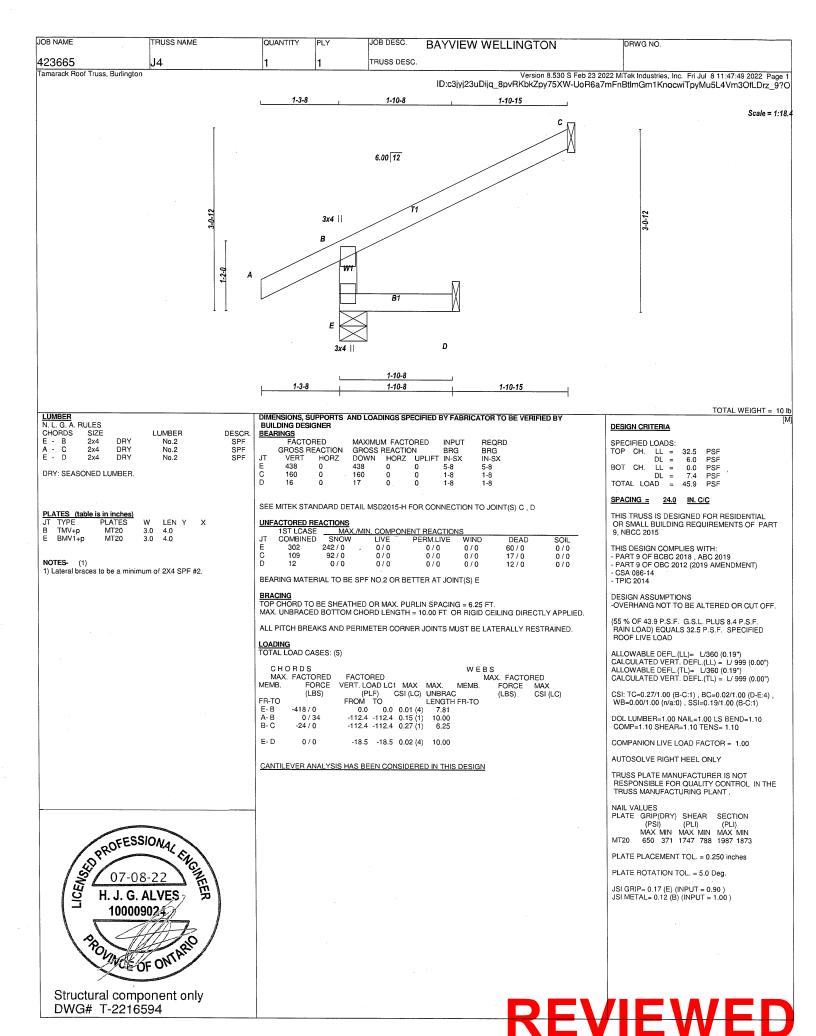

PLATE ROTATION TOL. = 5.0 Deg.

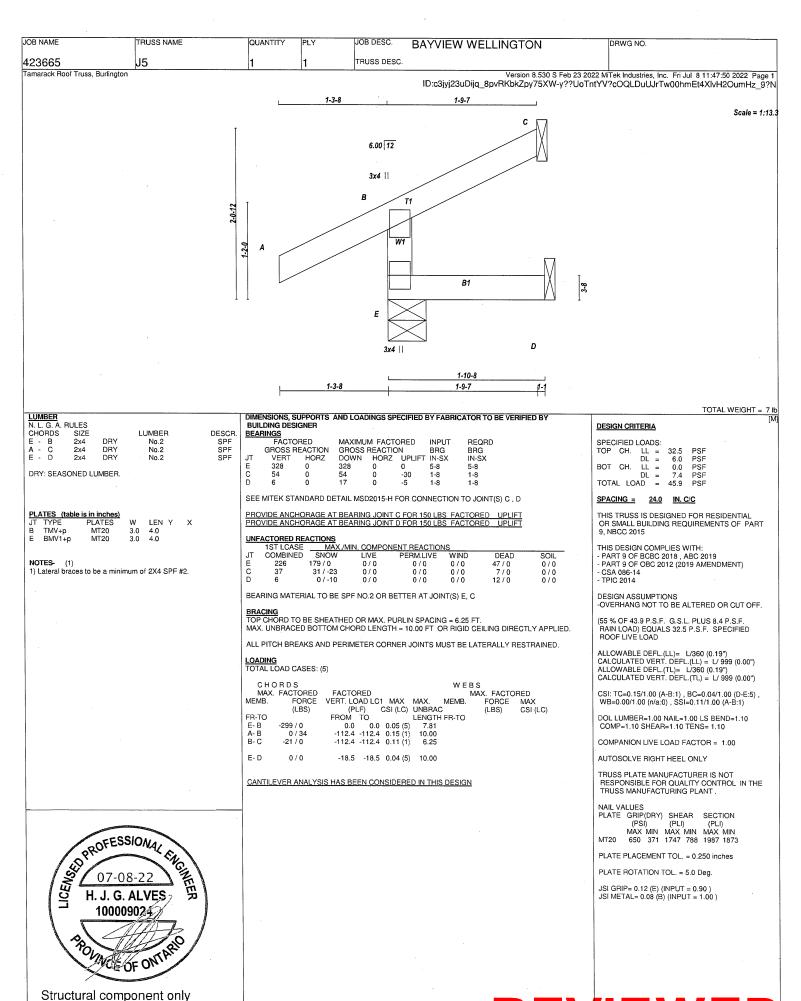

JSI GRIP= 0.37 (B) (INPUT = 0.90) JSI METAL= 0.20 (B) (INPUT = 1.00)

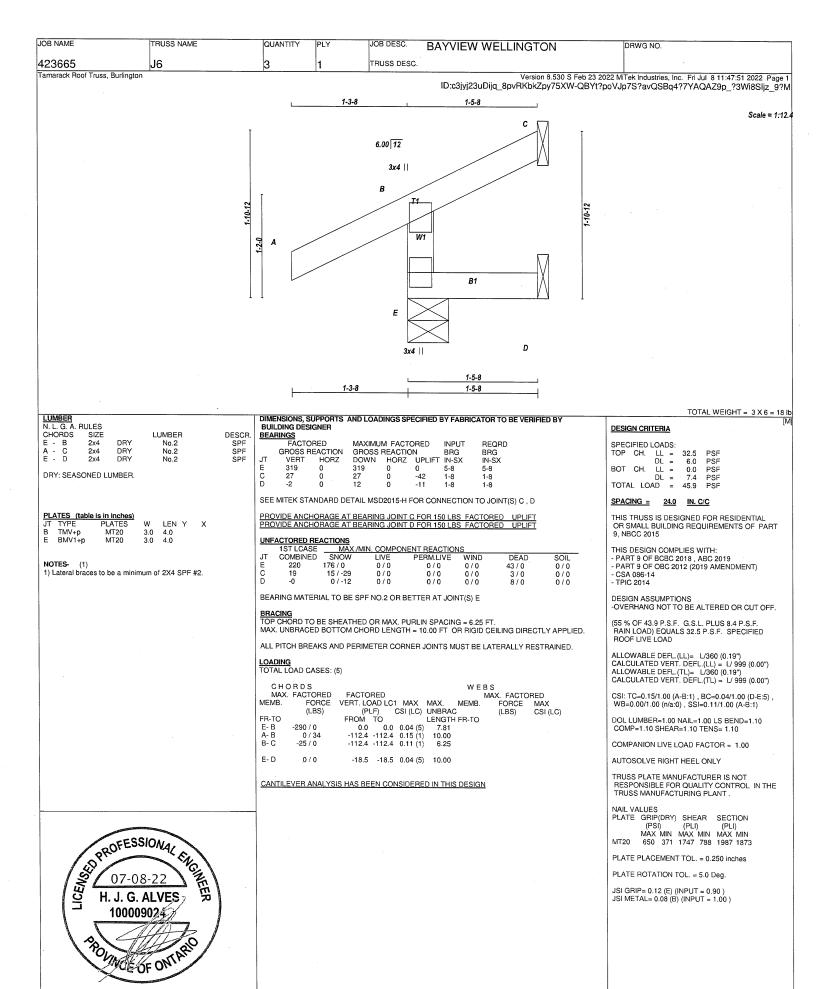

DWG# T-2216675


EVIEW

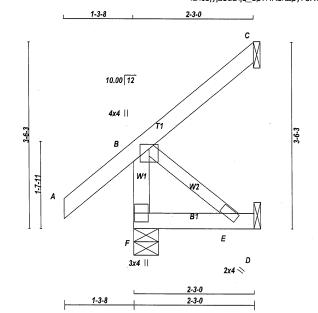





Structural component only DWG# T-2216590



DWG# T-2216595


Structural component only

DWG# T-2216596

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423665 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 11:47:52 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-uN6FD9p746FJdkUc?vLJYL5L2avcYRFCIMt?q9z_9?L

LUMBER
N. L. G. A. RULES
CHORDS SIZE
F - B 2x4 LUMBER DESCR SPF SPF SPF BCD DRY No.2 DRY No.2 2x4 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF

 PLATES (table is in inches)

 JT TYPE
 PLATES

 B TMVW+p
 MT20

 E BMW+w
 MT20

 F BMV1+p
 MT20
 4.0 1.00 2.00 4.0 4.0 2.0 BMV1+p

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BE

EΑ	RINGS						
	FACTO GROSS R			M FACTO	INPUT BRG	REQRD BRG	
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	303	0	303	0	0	5-8	5-8
	126	0	126	0	0	1-8	1-8
	21	0	23	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS

	151 LUASE	IVIAX./N	IIIN. COMPO	NENT REACTION	15			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
F	210	163 / 0	0/0	0/0	0/0	47 / 0	0/0	
С	87	73 / 0	0/0	0/0	0/0	13/0	0/0	
D	17	0/0	0/0	0/0	0/0	17/0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (5)

	R D S FACTORED	FACTO	RED			WE	BS MAX. FACTO	RED
MEMB.	FORCE (LBS)	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE (LBS)	MAX CSI (LC)
FR-TO	(230)	FROM		00. (20)	LENGTH		(LDO)	001 (20)
F-B	-282 / 0	0.0	0.0	0.03 (1)	7.81	B-E	0/0	0.00(1)
A-B	0 / 50	-112.4	-112.4	0.15 (1)	10.00			
B- C	0 \ 0	-112.4	-112.4	0.10 (1)	10.00			
F-E	0/0	-18.5	-18.5	0.03 (4)	10.00			
E- D	0/0	-18.5	-18.5	0.02 (4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

SPECIFIED LOADS: 32.5 PSF TOP CH. LL = DL = 6.0 0.0 7.4 PSF LL TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 3 X 11 = 33 lb

Scale = 1:20.8

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALGULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.03/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.09/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

 NAIL VALUES

 PLATE
 GRIP(DRY)
 SHEAR
 SECTION

 (PS)
 (PLI)
 (PLI)

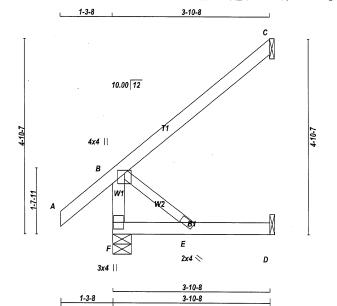
 MAX
 MIN
 MAX
 MIN

 MT2
 788
 1987
 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)


DWG# T-2216597

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. BAYVIEW WELLINGTON DRWG NO.

423665 J8 3 1 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 11:47:53 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-MagdQUqmqQNAFu3oZcsY4YdUj_E?HuVMz0dZMcz_9?K

 PLATES (table is in inches)

 JT
 TYPE
 PLATES
 W
 LEN
 Y
 X

 B
 TMVW+p
 MT20
 4.0
 4.0
 1.00
 2.00

 E
 BMW+w
 MT20
 2.0
 4.0
 0

 F
 BMV1+p
 MT20
 3.0
 4.0
 0

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS

BEAL	RINGS						
	FACTO		MAXIMUI		INPUT	REQRD	
	GROSS RE		GROSS I		BRG	BRG	
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
-	409	0	409	0	0	5-8	5-8
)	218	0	218	0	0	1-8	1-8
)	36	0	40	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

<u>ERACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT. OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	CHORDS MAX. FACTORED FACTOR			WEBS						
MAX.	FACTORED	FACTORED				MAX. FACTO	RED			
MEMB.	FORCE	VERT. LOAD I	LC1 MA	X MAX.	MEMB.	FORCE	MAX			
	(LBS)	(PLF)	CSI (L	C) UNBRAC)	(LBS)	CSI (LC)			
FR-TO		FROM TO		LENGTH	FR-TO					
F-B	-374 / 0	0.0	0.0 0.04	(1) 7.81	B- E	0/0	0.00(1)			
A-B	0 / 50	-112.4 -112	2.4 0.16	(5) 10.00						
B- C	0/0	-112.4 -112	2.4 0.29	(1) 10.00						
F-E	0/0	-18.5 -18	3.5 0.08	(4) 10.00						
E- D	0/0	-18.5 -18	3.5 0.08	(4) 10.00						

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 3 X 15 = 46 lb

Scale = 1:27.5

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.29/1.00 (B-C:1) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.13/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.28 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

DWG# T-2216598

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423665 TRUSS DESC. Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:47:54 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-qmE?dqqObkV1s1e_7KNndmAhMNaE0LIVCgM6v2z_9?J Tamarack Roof Truss, Burlington 1-3-8 Scale = 1:18.8 c 10.00 12 4x4 || В W1 3-8 Ε G 2x4 \ D 1-11-4 1-3-8 1-9-7 2-1-1 TOTAL WEIGHT = 12 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. RULES CHORDS SIZE F - B 244 **DESIGN CRITERIA** LUMBER DESCR. BEARINGS FACTORED SPF SPF SPF MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLI BCD DRY No.2 INPUT REQRD SPECIFIED LOADS: DRY GROSS REACTION VERT HORZ LL = DL = LL = DL = AD = BRG BRG PSF CH. 32.5 UPLIFT IN-SX 6.0 0.0 7.4 PSF PSF No.2 IN-SX 352 352 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF . CD PSF 40 TOTAL LOAD 45.9 SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D SPACING = 24.0 IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 UNFACTORED REACTIONS 9. NBCC 2015 Y X 1.00 2.00 MAX./MIN. COMPONENT REACTIONS
NOW LIVE PERM.LIVE
/ 0 0 / 0 0 / 0 4.0 4.0 4.0 1ST LCASE SOIL 0/0 0/0 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) BMW+w MT20 2.0 COMBINED SNOW WIND BMV1+p 0/0 62/0 CD 23 / -35 0/0 0/0 0/0 0/0 0/0 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF. BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

LOADING TOTAL LOAD CASES: (5)

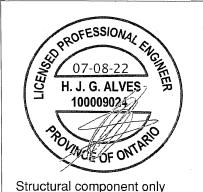
	ORDS					WE	BS		
MA)	K. FACTORE	D FACTO	RED				MAX. FACT	ORED	
MEMB.	FORC	E VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(P	_F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO	. ,		TO		LENGTH		(/	,	,
F-B	-317/0	0.0	0.0	0.03(1)	7.81	B- E	0/0	0.00	(1)
A- B	0 / 50	-112.4	-112.4	0.17 (5)	10.00				` '
B- C	-39 / 0	-112.4	-112.4	0.16 (5)	6.25				
F-E	0/0	10.5	10.5	0.07 (4)	10.00				
	0/0								
		-18.5							
G- D	0/0	-18.5	-18.5	0.08 (4)	10.00				
SPECIE	FIED CONCE	NTRATEDIC	ADS (LE	35)					
JT		C1 MAX-			ACE [OIR.	TYPE	HEEL	CONN.
G.	1-11-4	1 1	IVIAX.					HEEL	
G	1-11-4	, ,	-	BA	UK VI	ERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE RIGHT HEEL ONLY

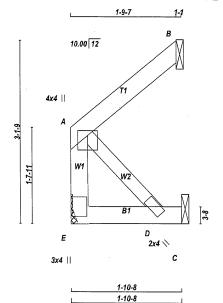

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

CSI: TC=0.17/1.00 (A-B:5) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (A-B:5) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)



DWG# T-2216599

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423665 J10 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 11:47:55 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-lyoNrAr0M1duUBDBh1u0AzjulnxRlo?eRJ6fRUz_9?l

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR. SPF E - A A - B E - C 2x4 No.2 DRY No 2 SPE SPF ALL WEBS 2x3 DRY No.2 SPF DRY: SEASONED LUMBER

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 A
 TMVW+p
 MT20

 D
 BMW+w
 MT20
 W 4.0 2.0 I FN Y 1.00 2.00

4.0 BMV1+p MT20 3.0 4.0

NOTES-(1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BUILDINGS BEARINGS FACTORED MAXIMUM FACTORED INPUT REQRD GROSS REACTION VERT HORZ 118 0 GROSS REACTION DOWN HORZ UPLIFT BRG IN-SX 118 0 MECHANICAL 100

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) B, C

UNFACTORED REACTIONS (./MIN. COMPONENT REACTIONS LIVE PERM.LIVE MAX SNOW COMBINED WIND DEAD SOIL 0/0 0/0 0/0 25 / 0 11 / 0 0/0 83 58 / 0 58 / 0 0/0 0/0 0/0 14/0 0/0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.

OR RIGID CEIL MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS MAX. FACTORED EMB. FORCE FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED FORCE MA мемв. (PLF) CSI (LC) UNBRAC FROM TO LENGTH FR-TO 0.0 0.0 0.01 (1) 7.81 A- D -112.4 -112.4 0.06 (1) 10.00 (LBS) (LBS) CSI (LC) FR-TO E- A A- B 0/0 0.00(1) 0/0 E- D D- C -18.5 -18.5 0.02 (4) -18.5 -18.5 0.01 (4)

TOTAL WEIGHT = 8 II

Scale = 1:18.8

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = CH. 32.5 6.0 PSF BOT CH. 0.0 7.4 PSF TOTAL LOAD 45.9 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.06/1.00 (A-B:1), BC=0.02/1.00 (D-E:4), WB=0.00/1.00 (A-D:1), SSI=0.06/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 MT20

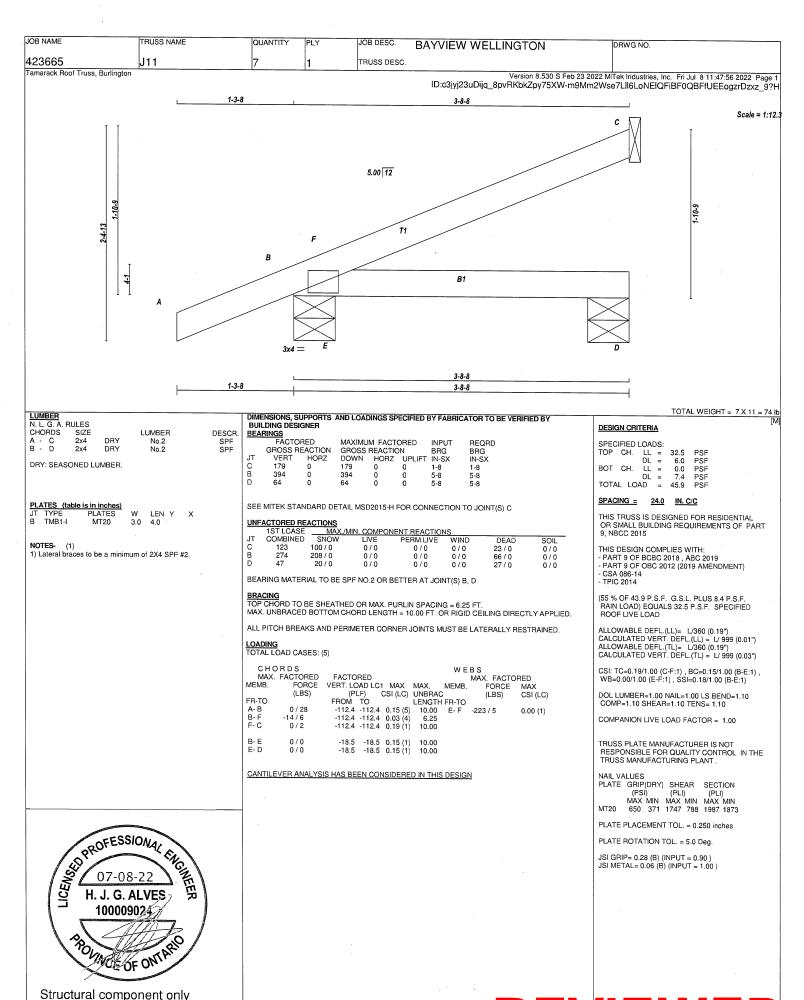
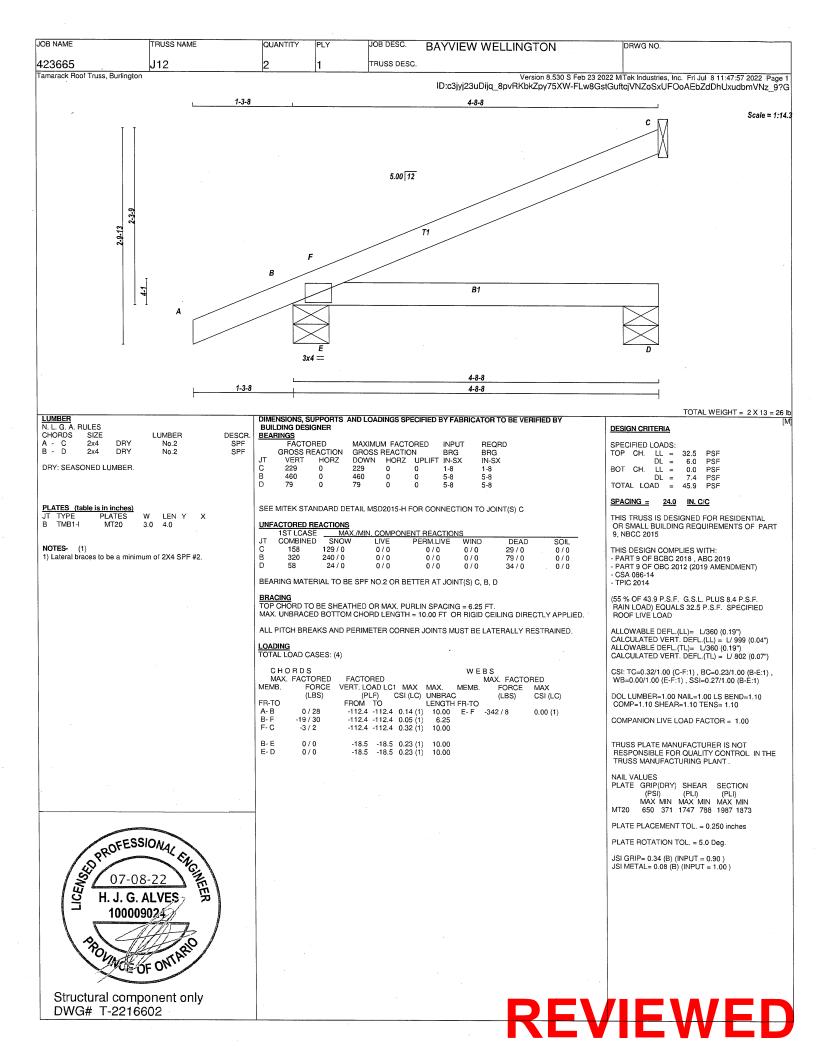
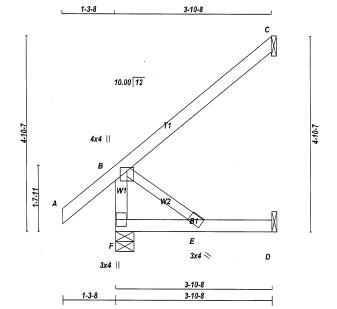

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.07 (A) (INPUT = 0.90) JSI METAL= 0.02 (A) (INPUT = 1.00)

Structural component only DWG# T-2216600


DWG# T-2216601

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423670 130 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 NTek Industries, Inc. Fri Jul 8 12:10:24 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-IUpMzRABgWaUqVrSCrbMLS5MnaK4JvyCeiOYHoz_8gD

LUMBER N. L. G. A. RULES CHORDS SIZE F - B 244 LUMBER DESCR. SPF SPF SPF No.2 No.2 ВС DRY DRY DRY No.2 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 W 4.0 3.0 3.0 4.0 4.0 1.00 2.00

BMW+w MT20 BMV1+p

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEARINGS FACTORED MAXIMUM FACTORED GROSS REACTION INPUT REQRD GROSS REACTION VERT HORZ BRG BRG IN-SX DOWN UPLIFT IN-SX HORZ 409 0 409 218 5-8 1-8 5-8 1-8 . C D 36 40 1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D

UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMITTYEE WIND DEAD COMBINED SOIL 284 149 216 / 0 126 / 0 0/0 0/0 0/0 69 / 0 23 / 0 0/0 0/0

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED мемв. VERT. LOAD LC1 MAX MAX. (PLF) FROM TO CSI (LC) UNBRAC (LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO 7.81 B- E F-B A-B B-C 0.0 0.0 0.04 (1) -112.4 -112.4 0.16 (5) -112.4 -112.4 0.29 (1) -374 / 0 0.00 (1) 0/0 10.00 -18.5 -18.5 0.08 (4) -18.5 -18.5 0.08 (4) E- D

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA

PECIFIED LOADS: LL = DL = LL = 32.5 PSF TOP CH. 6.0 0.0 7.4 PSF PSF DL PSF TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 8 X 16 = 125 lb

Scale = 1:27.5

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BOOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.19")
CALCULATED VERT. DEFL. (LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

CSI: TC=0.29/1.00 (B-C:1) , BC=0.08/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.13/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.28 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

DWG# T-2216634

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423670 J31 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 12:10:25 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-ngMkAnBqRqiLRfQemZ6btfdZS_gJ2MCMtM76qEz_8gC Tamarack Roof Truss, Burlington 1-3-8 Scale = 1:18.8 c 10.00 12 4x4 || В W1 3-8 Ε G 2x4 \\ D 1-11-4 1-11-4 1-3-8 1-9-7 2-1-1 TOTAL WEIGHT = 4 X 12 = 48 lb LUMBER
N. L. G. A. RULES
CHORDS SIZE
F - B 2x4
A - C 2x4 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BUILDING BEARINGS FACTORED **DESIGN CRITERIA** SIZE LUMBER DESCR. SPF SPF SPF No.2 No.2 DRY MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: DRY **GROSS REACTION** LL = DL = LL = GROSS REACTION 32.5 BRG BRG IN-SX CH PSF UPLIFT 6.0 0.0 7.4 PSF PSF D 2x4 No.2 VERT HORZ DOWN HORZ IN-SX 352 352 40 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF CD -51 DL 40 TOTAL LOAD 45.9 SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D SPACING = 24.0 IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 UNFACTORED REACTIONS
1ST LCASE MA 9. NBCC 2015 Y X 1.00 2.00 C/MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND
0/0 0/0 0/0 4.0 MAX SNOW 183 / 0 4.0 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) BMW+w MT20 2.0 COMBINED SOIL 0/0 62 / 0 23 / -35 С 0/0 4/0 0/0 0/0 0/0 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F. C DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF. TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED ROOF LIVE LOAD ALLOWABLE DEFL.(LL) = L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01") LOADING TOTAL LOAD CASES: (5) CHORDS WEBS FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED MAX. FACTORED MEMB. CSI: TC=0.16/1.00 (A-B:5) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (A-B:5) MEMB FORCE (LBS) (PLF) CSI (LC) UNBRAC (LBS) CSI (LC) FROM TO

0.0 0.0 0.03 (1)
-112.4 -112.4 0.16 (5)
-112.4 -112.4 0.16 (5) FR-TO LENGTH FR-TO 0/0 0.00(1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 B- E 10.00 A-B 0 / 50 COMP=1.10 SHEAR=1.10 TENS= 1.10 B- C COMPANION LIVE LOAD FACTOR = 1.00 -18.5 -18.5 0.07 (4) F-E 0/0 10.00 -18.5 0.08 (4) -18.5 0.08 (4) E-G -18.5 10.00 AUTOSOLVE RIGHT HEEL ONLY -18.5 TRUSS PLATE MANUFACTURER IS NOT SPECIFIED CONCENTRATED LOADS (LBS) RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. TYPE CONN. FRONT VERT TOTAL

Structural component only DWG# T-2216635

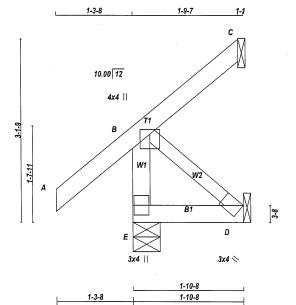
CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423670 J32 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 12:10:26 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-Fsw6O7CSC7rC3p?qKGeqQtAkLN1anpSV50tfMhz_8gB

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR SPF SPF SPF DRY DRY No.2 No.2 В 2x4 D 2x4 DRY No.2 ALL WEBS No.2 SPF DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 W LEN Y X 4.0 4.0 1.00 2.00 3.0 4.0 3.00 Edge 3.0 4.0 BMW1+w MT20 BMV1+p

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BE

ΞAΙ	RINGS						
	FACTOR		MAXIMUN			INPUT	REQRD
	GROSS RE	EACTION	GROSS F		N	BRG	BRG
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	332	0 .	332	0	0	5-8	5-8
	40	0	40	0	-51	1-8	1-8
	16	0	18	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNFACTORED REACTIONS

	151 LUASE	NAX./N	JIIN. COMPO	NENT REACTION	<i>VS</i>		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
E	229	183 / 0	0/0	0/0	0/0	46 / 0	0/0
С	27	23 / -35	0/0	0/0	0/0	4/0	0/0
D	13	0/0	0/0	0/0	-0/0	13 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

JT

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	R D S FACTORED	FACTORED			W E	B S MAX. FACTO	DED	
IVIA.	TACTORLED	IACIONED				WAX. FACIO	NEU	
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM TO	• '	LENGTH	FR-TO	, ,	, ,	
E-B	-317 / 0	0.0 0.0	0.03 (1)	7.81	B- D	0/0	0.00(1)	
A-B	0 / 50	-112.4 -112.4	0.15 (1)	10.00			,	
B- C	-39 / 0	-112.4 -112.4	0.15 (1)	6.25				
E- D	0/0	-18.5 -18.5	0.02 (4)	10.00				

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

SPECIFIED LOADS: LL = 32.5 PSF DL = 6.0 PSF LL = 0.0 PSF DL = 7.4 PSF AD = 45.9 PSF TOP CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9 NBCC 2015

TOTAL WEIGHT = 4 X 10 = 40 lb

Scale = 1:18.8

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (B-D:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

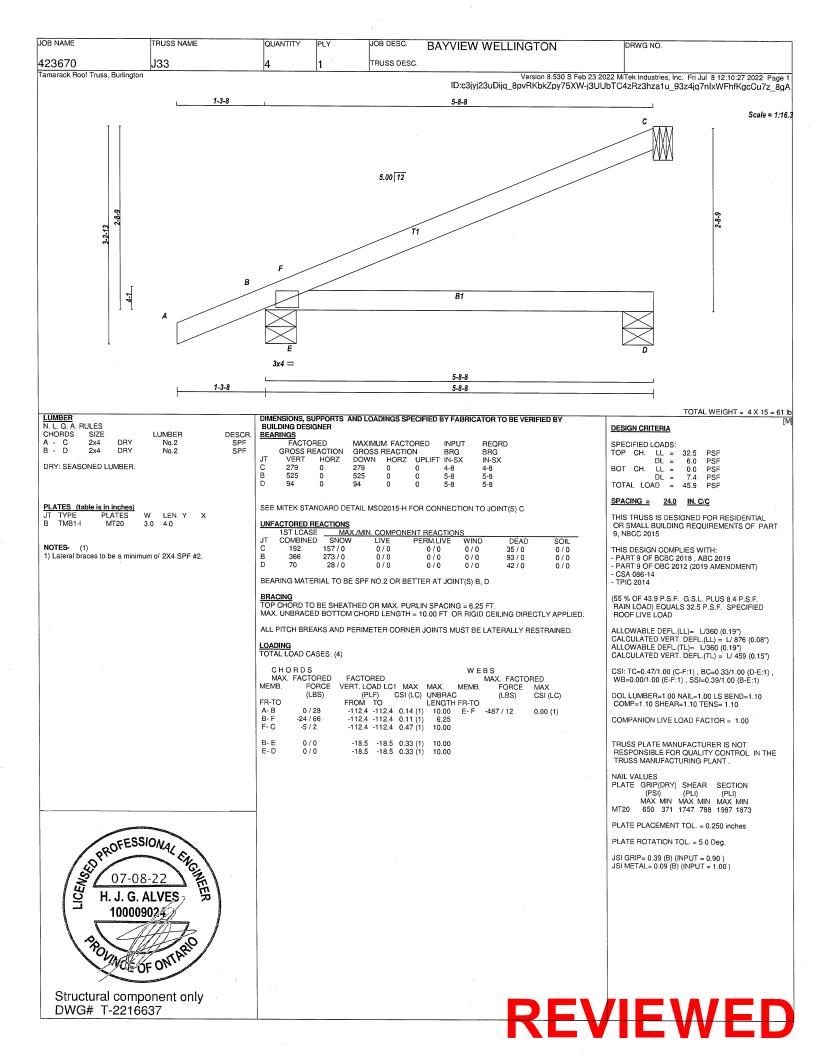
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)


MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

DWG# T-2216636

FVIFW

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. BAYVIEW WELLINGTON DRWG NO.

423673 J40 4 1 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:22 2022 Page 1

ID:c3jyj23uDijq_8pvRKbkZpy75XW-FnhW10m63sHZlk4ZK2n0ATm2ilHYnA6DxlSFvGz_8RF

1-3-8

8.00 | 12

8.00 | 12

Ax4 | B

F E E 2x4 D

TOTAL WEIGHT = 4 X 19 = 76 lb

Scale = 1:30.0

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
F - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	2100F 1.8E	SPF
lê - D	2x4	DRY	No.2	SPF
, - 5	2.4	Ditt	140.2	311
ALL WEBS	2x3	DRY	No.2	SPF
			140.2	SFF
DRY: SEASO	ONED L	UMBER.		

PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Χ					
В	TMVW-t	MT20	4.0	4.0	2.00	1.00					
Ε	BMW+w	MT20	2.0	4.0							
F	BMV1+p	MT20	3.0	4.0							

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

5-10-8 5-10-8

	niivas						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRE
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	539	0	539	0	0	5-8	5-8
	330	0	330	0	0	1-8	1-8
	54	0	61	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNE	UNFACTORED REACTIONS									
l	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED SNOW LIVE PERM.LIVE WIND DEAD SOIL									
F	375	280 / 0	0/0	0/0	0/0	95 / 0	0/0			
С	226	191 / 0	0/0	0/0	0/0	35 / 0	0/0			
D	43	0/0	0/0	0/0	0/0	43 / 0	0/0			
BEA	RING MATER	IAL TO BE S	PF NO.2 OR	BETTER AT JOI	NT(S) F					

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHO	ORDS				W E	BS		
MAX	. FACTORED	FACTORED	MAX. FACTORED					
MEMB.	FORCE	VERT. LOAD LO	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO			
F-B	-485 / 0		0.05 (1)		B- E	0/0	0.00(1)	
A-B	0 / 43	-112.4 -112.4						
B- C	0/0	-112.4 -112.4	0.44 (1)	10.00				
F-E	0/0		0.13 (4)					
E-D	0/0	-18.5 -18.5	0.19 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS:										
TOP	CH.	LL	=	32.5	PSF					
		DL	=	6.0	PSF					
BOT	CH.	LL	=	0.0	PSF					
		DL	=	7.4	PSF					
TOTA		۸D		45.0	DOE					

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.05")

CSI: TC=0.44/1.00 (B-C:1) , BC=0.19/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.21/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.29 (B) (INPUT = 0.90) JSI METAL= 0.09 (B) (INPUT = 1.00)

DWG# T-2216647

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423673 141 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 12:26:23 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-j_FvEMnkqAPQNtfmullFihJFz9dnWdMM9PBoRjz_8RE Tamarack Roof Truss, Burlington 1-3-8 Scale = 1:22.7 С 8.00 12 4x4 // W1 38 Ε 3x4 > D 5-10-8 1-3-8 3-9-8 TOTAL WEIGHT = 2 X 17 = 33 lb LUMBER
N. L. G. A. RULES
CHORDS SIZE
F - B 2x4 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** LUMBER DESCR SIZE BEARINGS FACTORED SPF SPF SPF MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLII No.2 No.2 ВС DRY INPUT REQRD SPECIFIED LOADS: DRY LL = DL = LL = DL = AD = **GROSS REACTION** BRG 32.5 PSF BRG CH. UPLIFT 6.0 0.0 7.4 No.2 VERT HORZ IN-SX IN-SX PSF 422 422 213 'n 5-8 1-8 5-8 1-8 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF CD 1-8 1-8 TOTAL LOAD 45.9 SPACING = 24.0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMINE W 4.0 9. NBCC 2015 2.00 1.00 WIND 4.0 4.0 COMBINED DEAD SOIL THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) 295 146 212 / 0 123 / 0 0/0 0/0 0/0 BMW+w MT20 3.0 0/0 BMV1+p 0/0 0/0 0/0 0/0 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C <u>ERACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED LOADING TOTAL LOAD CASES: (4) CALCULATED VERT. DEFL.(TL) = L/ 999 (0.05") CHORDS CSI: TC=0.27/1.00 (B-C:1) , BC=0.19/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.14/1.00 (B-C:1) WEBS FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBFFROM TO LENC MAX. FACTORED MAX. FACTORED MEMB. CSI (LC) UNBRAC DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 (LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO COMP=1.10 SHEAR=1.10 TENS= 1.10 F- B A- B B- C 0.0 0.0 0.04 (1) -112.4 -112.4 0.15 (1) -112.4 -112.4 0.27 (1) -367 / 0 0/0 0.00 (1) COMPANION LIVE LOAD FACTOR = 1.00 0/0 10.00 AUTOSOLVE RIGHT HEEL ONLY -18.5 0.16 (4) -18.5 0.19 (4) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. E-D 0/0 PROFESSIONAL FINGER DE LA CONTRACTION DE LA CONT PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00) 100009024 ROMACE OF ONTARIO Structural component only

DWG# T-2216648

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 423673 J42 TRUSS DESC. Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 12:26:24 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-BApHSioNbTXG?1EySTqUFurSeZz0F4cWO2xM_9z_8RD Tamarack Roof Truss, Burlington 1-9-7 Scale: 3/4"=1 С 8.00 12 B1 3-8 G Н D 3x4 || 2-0-0 1-11-4 1-3-8 1-9-7 LUMBER N. L. G. A. RULES CHORDS SIZE F - P TOTAL WEIGHT = 2 X 13 = 27 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** BEARINGS FACTORED LUMBER DESCR SPF SPF SPF MAXIMUM FACTORED GROSS REACTION В DRY INPUT REQRD SPECIFIED LOADS: DRY GROSS REACTION LL = DL = LL = 32.5 PSF BRG BRG TOP CH. UPLIFT IN-SX 6.0 0.0 7.4 No.2 VERT HORZ DOWN HORZ IN-SX PSF 368 41 5-8 1-8 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF . C D DL 1-8 TOTAL LOAD 45.9 SPACING = 24.0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 UNFACTORED REACTIONS W 4.0 2.0 MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMITVE V LEN Y X 4.0 2.00 1.00 4.0 9. NBCC 2015 WIND COMBINED DEAD 181 / 0 24 / 0 0/0 0/0 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) BMW+w MT20 0/0 0/0 0/0 0/0NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. ROOF LIVE LOAD LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.05") CHORDS WEBS MAX. FACTORED **FACTORED** MAX. FACTORED VERT. LOAD LC1 MAX (PLF) CSI (LC) (PLF) CSI (LC) (FROM TO 0.0 0.0 0.03 (1) -112.4 -112.4 0.15 (1) -112.4 -112.4 0.14 (1) мемв. FORCE CSI: TC=0.15/1.00 (A-B:1) , BC=0.19/1.00 (D-E:4) , CSI (LC) UNBRAC (LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO -314/0 0.00 (1) 10.00 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 B-C -33 / 0 COMP=1.10 SHEAR=1.10 TENS= 1.10 -18.5 -18.5 -18.5 0.12 (4) -18.5 0.19 (4) 10.00 COMPANION LIVE LOAD FACTOR = 1.00 E-G 0/0 10.00 G-H 0/0 -185 -18.5 0 19 (4) 10.00 AUTOSOLVE RIGHT HEEL ONLY TRUSS PLATE MANUFACTURER IS NOT SPECIFIED CONCENTRATED LOADS (LBS) RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. TYPE BACK BACK TOTAL VERT C1 C1 VFRT TOTAL NAIL VALUES

Structural component only DWG# T-2216649

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

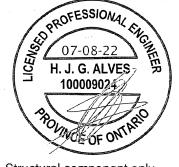

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.19 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423673 J43 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 12:26:25 2022 Page 1 ID:c3jyj23uDija_8pvRKbkZpy75XW-gMNff2o?Mnf7cBp8?ALjo6ObTyKt_XsfdigvWbz_8RC Tamarack Roof Truss, Burlington 1-3-8 1-10-8 Scale = 1:22.9 8.00 12 4x4 // W1 1-4-13 D 3x4 || 2x4 N 1-10-8 1-3-8 1-10-8 1-10-15 TOTAL WEIGHT = 2 X 12 = 23 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES CHORDS SIZE F - B 244 **DESIGN CRITERIA** BEARINGS FACTORED LUMBER DESCR SPF SPF SPF BCD No.2 No.2 MAXIMUM FACTORED GROSS REACTION INPUT BRG DRY REQRD SPECIFIED LOADS: DRY DRY LL = DL = LL = DL = AD = **GROSS REACTION** 32.5 PSF BRG CH. UPLIFT IN-SX IN-SX 6.0 0.0 7.4 PSF PSF 2x4 No.2 VERT HORZ DOWN HORZ 0 384 213 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF TOTAL LOAD 45.9 PSE SPACING = 24.0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMITVE 9. NBCC 2015 4.0 4.0 2.00 1.00 COMBINED WIND DEAD SOIL THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) 212 / 0 123 / 0 0/0 0/0 0/0 0/0 BMW+w MT20 4.0 265 BMV1+p 0/0 0/0 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. ALLOWABLE DEFL.(LL) = L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED <u>LOADING</u> TOTAL LOAD CASES: (5) CHORDS CSI: TC=0.27/1.00 (B-C:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.14/1.00 (B-C:1) WEBS FACTORED . WAX MAX. (PLF) CSI (LC) UNBFFROM TO LENCE MAX. FACTORED MAX. FACTORED MEMB. FORCE DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 CSI (LC) UNBRAC (LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO 0.0 0.0 0.04 (1) -112.4 -112.4 0.15 (1) -112.4 -112.4 0.27 (1) -367 / 0 0/0 0.00(1)COMPANION LIVE LOAD FACTOR = 1.00 B-C 0/0 10.00 AUTOSOLVE RIGHT HEEL ONLY -18.5 -18.5 0.02 (4) -18.5 -18.5 0.01 (4) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. E-D 0/0 CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg JSI GRIP= 0.22 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

Structural component only DWG# T-2216650

JOB NAME QUANTITY PLY JOB DESC. TRUSS NAME **BAYVIEW WELLINGTON** DRWG NO. 423673 144 TRUSS DESC. Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 12:26:26 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-8Yx1tOpd75n_ELOLZusyKJxo8Mg6j_6prMQS22z_8RB

С 8.00 12 4x4 / В B1 3-8 E 2x4 ◇ D 1-10-8

N. L. G. A. RULES CHORDS SIZE LUMBER DESCR ВСО DRY DRY No.2 No.2 SPF SPF 2x4 DRY No.2 ALL WEBS SPF DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 LEN Y 4.0 4.0 2.00 1.00 4.0 RMW+w BMV1+p

1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BE

1-9-7

1-1

EA	RINGS						
	FACTO GROSS P	RED	MAXIMU GROSS			INPUT BRG	REQRD BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	331	0	331	0	0	5-8	5-8
;	41	0	41	0	-50	1-8	1-8
)	17	0	19	0	0	1-8	1-8

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F. C

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNI	ACTORED RE	ACTIONS								
	1ST LCASE	MAX./I	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
F	229	181 / 0	0/0	0/0	0/0	47 / 0	0/0			
С	28	24 / -34	0/0	0/0	0/0	4/0	0/0			
D	14	0/0	0/0	0/0	0/0	14/0	0/0			

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHO	ORDS				WEBS				
MAX.	. FACTORED	FACTORED	FACTORED			MAX. FACTORED			
MEMB.	FORCE	VERT. LOAD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PLF) C	SI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM TO		LENGTH	FR-TO				
F-B	-314/0	0.0 0.0	0.03(1)	7.81	B-E	0/0	0.00(1)		
A-B	0 / 43	-112.4 -112.4	0.15 (1)	10.00					
B- C	-33 / 0	-112.4 -112.4	0.14(1)	6.25					
F-E	0/0	-18.5 -18.5	0.02(4)	10.00					
E-D	0/0	-18.5 -18.5	0.02(4)	10.00					

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PECIFIED LOADS: LL = DL = LL = DL = AD = 32.5 PSF TOP CH. 6.0 0.0 7.4 PSF PSF TOTAL LOAD 45 9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 5 X 9 = 45 lb

Scale: 3/4"=1

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

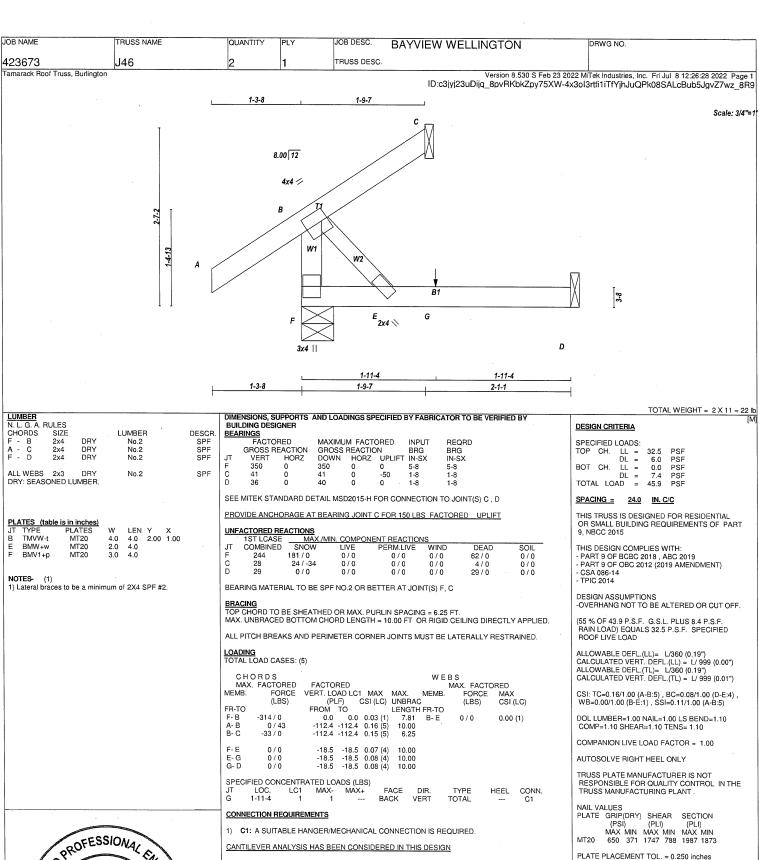
PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.19 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

DWG# T-2216651

JOB NAME TRUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** PLY DRWG NO. 423673 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jul 8 12:26:27 2022 Page 1 ID:c3jyj23uDija_8pvRKbkZpy75XW-clVP4kqFuOvrsVzX7bNBtXTxlm?NSRMy4090bUz_8RA Tamarack Roof Truss, Burlington 1-3-8 Scale = 1:22.5 C 8.00 12 4x4 / W1 E 3x4 > D 3x4 || 3-10-8 1-3-8 3-10-8 TOTAL WEIGHT = 4 X 14 = 58 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES CHORDS SIZE F - B 2x4 **DESIGN CRITERIA** LUMBER DESCR. SIZE BEARINGS FACTORED SPF SPF SPF MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLI ВС DRY No.2 INPUT REQRD SPECIFIED LOADS: DRY BRG **GROSS REACTION** BRG IN-SX 32.5 PSF TOP CH. LL = DL = No.2 HORZ UPLIFT 6.0 0.0 7.4 VERT IN-SX PSF 408 0 408 218 0 5-8 1-8 5-8 1-8 BOT CH. LL ALL WEBS 2x3 DRY DRY: SEASONED LUMBER No.2 SPF TOTAL LOAD 1-8 1-8 45.9 PSF SPACING = 24.0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D THIS TRUSS IS DESIGNED FOR RESIDENTIAL PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 UNFACTORED REACTIONS
1ST LCASE MA OR SMALL BUILDING REQUIREMENTS OF PART MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMILIVE LEN Y X 4.0 2.00 1.00 4.0 W 4.0 9. NBCC 2015 COMBINED WIND DEAD SOIL THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) 283 149 215 / 0 126 / 0 0/0 0/0 0/0 68 / 0 23 / 0 0/0 BMW+w MT20 3.0 BMV1+p 0/0 0/0 0/0 0/0 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED LOADING TOTAL LOAD CASES: (5) CHORDS CSI: TC=0.29/1.00 (B-C:1), BC=0.08/1.00 (D-E:4), WEBS MAX. FACTORED MAX. FACTORED FACTORED WB=0.00/1.00 (B-E:1), SSI=0.14/1.00 (B-C:1) FACTORED

VERT.LOAD LC1 MAX MAX. |
(PLF) CSI (LC) UNBRAC
FROM TO
0.0 0.0 0.04 (1) 7.81
-112.4 -112.4 0.16 (5) 10.00 MEMB. FORCE FORCE DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 CSI (LC) (LBS) LENGTH FR-TO 7.81 B- E FR-TO COMP=1.10 SHEAR=1.10 TENS= 1.10 F- B A- B B- C -372 / 0 B-E 0/0 0.00(1) COMPANION LIVE LOAD FACTOR = 1.00 -112.4 -112.4 0.29 (1) 0/0 10.00 AUTOSOLVE RIGHT HEEL ONLY -18.5 -18.5 0.08 (4) -18.5 -18.5 0.08 (4) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 10.00


CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2216652

FVIFW

PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

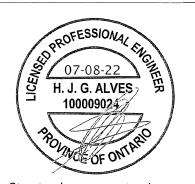

Structural component only DWG# T-2216653

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.19 (B) (INPUT = 0.90)

JSI METAL= 0.06 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423673 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jul 8 12:26:29 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-Y7cAVPrVQ0AZ5o7wE0PfyyYJHaiQwLrFYKe7fMz_8R8 1-3-8 С 8.00 12 4x4 / В W1 3-8 E 2x4 ∨ G D 1-11-4 11-4 1-3-8 1-9-7 TOTAL WEIGHT = 10 lb LUMBER
N. L. G. A. RULES
CHORDS SIZE
F - B 2x4
A - C 2x4 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DÉSIGNER **DESIGN CRITERIA** BEARINGS FACTORED DESCR. SPF SPF LUMBER DRY No.2 No.2 MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ UPLIFT BRG IN-SX BRG IN-SX DRY CH. LL = DL = Ď DRY SPF PSF 6.0 BOT CH. 341 341 5-8 5-8 LL DL 0.0 7.4 PSF ALL WEBS 2x3 DRY No.2 SPF 41 -50 DRY: SEASONED LUMBER. TOTAL LOAD 45.9 PSF SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D SPACING = 24.0 IN. C/C PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT THIS TRUSS IS DESIGNED FOR RESIDENTIAL PLATES (table is in inches) OR SMALL BUILDING REQUIREMENTS OF PART W 4.0 2.0 LEN Y 4.0 2. 4.0 UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMINT TMVW-t MT20 MT20 2.00 1.00 1ST LCASE COMBINED BMW+w THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) WIND DEAD SOIL 55 / 0 4 / 0 21 / 0 BMV1+p MT20 3.0 4.0 181 / 0 24 / -34 0/0 0/0 0/0 0/0 C 0/0 0/0 0/0 0/0 0/0 CSA 086-14 NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C **DESIGN ASSUMPTIONS** <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. -OVERHANG NOT TO BE ALTERED OR CUT OFF. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED LOADING TOTAL LOAD CASES: (5) ALLOWABLE DEFL.(LL)= L/360 (0.19") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00") ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL)= L/999 (0.00") CHORDS WEBS MAX. FACTORED MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX. I (PLF) CSI (LC) UNBRAC FROM TO LENGTH MEMB MAX CSI (LC) CSI: TC=0.16/1.00 (A-B:5) , BC=0.04/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (A-B:5) (LBS) FR-TO LENGTH FR-TO 0.0 0.0 0.03 (1) -112.4 -112.4 0.16 (5) -112.4 -112.4 0.15 (5) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 F-B -314/0 7.81 0/0 0.00(1) A-B B-C 10.00 -33 / 0 6.25 COMPANION LIVE LOAD FACTOR = 1.00 F- E E- G 0/0 0/0 -18.5 -18.5 0.04 (4) -18.5 -18.5 0.04 (4) 10.00 10.00 AUTOSOLVE RIGHT HEEL ONLY -18.5 G-D 0/0 -18.5 0.04 (4) 10.00

Structural component only DWG# T-2216654

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

MÀX+

FACE

BACK

DIR

VERT

TYPE

TOTAL

HEEL

CONN

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

MAX-

SPECIFIED CONCENTRATED LOADS (LBS)

LC1

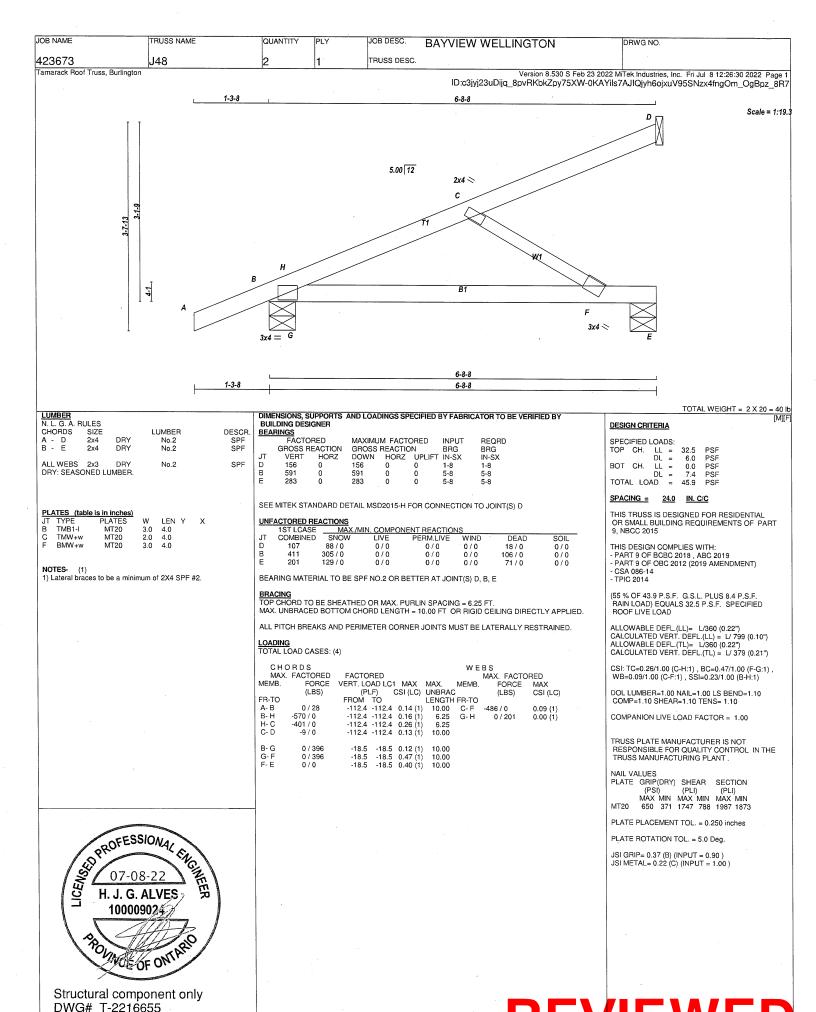
LOC

1-11-4

CONNECTION REQUIREMENTS

G

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.


NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.19 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components

2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.

3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.

4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.

5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.

- 2- Lumber is to be the sizes and grade specified on the truss drawing.
- 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6- The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)
- 7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals.
 - 8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols, numbering tem and General Safety notes.

T-1300213 Feb 09, 2018

STANDARD DETAIL MSD2015-H

Issued: SEPTEMBER 22, 2020

Expiry: **APRIL 30, 2022**

TOE-NAIL CAPACITY DETAILS

LATERAL AND WITHDRAWAL RESISTANCE OF BEARING ANCHORAGE BY TOE-NAILS

			SPF	D. FIR	SPF	D. FIR
COMMON WIRE	3.00	0.144	122	139	30	42
	3.25	0.144	127	144	32	45
	3.50	0.160	152	173	38	52
COMMON	3.00	0.122	96	108	26	36
	3.25	0.122	97	108	28	40
	3.50	0.152	142	161	36	50
3.25" Gun nail	3.25	0.120	94	105	28	39

Note: If using truss with D. Fir lumber and SPF bearing plate, use tabulated SPF values in table.

Nail type:		Common wire	Common spiral	Common wire	Common spiral	Gun Nail
Diameter	(in.)	0.160	0.152	0.144	0.122	0.120
Length	(in.)	3.50	3.50	3.00	3.00	3.25
2x4 SPF		2	2	3	3	3
2x6 SPF		4	4	4	5	5
2x4 D. FI	R	2	2	2 .	2	2
2x6 D. FI	R	3	3	3	4	4

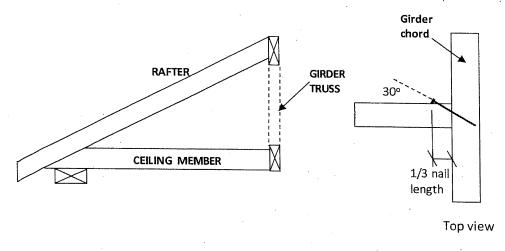
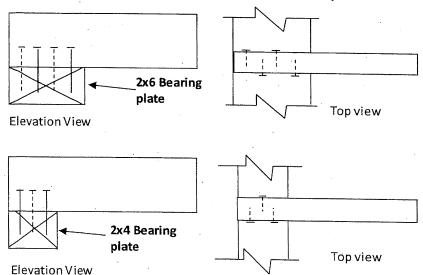
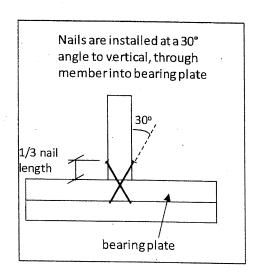


Figure 1: Toe-Nailing Rafter / Ceiling Member to Girder Truss

December 21, 2020

Page **1** of **2** © 2020 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, <u>www.mitek.ca</u>


STANDARD DETAIL MSD2015-H


Issued: SEPTEMBER 22, 2020

Expiry: **APRIL 30, 2022**

TOE-NAIL CAPACITY DETAILS

Figure 2: Toe-Nail Anchorage to Bearing Plate for Uplift

NOTES:

- 1. Rafter and ceiling members may be connected to top and bottom chords of girder truss by toe-nailing the members into the girder chords (see fig. 1), provided the factored vertical reactions of the supported members do not exceed the lateral resistance of the toe-nails. Mechanical connectors (hangers) are required if factored vertical reactions exceed the toe-nail capacity, or if the connection must resist horizontal loads (loads perpendicular to the face of girder or rafter).
- 2. Trusses, rafters or ceiling members may be anchored to the bearing plate with toe-nails (see fig. 2), provided that the factored uplift reactions due to wind or earthquake loads do not exceed the withdrawal resistance of the toe-nails. Mechanical anchors (tie-downs) are required for reactions that exceed the toe-nail withdrawal capacity. Toe-nail anchorage to bearing plates is NOT permitted if uplift reactions are generated from gravity loads (snow, floor live, dead).
- 3. Tabulated toe-nail resistances on page 1 are for **one** toe-nail. Multiply unit values by the number of nails used in the connection. Maximum number of nails in a connection shall not exceed the tabulated limits shown on page 1 for a given lumber size /species.
- 4. Nail values are based on specific gravity of G = 0.42 (SPF) and G = 0.49 (D. Fir).
- 5. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member.
- 6. For wind / earthquake loads, tabulated lateral resistances may be multiplied by 1.15 (K_D factor). No increases are permitted for tabulated withdrawal resistances.
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA O86-19, Clause 12.9.

December 21, 2020

Page 2 of 2

©2020 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, www.mitek.ca

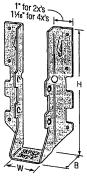
This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

Most hangers in this series have double-shear nailing — an innovation that distributes the load through two points on each joist nail for greater strength. This allows for fewer nails, faster installation, and the use of all common nails for the same connection. (Do not bend or remove tabs)

Double-shear hangers range from the light capacity LUS hangers to the highest capacity HGUS hangers. For medium load truss applications, the HUS offers a lower cost alternative and easier installation than the HGUS hangers, while providing greater load capacity and bearing than the LUS.

Material: See table on pp. 217-218.

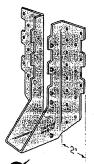
Finish: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, pp. 18-20.

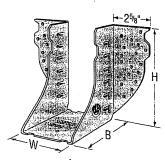

Installation:


Plated Truss Connectors

- · Use all specified fasteners; see General Notes,
- Nails must be driven at an angle through the joist or truss into the header to achieve the tabulated resistances (except LUL).
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated factored resistance.
- Not designed for welded or nailer applications.
- With single ply 2x carrying members, use 10d x 1½" nails into the header and 10d commons into the joist, and reduce the resistance to 0.64 of the table value where 16d nails are specified and 0.77 where 10d nails are specified.

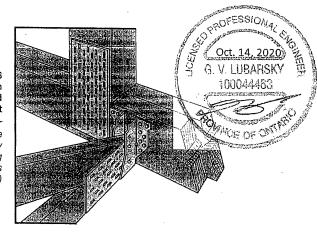
Options:

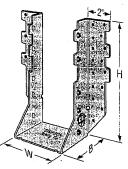

- · LUS, LJS, LUL and HUS hangers cannot be modified.
- Other sizes available; consult your Simpson Strong-Tie representative.
- See Hanger Options information on pp. 105-107.

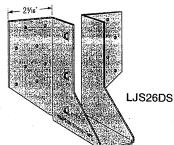


W HGUS28-2

Double-Shear Nailing Top View




Double-Shear
Nailing
Side View;
Do not
bend tab


Dome Double-Shear Nailing Side View (available on some models)

Typical HUS26 Installation with Reduced Heel Height (Truss Designer to provide fastener quantity for connecting multiple members together)

C-C-CANZ020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.

LUS - Double Shear Joist Hangers

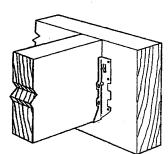
SIMPSON Strong-Tie

LUS28

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

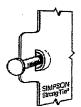
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uptiff resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 31/2" long common wire, 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

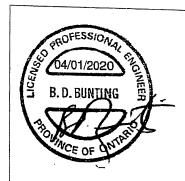
Options:


These hangers cannot be modified

Typical LUS

									in	stallation	ı	
Model	Ga.		Dimens	ions (in	.)	Fast	Fasteners		Factored Resistance (lb.) D.Fir-L S-P-F			
No.	Ga.	w	Н	В	d,1	Face	Joist	Uplift	Normal	Uplift	Normal	
111004	+-		 	<u> </u>	-		GOIGE	(K ₀ =1.15)	(K ₀ =1.00)	(K ₀ =1.15)	$(K_0=1.00)$	
LUS24	18	19/16	31/6	13/4	1 15/18	(4) 10d	(2) 10d	710	1630	645	1155	
LUS24-2	18	31/6	31/8	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435	
LUS26	18	19/16	43/4	13/4	3%	(4) 10d	(4) 10d	1420	2170	1290	1630	
LUS26-2	18	31/4	47/8	2	4	(4) 16d	(4) 16d	1720	2595	1545		
LUS26-3	18	4%	43/16	2	31/4	(4) 16d	(4) 16d	1720	2595		1920	
LUS28	18	19/16	6%	13/4	33/4	(6) 10d	(6) 10d			1545	2340	
LUS28-2	18	31/8	7	2	4			1420	2520	1290	1790	
LUS28-3	18	45%	61/4	2		(6) 16d	(4) 16d	1720	3325	1545	2575	
LUS210	18		 		31/4	(6) 16d	(4) 16d	1720	3325	1545	2375	
		19/16	7 13/16	13/4	37/8	(8) 10d	(4) 10d	1420	2785	1290	2210	
Ш8210-2	18	31/6	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195	
LUS210-3	18	4%	83/16	2	51/4	(8) 16d	(6) 16d	2580	2245	2020	3190	

 $^{1.\,}d_{\text{e}}$ is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022: Contact Simpson Strong-Tie for current information and limited warranty or see strongtle.com.

© 2020 Simpson Strong-Tie Company inc.

T-SPECLUS20 3/20 exp. 6/22

TECHNICAL BULLETIN

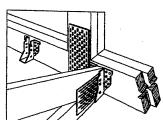
HUS/LJS - Double Shear Joist Hangers

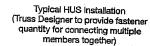
SIMPSON Strong-Tie

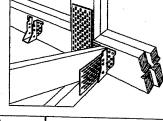
All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

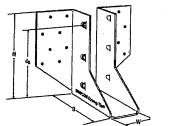
Material: See table Finish: G90 galvanized

Design:

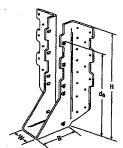

- Factored resistances are in accordance with CSA O86 -14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

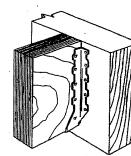

Installation:


- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications



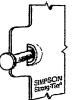
See current catalogue for options





0 0

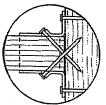
Typical LJS26DS Installation



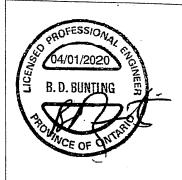
HUS210 (HUS26, HUS28, similar)

Typical HUS Installation

		Di	mens	ons (î	n.)	Fas	teners	Factored Resistance (lb.)				
Model	Ga.							D.F			P-F	
No.	ua.	W	Н	В	ď,	Face	Joist	Uplift (K ₀ =1.15)	Normal (K _p =1.00)	Uplift (K _p =1.15)	Normal (K _n =1.00)	
LJS26DS	10	10/						lb.	lb.	lb.	lb.	
	18	19/16	5	3½	45/B	(16) 16d	(6) 16d	2055	4265	1460	4115	
HUS26	16	1%	53/8	3	315/16	(14) 16d	(6) 16d	2705	4940	2065	3875	
HUS28	16	1%	73/32	3	63/32	(22) 16d	(8) 16d					
HUS210	16	15/8				`		3605	5365	2675	4345	
		198	93/32	3	/3/32	(30) 16d	(10) 16d	4505	5795	4010	4740	
HUS1.81/10	. 16	113/16	9	3	8	(30) 16d	(10) 16d	4505	6450			
1. de is the dis	tance	from t	he sea	at of th	e han			noit	0400	4010	5200	



Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHUS20 3/20 exp. 6/22

HGUS - Double Shear Joist Hangers

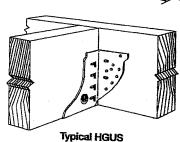
SIMPSON Strong-Tie

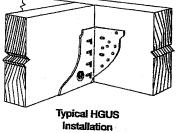
HGUS28-2

All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

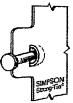
Material: 12 gauge Finish: G90 galvanized

Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

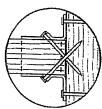

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or natiler applications

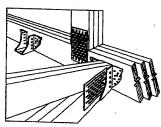

See current catalogue for options

30-4-6			Dimens	ions (in	i.)	Fast	eners	F	actored Re	sistance (II	b.)
Model No.	Ga.			T	T	 	Т	D.F		S-	P-F
110.	l	W	Н	В	d,1	Face	Joist	Uplift	Normal	Uplift	Normal
HGUS26	10	451		<u> </u>	-		Joint	$(K_0=1.15)$	(K _D =1.00)	(K ₀ =1.15)	(K _p =1.00)
	12	1%	5%	5	4 1/32	(20) 16d	(8) 16d	2685	6625	2685	5700
HGUS26-2	12	35/16	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-3	12	415/16	51/2	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	
HGUS26-4	12	6%s	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950		6355
HGUS28	12	1%	71/8	5	61/8	(36) 16d	(12) 16d	3310		3100	6355
HGUS28-2	12	35/16	73/16	4	61/6	(36) 16d	(12) 16d		7.675	3100	6900
HGUS28-3	12	415/16	71/4	4	6%	(36) 16d		6070	12980	4310	9215
HGUS28-4	12	6%e	73/16	4		<u> </u>	(12) 16d	6070	12980	4310	9215
HGUS210					61/6	(36) 16d	(12) 16d	6070	12980	4310	9215
	12	1%	91/8	5	71/a	(46) 16d	(16) 16d	3535	11070	2510	8090
HGUS210-2	12	35/16	93/16	4	81/8	(46) 16d	(16) 16d	6840	14015	4855	10270
HGUS210-3	12	415/16	91/4	4	8%	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS210-4	12	6%6	93/16	. 4	81/8	(46) 16d	(16) 16d	6840	14645		
HGUS212-4	12	6%	10%	4	101/8	(56) 16d	(20) 16d	7640		4855	10400
HGUS214-4	12	6%	125/8	4	111/8	(66) 16d	-		14995	5425	10645
1. de is the dis	fance						(22) 16d	10130	16400	7195	11645

e from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

(800) 999-5099 strongtie.com

This technical bulletin is effective until June 30; 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

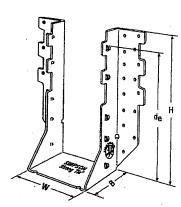
T-SPECHGUS20 3/20 exp. 6/22

HHUS - Double Shear Joist Hangers

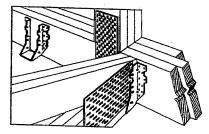
SIMPSON Strong-Tie

All HHUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

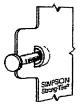
Material: 14 gauge Finish: G90 galvanized


Design:

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.


Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x $3\frac{1}{2}$ " long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

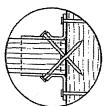


Options:

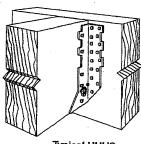
See current catalogue for options

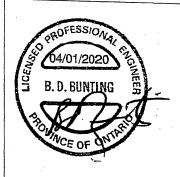
	T					1					
Model		ן נו	imensio	ıns (in.)	} .	Faste	eners	DE	actored He	sistance (II	
No.	Ga.			T	Τ	 	T .		ir-L	S-P-F	
140.		W	Н	В	d _e 1	Face	Joist	Uplift	Normal	Uplift	Normal
111111111111111111111111111111111111111	 		<u> </u>				Colde	(K ₀ =1.15)	(K ₀ =1.00)	(K _p =1.15)	(K _D =1.00)
HHUS26-2	14	35/16	513/16	3	315/16	(14) 16d	(6) 16d	2850	7335	2065	5205
HHUS28-2	14	35/16	77/32	3	65/32	(22) 16d	(8) 16d	3765	8940	2675	6345
HHUS210-2	14	35/16	93/32	3	8	(30) 16d	(10) 16d		9660		
HHUS210-3	14	411/16	. 9	3	715/16	(30) 16d	(10) 16d			4235	7000
HHUS210-4	14	61/4	829/32	3	727/32	(30) 16d	(10) 16d		9670	4235	6865
HHUS46	14	3%	513/30	3			· · · ·	4670	10155	4235	7210
HHUS48	14				315/16	(14) 16d	(6) 16d	2540	7335	2065	5205
		3%	71/8	3	6 1/a·	(22) 16d	(8) 16d	3765	8940	2675	6345
HHUS410	14	3%	9	3	8	(30) 16d	(10) 16d	4670	9855	4235	7000
HHUS5.50/10	14	51/2	9	3	8	(30) 16d	(10) 16d	4670	10155		
HHUS7.25/10	14	71/4	9	35/16	729/32	(30) 16d	***/			4235	7210
1 d. is the dista					/ 732	(30) 100	(10) 16d	4670	10155	3370	7210

s the distance from the seat of the hanger to the highest joist nail.



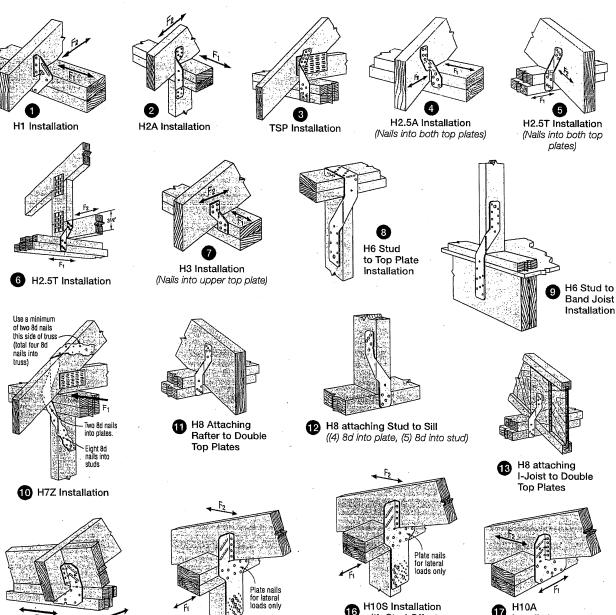
Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5,603,580

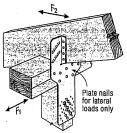

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

Typical HHUS Installation


This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongitie.com.

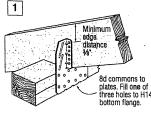
© 2020 Simpson Strong-Tie Company Inc.


T-SPECHHUS20 3/20 exp. 6/22

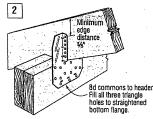
H/TSP

Seismic and Hurricane Ties (cont.)

H10A Field-Bent Installation

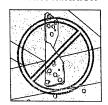


15 H10S Installation


with Stud Offset

Installation

H10A optional positive angle nailing connects shear blocking to rafter. Use 8d common nails. Slot allows maximum field-bending up to a pitch of 6/12, use 75% of the table uplift value; bend one time only.



H14 Installation to **Double Top Plates**

H14 Installation to Double 2x Header

Avoid a Misinstallation

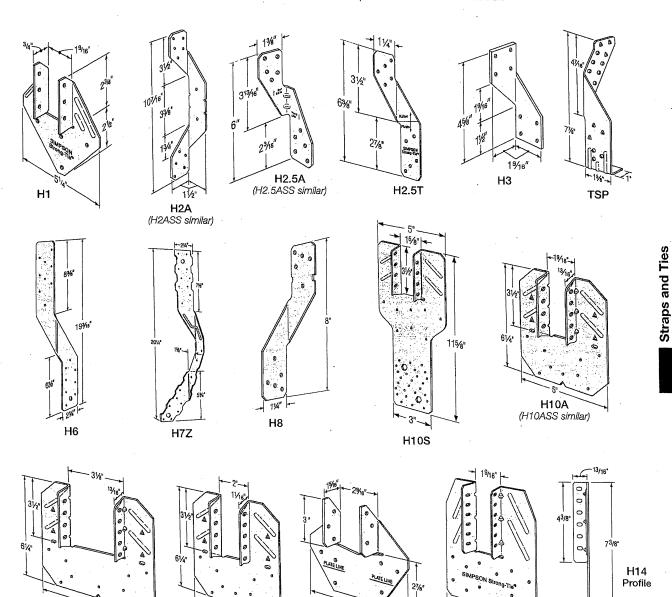
Do not make new holes or overdrive nails.

Seismic and Hurricane Ties

Simpson Strong-Tie® hurricane ties provide a positive connection between truss/rafter and the wall of the structure to resist wind and seismic forces. New additions to the line provide even more options.

- H10AR The heavy-duty design of the H10A available with a 2" wide throat to accommodate rough lumber
- H10A-2 The H10A design with a 3" throat for double 2x members
- H2ASS, H2.5ASS and H10ASS Popular ties now available in stainless steel

Material: See table


H10A-2

H₁₀AR

Finish: Galvanized. H7Z and H11Z — ZMAX® coating. Some models available in stainless steel or ZMAX; see Corrosion Information, pp. 20–24 or visit strongtie.com.

Installation:

- Use all specified fasteners; see General Notes.
- H1 can be installed with flanges facing inward (reverse of H1 installation drawing; number 1).
- H2.5T, H3 and H6 ties are shipped in equal quantities of right and left versions (right versions shown).
- · Hurricane ties do not replace solid blocking.
- When installing ties on plated trusses (on the side opposite the truss plate) do not fasten through the truss plate from behind. This can force the truss plate off of the truss and compromise truss performance.
- H10A optional nailing to connect shear blocking, use 8d nails.
 Slots allow maximum field bending up to a pitch of 6:12, use H10A sloped loads for field bent installation.

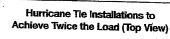
H11Z

H14

- 3/4" -

H - Seismic and Hurricane Ties

SIMPSON Strong-Tie

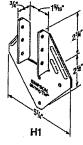

The H connector series provides wind and seismic ties for trusses and rafters. Material: 18 gauge Finish: G90 galvanized

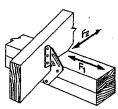
Design: • Factored resistances are in accordance with CSA 086-14 Factored resistances have been increased 15%. No further increase is permitted.

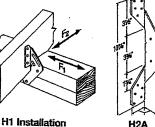
Installation: • Use all specified fasteners

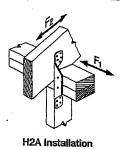
- Nails: 8d = 0.131" dla. x 2½" long common wire, 8d x 1½" = 0.131" x 1½ long, 10d x 1½" = 0.146" x 1½" long
- H1 can be installed with flanges facing outwards
- Hurricane ties do not replace solid blocking

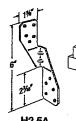
Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows: Factored Shear/Resisting Shear + Factored Tension/Resisting Tension ≤ 1.0 .

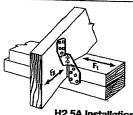


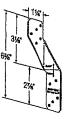


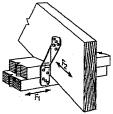


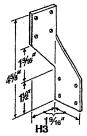


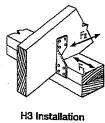

Nailing into both sides of a single ply 2x truss may cause the wood to split.

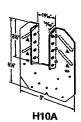




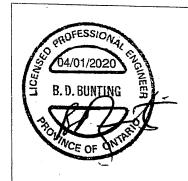



H2.5A Installation





H2.5T Installation (Nails into both top plates)



H2.5A 18 H2.5T 18 H3 18			Fasteners			Fac	tored Re	sistance ((b.)	
Model	0-	<u> </u>				D.Fir-L			S-P-F	
No.	tiā,	T- D-0		_	Uplift	Nar	Normal		Nor	mal
		To Rafter	To Plates	To Studs		F ₁	F ₂	Uplift	F ₁	F ₂
114		ł				$(K_0=1.15)$	1		(K ₁ =1.15)	
	-18	(6) 8d x 11/2"	(4) 8d		740	685	300	680	485	215
H2A	18	(5) 8d x 11/2"	(2) 8d x 11/2"	(5) 8d x 11/2"	830	220	75	590		
H2.5A	18	(5) 8d	(5) 8d		805	160			155	55
H2 5T	18	(5) 8d					160	755	160	160
			(5) 8d		835	175	240	740	160	210
		(4) 8d	(4) 8d	_	740	180	265	615	125	190
H10A	18	(9) 10d x 1½"	(9) 10d x 11/2"		1735	795	410	1505	565	200

- 1. Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- 2. Factored resistances are for one anchor, A minimum rafter thickness of 21/2" must be used when framing anchors are installed on each side of the joist and on the same side of the plate.
- When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- 4. Hurricane ties are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable. For a Continuous Load Path, connections must be on same side of the wall.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see stronglie.com.

© 2020 Simpson Strong-Tie Company Inc.

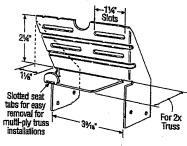
T-SPECH20 3/20 exp, 6/22

TC - Truss Connectors

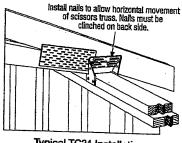
SIMPSON Strong-Tie

The TC truss connector is an ideal connector for scissor trusses and can allow horizontal movement up to 11/4". The TC also attaches plated trusses to top plates or sill plates to resist uplift forces. Typically used on one or both ends of truss as determined by the building designer.

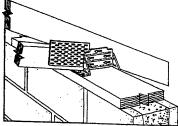
Material: 16 gauge Finish: G90 galvanized

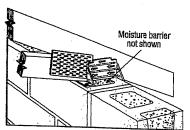

Design: Factored resistances are in accordance with CSA 086-14

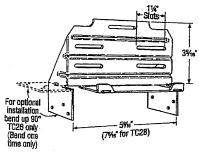
Installation:


- Use all specified fasteners.
- Nails: 10d = 0.148" dia. x 3" long common wire, $10d \times 1\% = 0.148$ " dia. x 1%" long.
- Drive 10d nails into the truss at the inside end of the slotted holes (inside end is towards the centre of the truss) and clinch on the back side. Do not seat these nails into the truss-allow room under the nail head for movement of the truss with respect to the wall.

Optional TC Installation:

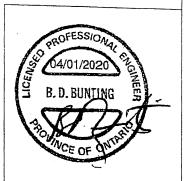

 Bend one flange up 90°. Drive specified nails into the top and face of the top plates or install Titen* screws into the top and face of masonry wall. See optional load tables and installation details.


TC24 U.S. Patent 4,932,173


Typical TC24 Installation

Optional TC26 Installation for Grouted Concrete Block using a Wood Nailer (8", 10", 12" Wall Installation Similar)

Optional TC26 Installation for Grouted Concrete Block using Titen Screws



TC26 (TC28 Similiar)

	Fast	eners	Factored Resistance		
Model			D.Fir-L	S-P-F	
No.	Truss	Wall Plates	Uplift (K ₀ =1.15)	Uplift (K ₀ =1.15)	
			fb.	lb.	
TC24	(4) 10d	(4) 10d	605	430	
TC26	(5) 10d	(6) 10d	1015	720	
TC28	(5) 10d	(6) 10d	1015	720	

Opuonai i	C Installa	ition Table		
	Fas	steners	Factored F	Resistance
Model			D.Fir-L	S-P-F
No.	Truss	Wall Plates	Uplift (K _p =1.15)	Uplift (K ₀ =1.15)
		1	lb.	lb.
TC26	(5) 10d	(6) 10d x 11/2"	810	660
.020	(5) 10d	(6) 10d	930	660

- 1. Factored resistances have been increased 15% for earthquake or wind loading; no further increase allowed; reduce where other loads govern.
- 2. Grout strength is 15 MPa minimum.
- 3. Optional TC26 installation with 10d nails requires minimum 3" top plate thickness
- 4. TC26 fastened to grouted concrete block with (6) - 3/16" x 21/4" Titen screws has a factored uplift resistance of 275 lb.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

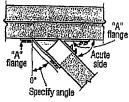
© 2020 Simpson Strong-Tie Company inc.

T-SPECTC20 3/20 exp. 6/22

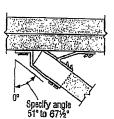
Face-Mount Truss Hanger (cont.)

These products are approved for installation with the Strong-Drive® SD Connector screw. See pp. 32-34 for more information.

Alternate Installation for (2) 2x4 and (2) 2x6 Headers


			Fa	steners		Factored I	lesistance	
	Min.	Minimum			D.F	ir-L	S-P-F	
Model No.	Heel Height	Header			Uplift	Normal	Uplift	Normal
	(in.)	Size	Header	Joist	$(K_D = 1.15)$	$(K_0 = 1.00)$	$(K_D = 1.15)$	$(K_0 = 1.00)$
				1	ib.	lb.	lb.	lb.
					kN	kN	kN	kN
HTU26 (Min.) 37/	3%	(2) 2x4	(10) 16d	(14) 10d x 11/2"	1740	3340	1235	2370
				(1.1/104.1/2	7.74	14.86	5.49	10.54
HTU26 (Max.)	5½	(2) 2x4	(10) 16d	(20) 10d x 11/2"	2470	4015	1755	2850
			, , ,	120,100,172	10.99	17,86	7.81	12.68
HTU28 (Max.)	3%	(2) 2x6	(20) 16d	(26) 10d x 11/2"	4150	6395	2945	4540
				(45) 100 x 172	18.46	28.45	13.10	20.19
HTU210 (Max.)	71/4	(2) 2x6	(20) 16d	(32) 10d x 11/2"	4150	6395	2945	4540
on belok to at a t			,, 100	(92) 100 X 172	18.46	28.45	13.10	20.19

See table footnotes on p. 260.


Hanger Options

See Hanger Options Information on pp. 125–127. Skewed Seat

- Skewable up to 67½°
- Available in single and 2-ply size
- No bevel cut required

Top View HTU Hanger Skewed Right < 51°

Top View HTU Hanger Skewed Right ≥ 51°

Factored Resistances for Skewed HTU Hangers

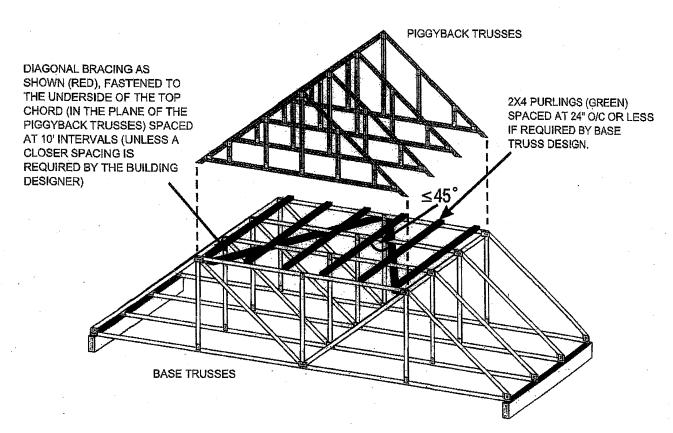
	1	F	asteners	 	14119010		
			13(0)(0)			Resistance	
Model	Skew	1			ir-L		P-F
No.	Angle	Header	Joist	Uplift	Normai	· Uplift	Normal
	(Degrees)	, noddoi	30131	(KD=1.15)	(KD=1.00)	(KD=1.15)	(KD=1.00)
			İ	libs	bs	lbs	lbs
		 	 	kN	kN	kN	kN
	< 51	(20) 16d	(14) 10d x 11/2"	1835	4110	1300	2905
HTU26				8.16	18.28	5.78	12.92
	51-671/2	(20) 16d	(12) 10d x 11/2"	1350	3620	955	2560
P				6.01	18.10,	4.25	11.39
	< 51	(26) 16d	(20) 10d x 11/4"	2810	4270	1985	3030
HTU28				12.50	18.99	8.83	13.48
	51-871/2	(26) 16d	(17) 10d x 11/2"	2075	3930	1465	2780
				9.23	17.48	6.52	12.37
	< 51	(32) 16d	(26) 10d x 11/2"	3785	4430	2675	3135
HTU210			(25) 100 K 172	16,84	19.71	11,90	13,95
	51-671/2	(32) 16d	(22) 10d x 11/2"	2795	4240	1980	3000
,			(az) 100 x 172	12.43	18.86	8.81	13.35
	< 51	(20) 16d	(14) 10d	2140	3715	1515	2625
HTU26-2		()	(11) 100	9.52	16.53	6.74	11,68
	51~671/2	(20) 16d	(12) 10d	1610	3920	1140	2785
		(27)	(12) 100	7.16	17.44	5.07	12.39
	< 51	(26) 16d	(20) 10ơ	3960	5425	2815	3855
HTU28-2		,,	(20) 100	17.62	24.13	12.52	17.15
	51-671/2	(26) 16d	(17) 10d	2385	5425	1695	3855
		(-5) 10d	(17) 100	10.61	24.13	7.54	17,15
	< 51	(32) 16d	(26) 10d	5025	6890	3570	4890
HTU210-2	- 7.	[ac) tou	\20) 10u	22.35	30.65	15.88	21.75
	51-671/2	(36) 16d	(22) tod	3145	6680	2225	4745
	3. 37 /2	(00) 100	(22) 10d	13.99	29.72	9.90	21.10

 Factored uplift resistances have been increased 15% for wind or earthquake loading; no further increase is allowed.

2. Reduced heel heights are not permitted for skewed HTU's.

3. Nails: 16d = 0.162" dia. x 3% long, $10d \times 1\%$ = 0.148" dia. x 1%" long, 10d = 0.148" dia. x 3" long. See pp. 27-28 for other nail sizes and information.

TECH-NOTES


TN 15-001 Piggyback Bracing

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

Disclalmer:

OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technote are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to the information provided but has developed this technote to offer guidance where it is not currently readily available.

REVIEWED

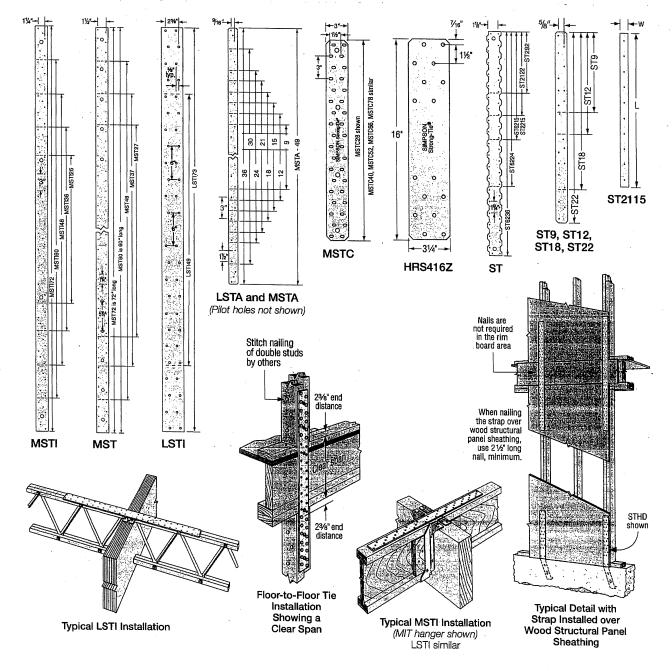
Strap Ties

Straps are designed to transfer tension loads in a wide variety of applications.

HRS — Heavy strap designed for installation on the edge of 2x members. The HRS416Z installs with Strong-Drive® SDS Heavy-Duty Connector screws.

LSTA and MSTA — Designed for use on the edge of 2x members, with a nailing pattern that reduces the potential for splitting.

LSTI and MSTI — Light and medium straps that are suitable where pneumatic-nailing is necessary through diaphragm decking and wood chord open-web trusses.


MST — High-capacity strap that can be installed with either nails or bolts. Suitable for double 2x member connections or greater.

MSTC — High-capacity strap that utilizes a staggered nail pattern to help minimize wood splitting. Nail slots have been countersunk to provide a lower nail head profile.

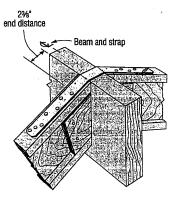
Finish: Galvanized. Some products are available in stainless steel, ZMAX® coating or black powder coat (add PC to sku); contact Simpson Strong-Tie. See Corrosion Information, pp. 18–20.

Installation: Use all specified fasteners; see General Notes

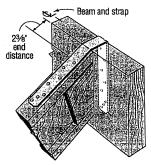
Options: Special sizes can be made to order; contact Simpson Strong-Tie for longer lengths

C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.

C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.


HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI

Strap Ties (cont.)


These products are available with additional corrosion protection. For more information, see p. 20.

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 366-370 for more information.

				sions		Factored Tensile Resistance D.Fir–L S-P-F					
	Model		(ir	1.)	Fasteners		r-L (K _D = 1.15)				
	No.	Ga.	w		(Total)	(K _D = 1.00)	(KD = 1.15)	(K _D = 1.00)	(K _D = 1.15)		
	1		**	i.		lb. kN	kN	kN	kN		
┝						600	690	555	635		
	LSTA9		11/4	9	(6) 10d	2.67	3.07	2.47	2.82		
H		Ī	411	40	(0) 40 1	800	920	735	845		
l	LSTA12		11/4	12	(8) 10d	3.56	4.09	3.27	3.76		
Г	LSTA15		11/4	15	(10) 10d	1000	1150	920	1060		
L	2017110		- '''		(10) 100	4.45	5.12	4.09	4.72		
	LSTA18		11/4	18	(12) 10d	1200 5.34	1380 6.14	1105 4.92	1270 5.65		
H						1400	1610	1290	1485		
Ì	LSTA21		11/4	21	(14) 10d	6.23	7.16	5.74	6.61		
r	LCTAGA	20	11/4	24	/16) 10d	1600	1840	1475	1695		
	LSTA24		1 74	24	(16) 10d	7.12	8.19	6.56	7.54		
	ST292		21/1s	95/16	(8) 8d	585	675	535	615		
F					(-,	2.60	3.00	2,38	2.74		
	ST2122		21/16	12 ¹³ ⁄16	(12) 8d	940 4.18	1085 4.83	865 3.85	995 4.43		
+	··	1				670	770	615	710		
	ST2115		3/4	16 5 16	(8) 8d	2.98	3.43	2.74	3.16		
t	OTOOTE	1	01/	105/	(46) 04	1335	1540	1235	1420		
L	ST2215		21/16	165/16	(16) 8d	5.94	6.85	5.49	6.32		
	LSTA30		11/4	30	(20) 10d	2235	2465	2075	2385		
-		-			()	9.94	10.97	9.23	10.61		
	LSTA36		11/4	36	(24) 10d	2465 10.97	2465 10.97	2465 10.97	2465		
ŀ					ļ	3115	3580	2852	3280		
	LSTI49		3¾	49	(32) 10d x 11/2"	13.86	15.93	12.69	14.59		
ŀ	LOTIZO :	1	03/	70	(40) 104 v 11/8	4670	5370	4280	4920		
	LSTI73		3¾	73	(48) 10d x 1½"	20.77	23.89	19.04	21.89		
	MSTA9		11/4	9	(6) 10d	670	770	625	715		
-		18	<u> </u>			2.98	3.43	2.78 830	3.18 955		
	MSTA12		11/4	12	(8) 10d	895 3.98	1030	3.69	4.25		
.		1		·		1120	1285	1040	1195		
	MSTA15		11/4	15	(10) 10d	4.98	5.72	4.63	5.32		
•	MSTA18	1	11/4	18	(12) 10d	1340	1545	1245	1430		
	WOINIO	4	175	10	(12) 100	5.96	6.87	5.54	6.36		
	MSTA21		11/4	21	(14) 10d	1565	1800	1455	1670		
		-		-	1	6.96 1790	8.01 2060	6.47 1660	7.43 1910		
•	MSTA24		11/4	24	(16) 10d	7.96	9.16	7.38	8.50		
	MOTAGO		41/	1 20	(00) 10-	2470	2840	2260	2595		
•	MSTA30] .	11/4	30.	(20) 10d	10.99	12.63	10.05	11.54		
•	MSTA36		11/4	36	(24) 10d	2965	3070	2710	3070		
•		4		+	,_,,,,,,,	13.19 2725	13.66	12.06	13.66		
	MSTA49		11/4	49	. (28) 8d	12.12	2725 12.12	2545 11.32	2725		
		-	-	1		1405	1615	1300	1500		
	ST6215		21/16	165/16	(16) 8d	6.25	7.18	5.78	6.67		
	ST6224	16	21/16	235/16	(24) 8d	2305	2650	2155	2475		
	310224		2716	23716	(24) OU	10.25	11.79	9.59	11.0		
	ST9		11/4	9	(6) 8d	525	605	490	560		
		-	-	-		2.34 700	2.69 805	2.18 650	750		
	ST12		11/4	11%	(8) 8d	3.11	3.58	2.89	3.34		
		-				1050	1210	975	112		
	ST18		11/4	173/4	(12) 8d	4.67	5.38	4.34	5.00		
	стоо		11/	21%	(40) 04	1580	1790	1465	. 168		
	ST22		11/4	217/8	(18) 8d	7.03	7.96	6.52	7.50		

Typical LSTA Installation (hanger not shown) Bend strap one time only

Typical LSTA Installation (hanger not shown) Bend strap one time only

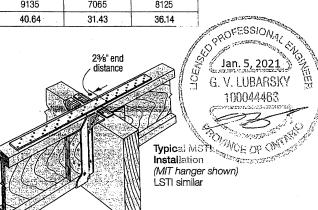
- 1. Factored resistances have been increased 15% for earthquake or wind
- 2. Use half of the nails in each member being connected to achieve the listed resistances.
- 3. Nails: 10d = 0.148" dia. x 3" long, 10d x 1½" = 0.148" dia. x 1½" long, 8d = 0.131" dia. x 2½" long. See pp. 22-23 for other nail sizes and information.

Straps and Ties

SIMPSON Strong-Tie

Strap Ties (cont.)

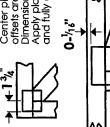
These products are available with additional corrosion protection. For more information, see p. 20.

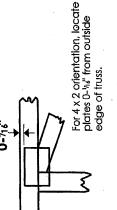

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 366–370 for more Information.

		Dimen	sions			Factored Tens	ile Resistance		
		(ir		·	D.F	ir–L	S-I	P-F	
Model No.	Ga.			Fasteners (Total)	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	
1101		W	L	(Total)	lb.	lb.	lb.	lb.	
					kN	kN	kN	kN	
MCTOOD		0	001/	(20) 104	3955	4545	3615	4155	
MSTC28		3	281/4	. (32) 10d	17.59	20.22	16.08	18.48	
MCTOAO	1,	0	401/	(40) 404	5930	6820	5420	6235	
MSTC40	16	3	401/4	(48) 10d	26.38	30.34	24.11	27.74	
MOTOGO	1 1		501/	/F.A) 40-l	6670	6940	6100	6940	
MSTC52		3	521/4	(54) 10d	29.67	30.87	27.14	30.87	
MOTOGO			0504	(00) 40 1	8515	8565	7455	. 8565	
MSTC66		3	65¾	(66) 10d	37.88	38.10	33.16	38.10	
	1			(00) 40 1	8515	8565	7455	8565	
MSTC78	14	3	77¾	(66) 10d	37.88	38.10	33.16	38.10	
070000	1 1	044	2011	(00) 0.1	3735	4295	3270	3760	
ST6236		21/16	3313/16	(36) 8d	16.61	19.11	14.55	16.73	
					2825	3250	2475	2850	
MSTI26		21/16	26	(22) 10d x 11/2"	12.57	14.46	11.01	12.68	
					4110	4725	3600	4140	
MSTI36		21/18	36	(32) 10d x 1½"	18.28	21.02	16.01	18.42	
			1		5650	6500	4955	5695	
MSTI48		21⁄16	48	(44) 10d x 1½"	25.13	28.91	22.04	25.33	
MOTIO			21/16		/FO) 10 1 11 11	7195	7360	6305	7250
MSTI60		2 1/16	. 60	(56) 10d x 1 ½"	32.01	32.74	28.05	32.25	
MOTITO	7	01/	70	(00) 40 1 444"	7360	7360	7240	7360	
MSTI72	12	21/16	72	(68) 10d x 1 ½"	32.74	32.74	32.21	32.74	
MOTOZ	1	01/	07	(00) 0.1	2685	3090	2355	2710	
MST27		21/18	27	(26) 8d	11.94	13.75	10.48	12.06	
MOTOZ	1	01/	071/	(00) 24	3930	4515	3440	3960	
MST37		21/18	371/2	(38) 8d	17.48	20.08	15.30	17.62	
MOTAG		01/	40	(50) 04	5170	5945	4530	5210	
MST48		21/16	48	(50) 8d	23.00	26.45	20.15	23.18	
UDC4167		21/	10	(16) 1/1 - 11/1 000	2400	2760	2120	2440	
HRS416Z		31/4	16	(16) ¼" x 1½" SDS	10.68	12.28	9.43	10.85	
MOTOO		(CA) 0d	6620	7610	5800	6670			
MST60		2 /16	UO	(64) 8d	29.45	33.85	25.80	29.67	
MOTZO	10			70	(70\ 0.4	8065	9135	7065	8125
MST72		2 Ив	72	(78) 8d	35.88	40.64	31.43	36.14	

 Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.

2. Use half of the nails in each member being connected to achieve the listed resistances.


3. Nails: 10d = 0.148" dia. x 3" long, 10d x 1½" = 0.148" dia. x 1½" long, 8d = 0.131" dia. x 2½" long. See pp. 22–23 for other nail sizes and information.


C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.

Symbols

PLATE LOCATION AND ORIENTATION

Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss and fully embed teeth. Center plate on joint unless x, y offsets are indicated.

required direction of slots in connector plates. This symbol indicates the

*Plate location details available in MiTek software or upon request

PLATE SIZE

4 4 ×

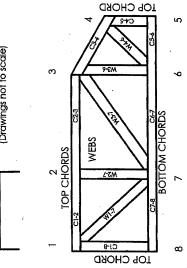
width measured perpendicular to slots. Second dimension is The first dimension is the plate the length parallel to slots.

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated. Indicated by symbol shown and/or

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.


ndustry Standards:

M

for Light Metal Plate Connected Wood Trusses Truss Design Procedures and Specifications Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses. Design Standard for Bracing. DSB-89: BCSI: PIC

Numbering System

dimensions shown in ft-in-sixteenths or mm (Drawings not to scale) 6-4-8

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO 阻罪

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVAIS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MITek® All Rights Reserved

MITek Engineering Reference Sheet: MII-7473C rev. 10-'08 POWER TO PERFORM."

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide trues spacing, individual lateral braces themselves may require bracing, or alternative T, I, or Eliminator bracing should be considered. બં
- Never exceed the design loading shown and never stack materials on inadequately braced trusses. mi
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

က

- joint and embed fully. Knots and wane at joint locations are regulated by TPIC. Place plates on each face of truss at each ۶,
- Design assumes trusses will be suitably protected from the environment in accord with TPIC.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. ထံ
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. ۶.
- 10. Camber is a non-structural consideration and is the responsibility of truss tabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no celling is installed, unless otherwise noted.
 - Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient. 61
- Design assumes manufacture in accordance with TPIC Quality Criteria. 8