

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL 38-12

Α

Lot #:

Elevation:

Job Track: PlanLog:

rack: 51012 og: 202057

Layout ID:

406782

Ref#

11780

Page:

1 of 3

Date:
Designer:

10-14-2020 Leo Chen

Sales Rep:

Mario DiCano

_joshua.nabua

Roof Trusses

PROFILE	QTY PLY	MARK TYPE	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT RIGHT	HEEL HEIGHT LEFT RIGHT	LBS. BFT.	BUNDLE #	LOAD BY REMARKS
	1 2-ply	T30 Hip Girder	10 /12	30-00-00	6-06-07	2 x 4 2 x 6	1-03-08 1-05-08	1-07-11 1-09-05	305.67 192.00		
	1	T31 Hip	10 /12	30-00-00	8-02-07	2 x 4	1-03-08 1-05-08	1-07-11 1-09-05	145.54 91.33		
	4	T32 Piggyback Base	10 /12	30-00-00	9-10-07	2 x 4	1-03-08 1-05-08	1-07-11 1-09-05	628.6 397.33		
	4	T32A Piggyback Base	10 /12	27-02-00	9-10-07	2 x 4	1-03-08	1-07-11 4-01-10	593.61 375.33		
	1 2-ply	T33 Piggyback Base Girder	10 /12	30-00-00	9-10-07	2 x 4 2 x 6	1-03-08	1-07-11 1-09-05	353.19 221.33		
	1 2-ply	T34 Piggyback Base Girder	10 /12	30-04-00	9-10-07	2 x 4 2 x 6	1-03-08	1-07-11 1-01-00	354.19 218.33		
	1	T35 Hip	10 /12	30-04-00	10-02-14	2 x 4	1-03-08 1-03-08	1-07-11 1-01-00	157.45 99.17	·	
	2	T35A Piggyback Base	10 /12	27-02-00	9-10-07	2 x 4	1-03-08	1-07-11 3-08-11	299.4 189.00		,
	1	T36 Hip	10 /12	30-04-00	8-06-14	2 x 4	1-03-08 1-03-08	1-07-11 1-01-00	144.48 90.00		
	1 2-ply	T37 Hip Girder	10 /12	30-04-00	6-10-14	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-01-00	322.05 201.67		
	5	T39 Common	10 /12	10-10-00	6-01-14	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	242.33 155.00		
	2	T39S Scissor	10 /12 6 /12	10-10-00	6-01-14	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	102.96 68.00		
	2	T40 Common	10 /12	13-00-00	7-00-11	2 x 4	1-03-08	1-07-11 1-07-11	120. 36 TY 76.33 B	OF RICH	
	2	T40S Scissor	10 /12 6 /12	13-00-00	7-00-11	2 x 4	1-03-08	1-07-11 1-07-11	121.2 79.33	3/08/	2022

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

Elevation:

RICHMOND HILL

Model: Lot #:

38-12

Α

Page: Date:

Ref#

11780 2 of 3

51012

202057

406782

Job Track:

PlanLog:

Layout ID:

10-14-2020

Designer:

Leo Chen

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK	T				Г				
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
	ļ · -					LOMBER	RIGHT	RIGHT	BFT.	STACK #	REMARKS
	1	T41 Roof Special	10 /12	13-07-00	8-09-10	2 x 4		3-01-11 3-01-11	79.98 52.67		
	1	T41G GABLE	10 /12	13-07-00	8-09-10	2 x 4	1-03-08 1-03-08	3-01-11 3-01-11	89.4 58.67		
	1 2-ply	T42 Common Girder	10 /12	13-07-00	8-09-10	2 x 4 2 x 6		3-01-11 3-01-11	174.95 108.00		
	1 2-ply	T43 Monopitch Girder	10 /12	5-10-08	6-06-07	2 x 4 2 x 6		1-07-11 6-06-07	72.89 46.67		
	1 2-ply	T43Z Monopitch Girder	10 /12	5-10-08	6-06-07	2 x 4 2 x 6		1-07-11 6-06-07	72.89 46.67		
	1	PB31 Piggyback	10 /12	10-04-15	1-08-00	2 x 4			30.19 19.83		
	1	PB32 Piggyback	10 /12	10-04-15	3-04-00	2 x 4			32.02 21.67		
	1 2-ply	PB33 Piggyback	10 /12	10-04-15	4-04-01	2 x 4			57.55 36.00		
	5	PB33Z Piggyback	10 /12	10-04-15	4-04-01	2 x 4			143.88 90.00		· .
	1 2-ply	PB34 Piggyback	10 /12	9-11-00	1-05-15	2 x 4			57.09 37.33		
	1	PB35 Piggyback	10 /12	9-11-00	3-01-15	2 x 4			30.31 19.67		
	1	PB36 Piggyback	10 /12	9-11-00	4-01-09	2 x 4			27.31 17.33		
	16	J1 Jack-Open	10 /12	5-10-08	6-06-07	2 x 4	1-03-08	1-07-11 6-06-07	CITY 327.6 208.00 B	OF RICHI	MOND H
	1	C1 Jack-Open	10 /12	1-10-15	3-02-13	2 x 4	1-03-08 1-01	1-07-11 3-02-13	10.17 7.00	3/08/	2022
									Per:	RECEI joshua.	

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL 38-12

Lot #:

Elevation:

Α

Job Track: PlanLog:

51012 202057

Layout ID:

406782

Ref#

11780

Page:

3 of 3

Date:

10-14-2020

Designer:

Leo Chen

Sales Rep:

Mario DiCano

Roof Trusses

PROFILE	QTY PLY	MARK TYPE	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
							RIGHT	RIGHT	BFT.	STACK#	REMARKS
	1	C2 Jack-Open	10 /12	2-00-00	4-10-13	2 x 4	1-03-08 1-10-15	1-07-11 3-03-11	13.14 9.00		
	1	C3 Jack-Open	10 /12	1-10-15	3-02-13	2 x 4	1-03-08 3-11-09	1-07-11 3-02-13	14.59 9.67		
	1	C4 Jack-Open	10 /12	3-10-15	4-10-13	2 x 4	1-03-08 1-11-09	1-07-11 4-10-13	17.56 11.67		

TOTAL #TRUSS= 73

TOTAL BFT OF ALL TRUSSES= 3254

BFT.

TOTAL WEIGHT OF ALL TRSSES 5142.57 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
6	Hardware	LJS26DS	
7 .	Hardware	LUS24	
2	Hardware	LUS26-2	

TOTAL NUMBER OF ITEMS= 17

CITY OF RICHMOND HILL BUILDING DIVISION

__joshua.nabua

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL 38-12

Lot #:

Elevation:

В

Ref# Page: 51012 202057

PlanLog: Layout ID:

Job Track:

406781

11780 1 of 3

Date:

10-14-2020

Designer:

Leo Chen

Sales Rep:

Mario DiCano

_joshua.nabua

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	10 /12	30-00-00	6-06-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	304.85 192.00		
	1 2-ply	T1Z Hip Girder	10 /12	30-00-00	6-06-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	304.85 192.00		
	2	T2 Hip	10 /12	30-00-00	8-02-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	290.38 182.67		
	3	T3 Hip	10 /12	30-00-00	9-10-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	470.44 298.00		
	8	T3A Piggyback Base	10 /12	25-00-00	9-10-07	2 x 4	1-03-08	1-07-11 5-09-11	1136.69 718.67		
	1 2-ply	T4 Piggyback Base Girder	10 /12	30-00-00	9-10-07	2 x 4 2 x 8	1-03-08 1-03-08	1-07-11 1-07-11	403.64 249.67		
	1 2-ply	T4Z Piggyback Base Girder	10 /12	30-00-00	9-10-07	2 x 4 2 x 8	1-03-08 1-03-08	1-07-11 1-07-11	403.64 249.67		
	1	T5 Hip Girder	10 /12	13-00-00	6-06-07	2 x 4	1-03-08	1-07-11 1-07-11	64.96 41.67		
	2	T6 Hip Girder	10 /12	12-02-00	6-06-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	120.41 79.00		
	1	T7 Hip Girder	10 /12	16-08-00	6-04-07	2 x 4		2- 04 -06 2 -0 1 -11	80.21 51.33		
	1 2-ply	T8 Hip Girder	10 /12	16-08-00	7-11-03	2 x 4 2 x 6		2- 04- 06 2- 0 1 -11	207.28 130.33		
	2	T9 Half Hip Girder	6 /12	4-07-00	2-10-07	2 x 4 2 x 6	1-03-08	4-03 2-02-15	40.44 26.00		
	1 2-ply	T43Z2 Monopitch Girder	10 /12	5-10-08	6-06-07	2 x 4 2 x 6		1-07-11 6-06-07	72.8 <mark>9 </mark> 46.67	OF RICH	MOND HIL DIVISION
	1	PB1 Piggyback	10 /12	10-03-00	1-08-00	2 x 4			29.69 18.67	3/08/	2022
	L		I			<u> </u>				RECE	IVED

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

В

Location: Model:

RICHMOND HILL 38-12

Lot #:

Elevation:

Job Track: PlanLog:

51012 202057

Layout ID:

406781

Ref#

11780 2 of 3

Page: Date:

10-14-2020

Designer: Sales Rep: Leo Chen

Mario DiCano

Roof Trusses

	MARK	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT RIGHT	HEEL HEIGHT LEFT RIGHT	LBS. BFT.	BUNDLE # STACK #	LOAD BY REMARKS
	PB2 ggyback	10 /12	10-03-00	3-02-12	2 x 4			62.75 42.00		
	PB2Z ggyback	10 /12	10-03-00	3-02-12	2 x 4	1		31.37 21.00		
	PB3 ggyback	10 /12	10-03-00	4-03-04	2 x 4	-		198.06 121.33		
	PB4 ggyback	10 /12	10-03-00	1-05-15	2 x 4			59.15 38.33		
Jac	J1 ck-Open	10 /12	5-10-08	6-06-07	2 x 4	1-03-08	1-07-11 6-06-07	389.03 247.00		
Jack	J2 k-Closed	10 /12	3-10-08	6-04-07	2 x 4	1-03-08	1-01-11 5-04-07	143.03 88.00		
	J11 ck-Open	6 /12	3-09-08	2-02-15	2 x 4		4-03 2-02-15	19.98 13.33		
	C1 ck-Open	10 /12	1-10-15	3-02-13	2 x 4	1-03-08 1-01	1-07-11 3-02-13	81.39 56.00		
	C2 ck-Open	10 /12	2-00-00	4-10-13	2 x 4	1-03-08 1-10-15	1-07-11 3-03-11	105.14 72.00		
	C3 k-Open	10 /12	1-10-15	3-02-13	2 x 4	1-03-08 3-11-09	1-07-11 3-02-13	116.74 77.33		
	C4 k-Open	10 /12	3-10-15	4-10-13	2 x 4	1-03-08 1-11-09	1-07-11 4-10-13	140.49 93.33	•	
	C5 k-Open	6 /12	1-10-15	1-11-02	2 x 4	1-03-08 1-01	4-03 1-03-10	13.06 8.00		
Jack	C6 k-Open	6 /12	1-10-15	1-11-02	2 x 4	1-03-08 1-10-09	4-03 1-03-10	17.1 SIT) 10.67 B	OF RICH	
Jack	C7 k-Open	10 /12	2-00-00	4-08-13	2 x 4		2 -0 7 -11 4-09-11	10.97 7.33	3/08/	2022
Jack	k-Open	10/12	2-00-00	4-08-13	2 X 4			1-09-11	7.33 Per:	7.33 RECE

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL 38-12

В

Lot #:

Elevation:

Job Track: PlanLog:

51012 202057

Layout ID:

406781

Ref# Page: -11780 3 of 3

Date:

10-14-2020

Designer:

Leo Chen

Sales Rep:

Mario DiCano

Roof Trusses

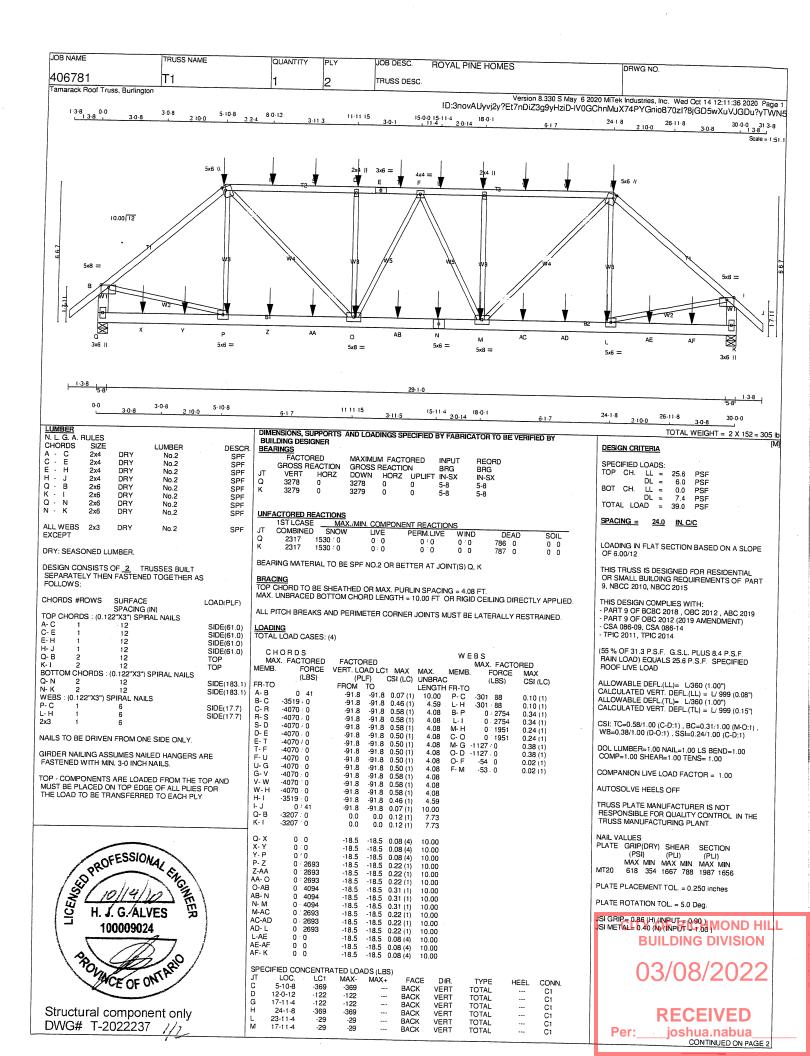
	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	C7X Jack-Open	10 /12	2-04-00	4-08-13	2 x 4		2- 0 4-06 4-09-11	11.32 8.17		
	2	C8 Jack-Open	10 /12	1-10-15	4-08-13	2 x 4	1-03-08 1-11-09	2 -0 7 -11 4-08-13	30.05 20.00		

TOTAL #TRUSS= 111

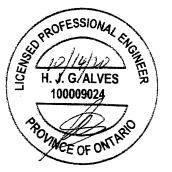
TOTAL BFT OF ALL TRUSSES= 3400.17

BFT.

TOTAL WEIGHT OF ALL TRSSES 5360.04 LBS


HARDWARE

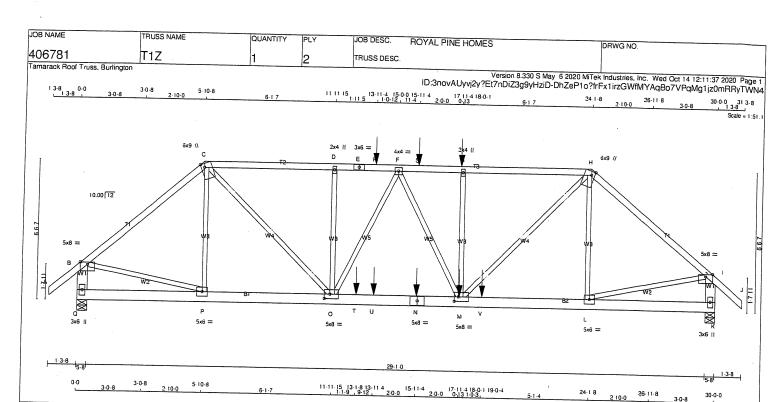
QTY	TYPE	MODEL	LENGTH
1	Hardware	HGUS26-2	
2	Hardware	HGUS26-3	
2	Hardware	HGUS28-2	
11	Hardware	LJS26DS	
10	Hardware	LUS24	


TOTAL NUMBER OF ITEMS= 26

CITY OF RICHMOND HILL BUILDING DIVISION

_joshua.nabua

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. RO	OYAL PIN	E HOMES			logue	
406781	T1	1	2	TRUSS DESC.		ie monie	'		DRWG NO.	
Tamarack Roof Truss, Burlington						,	Version 8.3	330 S May 6 2020	MiTek Industries, Inc. Wed	
					ID:3novA	.Uyvj2y?Et	7nDiZ3g	9yHziD-IV0GCh	Millek Industries, Inc. Wed nMuX74PYGnio870z1?8	J0t 14 12:11:36 2020 Page iGD5wXuVJGDu?yTW
B TMVW-p MT20 S	0 6.0 0 6.0	SPECIFIED CON JT LOC. N 15-11-4 O 12-0-12 P 6-0-12 R 8-0-12 S 10-0-12 T 14-0-12 U 15-11-4 W 21-11-4 X 2-0-12 Y 4-0-12 Z 8-0-12 AA 10-0-12 AB 14-0-12 AC 19-11-4 AD 21-11-4 AF 27-11-4 CONNECTION RE 1) C1: A SUITA	LC1 MAX -29 -25 -29 -25 -122 -122 -122 -122 -122 -122 -122 -122	DADS (LBS) - MAX+ FACE	DIR. VERT VERT VERT VERT VERT VERT VERT VERT	TYPE TOTAL	HEEL.	CONN. C1		



Structural component only DWG# T-2022237 みレ CITY OF RICHMOND HILI BUILDING DIVISION

03/08/2022

RECEIVED

Per:____joshua.nabua

SIZE		LUMBER	DESCR.
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x6	DRY	No.2	SPF
2x6	DRY	No.2	SPF
	DRY	No.2	SPF
2x6	DRY	No.2	SPF
2x3	DRY	No.2	SPF
	2x4 2x4 2x4 2x6 2x6 2x6 2x6 2x6	SIZE 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x6 DRY 2x6 DRY 2x6 DRY 2x6 DRY 2x6 DRY 2x6 DRY	SIZE

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

ı	CHORL	S #HOWS	SURFACE	LOAD(PLF)
ĺ			SPACING (IN)	/
I	TOP CH	IORDS: (0.1	22"X3") SPIRAL NAILS	
l	A- C	1	12	TOP
	C-E	1	12	TOP
	E- H	1	12	SIDE(61.0)
ı	H- J	1 -	12	TOP
l	Q-B	2	12	TOP
l	K-I	2	12	TOP
١	BOTTO	M CHORDS :	(0.122"X3") SPIRAL NAILS	3
l	Q-N	. 2	12	SIDE(0.0)
	N- K	2	12	SIDE(0.0)
l	WEBS:	(0.122"X3") 5	SPIRAL NAILS	3102(103.1)
	2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY

Structural component only DWG# T-2022238

50	IENSIONS, SUPPORTS ILDING DESIGNER ARINGS	AND LOADINGS SPECIFIED I	BY FABRICA	ATOR TO BE VERIFIED BY
JT	FACTORED GROSS REACTION VERT HORZ	MAXIMUM FACTORED GROSS REACTION	INPUT BRG	REQRD BRG

DOWN HORZ UPLIFT IN-SX 3552 0 0 5-8 3790 0 0 5-8 IN-SX QK 5-8 5-8

UNFACTORED REACTIONS
1ST LCASE ____MA ___MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND JT. COMBINED SOIL QK 0 / 0 1683 / 0 070 0 0 822 0 881 0 1793 / 0 0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.72 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MA	ORDS	FACTORE)		W E	BS MAX. FACTO)DED
MEMB.	. FORCE	VERT. LOAD	I C1 MAX	MAX.	MEMB.	FORCE	
	(LBS)	(PLF)		UNBRAC			MAX
FR-TO		FROM TO		LENGTH		(LBS)	CSI (LC)
A-B	0 41		1.8 0.07 (1)	10.00		500 0	
B-C	-3874 / 0		1.8 0.49 (1)		P- C		0.20(1)
C-D	-5505 0		1.8 0.44 (1)	4.40	L- H	-359 0	0.12(1)
D- E	-5505 0				B-P	0 : 3032	0.38(1)
E-R	-5505 0				L- I	0 3309	0.41 (1)
R-F	-5505 : 0			3.82	M- H	0 3597	0.45 (1)
F-S	-5775 / 0			3.82	C- O	0 / 3605	0.45(1)
S-G	-5775 0		1.8 0.34 (1)	3.74	M- G	-756 0	0.25 (1)
G-H	-5775 0		1.8 0.34 (1) 1.8 0.46 (1)		0- D	-591 0	0.20(1)
H- I	-4228 . 0				0- F	-505 0	0.22(1)
i- J	0 : 41		1.8 0.53 (1)		F- M	0 111	0.01(1)
Q-B	-3490 : 0		1.8 0.07 (1)				
K-I	3773 0		0.0 0.13 (1)				
'` '	-3//3 0	0.0	0.0 0.14 (1)	7.26			
Q-P	0.0	-18.5 -18	3.5 0.04 (4)	10.00			
P- 0	0 2960	-18.5 -18					
O-T	0 5726	-18.5 -18					
T- U ·	0 5726	-18.5 -18					
U- N	0 5726	-18.5 -18		10.00			
N-M	0 5726	-18.5 -18		10.00			
M- V	0 3236	-18.5 -18		10.00			
V- L	0 3236	-18.5 -18					
L-K	0 0		3.5 0.08 (1)				
				10.00			
SPECIF	IED CONCENTE	RATED LOADS	(LBS)				
JT	100 101	MAY M	AV				

MAX--122 -29 -29 -122 -122 -1155 -29 FACE FRONT DIR. CONN 17-11-4 17-11-4 -122 GMZRSFU> VERT TOTAL TOTAL C1 C1 C1 C1 C1 C1 FRONT 15-11-4 -29 -122 ---VERT TOTAL 13-11-4 15-11-4 TOTAL TOTAL FRONT VERT FRONT FRONT FRONT -122 VERT -1155 -29 13-1-8 VERT TOTAL 13-11-4 19-0-4 TOTAL VERT -1056 -1056 FRONT

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

TOTAL LOAD

SPECIFIED LOADS: LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 PSF PSF PSF DL =

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 2 X 152 = 305

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2019, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14 TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.00")
CALCULATED VERT. DEFL.(LL) = L/999 (0.13")
ALLOWABLE DEFL.(TL) = L/360 (1.00")
CALCULATED VERT. DEFL.(TL) = L/999 (0.24")

CSI: TC=0.53/1.00 (H-I:1) , BC=0.76/1.00 (M-O:1) , WB=0.45/1.00 (C-O:1) , SSI=0.46/1.00 (L-M:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

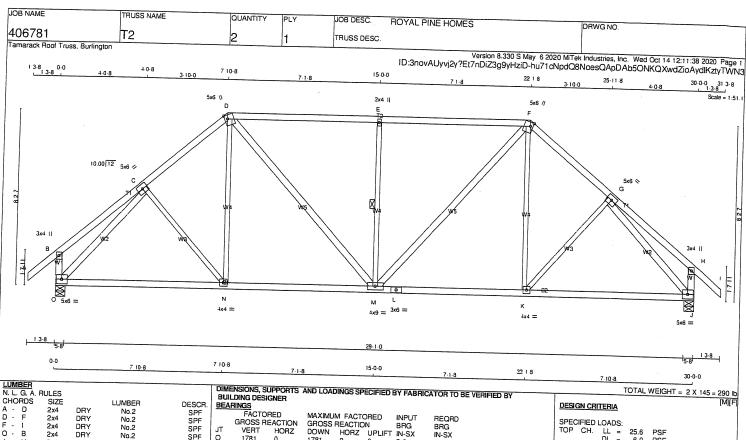
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (O) (INPUT = 0.90) (OND HIL JSI METAL= 0.86 IN) (INPUT = 1.00) (OND HIL **BUILDING DIVISION**

03/08/2022


RECEIVED

joshua.nabua Per:_ CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES		loo	
406781	T1Z	1	2	TRUSS DESC.	NOTAL FINE HOIVIES		DRWG NO.	
Tamarack Roof Truss, Burlington	n				V ID:3novAl lyvi2v2Et7	ersion 8.330 S May 6 2020	MiTek Industries, Inc. Wed	d Oct 14 12:11:37 2020 Page 807VPqMq1jz0mRRyTWN
B TM/W-p MT20 C TTWW+m MT20 D TMW+w MT20 E TS-t MT20 G TMW-w MT20 G TMW-w MT20 H TTWW+m MT20 I TMW-p MT20 K BMV1+p MT20 L BMWW-t MT20 BMWWV-t MT20 D BMWWW-t MT20 P BMWW-t MT20	W LEN Y X 5.0 8.0 Edge 6.0 9.0 Edge 1.75 2.0 4.0 4.0 4.0 4.0 6.0 9.0 Edge 1.75 5.0 8.0 Edge 6.0 5.0 6.0 5.0 8.0 2.50 2.25 5.0 8.0 5.0				- Significant Control of the Control	шикодаунгий-ингер	<u>O (ITEX) ITZGWIMYAGE</u>	<u>lo7VPqMg1jz0mRRyTwN</u>
TOUCHES EDGE OF CHORD.								
							• •	
PROFESSION 10/14/1 100009024	W. Engline							
POVINCE OF 0							BUILDIN	CHMOND HILL G DIVISION 8/2022

RECEIVED
Per:___joshua.nabua_

Structural component only DWG# T-2022238 ツル

ı	N. L. G. A.	HULES			
	CHORDS	SIZE		LUMBER	DESCR.
į	A - D	2x4	DRY	No.2	SPF
J	D - F	2x4	DRY	No.2	SPF
Į	F - 1	2x4	DRY	No.2	SPF
	O - B	2x4	DRY	No.2	SPF
Ì	J - H	2x4	DRY	No.2	SPF
l	O - L	2x4	DRY	No.2	SPF
l	L - J	2x4	DRY	No.2	SPF
ı					U
l	ALL WEBS	2x4	DRY	No.2	SPF
	EXCEPT				
	C - N	2x3	DRY	No.2	SPF
	N - D	2x3	DRY	No.2	SPF
	M - E	2x3	DRY	No.2	SPF
	K - F	2x3	DRY	No.2	SPF
	K - G	2x3	DRY	No.2	SPF
					0

DRY: SEASONED LUMBER.

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	w	LEN	Υ	х
В	TMV+p	MT20	3.0	4.0		.,
C	TMWW-t	MT20	5.0	6.0		
D	TTWW+m	MT20	5.0	6.0	2.25	1.50
E	TMW+w	MT20	2.0	4.0		
F	TTWW+m	MT20	5.0	6.0	2.25	1.50
G	TMWW-t	MT20	5.0	6.0		
Н	TMV+p	MT20	3.0	4.0		
J	BMVW1-t	MT20	5.0	6.0		
K	BMWW-t	MT20	4.0	4.0		
L	BS-t	MT20	3.0	6.0		
M	BMWWW-t	MT20	4.0	9.0		
N	BMWW-t	MT20	4.0	4.0		
0	BMVW1-t	MT20	5.0	6.0		

J O JI	FACTO GROSS R VERT 1781 1781		MAXIMUI GROSS I DOWN 1781 1781			INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8
--------------	--	--	--	--	--	-------------------------------------	-------------------------------------

UNFACTORED REACTIONS

	IT.	COMBINED	IVIAX.		JENT REACTION	NS		
ı	2,	1257	SNOW 838 / 0	LIVE	PERM.LIVE	WIND	DEAD	SOIL
	Ĵ	1257	838 / 0	0.0	0.0	0.0	419 0	0 0
į			000.0	0 0	0 0	0 0	419 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.27 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-M.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS					10/	EBS	
MA)	K. FACTORED	FACTORE	D			**		
MEMB.	FORCE	VERT. LOAD		1 MAX	MAX.	MEMB	MAX. FACTO	
	(LBS)	(PLF)		CSI (LC)				MAX
FR-TO		FROM TO		00. (20)	LENGTH		(LBS)	CSI (LC)
A-B	0 : 41		91.8	0.13(1)		C- N		
B- C	0 : 26		91.8			N- D	-26 40	0.02(1)
C- D	-1632 0		91.8			D- M	0 181	0.05 (4)
D- E	-1646 0		91.8	0.66 (1)		M- E	0 : 617 -804 0	0.10(1)
E-F	-1646 0		91.8		4.27	M- F	0 / 617	0.34(1)
F- G	-1632 0		91.8	0.21 (1)	5.00	K-F	0 : 617	0.10(1)
G- H	0 - 26	-91.8 -9	91.8		10.00	K-G	-26 40	0.05 (4)
H- I	0 41		1.8		10.00		-1918 0	0.02 (1)
0- В	-265 - 0	0.0	0.0	0.03(1)	7.81		-1918 : 0	0.84 (1)
J- H	-265 0	0.0	0.0	0.03(1)	7.81	u 0	-1310 - 0	0.84 (1)
_								
0- N	0 1247	-18.5 -1	8.5	0.37 (4)	10.00			
N- M	0 . 1233		8.5	0.38 (4)	10.00			
M- L	0 1233	-18.5 -1	8.5	0.38 (4)	10.00			
L- K	0 1233	-18.5 -1	8.5	0.38 (4)	10.00			
K- J	0 1247			0.37 (4)	10.00			

LUADS: LL = DL = LL = DL = AD = 6.0 0.0 7.4 BOT CH. LL TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.00")
CALCULATED VERT. DEFL.(LL) = L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (1.00")
CALCULATED VERT. DEFL.(TL) = L/999 (0.14")

CSI: TC=0.66/1.00 (D-E:1) , BC=0.38/1.00 (M-N:4) WB=0.84/1.00 (G-J:1) , SSI=0.32/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

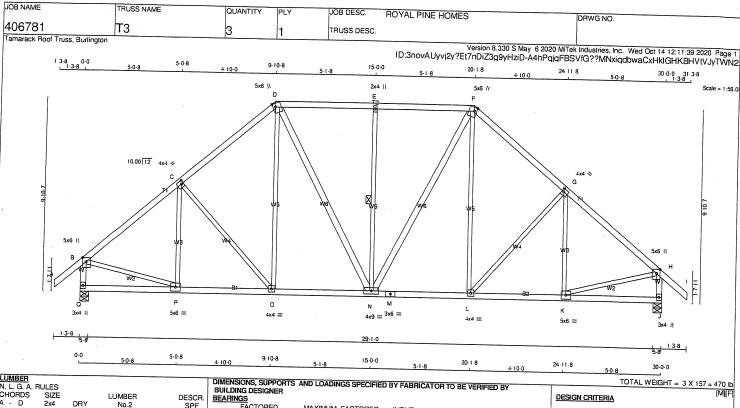
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

Per:


JSI GRIP**C 476 (6) (INPUT 3 090) TIMOND HILL** JSI METAL= 0.47 (5) (INPUT 3 L90 DIVISION

3/08/2022

RECEIVED joshua.nabua

Structural component only DWG# T-2022239

	LUMBER				
	N. L. G. A. F	RULES			
	CHORDS	SIZE		LUMBER	DESCR.
	A - D D - F	2x4 2x4	DRY	No.2	SPF
	F - I		DRY	No.2	SPF
ı	Q · B	2x4	DRY	No.2	SPF
ı		2x4	DRY	No.2	SPF
ĺ	J - H	2x4	DRY	No.2	SPF
ı	Q - M	2x4	DRY	No.2	SPF
i	M - J	2x4	DRY	No.2	SPF
	ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
l	D - N	2x4	DRY	No.2	SPF
I	N - F	2x4	DRY	No.2	SPF
ı					

DRY: SEASONED LUMBER.

i	PL	ATES (table	is in inches)				
i	JT	TYPE	PLATES	W	LEN	Υ	Х
I	В	TMVW+p	MT20	5.0	6.0	2.50	2.25
ı	С	TMWW-t	MT20	4.0	4.0	2.00	1.25
I	D	TTWW+m	MT20	5.0	6.0	2.25	1.50
l	E.	TMW+w	MT20	2.0	4.0		
I	F	∏WW+m	MT20	5.0	6.0	2.25	1.50
l	G	TMWW-t	MT20	4.0	4.0	2.00	1.25
l	Н	TMVW+p	MT20	5.0	6.0	2.50	2.25
I	J	BMV1+p	MT20	3.0	4.0		
l	K	BMWW-t	MT20	5.0	6.0		
l	L	BMWW-t	MT20	4.0	4.0		
l	M	BS-t	MT20	3.0	6.0		
l	Ν	BMWWW-t	MT20	4.0	9.0		
۱	0	BMWW-t	MT20	4.0	4.0		
ĺ	Р	BMWW-t	MT20	5.0	6.0		
	Q	BMV1+p	MT20	3.0	4.0		
ļ							

FACTORED GROSS REACTION JT VERT HORZ Q 1781 0 J 1781 0		M FACTION REACTION HORZ 0 0		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8
--	--	------------------------------	--	-------------------------------------	-------------------------------------

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./N	AIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERMLIVE	WIND	DEAD	_
Q	1257	838 / 0	0.0	0:0	0 0	419 0	
J	1257	838 / 0	0.0	0 - 0	0 0	419 0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.80 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

MAX MEMB.	ORDS K. FACTORED FORCE (LBS)	FACTO VERT. LC	AD LC	1 MAX CSI(LC)	MAX. UNBRAC	MEMB.		
FR-TO		FROM		()	LENGTH		ILDO	S) CSI (LC)
A-B	0 / 41	-91.8	-91.8	0.13(1)		P- C	-241 0	0.13 (1)
B- C	-1678 / 0	-91.8	-91.8		4.80	C- O	-251 0	0.13(1)
C-D	-1533 0	-91.8	-91.8		4.98	0- D	0 - 278	
D- E	-1329 - 0	-91.8	-91.8	0.33 (1)	5.24	D- N	0 37	
E-F	-1329 0	-91.8	-91.8	0.33 (1)	5.24	N- E	-571 0	0.38(1)
F- G G- H	-1533 / 0	-91.8	-91.8	0.32 (1)	4.98	N- F	0 377	
H-I	-1678 0 0 41	-91.8	-91.8	0.34 (1)	4.80	L-F	0 278	
Q- B	-1741 0	-91.8	-91.8	0.13(1)	10.00	L- G	-251 0	0.27(1)
J- H	-1741 0	0.0	0.0	0.19(1)	6.32	K-G	-241 0	0.13(1)
J- 11	-1741 0	0.0	0.0	0.19 (1)	6.32	B- P	0 135	58 0.31(1)
Q- P P- O O- N N- M M- L L- K K- J	0 0 0 1315 0 1151 0 1151 0 1151 0 1315 0 0	-18.5 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5	-18.5	0.10 (4) 0.26 (1) 0.24 (1) 0.24 (1) 0.24 (1) 0.26 (1) 0.10 (4)	10.00 10.00 10.00 10.00 10.00 10.00	К- Н	0 135	

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	25.6	PSF
		DL		6.0	PSF
BOT	CH.	LL	_	0.0	PSF
			=	7.4	PSF
TOTA	L LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

SOIL

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14 - TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.00")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (1.00")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.10")

CSI: TC=0.34/1.00 (B-C:1) , BC=0.26/1.00 (O-P:1) WB=0.38/1.00 (E-N:1) , SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN 618 354 1667 788 1987 1656

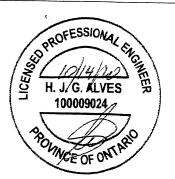

PLATE PLACEMENT TOL. = 0.250 inches

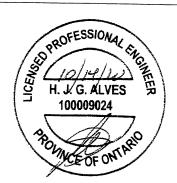
PLATE ROTATION TOL. = 5.0 Deg.

ISIMETAL P.33 (P) (INPRI CMMOND HILL **BUILDING DIVISION**

03/08/2022

RECEIVED Per: joshua.nabua

Structural component only DWG# T-2022240


JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO 406781 ТЗА 8 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 12:11:40 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-eGFn13rtymdWu9aYxeD3ApSheLea1jTTPxEQ1myTWN1 1.3.8 0.0 9-10-8 4-10-0 20-18 25-0-0 2x4 || 5x6 // 10.00 12 4x4 / G _ 3x6 = 4x4 = 4x4 = 3x6 II 5-0-8 9-10-8 15-0-0 25-0-0 TOTAL WEIGHT = 8 X 142 = 1137 I BE VERIEIED BY

LIMBORD				
LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F · G	2x4	DRY	No.2	SPF
N - B	2x4	DRY	No.2	SPF
H - G	2x6	DRY	No.2	SPF
N - J	2x4	DRY	No.2	SPF
J · H	2x4	DRY	No.2	SPF
1				
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
D - K	2x4	DRY	No.2	SPF
K - F	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	w	LEN	Υ	Х
В	TMVW+p	MT20	5.0	6.0	Edge	
С	TMWW-t	MT20	4.0	4.0	2.00	1.25
D	TTWW+m	MT20	5.0	6.0	2.25	1.50
Ε	TMW+w	MT20	2.0	4.0		
F	TTWW+m	MT20	5.0	6.0	2.25	1.50
G	TMVW+p	MT20	5.0	6.0	2.00	2.25
Н	BMV1+p	MT20	3.0	6.0		
1	BMWW-t	MT20	4.0	4.0		
J	BS-t	MT20	3.0	6.0		
K	BMWWW-t	MT20	4.0	9.0		
L	BMWW-t	MT20	4.0	4.0		
M	BMWW-t	MT20	4.0	6.0		
Ν	BMV1+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2022241

BU	LDING DESI RINGS	GNER	AND LOAD	INGS SP	ECIFIED I	BY FABRICA	ATOR TO
JT N H	FACTOR GROSS RI VERT 1505 1378		MAXIMUI GROSS I DOWN 1505 1378		UPLIFT 0	INPUT BRG IN-SX 5-8 MECHANIO	REQRD BRG IN-SX 5-8 CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8.

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ν	1062	710 / 0	0 / 0	0 / 0	0 0	352 ± 0	
Н	975	640 / 0	0 - 0	0.0	0 0	332 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) N

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.24 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-K, F-I.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4) CHORDS

						** (
	K. FACTORED	FACTO					MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC:	1 MAX	MAX.	MEMB.		MAX
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH		(CDO)	OOI (LC)
A- B	0 - 41	-91.8	-91.8	0.13(1)	10.00	M- C	-175 / 22	0.00
B- C	-1350 : 0	-91.8	-91.8	0.32(1)		C- L		0.09(1)
C- D	-1161 / 0	-91.8	-91.8	0.31 (1)		L- D	-301 0	0.32(1)
D- E	-896 0	-91.8	-91.8	0.31 (1)			0.317	0.07(1)
E-F	-896 0	-91.8	-91.8	0.31 (1)		D- K	0 65	0.01(1)
F- G	-754 0	-91.8	-91.8			K- E	-575 0	0.38 (1)
N- B	-1466 0			0.29 (1)	6.25	K-F	0 687	0.11(1)
H- G	-1342 0	0.0	0.0	0.16(1)	6.76	1- F	-528 0	0.35(1)
i i G	-1342 0	0.0	0.0	0.62(1)	7.81	B- M	0 1098	0.25(1)
						⊦ G	0 858	0.19(1)
N- M	0 0	-18.5		0.11 (4)	10.00			
M- L	0 1063	-18.5	-18.5	0.22(1)	10.00			
L- K	0 866	-18.5	-18.5	0.19(1)	10.00			
K- J	0 572	-18.5	-18.5	0.16 (4)	10.00			
J- I	0 572	-18.5	-18.5	0.16 (4)	10.00			
l- H	0 0	-18.5	-18.5	0.11 (4)	10.00			
				0,	10.00			

DESIGN CRITERIA

TOTAL LOAD

SPECIFIED LOADS: TOP CH. LL = LL = DL = LL = DL = AD = 25.6 PSF 6.0 PSF 0.0 PSF 7.4 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2019, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14 TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.83")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.83")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.07")

CSI: TC=0.62/1.00 (G-H:1) , BC=0.22/1.00 (L-M:1) . WB=0.38/1.00 (E-K:1) , SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

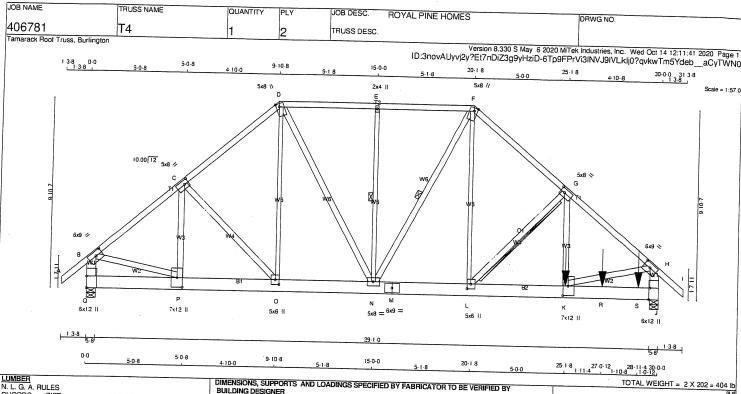
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.90 (1) (INPUT = 0.90 1 MOND HILL JSI METAL= 0.53 (B) (INPUT = 0.00)MOND HILL **BUILDING DIVISION**

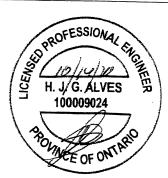
03/08/2022

RECEIVED

Per:____

joshua.nabua

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - 1	2x4	DRY	No.2	SPF
Q-B	2x6	DRY	No.2	SPF
J - H	2x6	DRY	No.2	SPF
Q - M	2x8	DRY	No.2	SPF
M - J	2x8	DRY	No.2	SPF
ALL WEBS EXCEPT	2x4	DRY	No.2	SPF
O - D	2x3	DRY	No.2	SPF
N - E	2x3	DRY	No.2	SPF
L - F	2x3	DRY	No.2	SPF


DRY: SEASONED LUMBER

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS

	CHORE	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
	TOP CH	ORDS : (0.1	22"X3") SPIRAL NAILS	
	A- D	1	12	TOP
	D-F	1	12	TOP
	F-I	1	12	TOP
	Q-B	2	12	TOP
	J- H	2	12	TOP
	BOTTO	M CHORDS	(0.122"X3") SPIRAL NAILS	
	Q-M	2	12	TOP
	M- J	2	12	SIDE(183.1)
		(0.122"X3")	SPIRAL NAILS	
	2x3	1	6	
i	G-K	2	3	SIDE(1476.8)
	2x4	2	3	,
ı	O- C	1	6	
Į	N- D	1	6	
ĺ	N-F	1 .	6	i
ł	L-G	1	6	1
١	P-B	1	6	ł
	K- H	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

Structural component only DWG# T-2022242

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	AND EDADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BEARINGS	

J G JI	FACTO GROSS R VERT 2979 8691		MAXIMU GROSS DOWN 2979 8691		INPUT BRG IN-SX 5-8 5-8	REQRE BRG IN-SX 5-8 5-8
	VERT 2979	HORZ 0	DOWN 2979	HORZ 0	IN-SX 5-8	IN-SX 5-8

UNF	ACTORED R	EACTIONS					
	1ST LCASE		MIN. COMPO	NENT REACTION	NS		
JT O	COMBINED 2102	1406 / 0	LIVE 0 · 0	PERM.LIVE	WIND	DEAD	SOIL
Ĵ	6128	4124 . 0	0:0	0 / 0 0 / 0	0 0	697 0	0.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.87 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N, F-N. 2x6 DRY SPF No.2 T-BRACE AT G-L

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

110	JIALI	LOAD	ASES:	(4)								
	MAX EMB.				DAD LC LF)	1 MAX CSI(LC)	MAX. UNBRA	MEMB.	. F	FAC		
	-TO			FROM	TO	,		H FR-TO	,	LUG	CS	(LC)
A-	В	0	41	-91.8	-91.8	0.07 (1)		P- C				
B-	С	-3150 /	0	-91.8	-91.8			C- O	-536 -27			9 (1)
C-	D	-3201 /	0	-91.8	-91.8	0.29 (1)		O- D		-		1 (1)
D-	Ε	-3271	0	-91.8	-91.8			D- N	0	119		2 (4)
E-	F	-3271	0	-91.8	-91.8	0.28 (1)			0	1759		6 (1)
F-	G	-4822	0	-91.8	-91.8	0.33 (1)		N- E	-553	0		7 (1)
G-	Н	-9228	0	-91.8	-91.8	0.33 (1)		N-F	-926			8 (1)
H-	1	0 /	41	-91.8	-91.8	0.07(1)	2.87 10.00	L-F L-G	0	3512		3 (1)
Q-	В	-2912	0	0.0	0.0	0.07 (1)	7.81		-4909			5 (1)
J-		-7908		0.0	0.0	0.29 (1)	5.34	K-G	0	5813		1 (1)
			•	0.0	0.0	0.29(1)	5.34	B- P	0	2514		2 (1)
Q-	Ρ	0 :	0	-18.5	-185	0.03(1)	10.00	K- H	0	7305	0.6	5 (1)
P-	0		2447	-18.5	-19.5	0.03(1)	10.00					
0-	N		2429	-18.5	-18.5		10.00					
N-	M		3714	-18.5		0.17 (1) 0.24 (1)	10.00					
M-	L		3714	-18.5	-18.5		10.00					
L-			7111	-18.5	-18.5	0.24 (1)	10.00					
K-		0.		-18.5	-18.5		10.00					
R-		o ·		-18.5		0.50(1)	10.00					
S-		0		-18.5	-18.5		10.00					
•	•	0	U	-10.5	-18.5	0.50(1)	10.00					
SP	ECIE	ED COM	CENTE	RATED LO	10c c	201						
JT		LOC.	LC1	MAX-								
ĸ		5-1-8	-4401		MAX-	+		IR.	TYPE	Ξ	HEEL	CON

FRONT

FRONT

VERT

TOTAL TOTAL TOTAL

C1 C1 C1

CONNECTION REQUIREMENTS

-4491 -1151

-1151

25-1-8 27-0-12

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

TOTAL LOAD

SPECIFIED LOADS. LOADS: LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 AD = 39.0 TOP CH. BOT CH.

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.00")
CALCULATED VERT. DEFL.(LL) = L/999 (0.09")
ALLOWABLE DEFL.(TL)= L/360 (1.00")
CALCULATED VERT. DEFL.(TL) = L/999 (0.16")

CSI: TC=0.71:1.00 (G-H:1) , BC=0.50/1.00 (J-K:1) WB=0.65/1.00 (H-K:1) , SSI=0.31/1.00 (J-K:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

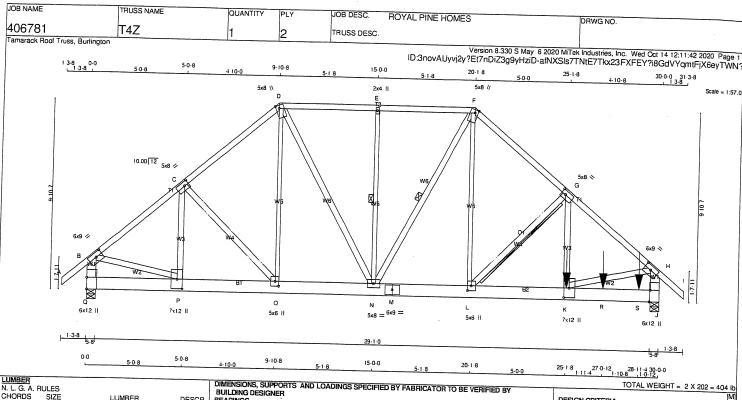
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0:90 (C) (INPUT= 0:90.) MOND HILL JSI METAL= 0:92 (RY (INPUT= 7:00) BUILDING DIVISION

03/08/2022

RECEIVED


joshua.nabua

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	3			
406781	T4	1	2	TRUSS DESC.		5	DRWG NO.		_
Tamarack Roof Truss, B	urlington					Version 8.330 S May 6 2020	MiTek Industries, Inc. W	ed Oct 14 12:11:41 2020 Page	
					ID:3novAUyvj2	y?Et7nDiZ3q9yHziD-6Tp	9FPrVi3INVJ9IVLklj01	ed Oct 14 12:11:41 2020 Page PgvkwTm5Ydeb aCyTWI	N(
PLATES (table is in ind JT TYPE PLAT B TMYW+t MT2 C TMWW+t MT2 D TTWW+m MT2 E TMW+w MT2 G TMWW+t MT2 H TMW+w TMT2 J BMV1+t MT2 L BMWW+t MT2 L BMWW+t MT2 M BS-t MT2 N BMWWW-t MT2	TES W LEN Y X 00 6.0 9.0 2.75 4.25 00 5.0 8.0 2.50 2.75 00 5.0 8.0 2.50 2.75 00 6.0 8.0 2.00 2.00 00 5.0 8.0 2.50 2.75 00 6.0 9.0 2.75 4.25 00 6.0 12.0 Edge 0.50 01 7.0 12.0 6.00 3.25 01 6.0 9.0 02.5 0 6.0 9.0 03.00 2.25	CONNECTION RE 1) C1: A SUITA			INNECTION IS REQUIRED.				
O BMWW+t MT20 P BMWW+t MT20	0 5.0 6.0 3.00 2.25 0 7.0 12.0 6.00 3.25						• .		
Q BMV1+t MT20	0 6.0 12.0 7.25								
TOUCHES EDGE OF CI	ERENCE CORNER OF PLATE HORD.								
	İ								
	·								
									ĺ
								,	
OFES	SIONA							·	
ED PRU	TEN.								
PROFES H. J. G. 10000	4/10								
의 H. J/G.	ALVES %					Γ		ICHMOND HILL	_
1							BUILDI	NG DIVISION	
RONNEE	TARIO						03/0	8/2022	
NGE	OF ON!						00,0	J, _ J	

Structural component only DWG# T-2022242 ッシ

RECEIVED
Per:___joshua.nabua_

RULES			
CIZE			
		LUMBER	DESCR.
2x4	DRY	No 2	SPF
2-4	DBV		
			SPF
2x4	DRY	No.2	SPF
2x6	DRY	No 2	SPF
		No.2	SPF Ì
2x8	DRY	No 2	SPF
2 v 8	DDV		
210	DINT	140.∠	SPF
			i
2x4	DRY	No 2	SPF
		140.2	SPF
2x3	DRY	No 2	SPF
243			
			SPF
2x3	DRY	No.2	SPF
	RULES SIZE 2x4 2x4 2x4 2x6 2x6 2x8 2x8 2x8 2x4 2x3 2x3 2x3	SIZE 2x4 DRY 2x4 DRY 2x4 DRY 2x6 DRY 2x6 DRY 2x8 DRY 2x8 DRY 2x8 DRY 2x1 DRY 2x2 DRY 2x3 DRY 2x3 DRY 2x3 DRY	SIZE LUMBER 2x4 DRY No.2 2x4 DRY No.2 2x4 DRY No.2 2x4 DRY No.2 2x6 DRY No.2 2x6 DRY No.2 2x8 DRY No.2 2x8 DRY No.2 2x8 DRY No.2 2x8 DRY No.2 2x4 DRY No.2 2x3 DRY No.2 2x4 DRY No.2 2x4 DRY No.2 2x4 DRY No.2 2x4 DRY No.2

DRY: SEASONED LUMBER

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	OS #ROWS		LOAD(PLF)
TOP C	HORDS : (0.1	SPACING (IN) 22"X3") SPIRAL NAILS	
A- D	1	12	TOD.
D-F	i	12	TOP TOP
F-1	i	12	TOP
Q-B	2	12	TOP
J- H	2	12	TOP
BOTTO	M CHORDS :	(0.122"X3") SPIRAL NAILS	101
Q-M	2	12	TOP
M-J	2	12	SIDE(183.1)
WEBS:	(0.122"X3")	SPIRAL NAILS	0102(100.1)
2x3	1	6	ı
G-K	1	2	SIDE(1464.3)
2x4	1	2	0.02(04.0)
O- C	1	6	i
N- D	1	6	ĺ
N- F	1	6	ļ
L-G	1	6	
P-B	1	6	į
K- H	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

Structural component only DWG# T-2022243 1/2

DOILDING DESIGNER	AND LOADINGS SPECIFIED	BY FABRIC	ATOR TO BE VERIFIED BY	,-
BEARINGS FACTORED	MAXIMUM EACTORED			

FACTORED GROSS REACTION JT VERT HORZ Q 2974 0 J 8661 0		M FACTION REACTION HORZ		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8
--	--	-------------------------	--	-------------------------------------	-------------------------------------

İ	UNF	ACTORED RI	EACTIONS					
l	_	1ST LCASE		MIN. COMPO	NENT REACTION	NS.		
ı	JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
ı	Q	2098	1403 / 0	0 / 0	0 0	0 0	695 0	0:0
١	J	6106	4111 / 0	0 · 0	0 0	0 0	1000	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.87 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N, F-N. 2x6 DRY SPF No.2 T-BRACE AT G-L

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

4		,									
	HORDS		Блото				wı	BS			
MEN			FACTO					MAX.	FACT	TORED	
INIEIN		ORCE	VERT. LC			MAX.	MEMB		ORCE		,
		LBS)	(P	LF)	CSI (LC)	UNBRA	C		LBS)		(LC)
FR-T			FROM	TO			H FR-TC		200,	001	(LC)
A-B		41	-91.8	-91.8	0.07 (1)	10.00	P- C	-534	^		
B-C		0	-91.8	-91.8	0.28 (1)	4.97		-28		0.09	
C-D	-3193	0	-91.8		0.28 (1)	4.94	O- D			0.01	
D- E	-3262	0	-91.8	-91.8	0.28 (1)	4.87		0	120	0.02	
E-F	-3262		-91.8	-91.8			D- N	0	1753	0.15	
F-G			-91.8			4.87	N- E	-553	0	0.17	
G-H			-91.8	-91.0	0.33 (1)	4.17	N- F	-919	0	0.27	(1)
H-I		41		-91.0	0.71 (1)	2.87	L-F	0	3496	0.43	(1)
Q-B			-91.8		0.07 (1)		L- G	-4892	0	0.45	(1)
J- H			0.0	0.0			K-G	0	5791	0.51	
J- 11	-7882	U	0.0	0.0	0.29 (1)	5.36	B- P	0	2509	0.22	(1)
		_					K- H	0	7280	0.64	
Q-P			-18.5	-18.5	0.03 (1)	10.00				0.0	,
P- 0	•	2442	-18.5	-18.5	0.16(1)	10.00					
0- N	•		-18.5	-18.5	0.17(1)	10.00					
N- M	0	3702	-18.5	-18.5	0.24(1)	10.00					
M- L	0 -	3702	-18.5	-18.5	0.24(1)	10.00					
L- K	0 /	7086	-18.5		0.42(1)	10.00					
K-R	0 1		-18.5		0.50(1)	10.00					
R-S	0 /		-18.5								
S-J	0 -		-18.5	10.5	0.50 (1)	10.00					
	•	•	-10.5	-10.5	0.50(1)	10.00					
SPEC	CIFIED COM	NOENTE	ATEDIO								
JT .	LOC.	LC1	MAX-								
K	25-1-8	-4457		MAX-			DIR.	TYPE		HEEL	CONN.
R	27-0-12		-4457		טרוכ		RT	TOTAL			C1
S		-1172	-1172				RT	TOTAL			C1
3	28-11-4	-61	-61		- BAC	CK VE	RT	TOTAL			C1
											01

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

	SPEC	IFIED		os:		
ı	TOP	CH.	LL	=	25.6	PSF
			DL	=	6.0	PSF
ı	BOT	CH.	LL	=	0.0	PSF
			DL	=	7.4	PSF
I	TOTA	L LO	AD	=	39.0	PSF

24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-99, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.00")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.09")
ALLOWABLE DEFL.(TL)= L/360 (1.00")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.16")

CSI: TC=0.71/1.00 (G-H:1) , BC=0.50/1.00 (J-K:1) , WB=0.64/1.00 (H-K:1) , SSI=0.31/1.00 (J-K:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.89 (C) (INPUT = 0.90) MOND HIL JSI METAL= 0.91 (K) (INPUT = 1.00) **BUILDING DIVISION**

03/08/2022

RECEIVED

Per: joshua.nabua

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC.	ROYAL PINE HOMES		DRWG NO.	
406781	T4Z	1 2	TRUSS DESC.			DAWG NO.	
Tamarack Roof Truss, Burlingt	ton	1 2					
				ID:3novAUyvj2y?Et7r	on 8.330 S May 6 2020 Mi1 DiZ3g9vHziD-afNXSIs	 ek Industries, Inc. Wed Oc 7TNtE7Tkx23FXFEY?i8	t 14 12:11:42 2020 Page 2
						THE PROPERTY OF LITTIE	odd y rginti-jxoey i win
PLATES (table is in inches)							
IT TYPE PLATES	W LEN Y X	CONNECTION REQUIREMEN					
C TMWW-t MT20	6.0 9.0 2.75 4.25 5.0 8.0 2.50 2.75	1) C1: A SUITABLE HANG	ER/MECHANICAL CO	NNECTION IS REQUIRED.			
E TMW+w MT20	5.0 8.0 2.00 2.00 2.0 4.0						
F TTWW+m MT20 G TMWW-t MT20	5.0 8.0 2.00 2.00 5.0 8.0 2.50 2.75						
H TMVW-t MT20 J BMV1+t MT20	6.0 9.0 2.75 4.25 6.0 12.0 Edge 0.50						
K BMWW+t MT20	7.0 12.0 6.00 3.25						
M BS-t MT20	5.0 6.0 3.00 2.25 6.0 9.0						
N BMWWW-t MT20 O BMWW+t MT20 P BMWW+t MT20	5.0 8.0 5.0 6.0 3.00 2.25						
P BMWW+t MT20 Q BMV1+t MT20	5.0 6.0 3.00 2.25 7.0 12.0 6.00 3.25 6.0 12.0 7.25						
Edge - INDICATES REFEREN							
TOUCHES EDGE OF CHORD).						
	•						
					1		
•							
		1					

Structural component only DWG# T-2022243 1/2

CITY OF RICHMOND HILL BUILDING DIVISION

03/08/2022

RECEIVED

Per:____joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **ROYAL PINE HOMES** DRWG NO. 406781 T5 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 12:11:43 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-2rxvg4tlEh?5ldJ7cmmmoR4A?YeuE6Gw6vT4e5yTWN 3.0.8 1-3-8 13-0-0 Scale = 1:36. 10.00 12 5x6 || 4x9 = 12-6-8 0-0 5-10-8 7 1-8 2-10-0 13-0-0 TOTAL WEIGHT = 65 lb

LUMBER N. L. G. A. F CHORDS A - C C - D D - E I - B	SIZE 2x4 2x6 2x4 2x6	DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF
F - E	2x6 2x4	DRY DRY	No.2 No.2 No.2	SPF SPF SPF
ALL WEBS	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

ı							
Ì	PL	ATES (table	is in inches)				
ı	JΤ	TYPE	PLATES	W	LEN	Υ	х
	В	TMVW+p	MT20	5.0	6.0	2.00	2.25
	С	TTW-h	MT20	4.0	6.0		
	D	TTWW+m	MT20	5.0	6.0	Edge	
	Ε	TMVW+p	MT20	5.0	6.0	2.00	
	F	BMV1+p	MT20	3.0	6.0		
	G	BMWW-t	MT20	4.0	6.0		
	Н	BMWWW-t	MT20	4.0	9.0		
	ı	BMV1+p	MT20	3.0	6.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

_	FACTO GROSS R	EACTION	MAXIMU GROSS			INPUT BRG	REQRD BBG
JT I F	VERT 1494 1368	HORZ 0 0	DOWN 1494 1368	HORZ 0 0	UPLIFT 0 0	IN-SX 5-8 MECHANI	IN-SX 5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 3-8.

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./MIN	. COMPO	ONENT REACTION	us.		
JT.	COMBINED 1055	SNOW 703 / 0	0 · 0	PERM.LIVE 0 0	WIND 0 0	DEAD 352 0	SOIL
-	968	632 : 0	0 · 0	0 - 0	0 0	336 0	0.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.63 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE	R C		
MA)	C. FACTORED	FACTO	RED				MAX. FACTO	OCD	
MEMB.	FORCE	VERT. LO	AD LC:	MAX	MAX.	MEMB.	FORCE		
	(LBS)			CSI (LC)				MAX	
FR-TO		FROM		00. (20)	LENGTH		(LBS)	CSI (LC)	
A-B	0 41	-91.8		0.14(1)		H- C	C4 . 405		
B- C	-1267 / 0	-91.8					-61 105	0.04(1)	
C- D	-975 0	-91.8				H- D	0 / 8	0.00 (4)	
D- E	-1265 / 0	-91.8				G-D	65 97	0.04(1)	
I- B	-1423 / 0	0.0		0.11(1)		B- H	0 999	0.25 (1)	
F-E	-1298 0	0.0				G-E	0 998	0.25(1)	
	1200	0.0	0.0	0.10 (1)	7.81				
l- J	0 / 0	-18.5	-18.5	0.20 (4)	40.00				
J- K	0 0				10.00				
K- H		-18.5	-18.5		10.00				
	0 : 0	-18.5	-18.5		10.00				
H- G	0 975	-18.5	-18.5	0.37(4)	10.00				
G- L	0 / 0	-18.5	-18.5	0.27 (4)	10.00				
L- M	0 0	-18.5	-18.5	0.27 (4)	10.00				
M-F	0 : 0	-18.5	-18.5						
			,		. 5.00				
CDECIE	IED CONCENTE	ATED LO							

SPE	CIFIED CON	CENTRA	TED LOA	DS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
C	5-10-8	-375	-375		FRONT	VERT	TOTAL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CONN.
D	7-1-8	-375	-375		FRONT	VERT	TOTAL		C1
G H	6-11-4	-29	-29		FRONT	VERT	TOTAL		C1
	6-0-12 2-0-12	-29	-29		FRONT	VERT	TOTAL		C1
K	4-0-12	-29 -29	-29 -29		FRONT	VERT	TOTAL		C1
Ĺ	8-11-4	-29	-29		FRONT	VERT	TOTAL	•••	C1
M	10-11-4	-29	-29		FRONT	VERT	TOTAL		C1
					FINON	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOAD	os:		
TOP	CH.	LL		25.6	PS
		DL	_	6.0	PS
BOT	CH.	LL	=	0.0	PS
			=	7.4	PS
TOTA	L LO	ΑD	=	39.0	PS

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018, OBC 2012, ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-09, CSA 086-14 - TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.43")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.43")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.08")

CSI: TC=0.74,1.00 (B-C:1) , BC=0.37/1.00 (G-H:4) . WB=0.25/1.00 (B-H:1) , SSI=0.18/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

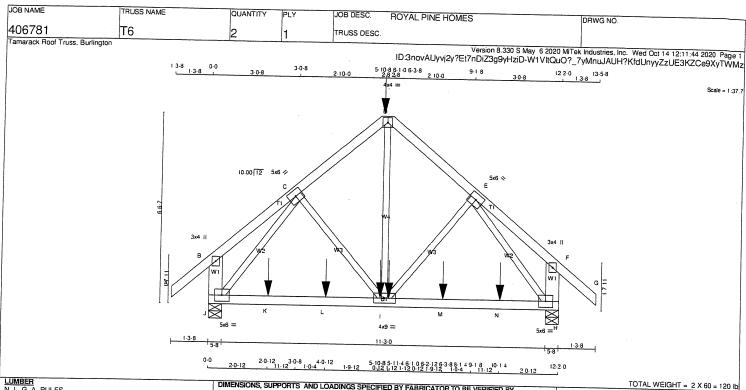
AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

Per:


JSI GRIP-082 (B) (INPUT-10304 MOND HIL JSI METAL-0.26 (B) (INPUT = 1 00) BUILDING DIVISION

03/08/2022

RECEIVED joshua.nabua

Structural component only DWG# T-2022244

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESC
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
J - B	2x6	DRY	No.2	SPF
H - F	2x6	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
				• •
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED L	UMBER.		J. ,

PL	ATES (table	is in inches)			
JT	TYPE	PLATES	W	LEN	Υ
В	TMV+p	MT20	3.0	4.0	
С	TMWW-t	MT20	5.0	6.0	
D	TTW-p	MT20	4.0	4.0	
Ε	TMWW-t	MT20	5.0	6.0	
F	TMV+p	MT20	3.0	4.0	
Н	BMVW1-t	MT20	5.0	6.0	
ı	BMWWW-t	MT20	4.0	9.0	
j	BMVW1-t	MT20	5.0	6.0	

BOIL	LUING DESI	GNER	AND LOAL	JINGS SP	ECIFIED I	BY FABRIC	CATOR TO BE	/ERIFIED
REV	RINGS							
	FACTO GROSS R		MAXIMUI GROSS			INPUT BRG	REQRD BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIET	IN-SX	IN-SX	
J	1450	0	1450	0	0	E 0	114-37	

H	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX	
J	1450	0	1450	0	0	5-8	5-8	
JT	1450	0	1450	0	0	5-8	5-8	
	CTORED I	REACTIONS	<u> </u>					

	191 LCASE	NAX./N	IIN. COMPO	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM, LIVE			
7				FEMIVI. LIVE	WIND	DEAD	SOIL
J	1025	677 ' 0	0 0	0 / 0	0:0	347 0	0.0
Н	1025	677 A	0.0	0.0	0.0	347 0	0.0
	1023	0// 0	0.0	0:0	0.0	347 N	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J. H

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.58 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

		ORDS					\A/ F	BS	
	MAX	. FACTORED	FACTO	RED			** [
	MEMB.	FORCE	VERT. LC		1 1111	14414		MAX. FACTO	
ĺ		(LBS)				MAX.	MEMB		MAX
	CD TO	(LD3)			CSI (LC)			(LBS)	CSI (LC)
i	FR-TO		FROM	TO		LENGTH	FR-TO		
ı	A-B	0 . 41	-91.8	-91.8	0.14(1)	10.00	I- D	0 262	0.10 (4)
ı	B- C	0 / 19	-91.8				C- I	0 54	
Į	C- D	-1230 - 0	-91.8		0.16(1)				0.02 (4)
١	D- E	-1230 / 0	-91.8		0.16(1)			-1461 0	0.52 (1)
l	E-F	0 19	-91.8				I-E	0 54	0.02(4)
Į	F- G	0 41					E- H	-1461 0	0.52(1)
ı			-91.8		0.14(1)	10.00			
ı	J- B	-230 0	0.0	0.0	0.02(1)	7.81			
١	H- F	-230 / 0	0.0	0.0	0.02(1)	7.81			
į									
Į	J- K	0 898	-18.5	-18.5	0.47 (4)	10.00			
İ	K-L	0 898	-18.5		0.47 (4)	10.00			
l	L-I	0 . 898	-18.5	-18.5					
ı	I- M	0 / 898				10.00			
1			-18.5	-18.5		10.00			
ı	M- N	0 898		-18.5	0.47 (4)	10.00			
ı	N- H	0 898	-18.5	-18.5	0.47 (4)	10.00			
ı									
ı	SPECIE	ED CONCENTE	ATEDIO	0000	30.				

SPE	CIFIED CON	ICENTRA	TED LOA	DS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
D	6-1-0	-754	-754		BACK	VERT	TOTAL		C1
ı	5-11-4	-29	-29		BACK	VERT	TOTAL		C1
ı	6-2-12	-29	-29		BACK	VERT	TOTAL		
K	2-0-12	-29	-29		BACK	VERT	TOTAL		C1
L	4-0-12	-29	-29		BACK	VERT	TOTAL		C1
M	8-1-4	-29	-29		BACK	VERT	TOTAL		C1
N	10-1-4	-29	-29						C1
		23	-23		BACK	VERT	TOTAL		C1

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

SPECIFIED LOADS:						
TOP	CH.	LL	=	25.6	PSF	
		DL		6.0	PSF	
BOT	CH.	LL	=	0.0	PSF	
		DL	=	7.4	PSF	
IOTA	L LO	AD	=	39.0	PSF	

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.41")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL) = L/360 (0.41")
CALCULATED VERT. DEFL.(TL) = L/999 (0.07")

CSI: TC=0.16/1.00 (D-E:1) , BC=0.47/1.00 (I-J:4) , WB=0.52/1.00 (C-J:1) , SSI=0.17/1.00 (I-J:4)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

CÖMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

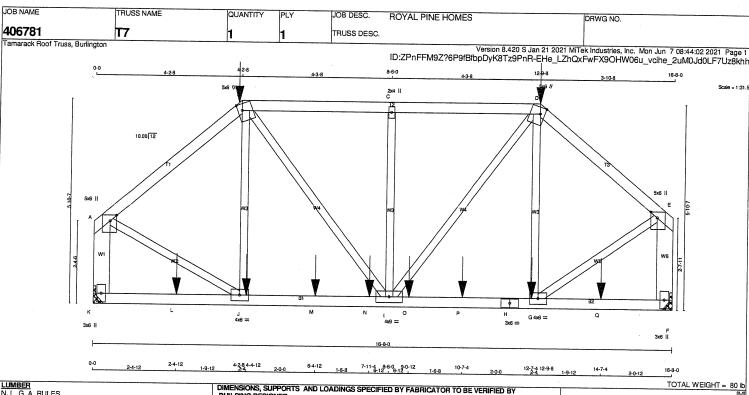
NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.73 (E) (INPUT = 0.90) JSI METAL= 0.36 (E) (INPUT = 1.00)

Per:_


CITY OF RICHMOND HILL **BUILDING DIVISION**

03/08/2022

RECEIVED joshua.nabua

Structural component only DWG# T-2022245

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
K - A	2x6	DRY	No.2	SPF
F - E	2x6	DRY	No.2	SPF
К - Н	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Х			
Α	TMVW+p	MT20	5.0	6.0	2.00	2.25			
В	TTWW+m	MT20	5.0	6.0	2.25	1.50			
С	TMW+w	MT20	2.0	4.0					
D	TTWW+m	MT20	5.0	6.0	2.25	1.50			
Е	TMVW+p	MT20	5.0	6.0	2.00	2.25			
F	BMV1+p	MT20	3.0	6.0					
G	BMWW-t	MT20	4.0	6.0					
Н	BS-t	MT20	3.0	6.0					
ı	BMWWW-t	MT20	4.0	9.0					
J	BMWW-t	MT20	4.0	6.0					
K	BMV1+p	MT20	3.0	6.0					

BUILDING DESIGNER BI

EA	RINGS				
T	FACTOR GROSS RE VERT 1645 1683	MAXIMUI GROSS I DOWN 1645 1683		INPUT BRG IN-SX MECHANIO MECHANIO	

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K, F. MINIMUM BEARING LENGTH AT JOINT K = 3-8, JOINT F = 3-8.

I	UNFACTORED REACTIONS
1	

	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS		
JT.	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	1157	793 / 0	0/0	0/0	0/0	365 / 0	0/0
۲	1184	812/0	0/0	0/0	0/0	372 / 0	0/0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.93 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTO	RED			WE	B S MAX. FACTO	BED.
MEMB.	FORCE	VERT. LO			MAX.	MEMB.		MAX
	(LBS)			CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		7
A-B	-1421 / 0	-9 1.8	-91.8	0.37 (1)	5.01	J- B	-112 / 40	0.06(1)
B- C	-1503 / 0	-91.8	-91.8	0.33(1)	4.93	B-I	0 / 681	0.17(1)
C-D	-1503 / 0	-91.8	-91.8	0.33 (1)	4.93	I- C	-467 / 0	0.25 (1)
D-E	-1364 / 0	-91.8	-9 1.8	0.31(1)	5.18	I- D	0 / 756	0.19 (1)
K- A	-1618 / 0	0.0	0.0	0.15 (1)	7.71	G-D	-208 / 7	0.11 (1)
F-E	-1660 / 0	0.0	0.0	0.17(1)	7.63	A- J	0 / 1203	0.30 (1)
						G-E		0.30 (1)
K-L	0/0	-18.5	-18.5	0.14 (4)	10.00	-		5.55 (1)
L-J	0/0	-18.5	-18.5	0.14 (4)				
J- M	0 / 1087	-18.5	-18.5	0.52 (1)	10.00			
M- N	0 / 1087	-18.5	-18.5	0.52 (1)				
N-I	0 / 1087	-18.5		0.52(1)				
I- O	0 / 1041	-18.5°	-18.5	0.51 (1)	10.00			
O- P	0 / 1041	-18.5		0.51 (1)	10.00			
P- H	0 / 1041	-18.5	-18.5		10.00			
H- G	0 / 1041	-18.5		0.51 (1)				
G-Q	0/0	-18.5		0.14(1)				
Q-F	0/0	-18.5		0.14 (1)				
SPECIE	SPECIFIED CONCENTRATED LOADS (LBS)							
1T	100		100 (FE					

Structural component only DWG# T-2117980

i	G-Q	0/()	-18.5	-18.5 0.1	4 (1) 10.	.00			
i	Q-F	0/0)	-18.5	-18.5 0.1		.00			
					. 0.0	+(1) 10.	.00			
	SPEC	FIED CON	CENTRA	TED LOA	DS (LBS)					
	JT	LOC.	LC1	MAX-	MÀX+	FACE	DIR.	TYPE	HEEL	CONN.
	В	4-2-8	-92	-92		BACK	VERT	TOTAL		C1
I	D	12-9-8	-102	-102		BACK	VERT	TOTAL		C1
l	G	12-7-4	-136	-136		BACK	VERT	TOTAL		C1
I	J	4-4-12	-136	-136		BACK	VERT	TOTAL		C1
ŀ	L	2-4-12	-15	-15		BACK	VERT	TOTAL	~~~	C1
ı	M	6-4-12	-136	-136		BACK	VERT	TOTAL		C1
	N	7-11-4	-136	-136		BACK	VERT	TOTAL		C1
1	0	9-0-12	-136	-136		BACK	VERT	TOTAL		C1
l	Р	10-7-4	-136	-136		BACK	VERT	TOTAL		C1
١	Q	14-7-4	-15	-15		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:						
TOP	CH.	LL.	=	25.6	PSF	
		DL	=	6.0	PSF	
BOT	CH.	LL	=	0.0	PSF	
			=	7.4	PSF	
TOTA	L LO	٩D	=	39.0	PSF	

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 PART 9 OF OBC 2012 (2019 AMENDMENT)
- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.56")
CALCULATED VERT. DEFL.(LL) = L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.56")
CALCULATED VERT. DEFL.(TL) = L/999 (0.08")

CSI: TC=0.37/1.00 (A-B:1) , BC=0.52/1.00 (I-J:1) , WB=0.30/1.00 (E-G:1) , SSI=0.29/1.00 (G-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.77 (A) (INPUT = 0.90) JSI METAL= 0.30 (H) (INPUT = 1.00)

CITY OF RICHMOND HILL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. ROYAL PINE HOMES DRWG NO. 406781 **T8** 2 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Mon Jun 7 08:44:03 2021 Page 1 ID:ZPnFFM9Z?6P9fBfbpDyK8Tz9PnR-iTCMZvi2iZ268JzU4jd7X79tf2MEdjsTrg5ofwz8khg 2-10-0 6-1-0 14-2-0 16-8-0 5x6 > Scale = 1:39. 10.00 12 H 5x6 II 1 5x8 II 7x8 = 3x6 || G 1-9-12 1-0-4 2-10-0 6-1-0 14-2-0

LUMBER				
N. L. G. A. F	111 60			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY		
			No.2	SPF
D - F	2x4	DRY	No.2	SPF
M - A	2x6	DRY	No.2	SPF
G-F	2x6	DRY	No.2	SPF
M - J	2x6	DRY		
			2100F 1.8E	SPF
J - G	2x6	DRY	2100F 1.8E	SPF
				}
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				31-1-
				i

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

	CHORDS		SURFACE SPACING (IN)	LOAD(PLF)
İ	TOP CHO		2"X3") SPIRAL NAILS	
l	A- C	1 `	12	TOP
l	C- D	1	12	TOP
l	D-F	1	12	TOP
	M-A	2	12	TOP
۱	G-F	2	12	TOP
	BOTTOM	CHORDS: (0.122"X3") SPIRAL NAILS	
۱	M- J	2	12	SIDE(0.1)
l	J- G	2	12	SIDE(197.8)
١	WEBS: (0	0.122"X3") SI	PIRAL NAILS	
ĺ	I- D	1	6	SIDE(157.0)
ı	2x3	1	6	-()
ı				

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

Structural component only DWG# T-2117981

DIMENICIONIC C	IDDODTO AND LOAD			
いいにいろいいろ、 ろ	JPPORTS AND LOAD	ANGS SPECIFIED F	RY FARRICATOR TO	BE VEDICIED DV
		mices of Equi IED !	TO ADDISON TOR TO	DE VENIFIED BY
BUILDING DESI	GNER.			
DEADIMOC				

ı	BEAL	HIVUS						
		FACTO	RED	MAXIMU	M FACTO	INPUT BRG	REORD	
		GROSS R	EACTION	GROSS	REACTIC		BRG	
	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	M	6381	0	6381	0	0	MECHANI	CAL
	G	6334	0	6334	0	0	MECHANI	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT M, G. MINIMUM BEARING LENGTH AT JOINT M = 4-0, JOINT G = 4-0.

UNFACTORED REACTIONS 1971 CASE MAY MIN COMPONENT REA

	101 LUAGE		IVIIIV. COIVIPOR	VEIVI REACTION	VS.			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
VI		2996 / 0	0/0	0/0	0/0	1510 / 0	0/0	
3	4472	2974 / 0	0/0	0/0	0/0	1499 / 0	0/0	

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.07 FT MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS						w	EBS			
MA.	X. FACTO	RED	FACTO	RED			• • •	MAX. FA	CTOD	ED	
MEMB.			VERT. LO		MAX	MAX.	MEME				
	(LB		(PL		CSI (LC)	UNBRA				MAX	
FR-TO	,	,	FROM	TO	031 (EU)		H FR-TC	(LBS)	CSI (LC)
A-B	-5020 / 0		-91.8	-91.8	0 4 4 741						
B- C	-5338 / 0				0.14 (1)	4.22		0/30		0.38	(1)
C-D	-4126 / 0		-91.8	-91.8		4.07		0 / 25		0.03	
D-E			-91.8	-91.8	0.29 (1)	4.42		0 / 27		0.34	(1)
	-5160 / 0		-9 1.8	-91.8	0.18 (1)	4.14		0 / 35		0.04	(1)
E-F	-4529 / 0		- 9 1.8	-91.8	0.11(1)	4.44		-795 / 0		0.13	(1)
M- A	-5985 / 0		0.0	0.0	0.26(1)	6.04	A-L	0 / 46		0.58	
G-F	-6103 / 0		0.0	0.0	0.29(1)	5.99	ŀΕ	0 / 74		0.09	
								-1288 / 0		0.21	
M-N	0/0		-18.5	-18.5	0.14 (1)	10.00	H-F	0 / 46		0.58	
N-L	0/0		-18.5	-18.5	0.14(1)	10.00		0, 40	,	3.30	(1)
L- O	0/3	864	-18.5	-18.5		10.00					
O- P	0/3	864	-18.5	-18.5		10.00					
P-K	0/3		-18.5	-18.5	0.37 (1)	10.00					
K-Q	0/3		-18.5	-18.5	0.39 (1)	10.00					
Q-R	0/3		-18.5	-18.5	0.39 (1)	10.00					
R-J	0 / 3		-18.5	-18.5	0.39 (1)						
J-1	0 / 3		-18.5			10.00					
I- S	0/3		-18.5	-18.5	0.39 (1)	10.00					
S- H	0/3			-18.5	0.28 (1)	10.00					
			-18.5	-18.5	0.28 (1)	10.00					
H-T	0/0		-18.5	-18.5	0.08 (1)	10.00					
T-G	0/0		-18.5	-18.5	0.08-(1)	10.00					
SPECIF	TED CON	CENTRA	ATED LOA								
JT	LOC.	LC1	MAX-	MAX-	+ FA	CE	DIR.	TYPE	HE	EL.	CONN
	10-9-4	-9 60	-960		 FRO 	NT V	ERT	TOTAL	-		C1
	1-9-12	-960	-960		- FRO	NT V	ERT	TOTAL	-		C1
	3-9-12	-960	-960				ERT	TOTAL		_	C1
Р	5-9-12	-960	-960				ERT	TOTAL		_	C1
Q	7-9-12	-960	-960				ERT	TOTAL		_	
R	8-9-4	-960	-960				ERT	TOTAL			C1
	12-9-4	-960	-960				ERT	TOTAL			C1
	14-9-4	-960	-960				ERT			-	C1
•		550	300		- rnc	, VI	EN I	TOTAL	-	-	C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	25.6	PSF
			=	6.0	PSF
BOT	CH.		=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	٩D	=	39.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 2 X 98 = 196 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 PART 9 OF OBC 2012 (2019 AMENDMENT)
- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.56")
CALCULATED VERT. DEFL.(LL)= L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.56")
CALCULATED VERT. DEFL.(TL)= L/999 (0.12")

CSI: TC=0.29/1.00 (C-D:1) , BC=0.39/1.00 (I-K:1) , WB=0.58/1.00 (A-L:1) , SSI=0.64/1.00 (K-L:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

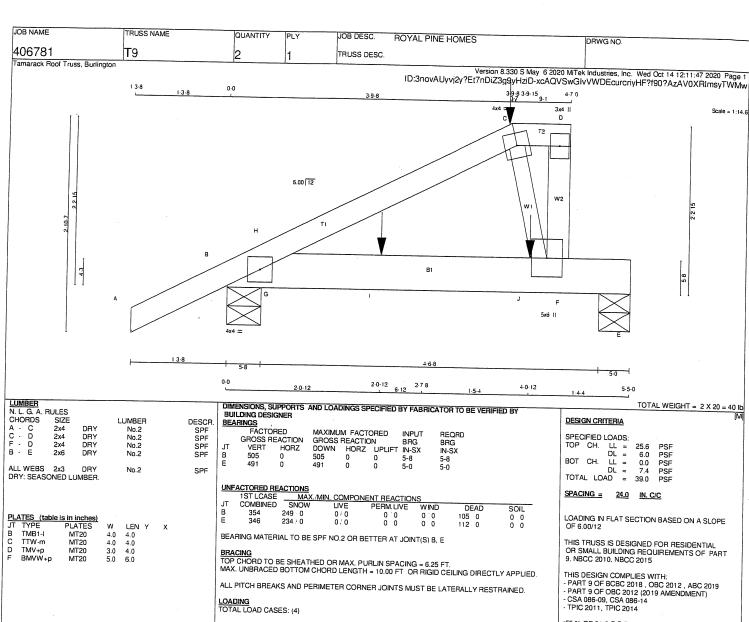
AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (H) (INPUT = 0.90) JSI METAL= 0.61 (H) (INPUT = 1.00)

CITY OF RICHMOND HILL **BUILDING DIVISION**

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. ROYA	AL PINE HOMES	DRWG NO.
406781 Tamarack Roof Truss, Burlingto	т8	1	2	TRUSS DESC.		
					Version 8.420 S Jan 21 2021 ID:ZPnFFM9Z?6P9fBfbpDyK8Tz9PnR-i	MiTek Industries, Inc. Mon Jun 7 08:44:03 2021 Page 2 TCMZvi2iZ268JzU4jd7X79tf2MEdjsTrg5ofwz8khg
A TMVW+p MT20 B TMWW+t MT20 C TTW-m MT20 C TTW-m MT20 E TMWW-t MT20 E TMWW+t MT20 F TMVW+p MT20 G BMV1+p MT20 H BMWW+t MT20 J BS-t MT20 J BS-t MT20 K BMWW+t MT20 L BMWW+t MT20 M BMV1+p MT20 M BMV1+p MT20	W LEN Y X 6.0 9.0 Edge 4.0 4.0 2.00 1.25 5.0 6.0 Edge 5.0 6.0 2.00 1.25 6.0 9.0 Edge 5.0 6.0 2.00 1.25 6.0 9.0 Edge 5.0 6.0 2.75 2.00 5.0 8.0 4.25 2.50 5.0 8.0 4.25 4.00 6.0 9.0 6.0 9.0					
Edge - INDICATES REFERENC TOUCHES EDGE OF CHORD.	CE CORNER OF PLATE					
OPROFESS/	ONALEN					
PROFESSION DISTRICTOR TO THE PROPERTY OF THE P						CITY OF RICHMOND HILL
SPONNOE OF						BUILDING DIVISION 03/08/2022
Structural compo DWG# T-21179	onent only 81 <i>2/1</i>					RECEIVED

	ORDS X. FACT		FACTO VERT. LC		1 MAX	MAX.	W E	BS MAX. FA FOR	ACTORED ICE MAX	,
FR-TO A- B		BS)		LF) TO	CSI (LC)	UNBRA	.C H FR-TO	(LBS	S) CSI	(LC)
В- Н Н- С	-161 -153	0	-91.8 -91.8	-91.8 -91.8	0.13 (1) 0.04 (4) 0.18 (1)	6.25 6.25	G- H	-367 0 -157 · 3	0.06 0.00	
C- D F- D	35 ·		-91.8 0.0		0.01 (1) 0.00 (1)					
B- G G- I I- J		120 138 138	-18.5	-18.5	0.15 (1) 0.30 (1) 0.30 (1)	10.00				
J- F F- E	0 /	138	-18.5	-18.5	0.30 (1) 0.30 (1) 0.27 (1)	10.00				
SPECII	FIED CON		ATED LO	ADS (LE	3S)					
l C TL	LOC.	LC1 -158 -6 -28	MAX- -15B	MAX	+ FA FRO FRO	V TAC		TYPE TOTAL TOTAL TOTAL	HEEL 	CONN. C1 C1 C1
CONNE	CONNECTION REQUIREMENTS									

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

Structural component only DWG# T-2022248

JSI GRIP=1021(B(INPUF=1.00H MOND HIL JSI METAL= 0.10 (B) (INPUT = 1.001) VISION

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.03")
ALLOWABLE DEFL.(TL) = L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.06")

CSI: TC=0.18/1.00 (C-H:1) , BC=0.30/1.00 (F-G:1) , WB=0.06/1.00 (C-F:1) , SSI=0.33/1.00 (E-F:1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg

AUTOSOLVE HEELS OFF

NAIL VALUES

3/08/2022

RECEIVED joshua.nabua

JOB NAME TRUSS NAME QUANTITY PI Y JOB DESC. ROYAL PINE HOMES DRWG NO 406782 T30 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:02 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-bvqYMMxmaRZaIS2L0rXE0JauUbRVNmu4Jg58JAyTWZr 1-3-8 0-0 5-10-8 8-0-12 15-1-0 15-1 12 16-11-4 18-1 6 0-12 1-9-8 1-2-2 2-10-0 3-11 13 24 3-7 27-0-8 G 10.00 12 AC AD o N ΑE 3x6 II 5x6 = 5x6 = 5x8 = 5x6 = 1.5.8 3.0.8 5-10-8 12-0-9 3.0.8 2 10-0 15-1-12 24-3-7 30-0-0 2-11-8 LUMBER N. L. G. A. RULES CHORDS SIZE TOTAL WEIGHT = 2 X 153 = 306 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED B' BUILDING DESIGNER LUMBER DESIGN CRITERIA DESCR BEARINGS DRY DRY DRY C No.2 FACTORED GROSS REACTION VERT HORZ SPF MAXIMUM FACTORED INPLIT REQRD *** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED
BY USER. No.2 GROSS REACTION 2x4 No.2 BRG IN-SX DOWN HORZ UPLIFT IN-SX DRY DRY DRY SPE 3320 5-8 5-8 5-8 LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE No.2 2x6 No 2 DRV SPF SPECIFIED LOADS: No.2 UNFACTORED REACTIONS LL = DL = 25.6 MAX .;MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND ALL WEBS 2x3 DRY SNOW 6.0 0.0 7.4 COMBINED PSE EXCEPT DEAD SOIL LL = DL = AD = BOT CH. 1548 0 1561 0 0/0 0:0 0 0 DL TOTAL LOAD 0 / 0 DRY: SEASONED LUMBER. 39.0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, K DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS SPACING = 24.0 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.93 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. FOLLOWS: LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12 CHORDS #ROWS SURFACE LOAD(PLF) SPACING (IN) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. TOP CHORDS : (0.122"X3") SPIRAL NAILS *** NON STANDARD GIRDER ***
ADDT'L USER-DEFINED LOADS APPLIED TO ALL
LOAD CASES. A- C C- E E- H SIDE(61.0) SIDE(61.0) LOADING TOTAL LOAD CASES: (4) SIDE(61.0) H- J Q- B SIDE(61.0) TOP TOP THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015 12 CHORDS MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX. (PLF) CSI (LC) UNBF MAX. FACTORED MEMB. FORCE BOTTOM CHORDS : (0.122"X3") SPIRAL NAILS MEMB. MAX CSI (LC) CSI (LC) UNBRAC LENGTH FR-TO THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , OBC 2012 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014 (LBS) TO CSI (LC) | -91.8 0.07 (1) | -91.8 0.47 (1) | -91.8 0.61 (1) | -91.8 0.61 (1) 12 SIDE(183.1) FR-TO FROM N-K A-B B-C C-R R-S 0 : 41 70 / 0 -91.8 -91.8 SIDE(0.0) WEBS : (0.122"X3") SPIRAL NAILS P- C L- H B- P 10.00 -310 84 -3570 2x3 P- C 0.13 (1) 0.35 (1) -4176 / 0 0 2794 SIDE(13.8) -4176 : 0 0.35 (1) 0.34 (1) 0.26 (1) 0.25 (1) 4.00 L-1 2751 -4176 0 -4176 0 NAILS TO BE DRIVEN FROM ONE SIDE ONLY. -91.8 0.61 (1) 4.00 2094 (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED -91.8 -91.8 -91.8 0.51 (1) 0.51 (1) 0.51 (1) -91.8 E- T T- F 4176 : 0 M- G -1149 O- D -1144 O- F -79 GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS. 4.00 0.38 (1) 0.38 (1) -4176 -4157 ROOF LIVE LOAD 4.00 ALLOWABLE DEFL.(LL)= L/360 (1.00")
CALCULATED VERT. DEFL.(LL) = L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (1.00")
CALCULATED VERT. DEFL.(TL) = L/999 (0.15") 3.93 3.93 -91.8 -91.8 0.55 (1) 0.03 (1) -4157 0.55 (1) 0.65 (1) TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY. -123 0 0.05 (1) -4156 3.93 -4156 -4156 -4156 V- W W- X -91.8 -91.8 0.65 (1) -91.8 -91.8 0.65 (1) 0.65 (1) X-H 3.93 CSI: TC=0.65/1.00 (G-H:1) , BC=0.33/1.00 (M-O:1) . WB=0.38/1.00 (G-M:1) , SSI=0.29/1.00 (G-H:1) -91.8 -91.8 0.43 (1) 4.63 46 -91.8 -91.8 0.0 0.0 0.09 (1) 0.12 (1) 10.00 Q-B K-I -3248 0 -3272 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 PROFESSIONAL ENGLISH TO THE PROPERTY OF THE PR -18.5 -18.5 -18.5 -18.5 -18.5 0.08 (4) 0.08 (4) 10.00 COMPANION LIVE LOAD FACTOR = 1.00 10.00 -18.5 0.08 (4) 10.00 -18.5 0.02 (1) -18.5 0.22 (1) -18.5 0.22 (1) AUTOSOLVE HEELS OFF 0 2733 0 2733 0 2733 0 4211 AA-AB 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE AB- O O-AC -18.5 -18.5 -18.5 -18.5 0.22 (1) -18.5 0.33 (1) -18.5 0.33 (1) -18.5 0.33 (1) 0 · 4211 0 · 4211 0 · 4211 0 · 4211 0 · 4211 TRUSS MANUFACTURING PLANT AC-AD 10.00 AD- N N-AE -18.5 10.00

-18.5 -18.5 0.33 (1) 0.33 (1)

-18.5 -18.5 0.22 (1)

-18.5

-18.5 0.08 (4) -18.5 0.08 (4)

-18.5 0.22 (1)

0.22 (1)

10.00

10.00

10.00

10.00

10.00

-18 5

-18.5

-18.5

-18.5

-18 5 -18.5 -18.5 0.08 (4) 0.08 (4)

2672

2672

2672

AE- M

M-AF AF-AG

AG-AH

AH- L

L-AI AI-AJ

AJ-AK AK- K

Structural component only DWG# T-2022205 1/2

100009024

PONNCE OF ONT ARIO

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PU) C (PU) SION
MAX MIN MAX MIN MAX MIN
MT20 618 354 1667 788 1987 1656 PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (H) (INPUT = 0.90) JSI METAL= 0.42 (N) (INPUT = 1.00) VED

joshua.nabua CONTINUED ON PAGE 2

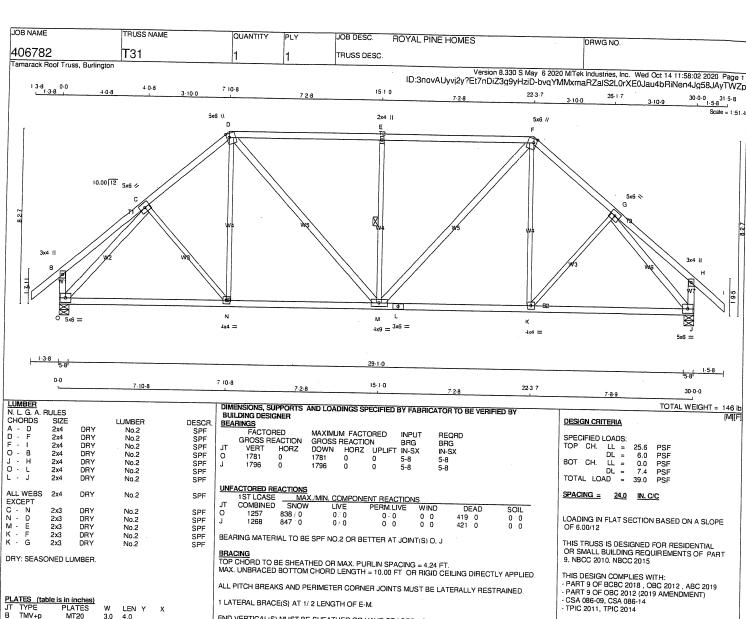
JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	DRWG NO.
406782	T30	1	2	TRUSS DESC.		SIWGNO.
Tamarack Roof Truss, Burlington					Version 8.330 S May 6 2020 N ID:3novAUyvj2y?Et7nDiZ3g9yHziD-bvqYMMxr	 Tek Industries, Inc. Wed Oct 14 11:58:02 2020 Page 2 naRZalS2L0rXE0JauUbRVNmu4Jg58JAyTWZp

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

	SPE	ECIFIED CON	CENTRA	TEDIO	NS (1 BS)						
	JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE			
	С	5-10-8	-359	-359		BACK	VERT		HEEL	CONN.	
	D	12-0-12	-122	-122		BACK	VERT	TOTAL		C1	
	F	15-1-12	-122	-122		BACK	VERT	TOTAL		C1	
	Н	24-3-7	-58	-58		FRONT	VERT	TOTAL		C1	
	Н	24-3-7	-245	-245		FRONT	VERT	DEAD SNOW		C1	
-	0	12-0-12	-29	-29		BACK	VERT	TOTAL		C1	
ı	Р	6-0-12	-29	-29		BACK	VERT	TOTAL		C1	
Į	R	8-0-12	-122	-122		BACK	VERT	TOTAL		C1	
1	S	10-0-12	-122	-122		BACK	VERT	TOTAL		C1	
1	Т	14-0-12	-122	-122		BACK	VERT	TOTAL		C1	
1	U	16-11-4	-122	-122		BACK	VERT	TOTAL		C1	
1	٧	18-11-4	-122	-122		BACK	VERT	TOTAL		C1	
1	W	20-11-4	-122	-122		BACK	VERT	TOTAL		C1 C1	
1	Х	22-11-4	-122	-122		BACK	VERT	TOTAL		C1	
1	Υ	2-0-12	-29	-29		BACK	VERT	TOTAL		C1	
1	Z	4-0-12	-29	-29		BACK	VERT	TOTAL		C1	
1	AA	8-0-12	-29	-29		BACK	VERT	TOTAL		C1	
1	AB	10-0-12	-29	-29		BACK	VERT	TOTAL		C1	
ĺ	AC	14-0-12	-29	-29		BACK	VERT	TOTAL		C1	
1	AD	15-1-12	-29	-29		BACK	VERT	TOTAL		C1	
1	AE	16-11-4	-29	-29		BACK	VERT	TOTAL		C1	
1	AF	18-11-4	-29	-29		BACK	VERT	TOTAL		C1	
1	AG	20-11-4	-29	-29		BACK	VERT	TOTAL		C1	
1	AH	22-11-4	-29	-29		BACK	VERT	TOTAL		C1	
	Al	24-11-4	-29	-29		BACK	VERT	TOTAL		C1	
l	AJ	26-11-4	-29	-29		BACK	VERT	TOTAL		C1	
1	AK	28-11-4	-29	-29		BACK	VERT	TOTAL		C1	

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.


Structural component only DWG# T-2022205

CITY OF RICHMOND HILL BUILDING DIVISION

03/08/2022

RECEIVED

er:____joshua.nabua

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING

TOTAL LOAD CASES:	4)
CHORDS	
MAX. FACTORED	
MEMB FOOG	٠.

	ORDS C. FACTORED	FACTO	250			W E	BS		
MEMB.	FORCE (LBS)	FACTOI VERT. LO (PL	AD LC1		MAX. UNBRAC	мемв	MAX. FACTO FORCE (LBS)	MAX	
FR-TO		FROM	TO		LENGTH		(200)	CSI (LC)	
A- B B- C	0 · 41 0 · 26	-91.8		0.13(1)	10.00	C- N	-26 40	0.02(1)	
C- D	-1632 : 0	-91.8 -91.8		0.22 (1) 0.21 (1)		N- D	0 : 181	0.05 (4)	
D- E	-1648 / 0	-91.8		0.68 (1)		D- M M- E	0 1616 -813 10	0.10 (1) 0.35 (1)	
E- F	-1648 0	-91.8	-91.8	0.68(1)	4.24	M-F	0 ' 641	0.10 (1)	
F- G G- H	-1610 ∤ 0 0 ∤ 27	-91.8		0.20(1)	5.03	K-F		0.05 (4)	
H- I	0 · 46	-91.8 -91.8		0.22 (1) 0.16 (1)	10.00 10.00	K-G	0 · 53 -1918 · 0	0.02 (4)	
O- B	-265 0	0.0			7.81		-1918:0	0.84 (1) 0.79 (1)	
J- H	-273 0	0.0		0.03(1)	7.81		.555 0	0.73 (1)	
O- N	0 1247	-18.5	10 5	0.37 (4)	10.00				
N- M	0 1233	-18.5			10.00 10.00				
M- L	0 / 1216	-18.5		0.37 (4)	10.00				
L- K K- J	0 1216	-18.5		0.37 (4)	10.00				
N- J	0 - 1203	-18.5	-18.5	0.36 (4)	10.00				

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.00")
CALCULATED VERT. DEFL.(LL) = L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (1.00")
CALCULATED VERT. DEFL.(TL) = L/999 (0.14")

CSI: TC=0.68/1.00 (D-E:1) , BC=0.38/1.00 (M-N:4) WB=0.84/1.00 (C-O:1) , SSI=0.32/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

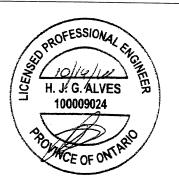

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP=(0.87/G) (INPUT = 0.90) MOND HIL JSI METAL= 0.47 (C) (INPUT = 1.00) BUILDING DIVISION

03/08/2022

RECEIVED joshua.nabua

6.0 2.25 1.50

5.0 2.0 5.0 5.0 3.0 5.0 4.0 3.0

4.0

6.0 4.0

4.0 6.0 4.0 6.0 9.0 4.0

MT20

MT20

MT20

MT20

MT20

MT20

TMW+w

TTWW+m

TMWW-t

TMV+p BMVW1-t

BMWW-t

BMWWW-t

BMWW-t BMVW1-t

GHJKLM

Structural component only DWG# T-2022206

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 406782 T32 TRUSS DESC Tamarack Roof Truss, Burlington Version 8:330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:03 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-35OwZiyPLkhRMcdXaZ3TZW778?nr6D9DYKqhrcyTWZo 1 3-8 0-0 9-10-8 15-1-0 4-10-0 25-17 30-0-0 31-5-8 1-5-8 4-10-9 5x6 \\ 2x4 || 5x6 // Scale = 1:56. 10.00 12 4x4 // W2 0 4x9 = 3x6 = 5x6 = 4x6 = 5-8 5.0.8 9-10-8 15-1 0 20-3-7 30-0-0 4-10-9 TOTAL WEIGHT = 4 X 157 = 629 lb D BY

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DECOR
				DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - 1	2x4-	DRY	No.2	SPF
О - В	2x4	DRY		
			No.2	SPF
J - H	2x4	DRY	No.2	SPF
Q - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	
	24-	Ditt	NU.2	SPF
*** ****				
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
D - N	2x4	DRY	No.2	SPF
N · F	2x4	DRY		
IN . F	∠x4	DHY	No.2	SPF

DRY: SEASONED LUMBER.

		ATES (table					
	JT	TYPE	PLATES	W	LEN	Υ	Х
	В	TMVW+p	MT20	5.0	6.0	2.50	2.25
	C	TMWW-t	MT20	4.0	4.0	2.00	1.25
	D	TTWW+m	MT20	5.0	6.0	2.25	1.50
	Ε	TMW+w	MT20	2.0	4.0		-
	F	TTWW+m	MT20	5.0	6.0	2.25	1.50
i	G	TMWW-t	MT20	4.0	4.0	2.00	1.25
	Н	TMVW+p	MT20	5.0	6.0	Edge	
İ	J	BMV1+p	MT20	3.0	4.0	5-	
Ì	K	BMWW-t	MT20	4.0	6.0		
ı	L	BMWW-t	MT20	4.0	4.0		
ł	M	BS-t	MT20	3.0	6.0		
l	Ν	BMWWW-t	MT20	4.0	9.0		
l	0	BMWW-t	MT20	4.0	4.0		
I	Ρ	BMWW-t	MT20	5.0	6.0		
۱	Q	BMV1+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE

Structural component only DWG# T-2022207

BUILDI	NG DESIGNE	R R	D LOADING	S SPECIFIED E	BY FABRICA	TOR TO BE \	ERIFIED
G	FACTORED ROSS REAC		AXIMUM F		INPUT BRG	REQRD BRG	

VERT 1781 DOWN 1781 HORZ UPLIFT IN-SX IN-SX Q 5-8 5-8

UNFACTORED REACTIONS

İ	l _	1ST LCASE		MIN. COMPOR	VENT REACTION	NS		
ı	JT	COMBINED	SNOW	LIVE	PERM, LIVE	WIND	DEAD	SOIL
ı	Q	1257	838 / 0	0 : 0	0 - 0	0.0	419 0	0 0
į	J	1268	847 / 0	0 / 0	0 - 0	0.0	421 0	0 0
ı						0 0	421 U	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.80 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE	R S	
MAX	C. FACTORED	FACTOR	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO.	AD LC:	MAX	MAX.	MEMB.		MAX
	(LBS)	(PL	.F)	CSI (LC)			(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	()	00. (20)
A-B	0 - 41	-91.8	-91.8	0.13(1)		P- C	-241 0	0.13(1)
B- C	-1678 0	-91.8	-91.8	0.34 (1)	4.80	C- O	-251 0	0.27(1)
C- D	-1533 : 0	-91.8	-91.8	0.32(1)	4.98	0- D	0 279	0.06(1)
D- E	-1330 / 0	-91.8	-91.8	0.34(1)	5.22	D- N	0 - 375	0.06(1)
E-F	-1330 / 0	-91.8	-91.8	0.34(1)	5.22	N-E	-581 . 0	0.38 (1)
F-G	-1519 0	-91.8	-91.8	0.31 (1)	5.01	N-F	0 395	0.06(1)
G- H	-1633 / 0	-91.8	-91.8	0.32(1)		L-F	0 / 251	0.06(1)
H- I	0 - 46	-91.8	-91.8	0.16(1)	10.00	L-G	-213 / 0	0.23(1)
Q-B	-1741 0	0.0	0.0	0.19(1)	6.32	K- G	-281 0	0.15(1)
J- H	1758 0	0.0	0.0	0.19(1)	6.29	B-P	0 1358	0.31(1)
						K- H	0 1335	0.30 (1)
Q-P	0 0	-18.5	-18.5	0.10 (4)	10.00			
P- 0	0 1315	-18.5	-18.5	0.26(1)	10.00			
O- N	0 1151	-18.5	-18.5	0.24(1)	10.00			
N- M	0 1141	-18.5		0.24(1)	10.00			
M- L	0 - 1141			0.24(1)	10.00			
L- K	0 / 1280	-18.5	-18.5	0.25(1)	10.00			
K- J	0 : 0	-18.5	-18.5	0.10(4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = DL = 25.6 6.0 0.0 PSF PSF PSF BOT CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14

TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.00")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (1.00")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.10")

CSI: TC=0.34/1.00 (B-C:1) , BC=0.26/1.00 (O-P:1) , WB=0.38/1.00 (E-N:1) , SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

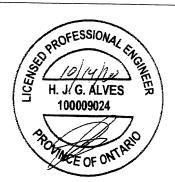
PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (H) (INPUT = 0.90) JSI METAL= 0.62 (H) (INPUT = 1.00 / OND HIL **BUILDING DIVISION**

03/08/2022

RECEIVED

_joshua.nabua


JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 406782 T32A TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:04 2020 Page 1 ID:3novAUyv/2y?Et7nDiZ3g9yHziD-XHyIn2z162pI_mCj8Gai5kfl2P7_rcTMn_aFO3yTWZn 5.0.8 9-10-8 5.0.8 15-1-0 25·1·7 2·0·9 27·2 0 2x4 II 5x6 \\ 5x6 // Scale = 1:54.6 10.00 12 4x4 // 4x6 <> G L 4x6 = 3x6 = 4x9 = 0.0 5-0-8 9-10-8 15-1-0 27-2-0 20-3-7 TOTAL WEIGHT = 4 X 148 = 594 lb

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	25225
				DESCR.
A - D	2x4	DRY	No.2	SPF
D · F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	
				SPF
	2x4	DRY	No.2	SPF
1 - H	2x4	DRY	No.2	SPF
0 - K	2x4	DRY	No.2	
K - 1				SPF
1 - 1	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT		5	140.2	SPF
D - L	2x4	DRY	No.2	SPF
L - F	2x4	DRY	No.2	
G - I	2x4			SPF
u . 1	2X4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

	PL	ATES (table					
	JT	TYPE	PLATES	W	LEN	Υ	Х
	В	TMVW+p	MT20	5.0	6.0	Edge	
	С	TMWW-t	MT20	4.0	4.0	2.00	1.25
	D	TTWW+m	MT20	5.0	6.0	2.25	1.50
	E	TMW+w	MT20	2.0	4.0		
	F	TTWW+m	MT20	5.0	6.0	2.25	1.50
	G	TMWW-t	MT20	4.0	6.0		
	Н	TMV+p	MT20	3.0	4.0		
İ	1	BMVW1-t	MT20	4.0	6.0		
	J	BMWW-t	MT20	4.0	4.0		
	K	BS-t	MT20	3.0	6.0		
١	L	BMWWW-t	MT20	4.0	9.0		
	M	BMWW-t	MT20	4.0	4.0		
ı	Ν	BMWW-t	MT20	4.0	6.0		
ı	0	BMV1+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2022208

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADINGS SPECIFIED	BY FABRIC	ATOR TO BE VERIFIED) BY
BEARINGS				
FACTORED	MAXIMUM FACTORED	INDLIT	DECED	

	niivas				
JT O	FACTO GROSS R VERT 1625 1498	MAXIMU GROSS DOWN 1625 1498	UPLIFT 0	INPUT BRG IN-SX 5-8 MECHANIC	REQRD BRG IN-SX 5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 3-8.

1ST LCASE MAX./MIN. COMPONENT REACTIONS	
- THE ACTIONS	
JT COMBINED SNOW LIVE PERM.LIVE WIND DEAD	SOIL
O 1147 766 / O O O O O O O O O O	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.03 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-L, F-J.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E	EBS		
	C. FACTORED	FACTO	RED					FACTO	DRED.
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB		ORCE	MAX
	(LBS)			CSI (LC)	UNBRAC)		LBS)	CSI (LC)
FR-TO			TO		LENGTH	FR-TO		,	00. (20)
A- B	0 41	-91.8	-91.8	0.13(1)	10.00	N- C	-204	12	0.11(1)
B- C	-1492 . 0	-91.8	-91.8	0.33(1)	5.03	C- M	-278		0.30(1)
C- D	-1323 / 0	-91.8	-91.8	0.31(1)	5.28	M- D		303	0.07 (1)
D- E	-1082 0	-91.8	-91.8	0.33(1)	5.66	D- L		195	0.03(1)
E-F	-1082 0	-91.8	-91.8	0.33(1)		L-E	-583		0.38(1)
F- G	-1090 0	-91.8	-91.8	0.27 (1)	5.75	L-F		561	0.09(1)
G- H	0 / 60	-91.8	-91.8	0.27(1)	10.00	J-F	-176		0.12(1)
O- B	-1585 : 0	0.0	0.0	0.17(1)	6.55	J- G		418	0.09(1)
I- H	-1 0	0.0	0.0	0.00 (4)	7.81	B- N		1211	0.27 (1)
						G-1	-1541		0.63(1)
O- N	0 0	-18.5	-18.5	0.10 (4)	10.00				0.00 (. ,
N- M	0 1172	-18.5	-18.5	0.24(1)	10.00				
M- L	0 : 990	-18.5	-18.5	0.21(1)	10.00				
L- K	0 814	-18.5	-18.5	0.27 (4)	10.00				
K-J	0 814	-18.5	-18.5	0.27 (4)	10.00				
J- I	0 538	-18.5	-18.5	0.24 (4)	10.00				

DESIGN CRITERIA

	IFIED	LOA	os:		
TOP	CH.	LL	=	25.6	PSF
		DL	=	6.0	PSF
BOT	CH.	LL		0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	39.0	PSE

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.91")
CALCULATED VERT. DEFL.(LL) = L/999 (0.04")
ALLOWABLE DEFL.(TL) = L/360 (0.91")
CALCULATED VERT. DEFL.(TL) = L/999 (0.08")

CSI: TC=0.33/1.00 (D-E:1) , BC=0.27/1.00 (J-L:4) . WB=0.63/1.00 (G-I:1) , SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP- 0.89 (N) INPUT- 1 0.90 MOND HIL JSI METAL= 0.57 (B) (INPUT- 1.00 VISION

03/08/2022

RECEIVED

Per: _joshua.nabua JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 406782 T33 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:05 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-?TVg_OzftMx9cvnwhz5xexCRQpSNa04W?eJowVyTWZm 2 10-7 2 2 10-7 5.0.8 9-10-8 15-1-0 20.3.7 4-10-0 25-0-8 27 3-8 5x6 \\ 2x4 || 10.00 12 5x6 II 0 5x8 = 5x6 = 5x6 = 5x6 7x8 II 6x9 II 2 10 7 5-0-8 9-1 29-10-8 2-10-7 15-1-0 2.3.0 27 3.8 28.11.4 30.0.0 TOTAL WEIGHT = 2 X 177 = 353 lb

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D · F	2x4	DRY	No.2	
				SPF
	2x4	DRY	No.2	SPF
P - B	2x6	DRY	No.2	SPF
1 - H	2x6	DRY	No.2	SPF
P - L	2x6	DRY	No.2	SPF
1 - 1	2x6	DRY	No.2	
	210	Drii	140.∠	SPF
ALL WEBS	2x4	DRY	N - 0	
EXCEPT	2X4	Dhi	No.2	SPF
N - D	2x3	DRY	No.2	SPF
M - E	2x3	DRY	No.2	SPF
K - F	2x3	DRY	No.2	SPF
B - O	2x3	DRY		
			No.2	SPF
J - H	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

	CHORDS		SURFACE SPACING (IN)	LOAD(PLF)	
	TOP CHO		2"X3") SPIRAL NAILS		
i	A- D	1	12	TOP	l
	D- F	1	12	TOP	
	F- H	1	12	TOP	
	P- B	2	12	TOP	
	I- H	2	12	TOP	
	BOTTOM	CHORDS : (0.122"X3") SPIRAL NAILS		
	P-L	2	12	TOP	
	L-I	2	12	SIDE(183.1)	ľ
	WEBS : (0).122"X3") SF	PIRAL NAILS	0.02(100.1)	
	2x3	1	6		
	G- J	2	3	SIDE(1163.7)	
	2x4	1	6		ı

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

Structural component only DWG# T-2022209 1/2

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADINGS SPECIFIED	BY FABRIC	CATOR TO BE	VERIFIED BY
BEARINGS				
FACTORED	MAXIMUM FACTORED	INPUT	REORD	

JT >	FACTO GROSS R VERT 2273 7055	RED EACTION HORZ 0 0	MAXIMUI GROSS I DOWN 2273 7055			INPUT BRG IN-SX 5-8	REQRD BRG IN-SX 5-8
	/055	U	/055	0	0	5-8	5-8

UNFACTORED REACTIONS

l _	1ST LCASE	MAX	MIN. COMPON	ENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
P		070 / 0	0:0	0 / 0	0 0	534 0	0 0
1	4981 3	314 : 0	0 · 0	0 / 0	0 - 0	1668 0	0 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P, I

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.46 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-M, F-M. 2x4 DRY SPF No.2 T-BRACE AT G-K

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	MAX	ORDS . FACTORED	FACTOR				W E	BS MAX. FACTO	RED
IN	IEMB.	FORCE	VERT. LO.	AD LC:	I MAX	MAX.	MEMB		MAX
1_		(LBS)			CSI (LC)	UNBRAC		(LBS)	CSI (LC)
	R-TO			TO		LENGTH	FR-TO	()	00. (20)
	4- B	0 . 41	-91.8	-91.8	0.07(1)	10.00	N- D	0 : 142	0.03 (4)
	3- C	-2113 : 0	-91.8	-91.8	0.33 (1)	5.64	D- M	0 / 921	0.08 (1)
	C- D	-2223 0	-91.8	-91.8	0.44 (1)	5.52	M-E	-574 / 0	0.18(1)
)- E	-2121 · 0	-91.8		0.25 (1)		M-F	-185 / 0	0.06(1)
	- F	-2121 / 0	-91.8		0.25 (1)		K-F	0 1540	0.19(1)
	- G	-2895 0	-91.8		0.48 (1)			0 1841	0.23 (1)
	3- H	-6298 / 0	-91.8	-91.8	0.44(1)	3.46	J- H		0.68 (1)
		-2247 0	0.0	0.0	0.08(1)	7.81	J- G	0 2994	0.26 (1)
1-	- H	-6532 ' 0	0.0	0.0	0.25(1)			-638 0	0.06 (1)
							C- N	-20 2	0.00 (1)
	y- O	0 / 0	-18.5	-18.5	0.03 (4)	10.00		-3045 · 0	0.80 (1)
)- N	0 / 1694	-18.5		0.14(1)	10.00		50 10 0	0.00 (1)
	I- M	0 · 1678	-18.5		0.14(1)	10.00			
	1- L	0 2210	-18.5		0.18(1)	10.00			
	K	0 2210	-18.5		0.18(1)	10.00			
	J	0 4908	-18.5		0.38(1)	10.00			
J	- Q	0 · 0	-18.5		0.20(1)				
C)- I	0 1 0	-18.5		0.20 (1)				
s	SPECIFIED CONCENTRATED LOADS (LBS)								

LOC. LC1 DIR. VERT MAX-MAX+ FACE TYPE CONN a TOTAL TOTAL

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: LL = 25.6 DL = 6.0 BOT CH. LL =
DL =
TOTAL LOAD = PSF PSF PSF 0.0 7.4 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.00")
CALCULATED VERT. DEFL.(LL) = L/999 (0.05")
ALLOWABLE DEFL.(TL) = L/360 (1.00")
CALCULATED VERT. DEFL.(TL) = L/999 (0.10")

CSI: TC=0.48/1.00 (F-G:1) , BC=0.38/1.00 (J-K:1) , WB=0.80/1.00 (G-K:1) , SSI=0.17/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP+ 7.87 (3) INPUT +0.90)MOND HIL JSI METAL= 0.63 (J) (INPUT = 1.00.) BUILDING DIVISION

03/08/2022

RECEIVED

joshua.nabua CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC. ROYAL PINE HOMES	DRIWG NO.
406782 Tamarack Roof Truss, Burlington	T33	1 2	TRUSS DESC.	DRWG NO.
Tamarack Hoor Truss, Burlingto			Version 8.330 S May 6 2t ID:3novAUyvj2y?Et7nDiZ3g9vHziD-?TVn	020 MiTek Industries, Inc. Wed Oct 14 11:58:05 2020 Page 2 OzftMx9cvnwhz5xexCRQpSNa04W?eJowVyTWZm
B TMVW-p MT20 C TMWW-t MT20 D TTWW+m MT20 E TMW-w MT20 F TTWW+m MT20 G TMWW-t MT20 G TMWW-t MT20 H TMW-p MT20 I BMV1+t MT20 J BMWW-t MT20 K N, O	W LEN Y X 5.0 6.0 2.00 2.25 4.0 6.0 2.00 2.75 5.0 6.0 2.25 1.50 2.0 4.0 6.0 2.00 2.00 6.0 0.25 1.50 6.0 0.25 1.50 6.0 0.20 2.00 6.0 9.0 Edge 6.0 9.0 Edge 6.0 9.0 Edge 6.0 9.0 4.25 3.00			ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
L BS-t MT20 5 M BMWWW-t MT20 5	5.0 6.0 5.0 6.0 5.0 8.0			
P BMV1+p MT20 3 Edge - INDICATES REFERENCI TOUCHES EDGE OF CHORD.	CORNER OF PLATE			
TOUCHES EDGE OF CHORD.				
	·			
PROFESSION 10/14/10 10009022	W. G.C.			
H. J. G. ALV 100009022	7 			city of richmond hill building division 03/08/2022

Per:____joshua.nabua

Structural component only DWG# T-2022209

JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO 406782 T34 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MTek Industries, Inc. Wed Oct 14 11:58:06 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-Tg32Cj_Hef30E3L6FhcAA9la0Cm5JX5fEl3LSxyTWZl 2 4 8 5.0.8 9-10-8 28-0 4-10-0 24 11-8 4-11-8 27 3.8 30-4-0 5x6 \\ 2x4 || 10.00 12 4x6 % 0 5x6 5x6 = 5x6 = 6x9 II 29.5.0 2.4.8 5.0.8 14-10-0 27 3-8 28-11-4 30-4-0 1-7-12 1-4-12 TOTAL WEIGHT = 2 X 177 = 354 lb

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
P - B	2x6	DRY	No.2	SPF
I - H	2x8	DRY	No.2	SPF
P - L	2x6	DRY	No.2	SPF
L - I	2x6	DRY	No.2	SPF
ALL WEBS	2x4	DRY	No.2	SPF
N - D	2x3	DRY	No.2	SPF
M - E	2x3	DRY	No.2	SPF
K · F	2x3	DRY	No.2	SPF
B · O	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)						
TOP CH	ORDS: (0.1	22"X3") SPIRAL I	VAILS						
A- D	1	12	TOP						
D- F	1	12	TOP						
F- H	1	12	TOP						
P-B	2	12	TOP						
I- H	2	12	TOP						
BOTTO	M CHORDS	: (0.122"X3") SPIF	RAL NAILS						
P-L	2	12	TOP						
L-I	2	12	SIDE(183.1)						
WEBS:	WEBS : (0.122"X3") SPIRAL NAILS								
2x3	1	6							
G- J	2	2	SIDE(1166.2)						
2x4	1	6	0.02(1.00.2)						

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

Structural component only DWG# T-2022210

BUILDING DESIGNER BEARINGS	AND LOADINGS SPECIFIED	BY FABRIC	CATOR TO BE	VERIFIED BY
FACTORED GROSS REACTION	MAXIMUM FACTORED	INPUT	REQRD	

_	FACTO GROSS R	EACTION	MAXIMU GROSS		INPUT BRG	REQRD BRG	
Γ	VERT 2352	HORZ 0	DOWN 2352	HORZ 0	UPLIFT 0	IN-SX 5-8	IN-SX 5-8
	7023	0	7023	ō	Ö	5-8	5-8

UNFACTORED REACTIONS

	131 LUASE		MIN. COMPON	IENT REACTION	NS.			
ĴΤ	COMBINED		LIVE	PERM.LIVE	WIND	DEAD	SOIL	
٢	1660	1107/0	0 / 0	0 / 0	0 0	553 0	0 0	
1	4958	3298 0	0 / 0	0.0	0 0	1660 0	0 0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P. I

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.92 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-M, F-M. 2x6 DRY SPF No.2 T-BRACE AT G-K

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3"
COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTOR	en.			W E	BS		
MEMB.	FORCE	VERT. LO		MAN	141V			FACTO	
····	(LBS)	(PL			MAX.	MEMB		ORCE	MAX
FR-TO	(CDG)		TO	CSI (LC)			(LBS)	CSI (LC)
A-B	0 · 41				LENGTH				
B- C		-91.8	-91.8			C-N	0	52	0.00(1)
	-2095 0	-91.8	-91.8	0.39 (1)		N- D	0	133	0.03(4)
C- D	2336 0	-91.8	-91.8	0.55 (1)		D- M	0	1007	0.09(1)
D- E	-2227 0	-91.8	-91.8	0.23 (1)		M- E	-543	0	0.17(1)
E-F	-2227 0	-91.8	-91.8	0.23 (1)		M-F	-329	0	0.10(1)
F- G	-3114 0	-9 1.8	-91.8	0.62(1)	4.77	K-F	0	1795	0.22(1)
G- H	-8002 . 0	-91.8	-91.8	0.59(1)	2.92	B- O	ō	1924	0.24 (1)
P-B	-2335 0	0.0	0.0	0.09(1)	7.81	J- H	ō	6364	0.56 (1)
I- H	-6540 : 0	0.0	0.0	0.18(1)		J- G	ō	4148	0.37 (1)
				- ' '			-4184	0	0.47(1)
P-O	0 : 0	-18.5	-18.5	0.04 (4)	10.00	0- C	-792		0.47 (1)
O- N	0 / 1711	-18.5	-18.5	0.14(1)	10.00	0 0	, 32	U	0.00(1)
N- M	0 1761	-18.5	-18.5	0.14(1)	10.00				
M- L	0 - 2380	-18.5	-18.5	0.19(1)	10.00				
L- K	0 2380	-18.5	-18.5	0.19(1)	10.00				
K- J	0 - 6217	-18.5	-18.5	0.48 (1)	10.00				
J- Q	0 : 0	-18.5	-18.5	0.24 (1)	10.00				
QI	0.0	-18.5	-18.5	0.24 (1)	10.00				
/	3.24 (1) 10.00								
SPECIFIED CONCENTRATED LOADS (LBS)									
	100								

MAX-FACE LOC. 27-3-8 MAX+ DIR TYPE CONN. -3651 Q TOTAL TOTAL 28-11-4 -515

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	25.6	PSF
		DL		6.0	PSF
BOT	CH.	LL		0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.01")
CALCULATED VERT. DEFL.(LL) = L 999 (0.07")
ALLOWABLE DEFL.(TL) = L/360 (1.01")
CALCULATED VERT. DEFL.(TL) = L/999 (0.13")

CSI: TC=0.62/1.00 (F-G:1) , BC=0.48/1.00 (J-K:1) , WB=0.56/1.00 (H-J:1) , SSI=0.16/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

| NAIL VALUES | VALUE

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIPH 0.89 (J) (INPUFH 0.9H MOND HIL JSI METAL= 0.93 (J) (INPUT = 1.00.) BUILDING DIVISION

03/08/2022

RECEIVED

joshua.nabua CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	······································	DRWG NO.
406782 Tamarack Roof Truss, Burlin	T34	1	2	TRUSS DESC.			
	3.0				Version 8.330 S May 6 ID:3novAUyvj2y?Et7nDiZ3g9yHziD	2020 MiTe -Tg32Cj	.) k Industries, Inc. Wed Oct 14 11:58:06 2020 Page Hef30E3L6FhcAA9Ia0Cm5JX5fEI3LSxyTW2
PLATES (table is in inches JT TYPE PLATES B TMVW+p MT20	W LENY X						
C TMWW-t MT20 D TTWW+m MT20	5.0 6.0 2.00 2.25 4.0 6.0 2.00 2.75 5.0 6.0 2.25 1.50						
F TTWW+m MT20	2.0 4.0 5.0 6.0 2.25 1.50						
H TMVW-t MT20 I BMV1+p MT20	5.0 6.0 2.50 1.75 6.0 9.0 2.75 3.25 3.0 6.0 3.00 2.75						
J BMWW+t MT20 K, N, O K BMWW-t MT20	6.0 9.0 4.50 2.75 5.0 6.0						
L BS-t MT20 M BMWWW-t MT20	5.0 6.0 5.0 8.0						
P BMV1+p MT20	3.0 6.0						
					•		
		-					
45881	IOU						
PROFESS	ONAL EN						
PROFESSI JULIA JULIA H. J. G. A 100009	(In Call)						
H. J. G. A	LVES B				•		CITY OF RICHMOND HILL
100009	024						BUILDING DIVISION
18	\$ Jo /						02/00/2022
30 NWCF OF	ONTARIO						03/08/2022
VICE OF	- UN- /						

Structural component only DWG# T-2022210

RECEIVED

Per:____joshua.nabua_

JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO. 406782 T35 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MTEk Industries, Inc. Wed Oct 14 11:58:07 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-xsdRP3?vPzBtrDwlpO7PjMHoTc9D20LpTyov_OyTWZk 1 3-8 0-0 5.0.8 14 10-0 24 11-8 30-4-0 31 7 8 Scale = 1:56. 5x6 // 10.00 12 4x4 / G 3x4 II 5x6 == 3x6 = 4x9 = 5x6 = 1 3.8 1 3-8 5.8 0.0 5-0-8 9-10-8 14-10-0 30-4-0 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY TOTAL WEIGHT = 157 lb

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - 1	2x4	DRY	No.2	SPF
Q - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
Q - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT	_			
D - N	2x4	DRY	No.2	SPF
N F	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER

	!							
	민	ATES (table	is in inches)					
	JT	TYPE	PLATES	W	LEN	Υ	Х	
	В	TMVW+p	MT20	5.0	6.0	2.50	2.25	
	С	TMWW-t	MT20	4.0	4.0	2.00	1.25	
ı	D	TTWW+m	MT20	5.0	6.0	2.25	1.50	
	Е	TMW+w	MT20	2.0	4.0			
ı	F	TTWW+m	MT20	5.0	6.0	2.25	1.50	
	G	TMWW-t	MT20	4.0	4.0	2.00	1.25	
ı	Н	TMVW+p	MT20	5.0	6.0	2.25		
١	J	BMV1+p	MT20	3.0	4.0			
l	K	BMWW-t	MT20	5.0	6.0			
	L	BMWW-t	MT20	4.0	4.0			
	M	BS-t	MT20	3.0	6.0			
l	Ν	BMWWW-t	MT20	4.0	9.0			
١	0	BMWW-t	MT20	4.0	4.0			
I	Ρ	BMWW-t	MT20	5.0	6.0			
ì	O	BMV1+n	MTON	3.0	4.0			

BUILDING DESIGNER BEARINGS

VERT HORZ DOWN HORZ UPLIFT IN-SX 1799 0 1799 0 0 5-8	BRG IN-SX 5-8
1799 0 1799 0 0 - 5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	MIN. COMPOR	VENT REACTION	VS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1270	847 - 0	0 / 0	0 : 0	0 : 0	423 0	0.0
J	1270	847 : 0	0 . 0	0 / 0	0 0	423 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

ď.

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 4.47 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1, 2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS K. FACTORED	FACTOR	RED			W E	BS MAX. FACTO	,OCD	
MEMB.	FORCE	VERT. LO		MAX	MAX.	MEMB.			
	(LBS)				UNBRAC		(LBS)		
FR-TO	, -,	FROM		00. (20)	LENGTH		(LDS)	CSI (LC)	
A-B	0 41			0.13(1)	10.00	P- C	-245 0	0.13(1)	
B- C	-1700 : 0	-91.8	-91.8			Ċ- Ö	-248 0	0.13 (1)	
C- D	-1557 0	-91.8	-91.8			0- D	0 274	0.27(1)	
D- E	-1355 / 0	-91.8	-91.8			D- N	0 403	0.06 (1)	
E-F	-1355 0	-91.8	-91.8	0.31 (1)	5.23	N- E	-551 0	0.36 (1)	
F-G	-1611 : 0	-91.8	-91.8	0.37(1)	4.82	N- F	0 321	0.05(1)	
G- H	-1881 / 0	-91.8	-91.8	0.45 (1)	4.47	L-F	0 387	0.09(1)	
H- I	0 / 41	-91.8	-91.8		10.00	L- G	-402 0	0.43(1)	
Q-B	-1760 0	0.0	0.0	0.19(1)	6.29	K-G	-85 61	0.04(1)	
J- H	-1754 0	0.0	0.0	0.18(1)	6.29	B- P	0 - 1376	0.31(1)	
						K- H	0 1484	0.33 (1)	
Q-P	0 / 0	-18.5	-18.5	0.11(4)	10.00			0.00 11,	
P- 0	0 1332	-18.5	-18.5	0.26(1)	10.00				
O- N	0 · 1169	-18.5	-18.5	0.24(1)	10.00				
N- M	0 1207	-18.5	-18.5		10.00				
M- L	0 / 1207	-18.5		0.24(1)	10.00				
L-K	0 1472	-18.5		0.30(1)	10.00				
K- J	0 0	-18.5	-18.5	0.13 (4)	10.00				

SPEC	IFIED	LOA	OS:		
TOP	CH.	LL	=	25.6	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
$T \cap T \Delta$	1 10	ΔD		20.0	000

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.01")
CALCULATED VERT. DEFL.(LL) = L/999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (1.01")
CALCULATED VERT. DEFL.(TL) = L/999 (0.11")

CSI: TC=0.45/1.00 (G-H:1) , BC=0.30/1.00 (K-L:1) , WB=0.43/1.00 (G-L:1) , SSI=0.22/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

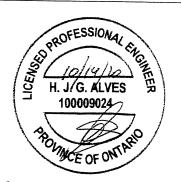
PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP+ (1.83 (B) INPUT+0.90) MOND HIL JSI METAL= (1.39 (H) (INPUT+1.00) IVISION

03/08/2022

RECEIVED _joshua.nabua

Structural component only DWG# T-2022211


JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO. 406782 T35A TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:08 2020 Page Version 6.330 S May to 2020 MILER INDUSTRIES, INC. WED OCT 14 11:38.06 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-P2BpcP0XAHK[TNVUN6eeGaq_20VTnTDyhcYSXqyTWZ 13.8 0.0 5-0-8 9-10-8 19-9-8 4 10-0 23-4-8 5x6 \\ 5x6 // Scale = 1:54 6 10.00 12 4x4 // 4x6 = 4x9 = 4x4 = 4x6 = 0.0 5-0-8 9-10-8 5.0.8 4-10-0 19-9-8 27 2 0 TOTAL WEIGHT = 2 X 150 = 299 lt

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
О - В	2x4	DRY	No.2	SPF
1 - H	2x4	DRY	No.2	SPF
0 - K	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
D - L	2x4	DRY	` No.2	SPF
L - F	2x4	DRY	No.2	SPF
G - i	2x4	DRY	No.2	SPF
				3

DRY: SEASONED LUMBER.

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	w	LEN	Υ	Х
В	TMVW+p	MT20	5.0	6.0	Edge	
C	1-WWMT	MT20	4.0	4.0	2.00	1.25
D	TTWW+m	MT20	5.0	6.0	2.25	1.50
E	TMW+w	MT20	2.0	4.0		
F	TTWW+m	MT20	5.0	6.0	2.25	1.50
G	TMWW-t	MT20	4.0	6.0		
Н	TMV+p	MT20	3.0	4.0		
1	BMVW1-t	MT20	4.0	6.0		
J	BMWW-t	MT20	4.0	4.0		
K	BS-t	MT20	3.0	6.0		
L	BMWWW-t	MT20	4.0	9.0		
M	BMWW-t	MT20	4.0	4.0		
N	BMWW-t	MT20	4.0	6.0		
0	BMV1+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2022212

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADINGS SPECIFIED	BY FABRIC	ATOR TO BE VERIFIED BY
BEARINGS			
FACTORED	MAYIMA CACTOCCO		

225	HIVGO						
	FACTO	DRED	MAXIMU	M FACT	ORED	INPUT	REORD
	GROSS F	REACTION	GROSS			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
0	1625	. 0	1625	0	0	5-8	5-8
1	1498	Ō	1498	n	Õ		
		•	. 430	O .	U	MECHANIC	JAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 3-8. $\,$

1	
UNFACTOREL	DEACTIONS
DINI ACTUREL	NEAC HORS

_	1ST LCASE	MAX./N	IIN. COMPO	COMPONENT REACTIONS					
JT	COMBINED 1147	SNOW 766 : 0	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
ĭ	1059	695 / 0	0 · 0	0.0	0.0	381 0 364 0	0.0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.03 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-L. F-J, G-I.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	HORDS AX. FACTORED B. FORCE	FACTORED VERT. LOAD LC1 MAX			W E B S MAX. FACTORED MAX. MEMB. FORCE MAX				
	(LBS)	(PL		CSI (LC)				LBS)	MAX
FR-T	o .	FROM			LENGTH		, ,,	LD3)	CSI (LC)
A-B	0 - 41	-91.8	-91.8	0.13(1)		N- C	-204	12	0.11(1)
B- C	-1492 0	-91.8	-91.8	0.33(1)	5.03	C- M	-279		0.30 (1)
C- D	-1322 0	-91.8	-91.8			M- D		302	0.30 (1)
D- E	-1083 0	-91.8	-91.8	0.30(1)		D- L		203	0.07 (1)
E-F	-1083 0	-91.8	-91.8	0.30(1)		L- E	-554		0.36 (1)
F-G	-1139 0	-91.8	-91.8			L-F		500	0.08 (1)
G-H	0 · 25	-91.8	-91.8		10.00	J-F	-34	62	0.02 (1)
O- B	-1585 · 0	0.0	0.0	0.17(1)	6.55	J- G	0	204	0.05 (1)
I- H	-131 0	0.0	0.0	0.03(1)	7.81	B- N	ō	1211	0.27 (1)
						G-1	-1509		0.39 (1)
0- N	0 0	-18.5		0.10 (4)	10.00			_	5.55 (1)
N- M	0 1172	-18.5	-18.5	0.24(1)	10.00				
M- L	0 / 989	-18.5	-18.5	0.21(1)	10.00				
L- K	0 852	-18.5	-18.5	0.29 (4)	10.00				
K-J	0 852	-18.5	-18.5	0.29 (4)	10.00				
J- I	0 751	-18.5	-18.5	0.28 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS:								
TOP	CH.	LL		25.6	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LL	=	0.0	PSF			
			=	7.4	PSF			
TOTA	L LO	AD	=	39.0	PSF			

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14

TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.91")
CALCULATED VERT. DEFL.(LL) = L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.91")
CALCULATED VERT. DEFL.(TL) = L/999 (0.10")

CSI: TC=0.33/1.00 (B-C:1) , BC=0.29/1.00 (J-L:4) . WB=0.39/1.00 (G-I:1) , SSI=0.22/1.00 (D-E:1)

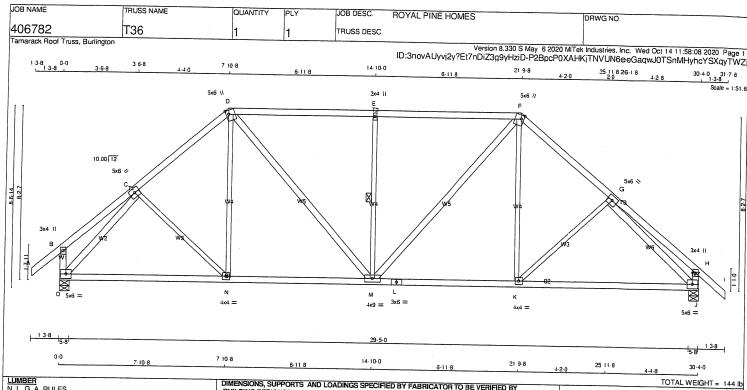
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

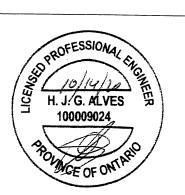
PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 De

JSI GRIP T.89 (M) INPUT LG:50 MOND HIL JSI METAL = 0.57 (B) (INPUT G) .00 IVISION

3/08/2022

RECEIVED


_joshua.nabua

	N. L. G. A. F	RULES			
	CHORDS	SIZE		LUMBER	DESCR.
	A - D	2x4	DRY	No.2	SPF
	D - F	2x4	DRY	No.2	SPF
	F - I	2x4	DRY	No.2	SPF
	О - В	2x4	DRY	No.2	SPF
	J - H	2x4	DRY	No.2	SPF
	0 - L	2x4	DRY	No.2	SPF
	L - J	2x4	DRY	No.2	SPF
	ALL WEBS EXCEPT	2x4	DRY	No.2	SPF
ľ	C - N	2x3	DRY	No.2	SPF
	N - D	2x3	DRY	No.2	SPF
	M - E	2x3	DRY	No.2	SPF
	K - F	2x3	DRY	No.2	SPF
	K - G	2x3	DRY	No.2	SPF

DHY:	2EA2ONED	LOMBER.

PLATES (table is in inches)										
亓	TYPE	PLATES	w	LEN	Υ	Х				
В	TMV+p	MT20	3.0	4.0						
C	TMWW-t	MT20	5.0	6.0						
D	TTWW+m	MT20	5.0	6.0	2.25	1.50				
ļΕ	TMW+w	MT20	2.0	4.0						
F	TTWW+m	MT20	5.0	6.0	2.25	1.50				
G	TMWW-t	MT20	5.0	6.0						
н	TMV+p	MT20	3.0	4.0						
J	BMVW1-t	MT20	5.0	6.0						
K	BMWW-t	MT20	4.0	4.0						
L	BS-t	MT20	3.0	6.0						
М	BMWWW-t	MT20	4.0	9.0						
N	BMWW-t	MT20	4.0	4.0						
0	BMVW1-t	MT20	5.0	6.0						

Structural component only DWG# T-2022213

l.		LDING DES RINGS	IGNER	AND LOAL	JINGS SF	CCIFIED	DT FABRI	CATOR IO
	1 0 1 <u>1</u>	FACTO GROSS R VERT 1799 1799	RED EACTION HORZ 0 0	MAXIMU GROSS DOWN 1799 1799	M FACTO REACTIO HORZ 0 0		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	1412 17 11:	MIN. COMPO	NENT REACTION	VS.		
)ı	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ÿ	1270	847 : 0	0 / 0	0 / 0	0 0	423 0	0 0
J	1270	847 / 0	0 - 0	0 0	0 0	423 0	0.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.31 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/ 2 LENGTH OF E-M.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

<u>LOADING</u> TOTAL LOAD CASES: (4)

	ORDS					w	EBS	
MAX	K. FACTORED	FACTO	RED				MAX. FACTO	
MEMB.	FORCE	VERT. LO		1 546V	144V			
	(LBS)				MAX.	MEMB		MAX
FR-TO	(LDG)		-F)	CSI (LC)			(LBS)	CSI (LC)
		FROM			LENGTH	FR-TC	ı	
A- B	0 / 41			0.13(1)		C- N	0.53	0.02 (4)
B- C	0 / 32	-91.8	-91.8	0.24(1)	10.00	N- D	0 / 153	0.05 (4)
C- D	-1655 / 0	-91.8	-91.8	0.25(1)		D- M	0 - 642	0.10 (1)
D- E	-1676 / 0	-91.8		0.63(1)		M-E	-784 / 0	0.10 (1)
E-F	-1676 / 0	-91.8		0.63(1)		M-F		
F- G	-1742 : 0	-91.8		0.26 (1)		K-F		0.09(1)
G- H	0 30	-91.8		0.27 (1)				0.07 (4)
H- I	0 41	-91.8	-91.8				1950 0	0.65 (1)
О- В	-234 0						-173 / 0	0.12(1)
		0.0		0.02(1)		G-J	-2057 0	0.84(1)
J- H	-267 · 0	0.0	0.0	0.03(1)	7.81			
0- N	0 - 1239	-18.5	-18.5	0.37(4)	10.00			
N- M	0 1251	-18.5	-18.5	0.38 (4)	10.00			
M- L	0 1318	-18.5		0.42 (4)				
L-K	0 1318	-18.5	-18.5					
K-J	0 · 1442	-18.5		0.42 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL DL LL PSF PSF 6.0 0.0 7.4 BOT CH. DL TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-09, CSA 086-14 TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.01")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (1.01")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.19")

CSI: TC=0.63/1.00 (D-E:1) , BC=0.42/1.00 (K-M:4) . WB=0.84/1.00 (G-J:1) , SSI=0.31/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

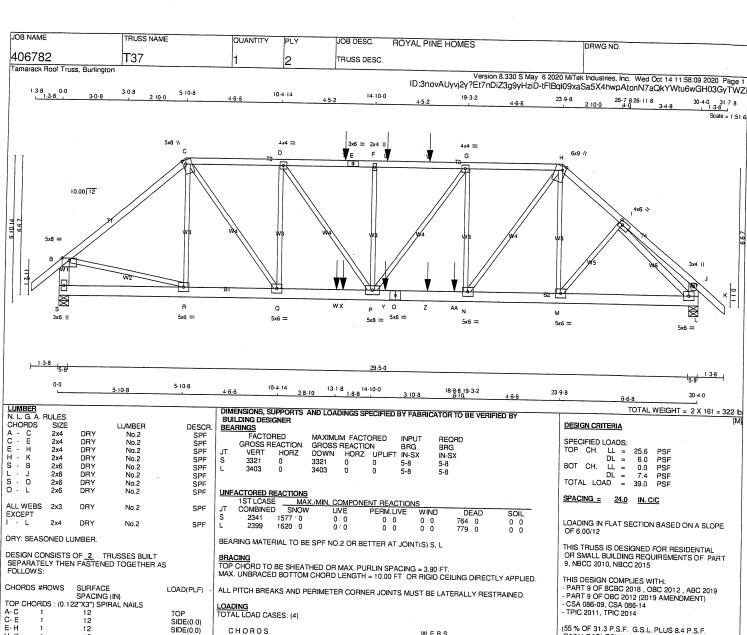
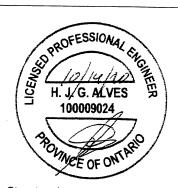

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 De JSI GRIPET 28 (C) (INPORT CH MOND HILL JSI METAL 0.51 (G) (INPING: 00 IVISION

03/08/2022

RECEIVED _joshua.nabua



CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)						
TOP CH	IORDS : (0.1	22"X3") SPIRAL NAILS							
A-C	1	12	TOP						
C-E	1	12	SIDE(0.0)						
E-H	1	12	SIDE(0.0)						
H- K	1	12	TOP						
S-B	2	12	TOP						
L-J	2	12	TOP						
	M CHORDS :	(0.122"X3") SPIRAL NAILS							
S- 0	2	12	SIDE(0.0)						
O- L	2	12 .	SIDE(0.0)						
	WEBS : (0.122"X3") SPIRAL NAILS								
2x3	1	6							
2x4	1	6							

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

Structural component only DWG# T-2022214 //

MA	ORDS X. FACTORED	FACTORED			w	EBS MAX	. FACTO)BED
MEMB.	FORCE	VERT. LOAD L	C1 MAX	MAX.	MEME		FORCE	MAX
	(LBS)	(PLF)	CSI (LC)				LBS)	CSI (LC)
FR-TO		FROM TO	,	LENGTH		` `	100)	COI (LC)
A-B	0 / 41	-91.8 -91.	8 0.07 (1)		B-R		2809	0.35 (1)
B- C	-3589 0		B 0.47 (1)		R- C	-556		0.19 (1)
C- D	-4517 / 0	-91.8 -91.			C-Q		2988	0.37 (1)
D- T	-5412 0	-91.8 -91.			Q-D	-1720	0	0.57 (1)
T-E	-5412 0	-91.8 -91.			D- P		1534	0.19(1)
E-F	-5412 0	-91.8 -91.			P-F	-772	0	0.26 (1)
F- U	-5412 / 0		3 0.33 (1)		P- G	ō	971	0.12(1)
U- V	-5412 0	-91.8 -91.			N- G	-1354		0.45(1)
V- G	-5412 / 0	-91.8 -91.8			N- H	0	2915	0.36(1)
G- H H- I	-4845 0	-91.8 -91.8			M- H	-13	65	0.01(4)
	-4088 . 0	-91.8 -91.8			M- I	0	143	0.02(1)
I- J	0 16	-91.8 -91.8			I- L	-4316	0	0.62 (1)
J- K S- B	0 : 41 -3263 · 0	-91.8 -91.8		10.00				
L- J	-266 0	0.0 0.0		7.68				
L- J	-200 · 0	0.0 0.0	0.01 (1)	7.81				
S-R	0 / 0	-18.5 -18.5	5 0.04 (4)	10.00				
R- Q	0 : 2743	-18.5 -18.5		10.00				
Q-W	0 / 4517	-18.5 -18.5		10.00				
W-X	0 4517	-18.5 -18.5		10.00				
X-P	0 4517	-18.5 -18.5		10.00				
P-Y	0 4845	-18.5 -18.5		10.00				
Y- O	0 4845	-18.5 -18.5		10.00				
0- Z	0 4845	-18.5 -18.5		10.00				
Z-AA	0 4845	-18.5 -18.5		10.00				
AA- N	0 4845	-18.5 -18.5		10.00				
N- M	0 / 3114	-18.5 -18.5		10.00				
M- L	0 '3022	-18.5 -18.5		10.00				

SPE	CILIED COM	ICENTRA	TED LOA	(DS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN
Т	13-5-4	-122	-122		FRONT	VERT	TOTAL		C1
IJ	15-5-4	-122	-122		FRONT	VERT	TOTAL		C1
٧	17-5-4	-122	-122		FRONT	VERT	TOTAL		C1
N	13-1-8	-974	-974		FRONT	VERT	TOTAL		C1
K.	13-5-4	-29	-29		FRONT	VERT	TOTAL		C1
Y	15-5-4	-29	-29		FRONT	VERT	TOTAL		C1
<u>.</u> .	17-5-4	-29	-29		FRONT	VERT	TOTAL		C1
٩A	18-8-8	-772	-772		FRONT	VERT	TOTAL	~	C1

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L'360 (1.01")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.11")
ALLOWABLE DEFL.(TL) = L'360 (1.01")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.21")

CSI: TC=0.47/1.00 (B-C:1) , BC=0.69/1.00 (P-Q:1) , WB=0.62/1.00 (I-L:1) , SSI=0.31/1.00 (P-Q:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

 $\begin{array}{c|cccc} \text{NAIL VALUES} & \text{SHEMBL} & \text{SECTION} \\ \text{PLATE} & & \text{GRIP}(DR) & \text{SHEMBL} & \text{SECTION} \\ & & (PS) & (PL) & (PLI) \\ \hline & & MAX & MIN & MAX & MIN \\ \hline \text{MT20} & & 618 & 354 & 1667 & 788 & 1987 & 1656 \\ \end{array}$

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP- 0.90 (1) (NPUT- 0.907 MOND HIL
JSI METAL = 0.54 (1) (INPUT- 1.000 DIVISION

03/08/2022

RECEIVED er: joshua.nabua

CONTINUED CO.

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES		DRWG NO.	
406782	T37	1	2	TRUSS DESC.				
Tamarack Roof Truss, Bu	urlington				Versio	on 8.330 S May 6 2020 N	MiTek Industries, Inc. Wed	Oct 14 11:58:09 2020 Page 2 aQkYWtu6wGH03GyTWZ
					ID:3novAUyvj2y?Et7nl	DiZ3g9yHziD-tFlBqI0	9xaSa5X4hwpAtonN7	aQkYWtu6wGH03GyTWZ
PLATES (table is in incl JT TYPE PLATE B TMVW-p MT20 C TTWW+m MT20	hes) ES W LENY X							
C TTWW+m MT20 D TMWW-t MT20	0 5.0 8.0 Edge 5.0 8.0 2.25 1.50	CONNECTION						
D TMWW-t MT20 E TS-t MT20 F TMW+w MT20	3.0 6.0	1) C1: A SUI	TABLE HANG	ER/MECHANICAL CON	NECTION IS REQUIRED.			
G TMWW-t MT20 H TTWW+m MT20	0 4.0 4.0							
I TMWW-t MT20 J TMV+p MT20 L BMVW1-t MT20	4.0 6.0 2.00 2.00							
M, N, Q, R	5.0 6.0							
M BMWW-t MT20 O BS-t MT20	5.0 6.0							
P BMWWW-t MT20 S BMV1+p MT20	5.0 8.0 3.0 6.0							
Edge - INDICATES REFE TOUCHES EDGE OF CH	RENCE CORNER OF PLATE							
TOUGHED EDGE OF OR	iond.							
					*			
/	1012							
PROFES H. J. G. 10000	DOIONAL							
(4)	16							
1 & LIP/1	(4/10) [1]						0171/ 07 7:	1011110112
의 H. J/G.	ALVES 70							CHMOND HILL
10000	09024						BUILDIN	IG DIVISION

ROUNCE OF ONTARIO

Structural component only DWG# T-2022214 ***

03/08/2022

RECEIVED
Per:___joshua.nabua_

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. ROYAL PINE HOMES DRWG NO 406782 T39 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MTek Industries, Inc. Wed Oct 14 11:58:10 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-MRJZ151oiuaRihftUXh6L?vKGqC7FSqF9w1ZbiyTWZh 1 3-8 10-10-0 12 1-8 4x6 || Scale = 1:35.5 10.00 12 4x4 || 4x9 =

LUMBER N. L. G. A. F CHORDS A - C C - E H - B F - D H - F	SULES SIZE 2x4 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF
ALL WEBS	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	ATES (table					
JT	TYPE	PLATES	W	LEN	Υ	Х
B	TMVW+p	MT20	4.0	4.0	1.00	2.00
C	TTW+p	MT20	4.0	6.0	Edge	
D	TMVW+p	MT20	4.0	4.0	1.00	2.00
F	BMV1+p	MT20	3.0	4.0		
G	BMWWW-t	MT20	4.0	9.0		
H	BMV1+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Buil	NSIONS, SI LDING DESI RINGS	JPPORTS GNER	AND LOAD	INGS SP	ECIFIED I	BY FABRICA	TOR TO BE	/ERIFIED BY
JT H F	FACTOI GROSS RI VERT 724 724		MAXIMUI GROSS F DOWN 724 724			INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8	

1		TO TOTILE	70110113					
ı		1ST LCASE	MAX./	MIN. COMPO	VENT REACTION	NS		
l	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
	H	510	348 0	0/0	0.0	0:0	162 0	0 0
	г	510	348 0	0 0	0 · 0	0 0	162 - 0	0.0

5.5.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H, F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

UNFACTORED REACTIONS

0.0

	PACTORED FORCE (LBS) 0 : 41 -376 : 0	FACTO VERT. LC (PL FROM -91.8 -91.8	AD LC F) TO -91.8	1 MAX CSI (LC) 0.13 (1) 0.35 (1)		MEMB.	B S MAX. FACTO FORCE (LBS) -16 88 0 297	RED MAX CSI (LC) 0.03 (4) 0.07 (1)
C- D D- E H- B F- D	-376 · 0 0 · 41 -686 · 0 -686 · 0	-91.8 -91.8 0.0 0.0		0.35 (1) 0.13 (1) 0.07 (1) 0.07 (1)		G- D	0 297	0.07 (1)
H- G G- F	0 0	-18.5 -18.5	-18.5 -18.5	0.15 (4) 0.15 (4)	10.00 10.00			

DESIGN	CRI	ΓERIA

10-10-0

SPEC	IFIED	LOADS	i:	
TOP	CH.	LL =		PSF
		DL =	6.0	PSF
BOT	CH.	LL =	0.0	PSF
		DL =		PSF
IOIA	L LO	AD ≃	39.0	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 088-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.36")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.36")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.02")

CSI: TC=0.35/1.00 (B-C:1) , BC=0.15/1.00 (F-G:4) , WB=0.07/1.00 (D-G:1) , SSI=0.15/1.00 (B-C:1)

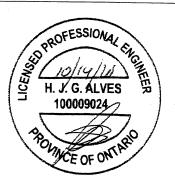
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.60 (B) (INPUT = 0.90) JSI METAL= 0.16 (D) (INPUT = 1.00)

CITY OF RICHMOND HIL BUILDING DIVISION

03/08/2022

RECEIVED _joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO 406782 T39S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:11 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-qdtxFR2QTCilKqE32ECLtCSVwDYH_vMOOam679yTWZg 5.5.0 1 3-8 10-10-0 12 1 8 10.00 12 5x6 II 6.00 12 5.8 0.0 10-10-0

LUMBER									
N. L. G. A. F	RULES								
CHORDS	SIZE		LUMBER	DESCR.					
A - C	· 2x4	DRY	No.2	SPF					
C - E	2x4	DRY	No.2	SPF					
н - в	2x6	DRY	No.2	SPF					
F - D	2x6	DRY	No.2	SPF					
H - G	2x4	DRY	No.2	SPF					
G - F	2x4	DRY	No.2	SPF					
				_					
ALL WEBS	2x3	DRY	No.2	SPF					
EXCEPT									
G - C	2x4	DRY	No.2	SPF					
DRY: SEASO	DRY: SEASONED LUMBER.								

PLATES (table is in inches)
JT TYPE PLATES LEN Y TMVW+p MT20 2.00 2.25 1.50 2.00 2.00 2.25

5.0 4.0 5.0 4.0 5.0 4.0 6.0 4.0 6.0 4.0 BCDFGH TTW+p TMVW+p MT20 MT20 BMV1+p BBWWW-p MT20 MT20

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS FACTORED REQRD

MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLI GROSS REACTION VERT HORZ BRG IN-SX 5-8 5-8 BRG HORZ UPLIFT IN-SX 724

UNFACTORED REACTIONS
1ST LCASE MA
JT COMBINED SNOW MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE UVE 0 · 0 0 : 0 WIND 0 0 162 0 162 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H, F

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO МЕМВ. FORCE FORCE MAX CSI (LC) (LBS) (LBS) FR-TO -91.8 0.13 (1) -91.8 0.35 (1) -91.8 0.35 (1) -91.8 0.35 (1) -91.8 0.13 (1) 0.0 0.05 (1) 0.0 0.05 (1) A- B B- C C- D D- E -91.8 -91.8 -91.8 -91.8 0 41 G-C B-G 0 314 0.05 (1) 0.11 (1) 0.11 (1) -634 -634 6.25 n 498 6.25 G-D 0 498 0 -674 41 H- B 0 0.0 F- D H- G G- F 0 0 0 · 0 -18.5 0.16 (4) -18.5 0.16 (4)

SPECIFIED LOADS: LL = DL = LL = 25.6 6.0 PSF PSF BOT CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

SOIL

0 0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

TOTAL WEIGHT = 2 X 51 = 103 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L'360 (0.36")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.01")
ALLOWABLE DEFL.(TL) = L'360 (0.36")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.06")

CSI: TC=0.35/1.00 (B-C:1) , BC=0.16/1.00 (G-H:4) , WB=0.11/1.00 (D-G:1) , SSI=0.15/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.84 (C) (INPUT = 0.90) JSI METAL= 0.15 (B) (INPUT = 1.00)

CITY OF RICHMOND HIL **BUILDING DIVISION**

03/08/2022

RECEIVED _joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY ROYAL PINE HOMES DRWG NO. 406782 T40 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:12 2020 Page ID:3novAUyvj2y?Et7nDiZ3g9yHziD-lqQKSn32EVq9y_pGcyjaQQ?jodszjJdYcEWggbyTWZf 3.4.4 6-6-0 13-0-0 14-3-8 4x6 || Scale = 1:40 4 10.00 12 4x9 = 15.8 1-3-8 0-0 6-6-0 6-6-0 TOTAL WEIGHT = 2 X 60 = 120 lb

LUMBER N. L. G. N. L. G. A. RULES CHORDS SIZE SIZE DESCR. SPF SPF LUMBER C 2x4 2x4 2x4 DRY DRY DRY No.2 No.2 No.2 No.2 SPF I - A G - E Ğ No.2 SPF ALL WEBS 2x3 DRY SPF EXCEPT

DRY: SEASONED LUMBER.

	PL/	ATES (table	is in inches)				
	JT	TYPE	PLATES	W	LEN	Υ	х
	Α	TMV+p	MT20	3.0	4.0		
	В	TMWW-t	MT20	4.0	4.0		
	C	TTW+p	MT20	4.0	6.0	Edae	
	D	TMWW-t	MT20	4.0	4.0		
i	Ε	TMV+p	MT20	3.0	4.0		
	G	BMVW1-t	MT20	4.0	4.0		
l	Н	BMWWW-t	MT20	4.0	9.0		
ı	1	BMVW1-t	MT20	4.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BULLING DESIGNER BULLINGS

<u>SEAI</u>	HINGS						
	FACTO GROSS R		MAXIMUI GROSS I			INPUT BBG	REQRD BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	717	0	717	0	0	MECHANIC	
3	844	0	844	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 1-8.

UNFACTORED REACTIONS

	131 LUASE		MIN. COMPOR	VENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G G	507 594	333 / 0 403 / 0	0 0	0 / 0 0 / 0	0 0	174 0 191 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	CHORDS					WEBS						
		ORED	FACTO					MAX. FAC	CTORED			
MEMB.		ORCE	VERT. LC	AD LC1	1 MAX	MAX.	MEMB.	FORC				
	(L	_BS)	(PL	.F)	CSI (LC)	UNBRAC		(LBS)				
FR-TO				TO		LENGTH	FR-TO	()	00/(20)			
A- B		22	-91.8	-91.8	0.15(1)	10.00	H- C	0 / 366	0.08(1)			
B- C	490		-91.8		0.12(1)		H- D	-141 : 0	0.06 (1)			
C- D	-490 -		-91.8		0.12(1)	6.25	B- H	-141 0	0.06 (1)			
D- E		22	-91.8		0.15(1)	10.00	I- B	-716 0	0.30(1)			
E-F	0 -		-91.8	-91.8	0.13(1)	10.00	D- G	-716 0	0.30(1)			
I- A	-114		0.0		0.01(1)	7.81						
G-E	-241	0	0.0	0.0	0.03 (1)	7.81						
I- H												
		450	-18.5		0.26 (4)	10.00						
H- G	0	450	-18.5	-18.5	0.26 (4)	10.00						

TOTAL LOAD

SPECIFIED LOADS: TOP CH. LL = LL = DL = LL = 25.6 6.0 0.0 PSF PSF PSF DL

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.43")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.01")
ALLOWABLE DEFL.(TL) = L'360 (0.43")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.05")

CSI: TC=0.15/1.00 (D-E:1) , BC=0.26/1.00 (G-H:4) , WB=0.30/1.00 (D-G:1) , SSI=0.11/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.82 (D) (INPUT = 0.90) JSI METAL= 0.26 (D) (INPUT = 1.00)

CITY OF RICHMOND HIL **BUILDING DIVISION**

03/08/2022

RECEIVED _joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO. 406782 T40S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:13 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-m0_ig74g?py0Z8OS9fEpzdXun1CpSjUhruFDC1yTWZe 6-6-0 13-0-0 14-3-8 4x6 II 6.00 12 6-6-0 13-0-0 TOTAL WEIGHT = 2 X 61 = 121 lb

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - F	2x4	DRY	No.2	SPF
I - A	2x6	DRY	No.2	SPF
G - E	2x6	DRY	No.2	SPF
1 - H	2x4	DRY	No.2	SPF
H - G	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
H - C	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

	PL	ATES (table i	is in inches)					
	JT	TYPE	PLATES	W	LEN	Υ	Х	
	Α	TMV+p	MT20	3.0	4.0			
ļ	В	TMWW-t	MT20	4.0	4.0	2.00	1.50	
	С	TTW+p	MT20	4.0	6.0	Edge		
	D	TMWW-t	MT20	4.0	4.0	2.00	1.50	
	E	TMV+p	MT20	3.0	4.0			
	G	BMVW1-t	MT20	5.0	6.0			
	Н	BBWWW-p	MT20	5.0	8.0			
	1	BMW 1-t	MTOO	5.0	60			

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD

DIMENSIONS, SUPPORTS BUILDING DESIGNER BEARINGS	AND LOADINGS SPECIFIED	BY FABRIC	ATOR TO BE VERIFIED BY	_
FACTORED	MAXIMUM FACTORED	INPUT	REORD	

	FACTOR GROSS RE	ACTION	MAXIMUM GROSS F			INPUT BRG	REQRD BRG
IT	VERT	HORZ	DOWN	HORZ	UPLIET	IN-SX	IN-SX
	717	0	717	0	0	MECHANIC	
3	844	0	844	ō	n	5-8	5-8
		-	•	•		J-0	J-0

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 1-8.

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
1	507	333 / 0	0 - 0	0 0	0 . 0	174 0	0 0
G	594	403 0	0 / 0	0 0	0 0	404 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS					w	EBS	
	FACTORED	FACTORE					MAX. FACTOR	RED
MEMB.	FORCE	VERT. LOAD	LC1	MAX	MAX.	MEMB		MAX
CD TO	(LBS)	(PLF)		SI (LC)			(LBS)	CSI (LC)
FR-TO		FROM TO			LENGTH	FR-TC)	,
A- B	0 19			0.14 (1)		H- C	0 816	0.13(1)
B- C	-842 0			0.11 (1)		H- D	-42 : 24	0.01(1)
C- D D- E	-842 0			0.11 (1)		B- H	-42 24	0.01(1)
E- F	0 · 19 0 · 41			0.14 (1)	10.00	I- B	-1102 0	0.45(1)
I- A	-119 : 0			0.13 (1)	10.00	D- G	-1102.0	0.46(1)
G-E	-246 0			0.01 (1)	7.81			
u-L	-240 0	0.0	0.0	0.02 (1)	7.81			
I- H	0 751	-18.5 -18	95 (0.28 (4)	10.00			
H- G	0 - 751			0.28 (4)	10.00 10.00			
_		10.0	0.5	J.20 (4)	10.00			

SPECIFIED LOADS:									
TOP	CH.	LL		25.6	PSF				
		DL		6.0	PSF				
BOT	CH.	LL		0.0	PSF				
		DL	=	7.4	PSF				
IOIA	L LO	AD	=	39.0	PSF				

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 . OBC 2012 . ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.43")
CALCULATED VERT. DEFL.(LL) = L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.43")
CALCULATED VERT. DEFL.(TL) = L/999 (0.12")

CSI: TC=0.14/1.00 (D-E:1) , BC=0.28/1.00 (G-H:4) . WB=0.46/1.00 (D-G:1) , SSI=0.11/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

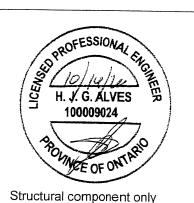
COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

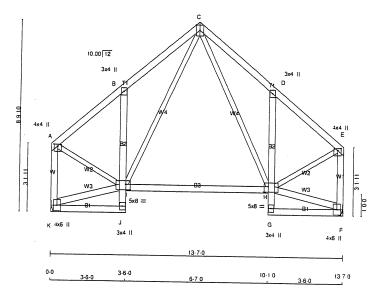

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (D) (INPUT = 0.90) JSI METAL= 0.39 (D) (INPUT = 1.00)

CITY OF RICHMOND HIL **BUILDING DIVISION**

3/08/2022

RECEIVED joshua.nabua


DWG# T-2022218

JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO. 406782 T41 TRUSS DESC Tamarack Roof Truss, Burlington

Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:13 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-m0_ig74g?py0Z8OS9fEpzdXus1CrSprhruFDC1yTWZe

3.6.0 6-9-8 13-7 0

Scale = 1:50.4

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER CEA No.2 No.2 DRY DRY No.2 Е No.2 No.2 2x4 DRY DRY SPF No.2 SPF SPF SPF 2x4 DRY No.2 . G -No.2 No.2 ALI WERS 2x3 DRY No.2 SPF EXCEPT DRY No.2 2x4 No.2

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
A TMVW+p MT20 LEN 4.0 4.0 1.00 2.00 TMV+p TTWW+p MT20 3.0 4.0 MT20 6.0 CDEF Edge TMV+p TMVW+p 3.0 MT20 MT20 1.00 2.00 BMVW1+p BMV+p BVMWWW-I MT20 MT20 3.0 4.0 8.0 3.00 2.50 3.00 2.50 MT20 5.0 MT20 MT20 MT20 MT20 BVMWWW-I BMV+p BMVW1+p 3.0 4.0 J K 4.0 6.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

EA	HINGS				
T	FACTO GROSS R VERT 749 749	MAXIMU GROSS DOWN 749 749	UPLIFT 0	INPUT BRG IN-SX MECHANI MECHANI	

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K, F MINIMUM BEARING LENGTH AT JOINT K = 1-8, JOINT F = 1-8.

UNFACTORED REACTIONS
1ST LCASE ____MAX COMBINED DEAD SOIL 348 0 348 0 182 0 182 0 0.0 0.0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS	F				WE	BS	
	FACTORED	FACTORED					MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD	LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	(CSI (LC)	UNBRAC	2	(LBS)	CSI (LC)
FR-TO		FROM TO			LENGTH		(000)	OOI (LO)
A- B	549 0	-91.8 -91	.8	0.13(1)		C- H	0 258	0.06(1)
B- C	-587 0	-91.8 -91	.8	0.13(1)		I- C	0 258	0.06 (1)
C- D	-587 0	-91.8 -91	.8	0.13(1)		K-I	6 0	0.00 (1)
D- E	-549 0	-91.8 -91	.8	0.13(1)	6.25	A- I	0 500	0.11 (1)
K- A	-716 : 0			0.12(1)	7.81	H- F	-6 0	0.00 (1)
F-E	-716 0			0.12(1)		H-E	0 500	
				0.12(1)	7.01	11	0 300	0.11(1)
K- J	0 6	-18.5 -18	.5	0.06 (4)	10.00			
J- I	0 35			0.01(1)	10.00			
I- B	-378 0			0.04 (1)	7.81			
I- H	0 326	-18.5 -18		0.28 (4)	10.00			
G- H	0 : 35			0.01(1)	10.00			
H- D	-378 0			0.04 (1)	7.81			
G-F	0 6	-18.5 -18		0.06 (4)	10.00			
-	0 0	10.5		0.00 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = LL = 25.6 PSF 6.0 PSF PSF BOT CH PSE TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

TOTAL WEIGHT = 80 ib

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 . OBC 2012 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.45")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.45")
CALCULATED VERT. DEFL.(TL) = L/999 (0.12")

CSI: TC=0.13/1.00 (C-D:1) , BC=0.28/1.00 (H-I:4) , WB=0.11/1.00 (E-H:1) , SSI=0.12/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

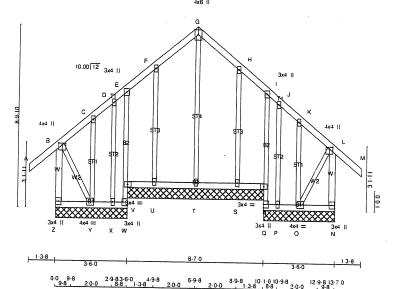
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.61 (A) (INPUT = 0.90) JSI METAL= 0.17 (E) (INPUT = 1.00

CITY OF RICHMOND HIL **BUILDING DIVISION**

3/08/2022


RECEIVED joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO. 406782 T41G TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.330 S May 6 2020 MTek Industries, Inc. Wed Oct 14 11:58:14 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-ECY4tS4Im74tBlzejMI2Vr44hRcDBF_r4Y?mkUyTWZd

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR A -G -Z -N -Z -G M B 2x4 DRY No.2 No.2 SPF SPF SPF SPF 2x4 DRY No.2 w No.2 No.2 DRY w . v . DRY E 2x4 No 2 **a** -No.2 No.2 2x3 DRY N ALL WEBS 2x3 DRY No.2 ALL GABLE WEBS No.2 SPF DRY: SEASONED LUMBER

GABLE STUDS SPACED AT 2-0-0 OC.

TOUCHES EDGE OF CHORD

	ATES (table i	s in inches)					
JT	TYPE .	PLATES	W	LEN	Υ	Х	
В	TMVW+p	MT20	4.0	4.0	1.00	2.00	
	D, F, H, J, K						
С	TMW+w	MT20	2.0	4.0			
	TMV+p	MT20	3.0	4.0			
	TTW+p	MT20	4.0	6.0	Edge		
1	TMV+p	MT20	3.0	4.0	-		
L	TMVW+p	MT20	4.0	4.0	1.00	2.00	
N,	Q, Z						
N	BMV1+p	MT20	3.0	4.0			
0	BMWW1-t	MT20	4.0	4.0			
P. :	S, T, U, X						
Р	BMW1+w	MT20	2.0	4.0			
R	BVM-I	MT20	3.0	4.0			
٧		MT20	3.0	4.0			
W	BMV1+p	MT20	3.0	4.0	2.00	Edge	
Υ	BMWW1-t	MT20	4.0	4.0		3-	
Edd	e - INDICATE	S REFEREN	ICE CC	ORNE	ROFF	PIATE	
	Edge - INDICATES REFERENCE CORNER OF PLATE						

Structural component only DWG# T-2022220

DIMENSIONS SLIDDODTS	AND LOADINGS OFFICE BY TABLE
Distancióno, dorronto	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS FACTORED	FACTOR				W E		
MEMB.							MAX. FACTO	RED
IVICIVID.	FORCE	VERT. LOA			MAX.	MEMB.	FORCE	MAX
FR-TO	(LBS)	(PLF		CSI (LC)			(LBS)	CSI (LC)
A- B	0 . 44		го		LENGTH			
B-C	0 41	-91.8	-91.8			T- G	-167 : 0	0.18(1)
	-37 0	-91.8	-91.8	0.12(1)	6.25	U- F	-193 0	0.11(1)
C-D	0 4		-91.8	0.01 (1)	10.00	X- D	-77 : 0	0.03(1)
D-E	0 / 3		-91.8	0.01(1)	10.00	Y- C	-62 ′ 0	0.02(1)
E-F	0 / 14		-91.8	0.05(1)	10.00	S- H	-193 : 0	0.11(1)
F-G	-4 / 0		-91.8	0.05 (1)	10.00	P-J	-77 0	0.03(1)
G-H	-4 0		-91.8	0.05 (1)	10.00	O- K	-62 0	0.02(1)
H-1	0 / 14		-91.8	0.05(1)	10.00	B- Y	0 5	0.00 (1)
1- J	0 . 3		-91.8	0.01(1)	10.00	0- L	0 5	0.00(1)
J- K	0 / 4		-91.8	0.01(1)	10.00			0.00,
K-L	-37 : 0	-91.8	-91.8	0.12(1)	6.25			
L-M	0 : 41	-91.8	-91.8	0.13(1)	10.00			
Z-B	-264 · 0	0.0	0.0	0.05(1)	7.81			
N-L	-264 / 0	0.0	0.0	0.05(1)	7.81			
Z- Y	0 : 0		-18.5	0.01 (4)	10.00			
Y- X	0 · 1		-18.5	0.01 (4)	10.00			
X-W	0.0		-18.5	0.00(4)	10.00			
W-V	-84 : 0	0.0	0.0	0.00(1)	7.81			
V-E	-75 : 0	0.0	0.0	0.00(1)	7.81			
V- U-	-2 0		-18.5	0.01 (4)	10.00			
U-T	-5 0		-18.5	0.02 (4)	10.00			
T-S	-5 0		-18.5	0.02 (4)	10.00			
S-R	2 0	-18.5	-18.5	0.01 (4)	10.00			
Q-R	-84 0	0.0	0.0	0.00(1)	7.81			
R-I	-75 0	0.0	0.0	0.00(1)	7.81			
Q-P	0 0	-18.5	-18.5	0.00 (4)	10.00			
P-0	0 . 1	-18.5	-18.5	0.01 (4)	10.00			
O- N	0 , 0	-18.5	-18.5	0.01 (4)	10.00			
1				,				

DESIGN CRITERIA

TOTAL LOAD

SPECIFIED LOADS: TOP CH. LL = DL = LL = DL = PSF 6.0 0.0 7.4 PSF BOT CH.

= 39.0

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

TOTAL WEIGHT = 89 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-09, CSA 086-14 - TPIC 2011, TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.13/1.00 (A-B:1) , BC=0.02/1.00 (T-U:4) , WB=0.18/1.00 (G-T:1) , SSI=0.08/1.00 (B-C:1)

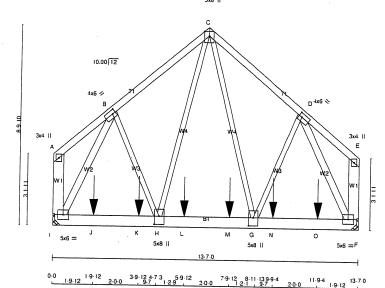
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.20 (L) (INPUT = 0.90) JSI METAL= 0,10 (F) HNPUT = 1.00 // OND HIL **BUILDING DIVISION**

3/08/2022

RECEIVED _joshua.nabua JOB NAME TRUSS NAME JOB DESC. QUANTITY ROYAL PINE HOMES DRWG NO 406782 T42 TRUSS DESC. Tamarack Roof Truss, Burlington

Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:15 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-iP6S4o5wXQCkpSXrH4GH22dEQrm7wYZ_ICkKGwyTWZc

0.0 10-11 0 5x6 II

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR DRY DRY No.2 2x4 2x6 No.2 DRY SPF No.2 SPF ALL WEBS DRY No.2 SPF EXCEPT I - B DRY DRY

DRY: SEASONED LUMBER.

2x4

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:


SURFACE SPACING (IN)	LOAD(PLF)
22 A3) SPINAL NAILS	
12	TOP
(0.122"X3") SPIRAL NAILS	
12	SIDE(0.0)
SPIRAL NAILS	C.DE(0.0)
6	
	SPACING (IN) 22"X3") SPIRAL NAILS 12 12 12 12 12 (0.122"X3") SPIRAL NAILS

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

Structural component only DWG# T-2022221 1/2

DUIT	NSIONS, SU DING DESIG	IPPORTS SNER	AND LOAD	INGS SP	ECIFIED E	BY FABRICA	NTOR TO BE VERIFIED B
JT .I F	FACTOR GROSS RE VERT 5181 5191		MAXIMUI GROSS I DOWN 5181 5191		N UPLIFT	INPUT BRG IN-SX MECHANIC MECHANIC	

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I, F. MINIMUM BEARING LENGTH AT JOINT I = 4-0, JOINT F = 4-0.

UNFACTORED REACTIONS

_			MIN. COMPON	NEINI REACTION	VS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
1	3659	2430 0	0 : 0	0 / 0	0/0	1229 0	0.0
F	3666	2435 / 0	0 , 0	0 : 0	0 0	1231 0	0.0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.73 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS		WEBS					
	C. FACTORED	FACTOR	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO.	AD LC:	MAX	MAX.	MEMB		MAX
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH		(450)	031 (20)
A-B	0 - 24	-91.8	-91.8	0.08(1)		C- G	0 2289	0.28(1)
B- C	-3722 0	-91.8	-91.8	0.19(1)	4.74	G- D		0.19(1)
C- D	-3731 0	-91.8	-91.8	0.19(1)	4.73	H- C	0 2262	0.28 (1)
D-E	0 24	-91.8	-91.8	0.08(1)	10.00	B- H	0 1569	0.19(1)
I- A_	-81 · 0	0.0	0.0	0.00(1)	7.81	I-B	-4747 · 0	0.80(1)
F-E	-82 ′ 0	0.0	0.0	0.00(1)	7.81		-4758 . 0	0.80 (1)
								0.00(1)
l- J	0 2232	-18.5		0.74(1)				
J- K	0 2232	-18.5		0.74 (1)	10.00			
K- H	0 2232	-18.5		0.74(1)	10.00			
H- L	0 2299	-18.5		0.70(1)	10.00			
L- M	0 2299	-18.5		0.70(1)	10.00			
M-G	0 2299	-18.5		0.70(1)	10.00			
G-N	0 2237	-18.5		0.74 (1)	10.00			
N- O	0 - 2237	-18.5		0.74(1)	10.00			
0- F	0 2237	-18.5	-18.5	0.74 (1)	10.00			

SHE	TIFIED COL	NCENTRA	TED LOA	NDS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN
J	1-9-12	-1044	-1044		FRONT	VERT	TOTAL		CONN.
K	3-9-12	-1044	-1044		FRONT	VERT	TOTAL		C1
L	5-9-12	-1044	-1044		FRONT	VERT	TOTAL		C1
M	7-9-12	-1044	-1044		FRONT	VERT	TOTAL		C1
V	9-9-4	-1044	-1044		FRONT	VERT	TOTAL		C1
0	11-9-4	-1044	-1044		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: LL = LL = 6.0 0.0 PSF BOT CH. PSF 39.0

SPACING = 24.0 IN. C/C

THIS.TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

TOTAL WEIGHT = 2 X 87 = 175 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-09, CSA 086-14 - TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.45")
CALCULATED VERT. DEFL.(LL) = L/999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (0.45")
CALCULATED VERT. DEFL.(TL) = L/999 (0.10")

CSI: TC=0.19/1.00 (C-D:1) , BC=0.74/1.00 (F-G:1) , WB=0.80/1.00 (D-F:1) , SSI=0.71/1.00 (H-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI) (PLI) (PLI) (PLI) (MAX MIN MAX MIN MAX MIN MAX MIN MT20 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

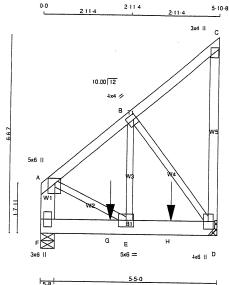
JSI GRIP= 0.88 (C) (INPUT = 0.90) JSI METAL= 0.49 (B) (INPUT = 1.00)

CITY OF RICHMOND HIL **BUILDING DIVISION**

3/08/202

RECEIVED

joshua.nabua


JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HO	MES		DRWG NO.		
406782	T42	1	2	TRUSS DESC.		20		DAWG NO.		
Tamarack Roof Truss, Burling	ton			1	ID:3povAl hari2r-2	Version 8.330 S M	ay 6 2020 MiT	ek Industries, Inc. We	d Oct 14 11:58:15 2020 EQrm7wYZ ICkKGw	Page 2
PLATES (table is in inches) JT TYPE	3.0 4.0 4.0 6.0 2.00 1.75 5.0 6.0 Edge 4.0 6.0 2.00 1.75 5.0 6.0 5.0 8.0 4.25 2.50 5.0 8.0 4.25 2.50				ID SHOVACYVIZY :	Et/Tibi2Sg9ym2IU-II	765405WXC	<u>IOkpSXrH4GH22d</u>	<u>EQrm7wYZ</u> ICkK <u>Gw</u>	<u>yTWZ</u>
Edge - INDICATES REFEREI TOUCHES EDGE OF CHOR	D.									
PROFESSION PROPERTY OF THE PRO	ONAL CHAMEER DIVES ON THE ON T							BUILDI	ICHMOND H NG DIVISION	1

Structural component only DWG# T-2022221 がし RECEIVED
Per:___joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO. 406782 T43 TRUSS DESC

Tamarack Roof Truss. Burlington

Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:16 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-Abgql86YHkKbQc61rnoWaG9Q4EF2f9k7XrUtpMyTWZb

2-3-12 2-11-4 4-3-12 5-10-8 7-8 1-4-8 1-6-12

LUMBER					
N. L. G. A. F	RULES				
CHORDS	SIZE		LUMBER	DESCR.	
A - C	2x4	DRY	No.2	SPF	
D - C	2x4	DRY	No.2	SPF	
F - A	2x6	DRY	No.2	SPF	
F - D	2x6	DRY	No.2	SPF	
				1	
ALL WEBS	2x3	DRY	No.2	SPF	
EXCEPT					

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)						
TOP CHORDS : (0.122"X3") SPIRAL NAILS									
A- C	1	12	TOP						
C- D	1	12	TOP						
F- A	2	12	TOP						
BOTTON	(CHORD	S: (0.122"X3") SPIR/	AL NAILS						
F- D	2	12	TOP						
WEBS:	WEBS: (0.122"X3") SPIRAL NAILS								
2x3	1	6							

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

PLATES (table is in inches)									
JT	TYPE	W	LEN	Υ	Х				
Α	TMVW+p	MT20	5.0	6.0	2.00	2.25			
В	TMWW-t	MT20	4.0	4.0	2.00	1.25			
С	TMV+p	MT20	3.0	4.0					
D	BMVW1+p	MT20	4.0	6.0					
E	BMWW-t	MT20	5.0	6.0					
F	BMV1+p	MT20	3.0	6.0					

Structural component only DWG# T-2022222

DIRECTORIO OF IDDOGGE	
DINIENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

	niivaa						
	FACTO GROSS F	RED REACTION	MAXIMU GROSS		INPUT BRG	REQRD BBG	
JT	VERT	HORZ	DOWN	HOR7	UPLIET	IN-SX	IN-SX
D	1120	0	1120	0	0	MECHAN	
F	940	0	940	Ó	ō	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D \simeq 3-8.

UNFACTORED REAC	TIONS
1CT LOACE	

_	131 LUMBE		VIIIN. GUIVIPUI	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	787	543 / 0	0 / 0	0 / 0	0 0	244 0	0 0
F	661	454 / 0	0 / 0	0/0	0.0	207 0	0 0
				0.0	0.0	201 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING

1	TOTAL	AL LOAD CASES: (4)									
	MA	IORDS X. FACTOF		FACTOR			W E B S MAX. FACTORED				
-	MEMB.	FOR	ICE \	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FOR	CE MA	Y
Į		(LBS	5)	(PL	F) (CSI (LC)	UNBRAG		(LBS)		(LC)
1	FR-TO	, -	•	FROM		00. (20)	LENGTH		(LDS)	00	(LC)
Į	A-B	-759 0		-91.8		0.07(1)		E- B		0.1	1 (1)
1	B- C	-19 0		-91.8		0.07(1)			-957 0		7 (1)
ı	D- C	-104 / 0		0.0		0.04 (1)			0 : 648		
ı	F- A	-852 0		0.0	0.0	0.03 (1)		A- L	0 - 646	0.0	B (1)
1				0.0	0.0	0.00 (1)	7.01				
١	F- G	0 - 0		-18.5	-18.5	0.10(1)	10.00				
1	G-E	0:0		-18.5		0.10(1)					
ı	E- H	0 - 59	8			0.18 (1)					
١	H- D	0 59		-18.5		0.18 (1)					
١			-	. 0.0	. 3.5	0.10(1)	10.00				
ı	SPECII	FIED CONC	ENTRA	ATED LOA	DS (LE	35)					
1	JT	LOC.	LC1	MAX-	MAX.		CE f	DIR.	TYPE		
ì	G	2-3-12		-495				ERT	TOTAL	HEEL	CONN.
4	Н	4-3-12	-495	-495	-			ERT			C1
ı			.00			101	· V	an i	TOTAL		C1
ı	CONNE	CTION REC	UIRE	MENTS							

1) C1: A SÚITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

TOTAL WEIGHT = 2 X 36 = 73 lb

Scale = 1:36.2

DESIGN CRITERIA

SPECIFIED LOADS:								
TOP	CH.	LL	=	25.6	PSF			
		DL		6.0	PSF			
BOT	CH.		=	0.0	PSF			
			=	7.4	PSF			
TOTA	L LO	AD	=	39.0	PSF			

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018, OBC 2012. ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-09, CSA 086-14 - TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L'360 (0.20")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.01")
ALLOWABLE DEFL.(TL) = L'360 (0.20")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.01")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.18/1.00 (D-E:1) , WB=0.17/1.00 (B-D:1) , SSI=0.22/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

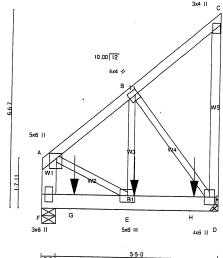
JSI GRIP= 0.53 (B) (INPUT = 0.90) JSI METAL= 0.13 (D) (INPUT = 1.00

CITY OF RICHMOND HILL **BUILDING DIVISION**

3/08/2022

RECEIVED

_joshua.nabua


JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO 406782 T43Z TRUSS DESC Tamarack Roof Truss, Burlington

0.0

Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:17 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-enEDVU7B22SS2lhDOVJI7TibqebKObiHmVDRLoyTWZa

2114

Scale = 1:36.2

5-8 0.0 1.0-12 2-11-43-0-12 1-8 2-0-0 5-0-12 5-10-8

LUMBER N. L. G. A. CHORDS SIZE LUMBER DESCR SPF DRY DRY C No.2 SPF A D 2x6 DRY No.2 SPF SPF L WEBS DRY 2x3 No.2 SPF EXCEPT

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS	SURFACE	LOAD(PLF)							
700 000000	SPACING (IN)								
	22"X3") SPIRAL NAILS								
A-C 1	12	TOP							
C- D 1	12	TOP							
F- A 2	12	TOP							
BOTTOM CHORDS:	BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS								
F-D 2	12	SIDE(183.							
WEBS: (0.122"X3") 5	SPIRAL NAILS	OIDE(100.							
2x3 1	6								

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL	ATES (table	is in inches)					
JT	TYPE	PLATES	W	LEN	Υ	Х	
Α	TMVW+p	MT20	5.0	6.0	2.00	2.25	
В	TMWW-t	MT20	4.0	4.0	2.00	1 25	
C	TMV+n	MT20	3.0	1.0			

Structural component only DWG# T-2022223 //2

_								
₹.	PULL	ENSIONS, SU LDING DESI RINGS	JPPORTS GNER	AND LOAD	DINGS SP	ECIFIED I	BY FABRICA	TOR TO BE VERIFIED BY
	JT D F	FACTOR GROSS RE VERT 1402 1342		MAXIMU GROSS DOWN 1402 1342		N UPLIFT	INPUT BRG IN-SX MECHANIC 5-8	REQRD BRG IN-SX AL 5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IN. COMPO	NENT REACTION	us.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D D	989	663 / 0	0 / 0	0 / 0	0 0	326 0	0 0
۲	946	635 0	0 : 0	0 0	0 0	311 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	TO THE ESTAB GRAEG. (4)									
	ORDS X. FACTOR FOR (LBS	RCE		AD LC1	MAX CSI (LC)		MEMB	(LBS)		
A- B	044 0		FROM	TO		LENGTH)		
	-844 0				0.07 (1)		E- B	0 1051	0.13	(1)
B- C	-19 / 0		-91.8	-91.8	0.07 (1)	6.25	B- D	1061 0	0.19	(1)
D- C			0.0		0.04(1)		A- E	0 : 718		
F- A	-933 / 0		0.0	0.0	0.03(1)	7.81				. ,
F- G G- E E- H H- D	0 / 0 0 / 0 0 / 66 0 / 66		-18.5	-18.5 -18.5	0.16 (1) 0.16 (1) 0.18 (1) 0.18 (1)	10.00 10.00				
SPECIF	FIED CONC	ENTR	ATED LO	ADS (LE	3S)					
JT E G	LOC. 3-0-12	LC1 -492 -492 -493	MAX- -492	MÀX-	+ FA	CK VE	OIR. ERT ERT	TYPE TOTAL TOTAL TOTAL	HEEL 	CONN. C1 C1 C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

TOTAL WEIGHT = 2 X 36 = 73 lb

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = CH. 25.6 PSF 6.0 0.0 7.4 PSF PSF DL TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018, OBC 2012, ABC 2019
PART 9 OF OBC 2012 (2019 AMENDMENT)
CSA 086-09, CSA 086-14
TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L'360 (0.20")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.01")
ALLOWABLE DEFL.(TL)= L'360 (0.20")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.01")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.18/1.00 (D-E:1) , WB=0.19/1.00 (B-D:1) , SSI=0.16/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

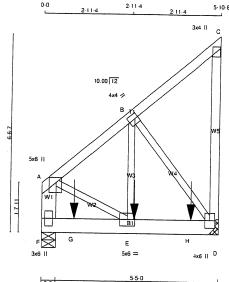
JSI GRIP= 0.60 (B) (INPUT = 0.90) JSI METAL= 0.15 (D) (INPUT = 1.00

CITY OF RICHMOND HILL **BUILDING DIVISION**

03/08/2022

RECEIVED

_joshua.nabua


JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES		DRWG NO.
406782	T43Z	1	2	TRUSS DESC.	INVENIONED		DATIVO NO.
Tamarack Roof Truss, Burlington	1. 102	-11	<u>-</u>		Version	n 8.330 S May 6 2020 N	//ITEk Industries, Inc. Wed Oct 14 11:58:17 2020 Page 2 7B22SS2IhDOVJI7TibgebKObiHmVDRLoyTWZ
			•		ID:3novAUyvj2y?Et7nDiZ	3g9yHziD-enEDVU7	B22SS2lhDOVJI7TibgebKObiHmVDRLoyTWZ
PLATES (table is in inches) JT TYPE PLATES W D BMVW1+p MT20 4.	/ LEN Y X					-	
D BMVW1+p MT20 4. E BMWW-t MT20 5. F BMV1+p MT20 3.	/ LEN Y X 0 6.0 0 6.0 0 6.0						
E BMWW-t MT20 5. F BMV1+p MT20 3.	0 6.0						
							•
					•		
						-	
						-	
OCESSION	W.						
PROFESSION	al En						
PROFESSION 10/14/1 H. J. G. ALV 10000902	CI						
1 2 19/14/1	图图						CITY OF RICHMOND HILL
10000902	1E3 7						BUILDING DIVISION
10000302	} 						
14	, /o /						03/08/2022
RONNCE OF C	MTARI						
OCE OF C							DEOEWED

Structural component only DWG# T-2022223 ML

RECEIVED
Per:___joshua.nabua_

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. ROYAL PINE HOMES DRWG NO 406781 T43Z2 TRUSS DESC Tamarack Roof Truss, Burlington

Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 12:11:48 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-Ppkojoxu3DdNrOB5PJMxVVoB9ZLmvOwfFBArllyTWMv

0-0 1-0-12 2 1 1 4 3 0 12 1 8 1 10 8

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER No.2 No.2 DRY SPF DRY SPF 2x6 DRY No.2 SPF D ALL WEBS 2x3 DRY No.2 SPF EXCEPT

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)						
	IORDS: (0.	122"X3") SPIRAL NAILS							
A- C	1	12	TOP						
C- D	1	12	TOP						
F- A	2	12	TOP						
BOTTO	BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS								
F- D	2	12	SIDE(0.0)						
WEBS:	(0.122"X3")	SPIRAL NAILS	(0.0)						
2~3									

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.
REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP SIDE OR ON THE TOP

PL	ATES (table	is in inches)				
JΤ	TYPE	PLATES	W	LEN	Υ	Х
Α	TMVW+p	MT20	5.0	6.0	2.00	2.25
В	TMWW-t	MT20	4.0	4.0	2.00	1.25
С	TMV+p	MT20	3.0	4.0		

Structural component only DWG# T-2022249 1/2

DIMENCIONO OLIDOGOTTO	
DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

<u>BEA</u>	RINGS						
т	FACTO GROSS RI VERT		MAXIMUI GROSS I			INPUT BRG IN-SX	REQRD BRG IN-SX
)	1660	0	1660	0	0	MECHANIC	
:	910	0	910	ō	Ŏ	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	NS			
JT D F	1170 637	SNOW 793 · 0 456 · 0	UVE 0 / 0 0 0	PERM.LIVE 0 0 0 0	WIND 0 0 0 0	DEAD 376 0 181 0	SOIL 0 0 0 0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING. = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

CONNECTION REQUIREMENTS

LOADING TOTAL LOAD CASES: (4)

	ORDS						W E	BS			
	X. FACTO		FACTO	RED					FAC	TORED	
MEMB.			VERT. LC	AD LC1	MAX	MAX.	MEMB.		ORCE		
	(LE	3S)	(Pl	_F) '	CSI (LC)	UNBRA	С		LBS)	CSI	
FR-TO			FROM	TO		LENGTH	H FR-TO				
A- B	-710 0		-91.8	-91.8	0.07(1)	6.25	E-B	0	836	0.10	(1)
B- C	-20 : 0		-91.8	-91.8	0.07(1)	6.25	B- D	-896		0.16	
D- C	-104 - 0		0.0	0.0	0.04(1)	7.81	A- E	0	607	0.08	
F- A	-804 0)	0.0	0.0	0.03(1)	7.81					,
F- G	0 0		-18.5		0.10(1)						
G-E	0:0		-18.5		0.10(1)						
E-H	0 5		-18.5	-18.5	0.33(1)	10.00					
H- D	0 5	60	-18.5	-18.5	0.33(1)	10.00					
	FIED CON										
JΤ	LOC.	LC1	MAX-	MAX-	+ F/	ACE I	DIR.	TYP	E	HEEL	CONN
	3-0-12	-213	-213				ERT	TOTA	L		C1
	1-0-12	-182	-182		- TOF		ERT	TOTA	L		C1
Н	4-11-4	-953	-953		- BA(CK VI	ERT	TOTA	L		C1

TOTAL TOTAL -182 -953

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

TOTAL WEIGHT = 2 X 36 = 73 lb

Scale = 1:36.3

DESIGN CRITERIA

SPEC	IFIED	LOA	OS:		
TOP	CH.				PS
			=		PSF
BOT	CH.				PSF
				7.4	PSF
TOTA	L LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.33/1.00 (D-E:1) , WB=0.16/1.00 (B-D:1) , SSI=0.28/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

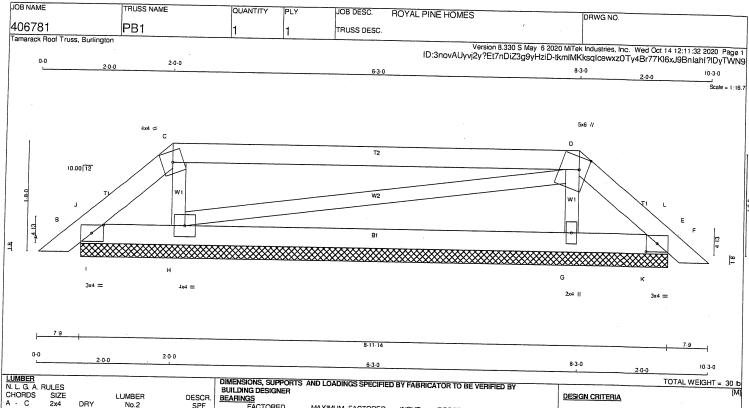
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.48 (B) (INPUT = 0.90) JSI METAL= 0.13 (D) (INPUT = 1.00

CITY OF RICHMOND HIL **BUILDING DIVISION**

03/08/2022


RECEIVED

_joshua.nabua

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES		DRWG NO.
406781	T43Z2	1	2	TRUSS DESC.			
Tamarack Roof Truss, Burlington					Version ID:3novAUvvi2v?Et7nDi2	8.330 S May 6 2020	MiTek Industries, Inc. Wed Oct 14 12:11:48 2020 Page 2 xu3DdNrOB5PJMxVVoB9ZLmvOwfFBArIlyTWMv
PLATES (table is in inches)						SOUTH TO TO PROJU	
D BMVW1+p MT20	W LEN Y X 4.0 6.0						·
D BMVW1+p MT20 E BMWW-t MT20 F BMV1+p MT20	5.0 6.0 3.0 6.0						
	*						
						,	
·							
COFESSIO	Var						
PROFESSION PROFESSION H. J. G./ALT 10000902	THE!						
13 (10/14/)							CITY OF DICUMOND IIII
의 H. J. G/AL 10000902	VES 70						CITY OF RICHMOND HILL BUILDING DIVISION
\							
ROUNCE OF C	, en /						03/08/2022
MACECEC	M/P.					*	

Structural component only DWG# T-2022249 1/12

RECEIVED __joshua.nabua_

14. L. C. A. I	IOLLO			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
D · F	2x4	DRY	No.2	SPF
В - Е	2x4	DRY	No.2	SPF
ALL WEBS DRY: SEASO	2x3 ONED L	DRY UMBER.	No.2	SPF

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	w	LEN	Υ	X					
В	TMB1-I	MT20	3.0	4.0	1.50	2.00					
С	∏W-m	MT20	4.0	4.0							
D	TTWW+m	MT20	5.0	6.0	2.25	1.50					
Ε	TMB1-I	MT20	3.0	4.0	1.50						
G	BMW1+w	MT20	2.0	4.0							
Н	BMWW1-t	MT20	4.0	4.0							

BUIL	LDING DESK RINGS	GNER	AND LOAD	INGS SP	ECIFIED	BY FABRICA	ATOR TO BE \	'ERIFIED E
JT	FACTOR GROSS RE VERT		MAXIMUM GROSS F DOWN			INPUT BRG IN-SX	REQRD BRG IN-SX	

	FACTO GROSS R		MAXIMUI GROSS		INPUT BRG	REQRD BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
В	136	0	136	0	0	8-11-14	8-11-14
Ε	142	0	142	0	ō	8-11-14	8-11-14
4	410	0	410	0	Õ	8-11-14	8-11-14
3	402	0	402	0	Õ	8-11-14	8-11-14
							•

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	VS		
JT B E	COMBINED 91 95	SNOW 89 / 0 92 / 0	UVE 0 0 0 0	PERM.LIVE 0 / 0 0 0	WIND 0:0 0:0	DEAD 2 0 3 0	SOIL 0 0 0 0
H G	294 289	169 / 0 165 / 0	0/0	0.0	0 0	125 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, E, H, G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS					WE	R S	
	FACTORED	FACTOR	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO.	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	F) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH		1250)	001 (20)
A-B	0 : 14	-91.8	-91.8	0.02(1)		H- C	-285 0	0.04(1)
B- J	-30 28	-91.8	-91.8	0.03 (4)		H- D	-7 0	0.00 (1)
J- C	-72 / 0	-91.8	-91.8	0.02 (4)	6.25	G-D	-279 0	0.04 (1)
C-D	-25 0	-91.8	-91.8	0.61 (1)		I- J	-121 0	0.00 (1)
D- L	-80 0	-91.8	-91.8	0.02 (4)	6.25	K-L	-120 0	0.00 (1)
L-E	-38 / 26	-91.8	-91.8	0.03 (4)	6.25		-20 0	0.00 (1)
E-F	0 · 14	-91.8	-91.8	0.02(1)	10.00			
B-I	0 : 49	-18.5	10 5	0.00.41	40.00			
i- H	0 49	-18.5		0.03 (1) 0.12 (4)	10.00			
H- G	0 / 31	-18.5		0.12 (4)	10.00			
G-K	0 55	-18.5		0.12 (4)	10.00			
K-E	0 - 55	-18.5		0.12 (4)	10.00			
	0 00	10.5	-10.5	0.03(1)	10.00			

SPECIFIED LOADS: LL = 25.6 PSF DL = 6.0 PSF LL = 0.0 PSF DL = 7.4 PSF AD = 39.0 PSF CH. BOT CH. LL DL TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14 TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.61/1.00 (C-D:1) , BC=0.12/1.00 (G-K:4) , WB=0.04/1.00 (C-H:1) , SSI=0.22/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.24 (C) (INPUT = 0.90) JSI METAL= 0.06 (D) (INPUT = 1.00)

CITY OF RICHMOND HILI **BUILDING DIVISION**

03/08/2022

RECEIVED _joshua.nabua

JOB NAME **TRUSS NAME** QUANTITY PLY JOB DESC. ROYAL PINE HOMES DRWG NO. PB2 406781 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 12:11:33 2020 Page 1 Version 8.330 5 May 0 2020 MILEN HOUSENES, HILL. WED GOT 14 12.11.33 2020 Fage I ID:3novAUyvj2y?Et7nDiZ3g9yHziD-LwK8ZgIUbclVY4YC1gbQOKge5WIYueQRoL2ZHgyTWN8 10-3-0 5x6 // С D T2 10.00 12 3×4 = 4x4 = 8-11-14 3-10-8 10-3 0 TOTAL WEIGHT = 2 X 31 = 63 lb

LUMBER				
N. L. G. A. F	ILLES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
B - E	2x4	DRY	No.2	SPF
ALL WEBS	2x3 .	DRY	No.2	SPF
DRY: SEASO	ノクロニレ・ロ	INADED		1

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CHORDS: (0.12)	2"X3") SPIRAL NAILS	
A- C 1	12	TOP
C- D 1	12	TOP
D- F 1	12	TOP
	0.122"X3") SPIRAL NAILS	
B-E 1	12	TOP
WEBS: (0.122"X3") SI	PIRAL NAILS	
2x3 1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMB1-I	MT20	3.0	4.0	1.50	2.00
C	TTW-m	MT20	4.0	4.0		
D	TTWW+m	MT20	5.0	6.0	2.25	1.50
Ε	TMB1-I	MT20	3.0	4.0	1.50	2.00
G	BMW1+w	MT20	2.0	4.0		
H	BMWW1-t	MT20	4.0	4.0		

PL	ATES (table	is in inches)					
JT	TYPE	PLATES	W	LEN	Υ	х	
В	TMB1-I	MT20	3.0	4.0	1.50	2.00	
С	TTW-m	MT20	4.0	4.0			
D	TTWW+m	MT20	5.0	6.0	2.25	1.50	
Ε	TMB1-I	MT20	3.0	4.0	1.50	2.00	
G	BMW1+w	MT20	2.0	4.0			
Н	BMWW1-t	MT20	4.0	4.0			

PROFESSIONAL ENGLISH TO THE PROPESSIONAL THE PROPESSION TO
FONTARIO OF ONTARIO

Structural component only DWG# T-2022233

BUIL	ENSIONS, SI LDING DESI RINGS	UPPORTS GNER	AND LOAD	DINGS SP	ECIFIED	BY FABRIC	ATOR TO B	E VE
JT B E H G	FACTO GROSS R VERT 289 310 287 204		MAXIMU GROSS DOWN 289 310 287 204			INPUT BRG IN-SX 8-11-14 8-11-14 8-11-14	REQRD BRG IN-SX 8-11-14 8-11-14 8-11-14	

UNF	ACTORED RE	ACTIONS					
	1ST LCASE		IIN. COMPO	NENT REACTION	NS		
JT B	COMBINED		LIVE	PERM.LIVE	WIND	DEAD	SOIL
E	202 217	143 / 0 155 / 0	0 / 0	0 / 0	0.0	59 0	0 0
H	203	132 : 0	0 0 0/0	0 0	0 0	62 0	0 0
G	146	85 0	0/0	0 0	0 0	71 0	0 0
-		00 0	0.0	0 0	0 - 0	61 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, E, H, G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	R D S FACTORED	54070			WEBS					
MEMB.		FACTO						FACTO	RED	
IVICIVIB.	FORCE	VERT. LO			MAX.	MEMB.	F	ORCE	MAX	
	(LBS)	(PL		CSI (LC)	UNBRAC	;	(L	.BS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			()	
A-B	0 / 14	-91.8	-91.8	0.01(1)	10.00	H- C	-174	0	0.02(1)	
B- J	-35 0	-91.8	-91.8	0.02(1)	6.25	H- D	-40		0.00(1)	
J- C	-112 0	-91.8	-91.8	0.06(1)		G- D	-122		0.00 (1)	
C- D	-74 0	-91.8	-91.8	0.05 (1)		i- J		0	0.01 (1)	
D- L	-144 0	-91.8	-91.8	0.06(1)		K- L	-277		0.00 (1)	
L-E	49 0	-91.8		0.02 (1)		1X- L	-211	U	0.00(1)	
E-F	0 · 14	-91.8		0.01 (1)						
		00	31.0	0.01 (1)	10.00					
B-1	0 - 80	-18.5	-18.5	0.05(1)	10.00					
I- H	0 80	-18.5		0.05 (1)						
H- G	0 100	-18.5								
G-K	0 - 105									
K-E										
G-K	0 105	-18.5 -18.5 -18.5	-18.5	0.03 (1) 0.05 (1) 0.05 (1)						

DESIGN CRITERIA

	IFIED	LOAI	os:		
TOP	CH.	LL	=	25.6	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.06/1.00 (C-J:1) , BC=0.05/1.00 (G-K:1) . WB=0.02/1.00 (C-H:1) , SSI=0.11/1.00 (B-I:1)

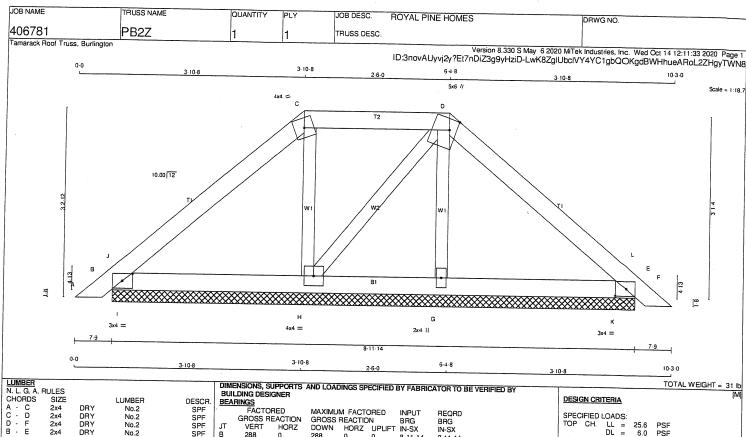
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.13 (E) (INPUT = 0.90) JSI METAL= 0.03 (E) (INPUT = 1.00)

CITY OF RICHMOND HIL BUILDING DIVISION

03/08/2022

RECEIVED

joshua.nabua

DI.	ATES (table	ic in inchas)				
JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMB1-I	MT20	3.0	4.0	1.50	2.00
С	TTW-m	MT20	4.0	4.0		
D	TTWW+m	MT20	5.0	6.0	2.25	1.50
Е	TMB1-I	MT20	3.0	4.0	1.50	200
G	BMW1+w	MT20	2.0	4.0		
Н	BMWW1-t	MT20	4.0	4.0		

ALL WEBS 2x3 DRY DRY: SEASONED LUMBER.

No.2

No.2

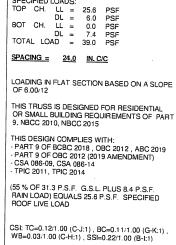
SPF

SPF

_	Bull	LDING DES	IGNER	AND LOAL	JINGS 5P	ECIFIED	BY FABRIC	ATOR TO BE VERIFIED B
R.	BEA	RINGS						
	JT B E H G	FACTO GROSS R VERT 288 309 288 205	PRED EACTION HORZ 0 0 0 0	MAXIMUI GROSS: DOWN 288 309 288 205			INPUT BRG IN-SX 8-11-14 8-11-14 8-11-14	REQRD BRG IN-SX 8-11-14 8-11-14 8-11-14

200	ACTORED NE	ACTIONS					
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS.		
JΤ	COMBINED	SNOW	LIVE	PERM. LIVE	WIND	DEAD	SOIL
В	202	142 / 0	0 : 0	0:0	0 0	59 0	0.0
E	216	155 : 0	0:0	0 : 0	0 0	62 0	0 0
Н	204	133 / 0	0 · 0	0.0	0 0	71 0	0 0
G	147	85 0	0 / 0	0 / 0	0 · 0	61 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B. E. H. G


BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

LINEACTORED DEACTIONS

MAX.	R D S	ORED	FACTO	RED			WE		FACTO)BED	
MEMB.		ORCE	VERT. LO	DAD LC1	MAX	MAX.	MEMB.		ORCE	MAX	
	(L	BS)	(P	LF)	CSI (LC)	UNBRAC	;		LBS)	CSI (LC)	
FR-TO			FROM	TO		LENGTH		,		00, (20)	
A-B	0 -		-91.8	-91.8	0.02(1)	10.00	H- C	-174	. 0	0.03(1)	
B- J	-35		-91.8	-91.8	0.05(1)	6.25	H- D	-41	Ō	0.01 (1)	
J- C	-111		-91.8	-91.8	0.12(1)	6.25	G-D	-122		0.02 (1)	
C- D	-73		-91.8	-91.8	0.10(1)	6.25	I- J	-286	0	0.00(1)	
D- L	-143 -		-91.8	-91.8	0.12(1)	6.25	K-L	-281	0	0.00(1)	
L-E	-45		-91.8	-91.8	0.05(1)	6.25			-	0.00 (11)	
E-F	0 ·	14	-91.8	-91.8	0.02(1)	10.00					
B- I	0	79	-18.5	-185	0.11 (1)	10.00					
I- H		79	-18.5		0.11 (1)	10.00					
H- G		99	-18.5		0.11 (1)	10.00					
G-K	ō.		-18.5		0.11(1)	10.00					
K-E		104	-18.5		0.11 (1)	10.00					

CSI: TC=0.12/1.00 (C-J:1) , BC=0.11/1.00 (G-K:1) , WB=0.03/1.00 (C-H:1) , SSI=0.22/1.00 (B-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.26 (E) (INPUT = 0.90) JSI METAL= 0.07 (E) (INPUT = 1.00)

CITY OF RICHMOND HIL **BUILDING DIVISION**

03/08/2022

RECEIVED _joshua.nabua

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **ROYAL PINE HOMES** DRWG NO 406781 PB3 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 12:11:34 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-p6uWn0m6MwtM9E7OaN6fwYDIIwbld5Vb1?n6q6yTWN7 10-3-0 4x6 II c 10.00 12 Ĕ G 3x4 = 7-9 0.0 5-1-8 10-3-0 TOTAL WEIGHT = 7 X 28 = 198 ib

LUMBER N. L. G. A. RULES
CHORDS SIZE
A - C 2x4
C - E 2x4
B - D 2x4 LUMBER DESCR DRY DRY SPF SPF SPF No.2 DRY

ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2

PLATES (table is in inches)
JT TYPE PLATES W 3.0 4.0 3.0 LEN Y X 4.0 1.50 2.00 6.0 Edge 4.0 1.50 2.00 BCDF TMB1-I MT20 TTW+p TMB1-l MT20 Edge 1.50 2.00 MT20 BMW1+w MT20

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BUILDING BEARINGS FACTORED MAXIMUM FACTORED INPUT REQRD BRG IN-SX GROSS REACTION VERT HORZ 394 0 GROSS REACTION DOWN HORZ L BRG IN-SX DOWN 394 8-11-14 8-11-14 8-11-14 394 8-11-14

UNFACTORED REACTIONS

	131 LUAGE		MIN. COMPON	VENT REACTION	NS SV		
JT	COMBINED	SNOW	LIVE	PERMLIVE	WIND	DEAD	SOIL
В	276	197 / 0	0:0	0.0	0.0	79 / O	
D	276	197 0	0 : 0	0 / 0	0 0	79 0	0 0
F	217	121 0	0 0	0.0	0 0		0 - 0
			0 0	u u	0 0	96 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, D. F

SPF

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHO MAX.		ORED	FACTO	ORED		W E B S MAX. FACTORED					
MEMB.	F	ORCE	VERT. L		1 MAX	MAX.	МЕМВ.		ORCE	MAX	
	(L	.BS)	(F	PLF)	CSI (LC)				LBS)	CSI (LC)	
FR-TO			FROM	TO		LENGTH			,	00.1207	
A-B	0 -		-91.8	-91.8	0.02(1)	10.00	F- C	-101	0	0.03(1)	
B- H	-32		-91.8	-91.8	0.15(1)	6.25	G- H	-592	.0	0.00(1)	
	-204		-91.8		0.22 (1)		- J	-592	ō	0.00 (1)	
	-204		-91.8	-91.8	0.22(1)	6.25			-		
J- D	-32 /		-91.8	-91.8	0.15(1)	6.25					
D- E	0 /	14	-91.8	-91.8	0.02 (1)	10.00					
B- G	0	146	-18.5	-18.5	0.21 (1)	10.00					
G-F	0	146	-18.5		0.21 (1)						
F- I	0	146	-18.5		0.21 (1)						
I- D	0 :	146	-18.5		0.21 (1)	10.00					

DESIGN CRITERIA

SPECIFIED LOADS:

LL = DL = CH. 6.0 PSF BOT CH. LL = 0.0 DL = 7.4 AD = 39.0 DL TOTAL LOAD

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-09, CSA 086-14 TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.22/1.00 (C-H:1) , BC=0.21/1.00 (B-G:1) , WB=0.03/1.00 (C-F:1) , SSI=0.45/1.00 (B-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

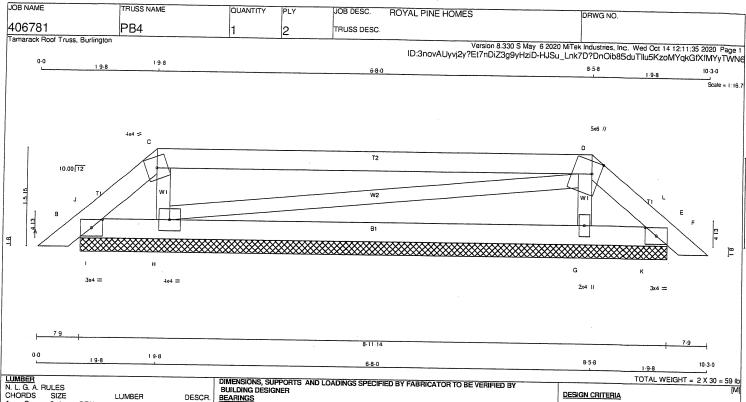
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.35 (B) (INPUT = 0.90) JSI METAL= 0.09 (D) (INPUT = 1.00)

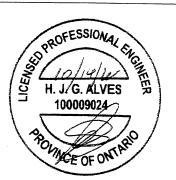
CITY OF RICHMOND HIL **BUILDING DIVISION**

03/08/2022

RECEIVED joshua.nabua

LUMBER								
N. L. G. A. R	ULES							
CHORDS	SIZE		LUMBER	DESCR.				
A - C	2x4	DRY	No.2	SPF				
C - D	2x4	DRY	No.2	SPF				
D - F	2x4	DRY	No.2	SPF				
B - E	2x4	DRY	No.2	SPF				
ALL WEBS	2x3	DRY	No.2	SPF				
DRY: SEASO	DRY: SEASONED LUMBER.							

DESIGN CONSISTS OF $\underline{\mathbf{2}}$ TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:


CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	IORDS: (0.1	22"X3") SPIRAL NA	ILS
A- C	1	12	TOP
C-D	1	12	TOP
D- F	1	12	TOP
BOTTO	MICHORDS:	(0.122"X3") SPIRAL	NAILS
B- E	1	12	TOP
WEBS:	(0.122"X3")	SPIRAL NAILS	
2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х			
В	TMB1-I	MT20	3.0	4.0	1.50	2.00			
С	TTW-m	MT20	4.0	4.0					
D	TTWW+m	MT20	5.0	6.0	2.25	1.50			
Ε	TMB1-I	MT20	3.0	4.0	1.50	2.00			
G	BMW1+w	MT20	2.0	4.0					
Н	BMWW1-t	MT20	4.0	4.0					

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMB1-I	MT20	3.0	4.0	1.50	2.00				
С	TTW-m	MT20	4.0	4.0						
D	TTWW+m	MT20	5.0	6.0	2.25	1.50				
Ε	TMB1-I	MT20	3.0	4.0	1.50	2.00				
G	BMW1+w	MT20	2.0	4.0						
Н	BMWW1-t	MT20	4.0	4.0						

Structural component only DWG# T-2022236

_	DIM	ENGIONS S	IDDOODTC	ANDLOAD	INICC CD	FOIFIED !	21/ 54 25/5				
	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER										
	BEA	RINGS									
	FACTORED			MAXIMUM FACTORED			INPUT	REORD			
	GROSS REACTION			GROSS REACTION			BRG	BRG			
	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX			
	В	114	0	114	0	-14	8-11-14	8-11-14			
	E	118	0	118	0	-14	8-11-14	8-11-14			
	Н	431	0	431	0	0	8-11-14	8-11-14			
	G	426	0	426	0	0	8-11-14	8-11-14			

PROVIDE ANCHORAGE AT BEARING JOINT 8 FOR 150 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT E FOR 150 LBS FACTORED UPLIFT

L	INFACTORED RE	ACTIONS					MILING
	1ST LCASE	MAX./	MIN. COMPON	NENT REACTION	NS		,
1		SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
	74	85 - 0	0 / 0	0 : 0	0.0	0 -10	0 0
-	77	87 . 0	0:0	0 · 0	0 0	0 -10	0 0
[d 311 307	173 / 0 170 / 0	0/0	0 : 0	0 0	137 0	0.0
10	307	17070	0 : 0	0.0	0 0	137 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B. E. H. G.

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS MAX. FACTORED FACTORED					W E B S MAX. FACTORED				
MEMB.	FORCE	VERT. LO		MAX	MAX.	MEMB.		ORCE	MAX
	(LBS)	(PL		CSI (LC)	UNBRAC			LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	-		
A-B	0 14	-91.8	-91.8	0.01(1)	10.00	H- C	-291	0	0.02(1)
B- J	-27 35	-91.8	-91.8	0.02 (4)	6.25	H- D	-5	Ò	0.00(1)
J- C	-75 0	-91.8	-91.8	0.01 (4)	6.25	G-D	-287	ō	0.02 (1)
C-D	-20 / 0	-91.8	-91.8	0.35(1)		j- J	-119		0.00 (1)
D- L	-80 : 0	-91.8	-91.8	0.01 (4)		K-L	-118		0.00(1)
L-E	-33 - 34	-91.8	-91.8	0.02 (4)				•	0.00 (1)
E-F	0 14	-91.8	-91.8	0.01 (1)	10.00				
В.	0 . 40								
B-1	0 / 49	-18.5		0.01 (1)	10.00				
I- H	0 49	-18.5	-18.5	0.07 (4)	10.00				
H- G	0 25	-18.5		0.07 (4)	10.00				
G-K	0 53	-18.5	-18.5	0.07 (4)	10.00				
K-E	0 53	-18.5	-18.5	0.01 (1)	10.00				

SPECIFIED LOADS: DL = DL = DL = DL = AD = 25.6 PSF PSF 6.0 BOT CH. 0.0 PSF TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

معن بمرين

TOE!

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-09, CSA 086-14 - TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.35/1.00 (C-D:1) , BC=0.07/1.00 (G-K:4) , WB=0.02/1.00 (C-H:1) , SSI=0.12/1.00 (C-D:1)

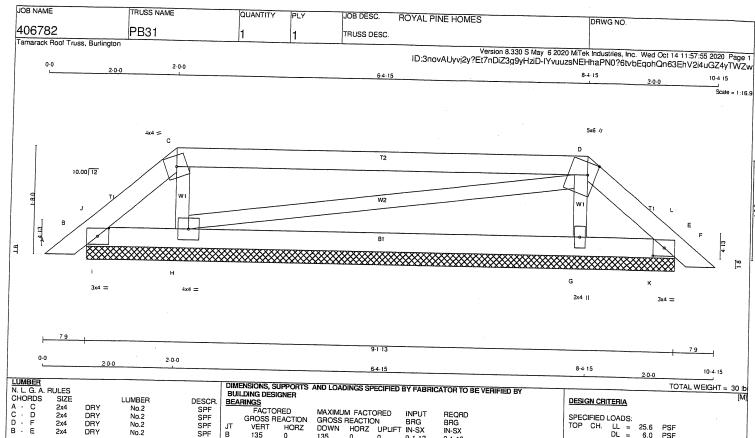
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.13 (C) (INPUT = 0.90) JSI METAL= 0.03 (D) (INPUT = 1.00)

CITY OF RICHMOND HIL **BUILDING DIVISION**

03/08/2022

RECEIVED _joshua.nabua

	ATES (table					
JΤ	TYPE	PLATES	W	LEN	Υ	X
В	TMB1-I	MT20	3.0	4.0	1.50	2.00
С	TTW-m	MT20	4.0	4.0		
D	TTWW+m	MT20	5.0	6.0	2.25	1.50
Ε	TMB1-I	MT20	3.0	4.0	1.50	2.00
G	BMW 1+w	MT20	2.0	4.0		
Н	BMWW1-t	MT20	4.0	4.0		

DRY

ALL WEBS 2x3

DRY: SEASONED LUMBER

No.2

No.2

BUILDING DESIGNER BEARINGS	AND LOADINGS SPECIFIED	BY FABRIC	CATOR TO BE VE	RIFIED BY
FACTORED GROSS REACTION	MAXIMUM FACTORED	INPUT	REQRD	

	FACTO GROSS R	EACTION	MAXIMUI GROSS I			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
В	135	0	135	0	0	9-1-13	9-1-13
E	140	0	140	Ó	ō	9-1-13	9-1-13
H	420	0	420	Ö	ō	9-1-13	9-1-13
G	412	0	412	0	Ŏ.	9-1-13	9-1-13

UNFACTORED REAC	TIONS
1STI CASE	MAN

	1ST LCASE		IIN. COMPO	NENT REACTION	NS		
JT B E H G	90 94 301 296	SNOW 89 / 0 92 / 0 173 / 0 168 / 0	LIVE 0 0 0 0 0 0 0 0	PERM.LIVE 0 : 0 0 : 0 0 : 0 0 : 0	WIND 0 0 0 0 0 0 0 0	DEAD 1 0 1 0 129 0 128 0	SOIL 0 ' 0 0 · 0 0 · 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, E. H, G

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

0	0000								
	ORDS					WE	BS		
	C. FACTORED	FACTO	RED				MAX. FACTO	NDCD.	
MEMB.	FORCE	VERT. LO	AD LC:	1 MAX	MAX.	MEMB.			
	(LBS)	(PL			UNBRAC			MAX	
FR-TO		FROM		001 (EU)			(LBS)	CSI (LC)	
A-B	0 · 14	-91.8		0.00 (4)	LENGTH				
B- J	-28 30			0.02(1)	10.00	H- C	-292 0	0.04(1)	
J- C		-91.8		0.03 (4)		H- D	-6 : 0	0.00(1)	
	-73 ′ 0	-91.8		0.03 (4)		G- D	-285 - 0	0.04(1)	
C- D	-25 0	-91.8	-91.8	0.64(1)	6.25	I- J	-125.0	0.00(1)	
D- L	-81 : 0	-91.8	-91.8	0.03 (4)	6.25	K-L	·124 · 0	0.00(1)	
L-E	-37 / 29	-91.8	-91.8	0.03 (4)	6.25			0.00 (1)	
E-F	0 14	-91.8		0.02(1)	10.00				
				0.02 (1)	10.00				
B- I	0 . 49	-18.5	-195	0.03(1)	10.00				
- H	0 49	-18.5							
H- G	0 31			0.13 (4)	10.00				
G-K				0.12 (4)	10.00				
	0 - 55		-18.5	0.13(4)	10.00				
K-E	0 55	-18.5	-18.5	0.03(1)	10.00				

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	25.6	PSF
		DL		6.0	PSI
BOT	CH.	LĻ	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	LIO	AΠ	_	30 U	DCI

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14

TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.64/1.00 (C-D:1) , BC=0.13/1.00 (G-K:4) . WB=0.04/1.00 (C-H:1) , SSI=0.23/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

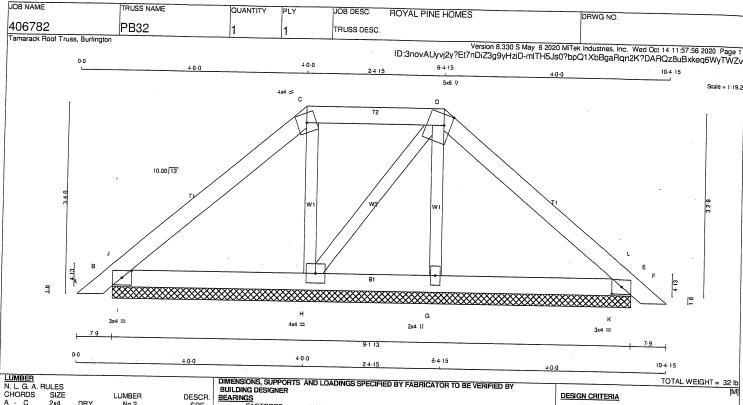
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.25 (C) (INPUT = 0.90) JSI METAL= 0.06 (D) (INPUT = 1.00)

CITY OF RICHMOND HIL BUILDING DIVISION

03/08/2022

RECEIVED _joshua.nabua

COMPER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C · D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
B - E	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEAS	ONED LL	JMBER.		

PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	х				
В	TMB1-I	MT20	3.0	4.0	1.50	2.00				
С	TTW-m	MT20	4.0	4.0						
D	TTWW+m	MT20	5.0	6.0	2.25	1.50				
Ε	TMB1-I	MT20	3.0	4.0	1.50	2.00				
G	BMW1+w	MT20	2.0	4.0						
H	BMWW1-t	MT20	4.0	4.0						

	FACTO GROSS R		MAXIMUI GROSS			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
В	298	0	298	0	0	9-1-13	9-1-13
E	319	0	319	0	0	9-1-13	9-1-13
Н	289	0	289	0	0	9-1-13	9-1-13
G	202	0	202	0	0	9-1-13	9-1-13

UNFACTORED REACT	TONS
1STI CASE	MAN

	IO I LONGE		MIN. CONPOR	NEINT REACTION	VS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
В	209	147 / 0	0 / 0	0 0	0 0	62 0	0 0
Ε	223	159 : 0	0 0	0.0	0 0	64 0	-
Н	205	133 / 0	0 0	0.0	0 / 0	71 0	0 0
G	144	84 / 0	0 - 0	0 0	0:0		0 · 0
		•	- 0	5 0	0 0	61 0	0.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, E, H, G

 $\frac{\textbf{BRACING}}{\textbf{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 6.25 \, \text{FT.} \\ \textbf{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \, \text{FT} \, \, \text{OR RIGID CEILING DIRECTLY APPLIED.} \\ \end{cases}$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E	BS		
	. FACTORED	FACTO					MAX. FACTO	RED	
MEMB.	FORCE	VERT, LO		1 MAX	MAX.	MEMB.	FORCE	MAX	
CD TO	(LBS)	(PL		CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO	_	FROM			LENGTH	FR-TO		()	
A-B	0 14	-91.8		0.02(1)		H- C	-171 - 0	0.03(1)	
B- J	-37 0	-91.8	-91.8	0.05(1)	6.25	H- D	-42 0	0.01 (1)	
J- C	-118 / 0	-91.8	-91.8	0.13(1)	6.25	G-D	-117.0	0.02 (1)	
C-D	-78 0	-91.8	-91.8	0.09(1)	6.25	ī- J	-308 0	0.02 (1)	
D- L	-150 ′ 0	-91.8	-91.8	0.13(1)	6.25	K-L	303 0	0.00 (1)	
L-E	-43 0	-91.8	-91.8	0.05(1)	6.25		000 0	0.00 (1)	
E-F	0 / 14	-91.8		0.02(1)					
B- I	0 : 04								
	0 / 84			0.11(1)	10.00				
I- H	0 84			0.11(1)					
H- G	0 : 104			0.07(1)	10.00				
G-K	0 - 108	-18.5	-18.5	0.12(1)	10.00				
K-E	0 108	-19 5	10 5	0.10/11	10.00				

	IFIED				
TOP	CH.	LL	=	25.6	PS
			=	6.0	PS
BOT	CH.			0.0	PS
		DL		7.4	PS.
TOTA	LLO	AΠ	-	30 U	DC

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-09, CSA 086-14

TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.13/1.00 (C-J:1) , BC=0.12/1.00 (G-K:1) , WB=0.03/1.00 (C-H:1) , SSI=0.24/1.00 (B-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.26 (E) (INPUT = 0.90) JSI METAL= 0.07 (E) (INPUT = 1.00)

CITY OF RICHMOND HIL BUILDING DIVISION

03/08/2022

RECEIVED joshua.nabua

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY ROYAL PINE HOMES DRWG NO 406782 PB33 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:57:57 2020 Page 1 ID:3novAUyvi2y?Et7nDiZ3g9yHziD-Ex0fJetemuxHeh9NDIy3JFtA9annibSKAONNezyTWZu 0.0 4x6 || 10.00 12 3x4 = 2x4 II 7.9 5-2-8 10-4-15 TOTAL WEIGHT = 2 X 29 = 58 lb

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER A - C 2x4 DRY SPF No.2 SPF ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE SPACING (IN) LOAD(PLF) TOP CHORDS : (0.122"X3") SPIRAL NAILS A-C 1 12 A- C C- E TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS TOP WEBS : (0.122"X3") SPIRAL NAILS 2x3 1 6

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

PLATES (table is in inches)
JT TYPE PLATES W LEN Y X 3.0 4.0 1.50 2.00 4.0 6.0 Edge 3.0 4.0 1.50 2.00 TMB1-I MT20 MT20 MT20 BMW1+w MT20

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS SUPPOPTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BEARINGS	

_		EACTION	MAXIMU GROSS			INPUT BRG	REQRD BRG
JT B D F	VERT 403 403 302	HORZ 0 0	DOWN 403 403 302	HORZ 0 0	UPLIFT 0 0 0	IN-SX 9-1-13 9-1-13 9-1-13	IN-SX 9-1-13 9-1-13

UNFACTORED REACTIONS
1ST LCASE MAX

			MIN. COMPO	NEINT REACTION	VS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
В	282	201 / 0	0/0	0 : 0	0 0	81 0	0.0
D F	282	201 / 0	0 / 0	0 / 0	0.0	81 0	0.0
_	217	120 / 0	0.0	0 - 0	0 0	97 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, D, F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE	BS		
	. FACTORED	FACTOR					MAX. FACT	ORED	
MEMB.	FORCE	VERT. LO			MAX.	MEMB.	FORCE	MAX	
CD TO	(LBS)	(PL		CSI (LC)			(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO		()	
A-B	0 14	-91.8	-91.8	0.01(1)	10.00	F- C	-99 / 0	0.01(1)	
B- H	-33 / 80	-91.8		0.07(1)		G- H	-605 0	0.00 (1)	
H- C	-212 0	-91.8		0.12(1)		I- J	-605 0	0.00(1)	
C- J	-212 0	-91.8		0.12(1)	6.25		000.0	0.00 (1)	
J- D	-33 80	-91.8		0.07(1)	6.25				
D- E	0 14	-91.8		0.01(1)	10.00				
				(.,	.0.00				
B- G	0 / 151	-18.5	-18.5	0.11(1)	10.00				
G-F	0 151			0.11(1)	10.00				
F- I	0 151	-18.5			10.00				
I- D	0 151	-18.5		0.11(1)					
		10.5	-10.5	0.11(1)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. PSF PSF 6.0 0.0 7.4 BOT CH. LL = DL = AD = TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-09, CSA 086-14

TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.12/1.00 (C-J:1) , BC=0.11/1.00 (F-I:1) , WB=0.01/1.00 (C-F:1) , SSI=0.23/1.00 (B-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

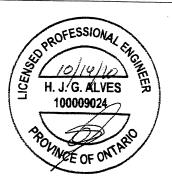
NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN

MT20 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.18 (D) (INPUT = 0.90) JSI METAL= 0.05 (D) (INPUT = 1.00)

CITY OF RICHMOND HIL **BUILDING DIVISION**

> RECEIVED _joshua.nabua

03/08/202

JOB NAME TRUSS NAME QUANTITY PI Y JOB DESC. ROYAL PINE HOMES DRWG NO 406782 PB33Z TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MTek Industries, Inc. Wed Oct 14 11:57:58 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-i7a1W_uGXC38GrkZn?TIsTQJ5_5HR1VUO27wAPyTWZt 10-4-15 4x6 II Scale = 1:25.1 10.00 12 D Ε Ť G 3x4 = 0.0 5-2-8 TOTAL WEIGHT = 5 X 29 = 144 lb

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER No.2 SIZE DESCR 2x4 2x4 2x4 DRY DRY DRY C SPF No.2 No.2 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMB1-i
 MT20

 C
 TTW+p
 MT20
 LEN Y LEIN 4.0 1.50 4. 6.0 Edge 4.0 1.50 2.00 3.0 4.0 3.0 TTW+p TMB1-l MT20 MT20

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS

	FACTO GROSS R		MAXIMUI GROSS		INPUT BBG	REQRD BRG	
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
3	402	0	402	0	0	9-1-13	
)	402	0	402	Õ	0		9-1-13
-	304	ñ	304	0	0	9-1-13	9-1-13
		U	304	U	0	9-1-13	9-1-13

UNFACTORED REACTIONS K./MIN. COMPONENT REACTIONS
LIVE PERM LIVE MAX COMBINED SOIL 201:0 0:0 0 0 81 0 81 0 97 0 0 0 0 0 0 0 0 201 : n 0:0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B. D. F

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS MAX. FACTORED WEBS MAX. FACTORED FACTORED MEMB. VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FORCE MEMB. FORCE (LBS) LENGTH FR-TO 10.00 F- C 6.25 G- H -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 0.02 (1) -91.8 0.15 (1) -91.8 0.23 (1) -91.8 0.23 (1) -91.8 0.15 (1) -91.8 0.02 (1) F- C -101 0 G- H -612 0 I- J -612 0 0.03 (1) 0.00 (1) 0.00 (1) -32 87 210 0 7- D C- 1 H- C -210 0 -210 0 6.25 6.25 -32 87 0 14 6.25 D- E -18.5 0.22 (r), -18.5 0.22 (1) -18.5 0.22 (1) -18.5 0.22 (1) B- G G- F -18.5 -18.5 -18.5 0 150 10.00 150 150 150 10.00

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = DL = LL = DL = 25.6 6.0 0.0 7.4 BOT CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

 $\begin{array}{l} \text{CSI: TC=}0.23/1.00 \; (\text{C-J:1}) \;,\; \text{BC=}0.22/1.00 \; (\text{F-I:1}) \;, \\ \text{WB=}0.03/1.00 \; (\text{C-F:1}) \;,\; \text{SSI=}0.46/1.00 \; (\text{B-G:1}) \end{array}$

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

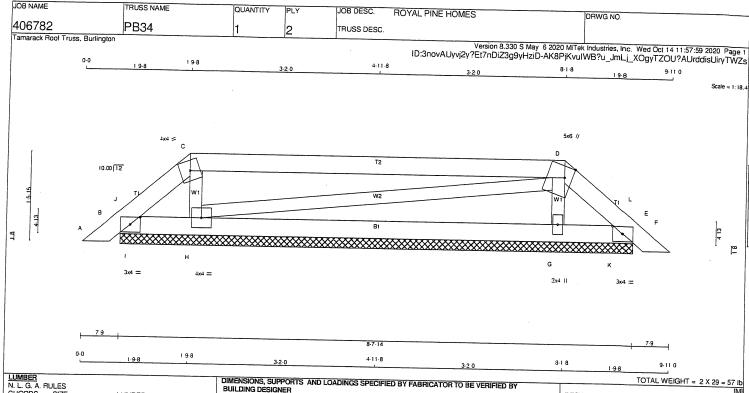
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.35 (D) (INPUT = 0.90) JSI METAL= 0.09 (D) (INPUT = 1.00)

> CITY OF RICHMOND HILL **BUILDING DIVISION**

03/08/2022

RECEIVED joshua.nabua

CHORDS LUMBER DESCR A - C C - D D - F 2x4 DRY SPF DRY DRY SPF 2x4 DRY No.2 ALL WEBS 2x3 SPE DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROV	VS SURFACE SPACING (IN)	LOAD(PLF)
	(0.122"X3") SPIRAL NA	ILS
A- C 1	12	TOP
C-D 1	12	TOP
D- F 1	12	TOP
	RDS: (0.122"X3") SPIRAL	NAILS
B- E 1	12	TOP
	X3") SPIRAL NAILS	
2x3 1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

PL	PLATES (table is in inches)									
JΤ	TYPE	PLATES	w	LEN	Υ	Х				
В	TMB1-I	MT20	3.0	4.0	1.50	2.00				
С	TTW-m	MT20	4.0	4.0						
D	TTWW+m	MT20	5.0	6.0	2.25	1.50				
Ε	TMB1-I	MT20	3.0	4.0	1.50	2.00				
G	BMW1+w	MT20	2.0	4.0						
Н	BMWW1-t	MT20	4.0	4.0						

Structural component only DWG# T-2022202

	DU	ENSIONS, S LDING DES RINGS	SUPPORTS IGNER	AND LOAD	DINGS SP	ECIFIED	BY FABRI	CATOR TO B	E VERIFIED	ВУ
	JB E H G	FACTO GROSS F VERT 118 122 410 404	ORED REACTION HORZ 0 0 0		M FACTO REACTION HORZ 0 0 0 0		INPUT BRG IN-SX 8-7-14 8-7-14 8-7-14	REQRD BRG IN-SX 8-7-14 8-7-14 8-7-14		
1	PRO	VIDE ANCH	OBAGE A	T REARING	IONT	EOD 15	1 DC E4	OTODEO .		

PROVIDE ANOHORAGE AT BEARING JOINT B FOR 150 LBS FACTORED UPLIFT

UNF	ACTORED RE	ACTIONS					July play	A
	1ST LCASE		IN. COMPO	NENT REACTION	NS			~
JT B	COMBINED 77	SNOW 84 / 0	0 , 0 FIAE	PERM.LIVE 0 / 0	WIND 0 0	DEAD 0 -6	SOIL	
E	80 295	86 / 0 166 / 0	0 / 0	0 / 0	0 0	0 -6	0 0	
G	291	163 / 0	0/0	0 / 0 0 0	0 · 0 0 · 0	129 0 128 0	0.0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, E, H, G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	R D S FACTORED	FACTO	DCD.			WE		
MEMB.	FORCE	VERT. LO					MAX. FACTO	RED
	(LBS)				MAX.	MEMB.	FORCE	MAX
FR-TO	(LDS)	(PL		CSI (LC)	UNBRAC		(LBS)	CSI (LC)
A- B	0 / 14	FROM			LENGTH			
B-J		-91.8		0.01 (1)		H- C	-279 0	0.02(1)
J- C	-30 / 30	-91.8	-91.8	0.02 (4)		G- D	-274 0	0.02(1)
	-72 0	-91.8		0.01 (4)		H- D	-5 0	0.00(1)
C-D	-20 / 0	-91.8	-91.8	0.31(1)	6.25	I- J	-111 0	0.00(1)
D- L	-78 / 0	-91.8	-91.8	0.01 (4)	6.25	K-L	-110 0	0.00(1)
L-E	-36 / 29	-91.8	-91.8	0.02 (4)	6.25			0.00 (1)
E-F	0 / 14	- 9 1.8	-91.8	0.01(1)	10.00			
B- I	0 · 48	-18.5	-18.5	0.01(1)	10.00			
I- H	0 48	-18.5	-18.5	0.06 (4)	10.00			
H- G	0 25	-18.5		0.06 (4)	10.00			
G-K	0 52	-18.5		0.06 (4)	10.00			
K-E	0 52	-18.5		0.01 (1)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = TOP CH. 25.6 PSF 6.0 PSF 0.0 PSF 6.0 0.0 7.4 TOTAL LOAD

SPACING = 24.0 IN. C/C

OADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-09, CSA 086-14

TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.31/1.00 (C-D:1) , BC=0.06/1.00 (G-K:4) , WB=0.02/1.00 (C-H:1) , SSI=0.11/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

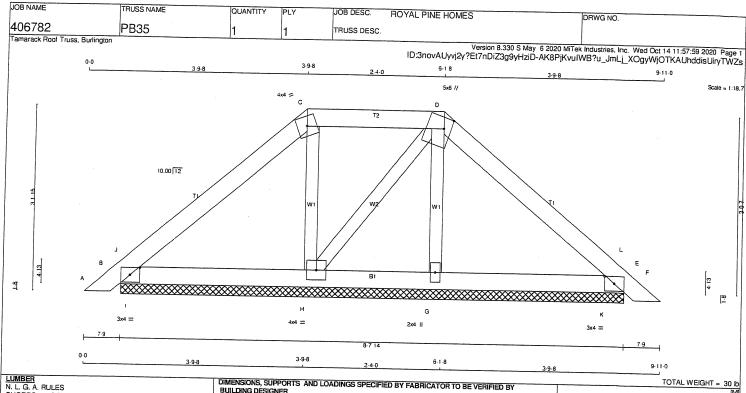
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.12 (C) (INPUT = 0.90) JSI METAL= 0.03 (D) (INPUT = 1.00)

CITY OF RICHMOND HIL BUILDING DIVISION

03/08/2022

RECEIVED

_joshua.nabua

CHORDS A - C C - D D - F B - E	SIZE 2x4 2x4 2x4 2x4	DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF
ALL WEBS DRY: SEASO	2x3 ONED LI	DRY JMBER.	No.2	SPF

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	х					
В	TMB1-I	MT20	3.0	4.0	1.50	2.00					
С	TTW-m	MT20	4.0	4.0							
D	TTWW+m	MT20	5.0	6.0	2.25	1.50					
Ε	TMB1-I	MT20	3.0	4.0	1.50	2.00					
G	BMW1+w	MT20	2.0	4.0							
н	BMWW1-t	MT20	4.0	4.0							

-	DIMENSIONS, SUPPORTS BUILDING DESIGNER BEARINGS	AND LOADINGS SPECIFIED	BY FABRIC	ATOR TO BE VERIFIED	BY
	FACTORED	MAXIMUM FACTORED	INPUT	BEORD	

		RED EACTION	MAXIMUI GROSS		INPUT BRG	REQRD BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
В	280	0	280	0	0	8-7-14	8-7-14
E	301	0	301	0	0	8-7-14	8-7-14
Н	277	0	277	0	0	8-7-14	8-7-14
G	194	0	194	0	0	8-7-14	8-7-14
G	194	Ō	194	-	-		

UNF	UNFACTORED REACTIONS											
	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	NS							
JΤ	COMBINED	SNOW	LIVE	PERM, LIVE	WIND							
В	197	139 / 0	0 / 0	0.0	0:0							
Ε	211	150 0	0 / 0	0.0	0 0							
Н	196	128 / 0	0.0	0 : 0	0.0							

0 / 0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B. E, H, G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

0:0

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE	BS		
	. FACTORED	FACTO					MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC:	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	.F)		UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM	TO	()	LENGTH		(1100)	COI (EC)	
A-B	0 14	-91.8		0.02(1)		H- C	-166 : 0	0.00	
B- J	-34 0	-91.8		0.05 (1)		H- D		0.03 (1)	
J- C	-106 / 0	-91.8		0.11(1)			-40 0	0.01 (1)	
C- D	-69 - 0	-91.8	-91.8	0.09(1)		G-D	-115 0	0.02(1)	
D- L	·137 0	-91.8	-91.8			I- J	-273 0	0.00(1)	
L-E	-46 0			0.11(1)		K-L	-268 0	0.00(1)	
E-F		-91.8		0.05 (1)					
E- F	0 - 14	-91.8	-91.8	0.02 (1)	10.00				
B- I	0 76	-18.5	-18.5	0.10(1)	10.00				
I- H	0 - 76	-18.5	-18.5	0.10(1)	10.00				
H- G	0 95			0.06(1)	10.00				
G-K	0 : 99			0.10(1)	10.00				
K-E	0 99			0.10(1)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 6.0 0.0 7.4 PSF PSF TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-09, CSA 086-14 TPIC 2011. TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.11/1.00 (C-J:1) , BC=0.10/1.00 (G-K:1) , WB=0.03/1.00 (C-H:1) , SSI=0.21/1.00 (B-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.25 (E) (INPUT = 0.90) JSI METAL= 0.06 (E) (INPUT = 1.00)

CITY OF RICHMOND HIL BUILDING DIVISION

03/08/2022

RECEIVED _joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. PI Y ROYAL PINE HOMES DRWG NO. 406782 PB36 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:58:00 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-eWinxgvW3pJsV8uyvQVmxuVf_on5vx?nsMc1FlyTWZr 9-11-0 4x6 II 10.00 12 3x4 = 2x4 II 7.9 8-7-14 4-11-8 9-11-0 TOTAL WEIGHT = 27 lb

LUMBER N. L. G. A. F CHORDS A - C C - E B - D	RULES SIZE 2x4 2x4 2x4	DRY DRY DRY	LUMBER No.2 No.2 No.2	DESCR. SPF SPF SPF
ALL WEBS	2x3	DRY	No.2	SPF

PL	ATES (table	is in inches)			
JT	TYPE	PLATES	W	LEN	Y X
В	TMB1-I	MT20	3.0	4.0	1.50 2.00
С	TTW+p	MT20	4.0	6.0	Edge
D	TMB1-I	MT20	3.0	4.0	1.50 2.00
_	D & 41 A / 4	MITOO			

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

	111100				
JT B D F	FACTO GROSS R VERT 379 379 295	MAXIMU GROSS DOWN 379 379 295	M FACTO REACTION HORZ 0 0 0	INPUT BRG IN-SX 8-7-14 8-7-14	REQRD BRG IN-SX 8-7-14 8-7-14 8-7-14

UNF	ACTORED RE	ACTIONS					
_	1ST LCASE	7244 17 417	MIN. COMPO	NENT REACTION	NS		
JT B D F	265 265 212	SNOW 190 / 0 190 / 0 119 / 0	UVE 0 0 0 0 0 0	PERM.LIVE 0 '0 0 0 0 0	WIND 0 0 0 0	DEAD 76 : 0 76 : 0 93 : 0	SOIL 0 0 0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B. D, F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX.	RDS FACTORED	FACTOR				W E	BS MAX. FACTO	BED.
MEMB.	FORCE	VERT. LO.		MAX	MAX.	MEMB.	FORCE	MAX
FR-TO	(LBS)	(PL FROM	F) TO	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
A- B	0 / 14	-91.8		0.02(1)		F- C	-102 0	0.02(1)
B- H	-31 67	-91.8	-91.8	0.13(1)		G- H	-551 / 0	0.00 (1)
H- C	-193 0	-91.8	-91.8	0.21(1)	6.25	l- J	-551 / 0	0.00 (1)
C- J	-193 0	-91.8	-91.8	0.21(1)	6.25		-	0.00 (1)
J- D	-31 / 67	-91.8	-91.8	0.13(1)	6.25			
D- E	0 14	-91.8	-91.8	0.02 (1)	10.00			
B- G	0 / 138	-18.5	-18.5	0.20(1)	10.00			
G-F	0 138	-18.5	-18.5	0.20(1)	10.00			
F- I	0 · 138	-18.5		0.20(1)	10.00			
I- D	0 · 138	-18.5		0.20(1)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	25.6	PSF
		DL		6.0	PSF
BOT	CH.	LL		0.0	PSF
TOT.		DL	=	7.4	PSF
TOTA	L LO	٩D	=	39.0	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14 TPIC 2011. TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.21/1.00 (C-H:1) , BC=0.20/1.00 (B-G:1) , WB=0.02/1.00 (C-F:1) , SSI=0.42/1.00 (B-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

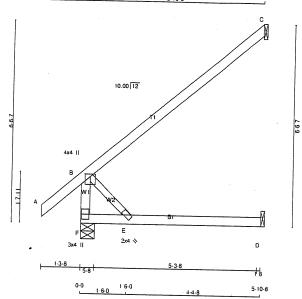
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.33 (B) (INPUT = 0.90) JSI METAL= 0.09 (D) (INPUT = 1.00)

PROFESSIONAL ENGINEERS IN THE PROPERTY OF THE 100009024 ROLLINGE OF ONT REIO

Structural component only DWG# T-2022204


CITY OF RICHMOND HIL BUILDING DIVISION

03/08/2022

RECEIVED _joshua.nabua JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. ROYAL PINE HOMES DRWG NO. 406782 TRUSS DESC. 16 Tamarack Roof Truss, Burlington

Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:57:55 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-IYvuuzsNEHhaPN0?6tvbEqoj2n55Eh82i4uGZ4yTWZw 1.3.8

Scale = 1:35.5

LUMBER
N. L. G. A. RULES
CHORDS SIZE
F - B 2x4 SIZE 2x4 2x4 LUMBER No.2 No.2 DESCR. - B - C DRY SPF SPF ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 W 4.0 2.0 LEN 4.0 4.0 Y X 1.00 2.00 MT20 MT20 BMW+w BMV1+p

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

	MINUU				
JT F C	FACTO GROSS R VERT 451 270 54	MAXIMUI GROSS DOWN 451 270 61		INPUT BRG IN-SX 5-8 1-8 1-8	REQRD BRG IN-SX 5-8 1-8 1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C . D

UNFACTORED REACTIONS
1ST LCASE MA

MAX. SNOW 221 / 0 150 : 0 JT F C D COMBINED WIND SOIL 0 0 0 0 0 0 DEAD 0 0 95 0 35 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS FACTORED FORCE	FACTORED VERT. LOAD		MAX.	W E MEMB.	B S MAX. FACTO FORCE	RED MAX
	(LBS)	(PLF)		UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM TO	, -,	LENGTH		(100)	OGI (LC)
F-B	-397 0	0.0	0.0 (1)		B-E	0 : 0	0.00(1)
A-B	0 · 41	-91.8 -91	1.8 0.13(1)	10.00			0.00 (1)
B- C	0 . 0	-91.8 -91	1.8 0.54 (1)				
F-E	0 0	-18.5 -18	3.5 0.14 (4)	10.00			
E- D	0 0	-18.5 -18	3.5 0.19 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LU = 25.6 PSF DL = 6.0 PSF LL = 0.0 PSF DL = 7.4 PSF AD = 39.0 PSF BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

TOTAL WEIGHT = 16 X 20 = 328 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.05")

CSI: TC=0.54/1.00 (B-C:1) , BC=0.19/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.16/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.31 (B) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 1.00)

CITY OF RICHMOND HILL **BUILDING DIVISION**

03/08/2022

RECEIVED _joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 406781 J2 6 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Mon Jun 7 08:44:01 2021 Page 1 ID:ZPnFFM9Z?6P9fBfbpDyK8Tz9PnR-m44c8DgoAxoPv?p5ylbfSi4Z?Eme9zQAOMcib2z8khi 10.00 12 1 5-8 1 TOTAL WEIGHT = 6 X 23 = 135 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER BEARINGS
FACTORED
GROSS REACTION **DESIGN CRITERIA** DESCR. SPF SPF SPF LUMBER E - B A - C F - C E - D DRY No.2 No.2 2x4 MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: 2x4 2x4 DRY DRY GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX LL = DL = LL = PSF PSF PSF TOP CH. No.2 VERT HORZ 0 IN-SX 2x4 No.2 SPF 5-8 0.0 7.4 MECHANICAL ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. DL No.2 SPF TOTAL LOAD 39.0 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8. SPACING = 24.0 IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, (table is in inches) E PLATES W+p MT20 UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW NBCC 2015 LEN TYPE TMVW+p C/MIN. COMPONENT REACTIONS
LIVE PERM.LIVE 4.0 3.0 5.0 4.0 4.0 1.00 2.00 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) SOIL 0/0 0/0 WIND DEAD TMV+p BVMW-l MT20 MT20 170 / 0 0/0 2.50 2.50 6.0 99 / 0 0/0 BMV1+p

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

ORDS					WE	BS		
FACTORED	FACTO	RED					RED	
FORCE	VERT. LC	AD LC	1 MAX	MAX.	MEMB.	FORCE		
(LBS)		_F)	CSI (LC)	UNBRAC		(LBS)		
	FROM	TO		LENGTH	FR-TO	, ,		
	0.0	0.0	0.03(1)	7.81	B- D	0/0	0.00(1)	
	-91.8	-91.8	0.14 (5)	10.00			,	
	- 9 1'.8	-91.8	0.23 (1)	10.00				
	0.0	0.0	0.02(1)	7.81				
-178 / 0	0.0	0.0	0.08 (1)	7.81				
0/0	-18.5	-18.5	0.08 (4)	10.00				
	FACTORED FORCE (LBS) -305 / 0 0 / 41 0 / 0 -214 / 0 -178 / 0	FACTORED FORCE (LBS) (PIC)	FACTORED FACTORED FORCE (LBS) (PLF)	FACTORED FACTORED FORCE (LBS) FACTOR USEN FORM TO SILC) -305 / 0	FACTORED FACTORED FORCE (LBS) FACTORED (LBS) FORCE (LB	FACTORED FORTH FR-TO (LBS) (LB	FACTORED FORCE (LBS) FORCE (LB	FACTORED FACTORED

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVETOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.23/1.00 (B-C:1) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-D:1) , SSI=0.11/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

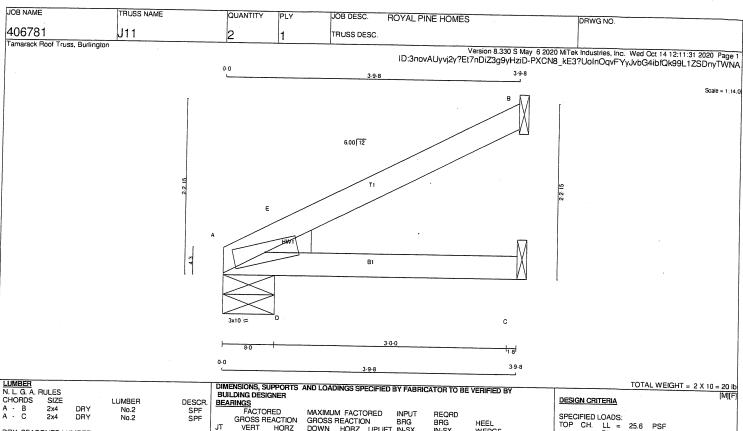
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.22 (B) (INPUT = 0.90) JSI METAL= 0.06 (C) (INPUT = 1.00)


PROFESSIONAL ENGINEERS H. J. G. ALVES 100009024 POWNEE OF ONTARIO

Structural component only DWG# T-2117979

CITY OF RICHMOND HILL **BUILDING DIVISION**

03/08/202

RECEIVED

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
A TMBH1-m MT20 LEN Y 3.0 10.0

JT B C A	FACTO GROSS R VERT 146 63 209		MAXIMU GROSS DOWN 146 63 209			INPUT BRG IN-SX 1-8 1-8 8-0	REQRD BRG IN-SX 1-8 1-8 8-0	HEEL WEDGE 2x4 L
-------------------	--	--	---	--	--	--	--	------------------------

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) B , C

UNFACTORED REACTIONS COMBINED DEAD SOIL 101 0:0 0 / 0 0 / 0 23 · 0 28 0 0 0 19 : 0 148 97

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS MAX. FACTORED MB. FORCE FACTORED MAX. FACTORED FORCE MAX VERT.LOAD LC1 MAX MAX.

(PLF) CSI (LC) UNBRAC
FROM TO LENGTH-1

-91.8 -91.8 0.04 (4) 6.25

-91.8 -91.8 0.16 (1) 10.00 MEMB. MAX (LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO A- E E- B -127 3 0.00 (1) 0 5 A- D D- C 0 0 -18.5 -18.5 0.15(1) -18.5 -18.5 0.15(1) 10.00

DL = DL = DL = DL = 6.0 0.0 7.4 PSF BOT CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-00 CSA 086-14 - CSA 086-09, CSA 086-14 - TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03")

CSI: TC=0.16/1.00 (B-E:1) , BC=0.15/1.00 (A-D:1) . WB=0.00/1.00 (D-E:1) , SSI=0.10/1.00 (A-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.04 (A) (INPUT = 0.90) JSI METAL= 0.01 (A) (INPUT = 1.00)

CITY OF RICHMOND HIL **BUILDING DIVISION**

03/08/2022

RECEIVED joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO. 406782 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:57:52 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-tzDmFxpVxMJ?YwHQRIMucCAJFZ5_1KPb07gcylyTWZz Scale = 1:19.3 10.00 12 1 3-8 1 6-0 2-0-0 1-6-0

LUMBER N. L. G. A. RULES CHORDS F - B SIZE LUMBER DESCR DRY DRY SPF SPF SPF No.2 No.2 2x4 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MTCC LEN Y X 4.0 1.00 2.00 4.0 W TMVW+p 4.0 2.0 BMV1+p

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS FACTORED

MAXIMUM FACTORED INPUT BRG GROSS REACTION GROSS REACTION BRG
DOWN HORZ UPLIFT IN-SX
279 0 0 5-8 BRG IN-SX VERT HORZ 0 -36

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C . D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNFACTORED REACTIONS

1	_	1ST LCASE	MAX./N	AIN. COMPOR	VENT REACTION	NS		
	ĴΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
	C	194	145 0	0.0	0 / 0	0 - 0	49 0	0 / 0
	5	29	23 -26	0/0	0 / 0	0 / 0	5 0	0 / 0
	U	15	0:0	0 / 0	0 / 0	0 · 0	15 / 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	R D S FACTORED	FACTOR	200			W E		
MEMB.	FORCE (LBS)	VERT. LO.	AD LC		MAX.	MEMB.	MAX. FACTOR FORCE	MAX
FR-TO			TO	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
F- B A- B	-261 : 0 0 : 41	0.0		0.03 (1)		8- E	0 · 0	0.00(1)
B- C	-29 0	-91.8 -91.8		0.13 (1) 0.12 (1)	10.00 6.25			
F- E E- D	0 / 0 0 · 0	-18.5 -18.5		0.02 (4) 0.02 (4)	10.00 10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA SPECIFIED LOADS:

LOADS: LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 AD = 39.0 PSF PSF PSF PSF BOT CH.

TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

TOTAL WEIGHT = 10 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.13/1.00 (A-B:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.08/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.20 (B) (INPUT = 0.90) JSI MET(AL= 0.05 (B) (INPUT = 1.00 // OND HIL **BUILDING DIVISION**

03/08/2022

RECEIVED Per: _joshua.nabua

	LUMBER				
	N. L. G. A. F	RULES			
	CHORDS	SIZE		LUMBER	DESCR.
	F - B	2x4	DRY	No.2	SPF
	A - C	2x4	DRY	No.2	SPF
İ	F - D	2x4	DRY	No.2	SPF
ı	1				
ı	ALL WEBS	2x3	DRY	No.2	SPF
١	DRY: SEASO	ONED L	UMBER		

PL	ATES (table	is in inches)				
JŦ	TYPE	PLATES	w	LEN	Υ	х
В	TMVW+p	MT20	4.0	4.0	1.00	2.00
Ε	BMW+w	MT20	2.0	4.0		
F	BMV1+p	MT20	3.0	4.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS FACTORED MAYIMUM FACTORED INDUIT DESCRIPTION

Α	RINGS				
	FACTO GROSS R VERT 325 179	MAXIMU GROSS DOWN 325 179 21		INPUT BRG IN-SX 5-8 1-8 1-8	REQRD BRG IN-SX 5-8 1-8 1-8

SEE MITEK STANDARD DETAIL 897791H FOR CONNECTION TO JOINT(S) C , D

UNI	ACTORED RE	ACTIONS					
	1ST LCASE		MIN. COMPO	NENT REACTION	NS		
JT	COMBINED 226	0.1011	LIVE	PERM.LIVE	WIND	DEAD	SOIL
C	124	171 / 0 100 : 0	0 / 0 0 / 0	0.0	0.0	55 0	0 . 0
Ď	15	0 0	0.0	0 / 0 0 . 0	0 / 0 0 / 0	23 0	0 · 0
			0.0	0,0	0,0	15 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

J F C D

CHO	DRDS					WE	RS	
	FACTORED	FACTO	RED			** -	MAX. FACTO	DED.
MEMB.	FORCE	VERT. LC	AD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)		LF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	(450)	001 (20)
F-B	-307 0	0.0		0.03(1)	7.81	B- E	0.0	0.00(1)
A- B	0 41	-91.8		0.13 (5)				(,
B- C	0 : 0	-91.8	-91.8	0.24 (1)	10.00			
F-E								
	0 · 0	-18.5	-18.5	0.02(4)	10.00			
E- D	0 / 0	-18.5	-18.5	0.02 (4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	25.6	PSF
		DL	_	6.0	PSF
BOT	CH.	LL		0.0	PSF
				7.4	PSF
TOTA	il LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010. NBCC 2015

TOTAL WEIGHT = 13 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.24/1.00 (B-C:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.11/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

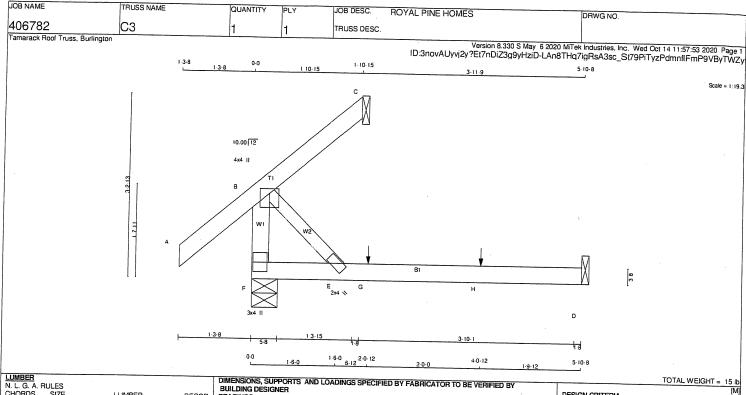
COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.24 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

CITY OF RICHMOND HILL BUILDING DIVISION

03/08/2022

RECEIVED
Per:____joshua.nabua_

CHORDS LUMBER DESCR - B 2x4 DRY No.2 - D No.2 SPF ALL WEBS 2x3 DRY DRY: SEASONED LUMBER

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 LEN Y 4.0 1. 4.0 W 4.0 TMVW+p BMW+w 1.00 2.00 MT20

BMV1+p

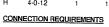
D 54 0 61 0 0	JT F C	VERT 315 42	RED REACTION HORZ 0 0		M FACTION HORZ 0 0		INPUT BRG IN-SX 5-8	REQRD BRG IN-SX 5-8
	C D	42 54	0	42 61	0	0	1-8 1-8	1-8 1-8

SEE MITEK STANDARD DETAIL 897791H FOR CONNECTION TO JOINT(S) C . D

UNFACTORED REACTIONS
1ST LCASE MA MAX.:MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE V COMBINED MIND SOIL 145 0 23 0 0 0 0 0 0 0 0 0 0 0 78 0 5 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.


ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED:

LOADING TOTAL LOAD CASES: (4)

W E B S MAX. FACTORED CHORDS MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH
0.0 0.0 0.03 (1) 7.81
-91.8 -91.8 0.13 (1) 10.00 MEMB FORCE MEMB. FORCE (LBS) FR-TO F- B LENGTH FR-TO 7.81 B- E -261 0 0.0 0.03 (1) -91.8 0.13 (1) -91.8 0.12 (1) 0.00(1) 0 A-B -91.8 F-E -18.5 0.14 (4) -18.5 0.19 (4) -18.5 0.19 (4) -18.5 -18.5 -18.5 0 0 10.00 E- G G- H 10.00 SPECIFIED CONCENTRATED LOADS (LBS)

LOC. LC₁ MAX-MAX+ DIR. TYPE HEEL CONN 2-0-12 FRONT VERT TOTAL

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = LL = DL = LL = 25.6 PSF 6.0 0.0 7.4 PSF PSF TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.13/1.00 (A-B:1) , BC=0.19/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.08/1.00 (B-C:1)

DOL LUMBER=0.98 NAIL=0.98 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN

MT20 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90)
JSI METAL= 0.05 (B) (INPUT = 1.00) OND HIL **BUILDING DIVISION**

03/08/2022

RECEIVED _joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 406782 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 11:57:54 2020 Page 1 ID:3novAUyvj2y?Et7nDiZ3g9yHziD-qMLWgdrlTzZjnDRoYAOMhdFd_NlsVEuuTQ9j1eyTWZx 13-8 0.0 3-10-15 3-10-15 Scale = 1:27.6 10.00 12 3.8 D 1-6-0 5-10-8

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES
 W
 LEN
 Y
 X

 B
 TMVW+p
 MT20
 4.0
 4.0
 1.00
 2.00

 E
 BMW+w
 MT20
 2.0
 4.0
 1.0
 2.00

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS

EACTORED

MAYING BEACTORED

	1111403					
Г	FACTO GROSS F VERT 361 179 54	PRED EACTION HORZ 0 0 0	MAXIMUI GROSS I DOWN 361 179 61		INPUT BRG IN-SX 5-8 1-8	REQRD BRG IN-SX 5-8 1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBEFROM TO LENG MAX. FACTORED MB. FORCE (LBS) MAX. FACTORED FORCE MAX MEMB. MEMB. MAX CSI (LC) CSI (LC) UNBRAC (LBS) FR-TO LENGTH FR-TO 0.0 0.0 -91.8 -91.8 F-B -307 0 0.0 0.03 (1) 7.81 B- E 0 - 0 0.00 (1) A-B B-C 0 -91.8 0.13 (1) -91.8 0.24 (1) 0:0 10.00 -18.5 0.14 (4) -18.5 0.19 (4) -18.5 -18.5

DESIGN CRITERIA

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

TOTAL WEIGHT = 18 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 . OBC 2012 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011 . TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.05")

CSI: TC=0.24/1.00 (B-C:1) , BC=0.19/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.11/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

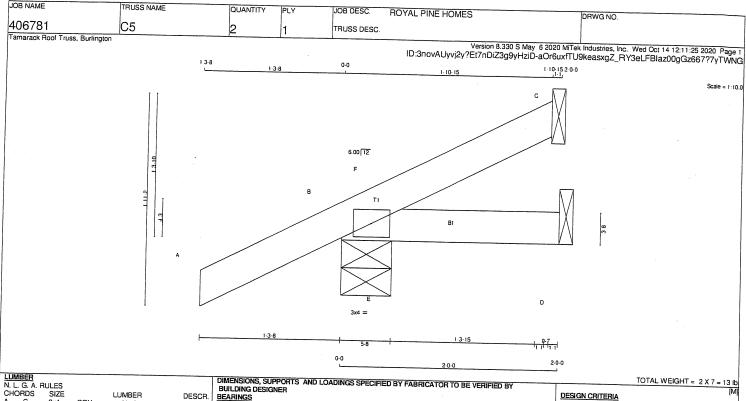
COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.24 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

> CITY OF RICHMOND HIL BUILDING DIVISION

> > 03/08/2022

RECEIVED Per:____joshua.nabua_

CHORDS A - C B - D DESCR. SPF SPF 2x4 DRY DRY

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMB1-I MT20 LEN Y 3.0 4.0

	FACTO GROSS R	EACTION	MAXIMU GROSS			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIET	IN-SX	IN-SX
С	75	0	75	0	0	1-8	1-8
В	231	0	231	ñ	n	5-8	5-8
D	31	Ō	31	Õ	0		
		Ü	51	U	U	1-8	1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C . D

UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW MIN. COMPONENT REACTIONS
LIVE PERM. LIVE WIND SOIL 40 / 0 119 / 0 9 10 0/0 52 12 0 43 0 14 0 0 0 0 0 0 0.0 161

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) C. B

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS WEBS MAX. FACTORED MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX. | (PLF) CSI (LC) UNBRAC | FROM TO LENGTH | 10.00 | 91.8 | 91.8 | 0.12 (1) | 10.00 | 91.8 | 91.8 | 0.04 (1) | 10.00 | MEMB. FORCE MEMB. **FORCE** (LBS) CSI (LC) FR-TO LENGTH FR-TO 10.00 E- F 6.25 A- B B- F F- C 0 - 27 -61 4 0.00(1) -11 : 0 0 : 3 0 -18.5 -18.5 0.04 (1) 10.00 -18.5 -18.5 0.04 (1) 10.00 0 / 0 B- E

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

SPECIFIED LOADS: LL = DL = LL = DL = AD = PSF PSF PSF CH. 25.6 6.0 0.0 7.4 TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , OBC 2012 , ABC 2019 PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-9, CSA 086-14 TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.12/1.00 (A-B:1) , BC=0.04/1.00 (D-E:1) WB=0.00/1.00 (E-F:1) , SSI=0.09/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

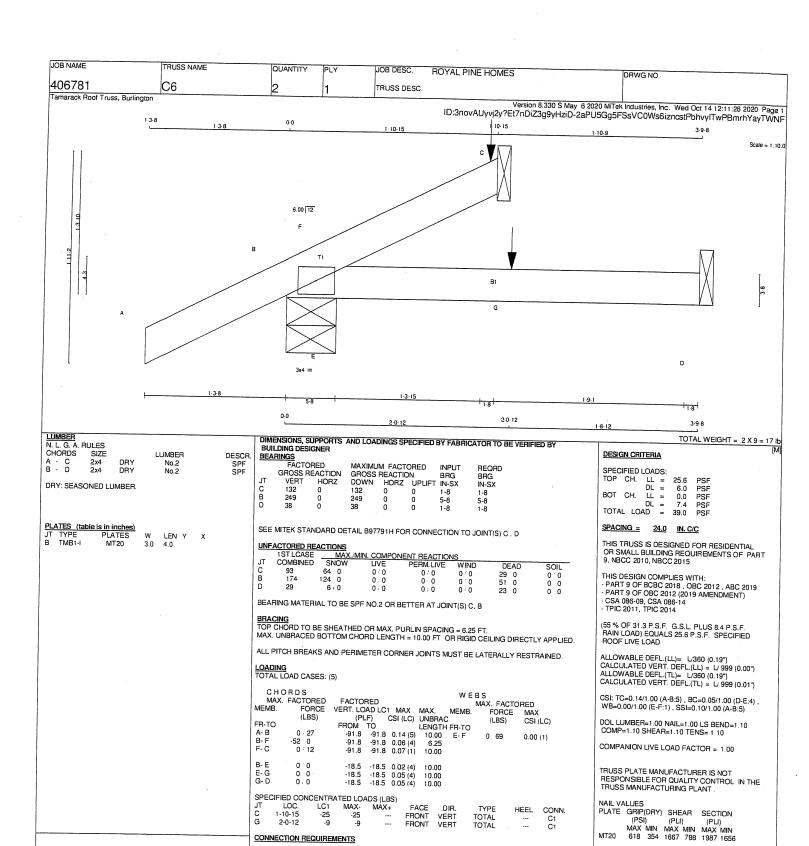
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 618 354 1667 788 1987 1656

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.18 (B) (INPUT = 0.90) JSI METAL= 0.04 (B) (INPUT = 1.00)

CITY OF RICHMOND HILL **BUILDING DIVISION**

03/08/202

RECEIVED joshua.nabua

Structural component only DWG# T-2022225

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

VERT

2-0-12

CONNECTION REQUIREMENTS

PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.16 (B) (INPUT = 0.90) JSI METAL= 0.03 (B) (INPUT = 1.00)

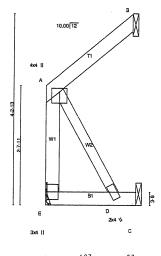
PLATE PLACEMENT TOL. = 0.250 inches

C1

C1

CITY OF RICHMOND HIL **BUILDING DIVISION**

03/08/2022


RECEIVED _joshua.nabua JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **ROYAL PINE HOMES** DRWG NO. 406781 TRUSS DESC C7

Tamarack Roof Truss, Burlington

Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Mon Jun 7 08:43:58 2021 Page 1 ID:ZPnFFM9Z?6P9fBfbpDyK8Tz9PnR-LVPTWBevt0Pq2Y4WHA2yq3S5X1ltychkiON2_jz8khi

1-10-15 2-0-0

Scale = 1:24.

1-6-0 1-10-15 2-0-0 4-15 1-1

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR. SPF SPF SPF E - A A - B E - C DRY 2x4 No.2 No.2 DRY No.2 ALL WEBS 2x3 DRY No.2 SPF DRY: SEASONED LUMBER.

		is in inches)				
Л	TYPE	PLATES	W	LEN	Υ	Х
Α	TMVW+p	MT20	4.0	4.0	1.00	2.00
D	BMW+w	MT20	2.0	4.0		
E	BMV1+p	MT20	3.0	4.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Ε	106	0	106	0	0	MECHANIC	AL
В	88	0	88	0	0	1-8	1-8
С	19	0	21	0	0	1-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) B , C

UNE	ACTURED RE	ACTIONS					
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ε	75	49 / 0	0/0	0/0	0/0	26 / 0	0/0
В	60	49 / 0	0/0	0/0	0/0	11/0	0/0
С	15	0/0	0/0	0/0	0/0	15/0	0/0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СНС	RDS					W E	BS		
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	_F)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO	, ,		
E- A	-88 / 0	0.0	0.0	0.01(1)	7.81	A- D	0/0	0.00(1)	
A- B	0/0	-91.8	-91.8	0.06 (1)	10.00			(,	
E- D	0/0	-18.5	-18.5	0.02 (4)	10.00				
D- C	0/0	-18.5	-18.5	0.02 (4)	10.00				

SPECIFIED LOADS:

25.6 6.0 0.0 7.4 PSF PSF PSF LL = . DL = . AD = . CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 10 lb

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (A-D:1) , SSI=0.05/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

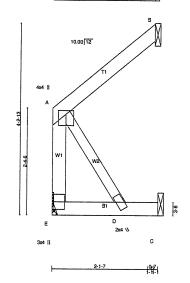
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.06 (A) (INPUT = 0.90) JSI METAL= 0.02 (A) (INPUT = 1.00)

PROFESSIONAL ENGINEERS H. J. G. ALVES 1000090247 POWNEE OF ONTARIO

Structural component only DWG# T-2117976


CITY OF RICHMOND HILL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY ROYAL PINE HOMES DRWG NO. 406781 C7X TRUSS DESC

Tamarack Roof Truss, Burlingtor

Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Mon Jun 7 08:43:59 2021 Page 1 ID:ZPnFFM9Z?6P9fBfbpDyK8Tz9PnR-pizrjXfXeKYhgifirtZBNH_FxQ5_h3xtw27bW9z8khl

Scale = 1:24.3

LUMBER N. L. G. A. RULES DESCR SPF SPF SPF CHORDS SIZE LUMBER No.2 No.2 DRY 2x4 DRY 2x4 DRY No.2 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

PLATES (table is in inches)
JT TYPE PLATES TYPE TMVW+p LEN Y 4.0 4.0 MT20 1.00 2.00 BMW+w BMV1+p

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

1-6-0 2-2-15 2-4-0 8-15 1-1

5011	الحال المانات	CHEN					
BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N.	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	125	0	125	0	0	MECHANIC	CAL
В	103	0	103	0	0	1-8	1-8
С	22	0	24	0	0	1-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

SEE MITEK STANDARD DETAIL 897791H FOR CONNECTION TO JOINT(S) B . C

UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW LIVE PERMLLIVE V
0/0 0/0 0/0 MA) SNOW WIND SOIL 0/0 0/0 DEAD 57 / 0 57 / 0 31 / 0 13 / 0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX.	CHORDS WEBS WAX. FACTORED MAX. FACTORED MAX. FACTORED MEMB. FORCE MAX. MEMB. FORCE MAX.								
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PI	_F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO	. ,		
E- A	-103 / 0	0.0	0.0	0.01(1)	7.81	A- D	0/0	0.00(1)	
A-B	0/0	-91.8	-91.8	0.08 (1)	10.00			0.00 (.,)	
E- D	0/0	-18.5	-18.5	0.03 (4)	10.00				
D- C	0/0	-18.5	-18.5	0.03 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: LL = 25.6 DL = 6.0 LL = 0.0 TOP CH. PSF 6.0 0.0 7.4 TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 10

MILE

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

CSI: TC=0.08/1.00 (A-B:1) , BC=0.03/1.00 (D-E:4) , WB=0.00/1.00 (A-D:1) , SSI=0.06/1.00 (A-B:1)

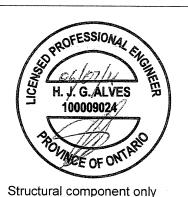
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES | PLATE | GRIP(DRY) | SHEAR | SECTION | (PSI) | (PLI) | (PLI) | (PLI) | (MAX | MIN | MIN | MAX | MIN | MIN | MIN | MIN | MIN | MIN | MIN | MIN | MIN | MIN | MIN | MIN | MIN |

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.08 (A) (INPUT = 0.90) JSI METAL= 0.02 (A) (INPUT = 1.00)

> CITY OF RICHMOND HILL **BUILDING DIVISION**

> > RECEIVED

03/08/202

DWG# T-2117977

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 406781 C8 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Mon Jun 7 08:44:00 2021 Page ID:ZPnFFM9Z?6P9fBfbpDyK8Tz9PnR-HuXExtg9PegYHsEvOb4QvUXPeqQIQWA19is82bz8khi

0-0 1-10-15

10.00 12

1-3-15 5-6 0-0 1-6-0 6-12 2-0-12 3-10-8

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR - B - C SPF SPF SPF DRY 2x4 No 2 DRY ALL WEBS 2x3 DRY No.2 SPF DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 E
 BMW+w
 MT20
 LEN Y 4.0 1. W 4.0 Y X 1.00 2.00 2.0 BMV1+p

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRE
GROSS REACTION			GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	298	0	298	0	0	5-8	5-8
С	42	0	42	0	-36	1-8	1-8
D	37	0	42	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNFACTORED REACTIONS SNOW COMPONENT REACTIONS LIVE 0/0 COMBINED SOIL 0/0 FCD 0/0 0/0 64/0 29 23 / -26 0/0 0/0 0/0 5/0 0/0 30 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F. C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS WEBS FACTORED VERT. LOAD LC1 MAX (PLF) CSI (LC) MAX. FACTORED MAX. FACTORED MEMB. **FORCE** MAX. MEMB. FORCE (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) FROM TO 0.0 0.0 0.04 (1) -91.8 -91.8 0.15 (5) FR-TO LENGTH FR-TO 7.81 B- E 0/0 0.00(1) A-B 0 / 41 10.00 B-C -29 / 0 -91.8 0.14 (5) F- E E- G G- D -18.5 -18.5 0.08 (4) -18.5 -18.5 0.09 (4) -18.5 -18.5 0.09 (4) 0/0 10.00 10.00 0/0 0/0 SPECIFIED CONCENTRATED LOADS (LBS) MAX-MÀX+ JT. LOC FACE DIR HEEL CONN. G FRONT VERT TOTAL

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = 25.6 6.0 0.0 PSF PSF TOP CH. BOT CH. PSF DL TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

TOTAL WEIGHT = 2 X 14 = 28 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.15/1.00 (A-B:5) , BC=0.09/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.09/1.00 (A-B:5)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.19 (B) (INPUT = 0.90) JSI METAL= 0.05 (B) (INPUT = 1.00)

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED

Structural component only DWG# T-2117978

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components

2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.

- 3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.
- 4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.
- 5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

- 1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.
 - 2- Lumber is to be the sizes and grade specified on the truss drawing.
 - 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6- The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)
- 7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals.

8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols, numbering system and General Safety notes.

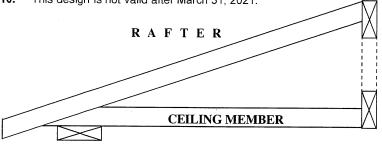
T-1300213

CITY OF RICHMOND HILL Feb 09,12018 G DIVISION

03/08/2022

RECEIVED

BEARING ANCHORAGE BY TOE-NAILS FOR LATERAL CAPACITY


B97791H1

NAIL TYPE	LENGTH	DIAMETER	NAIL LATERAL CAPACITY (LE		
IVAIL THE	(IN)	(IN)	S-P-F	D. FIR	
COMMON	3.00	0.144	132	147	
WIRE	3.25	0.144	132	147	
VVII.1	3.50	0.160	159	177	
COMMON	3.00	0.122	97	108	
SPIRAL	3.25	0.122	97	108	
OI IIIAL	3.50	0.152	145	162	

NOTES:

- 1. Rafter and ceiling members may be anchored to top and bottom chords of girder truss by toe-nailing rafter and ceiling members to girder chords provided the reaction does not exceed the lateral capacities in the table. Hangers (specified by others) are required for reactions higher than the maximum toe-nail capacity. Reactions are based on factored loads.
- 2. Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA 086-14, section 12.9.4.1.
- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- 4. Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in tables below.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42 (SPF), G = 0.49 (D. Fir).
- 6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See next page for nailing on bearing plate).
- 7. For loads due to wind the nail lateral capacity in this table may be multiplied by 1.15 (Kn factor).
- 8. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 9. Nail values in this table comply with CSA O86-14, section 12.9.4

10. This design is not valid after March 31, 2021.

1.5"	
30 deg.	
L	
2 /	Z

TOE-NAIL INSTALLATION

Nail type	Common wire	Common spiral	Common wire	Common spiral
Nail dia. (in)	0.160	0.152	0.144	0.122
	(3.5'	' nail)	(3" and :	3.25" nail)
LUMBER SIZE	N	MAXIMUM NUMB	ER OF TOE-NA	ILS
2X4 SPF	2	2	3	3
2X4 D. Fir	2	2	2	2
2X4 SPF	2 2	AXIMUM NUMB 2 2	3 2	3 2

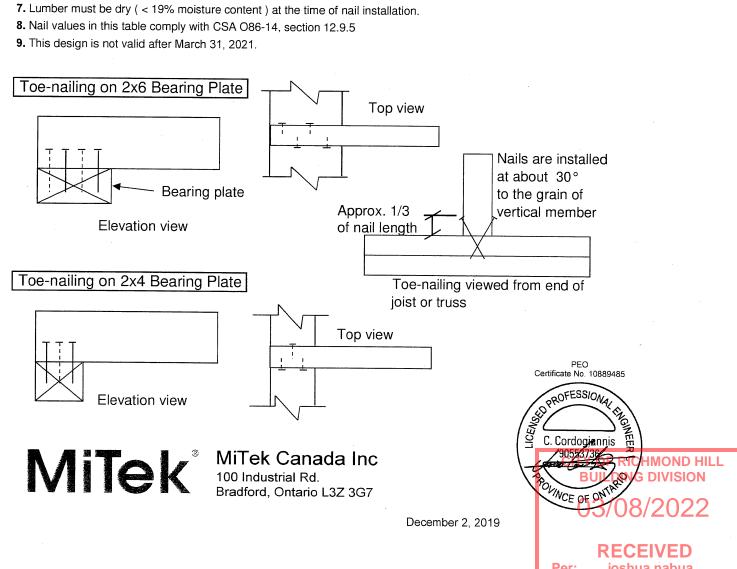
2X6	SPF	4	4	4	5
2X6	D. Fir	3	3	3	4

Bradford, Ontario L3Z 3G7

December 2, 2019

joshua.nabua

BEARING ANCHORAGE BY TOE-NAILS FOR WIND LOADING


B97791H2

NAIL TYPE	LENGTH	DIAMETER	NAIL WITHDRAWAL CAPACITY (LE			
NAILTHE	(IN)	(IN)	S-P-F	D. FIR		
COMMON	3.00	0.144	30	42		
WIRE	3.25	0.144	32	45		
VVIII.	3.50	0.160	38	52		
COMMON	3.00	0.122	26	36		
SPIRAL	3.25	0.122	28	40		
OI IIIAL	3.50	0.152	36	50		

Note: If using truss with D. Fir lumber and S-P-F bearing plate, use values in table for S-P-F.

NOTES:

- 1. Truss chord, rafter, or ceiling members may be anchored to bearing plate by toe-nails, provided that the actual factored uplift force due to wind or earthquake load does not exceed the withdrawal capacities in the table. Hangers (specified by others) are required for uplift forces that are higher than the maximum toe-nail withdrawal capacity.
- 2. Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor JA in CSA 086-14, section 12.9.5.2.
- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- 4. Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in table above.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42(SPF), G = 0.49(D. Fir).
- 6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See drawing on detail B37579H1).

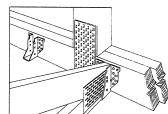
TECHNICAL BULLETIN

HUS/LJS - Double Shear Joist Hangers

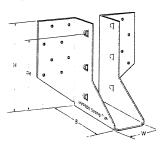
SIMPSON Strong-Tie

All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: See table
Finish: G90 galvanized


Design:

- Factored resistances are in accordance with CSA O86 -14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

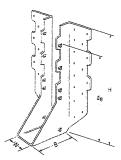

Installation:

Options:

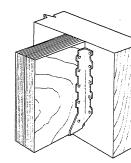
- · Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

See current catalogue for options

LJS26DS


0 0

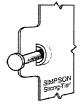
0 0


Typical LJS26DS

Installation

Ð

HUS210 (HUS26, HUS28, similar)

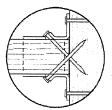


Typical HUS Installation

Typical HUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

Model No.	Ga.	Dimensions (in.)				Fas	teners	Factored Resistance (lb.)				
		w	Н	В	d _e ¹	Face		D.Fir-L		S-P-F		
							Joist	Uplift (K _D =1.15)	Normal (K _D =1.00)	Uplift (K _D =1.15)	Normal (K _D =1.00)	
								lb.	lb.	lb.	lb.	
LJS26DS	18	1%16	5	3½	45/8	(16) 16d	(6) 16d	2055	4265	1460	4115	
HUS26	16	15/8	5%	3	315/16	(14) 16d	(6) 16d	2705	4940	2065	3875	
HUS28	16	15/8	73/32	3	63/32	(22) 16d	(8) 16d	3605	5365	2675	4345	
HUS210	16	15⁄a	93/32	3	731/32	(30) 16d	(10) 16d	4505	5795	4010	4740	
HUS1.81/10	16	1 13/16	9	3	8	(30) 16d	(10) 16d	4505	6450	4010	5200	

1. de is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

CITY OF RICHMOND HILL BUILDING DIVISION

(800) 999-5099 /2022 strongtie.com

LIMIT STATES DESIGN This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHUS20 3/20 exp. 6/22

RECEIVED
Per:___joshua.nabua

TECHNICAL BULLETIN

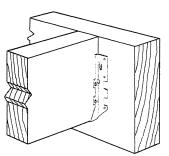
LUS - Double Shear Joist Hangers

SIMPSON Strong-Tie

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

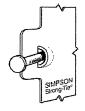
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

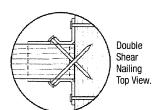
Installation:

- Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

Options:

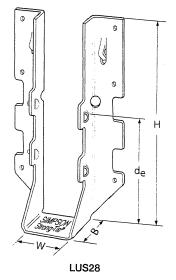

• These hangers cannot be modified

Typical LUS Installation


Model No.	Ga.	Dimensions (in.)				Eact	nnare	Factored Resistance (lb.)			
						Fasteners		D.Fir-L		S-P-F	
		W	Н	В	d _e ¹	Face	Joist	Uplift	Normal	Uplift	Normal
								(K _D =1.15)	(K _D =1.00)	(K _D =1.15)	(K _D =1.00)
LUS24	18	19/16	31/8	13/4	1 15/16	(4) 10d	(2) 10d	710	1630	645	1155
LUS24-2	18	3⅓	31/8	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435
LUS26	18	19/16	43/4	13/4	3%	(4) 10d	(4) 10d	1420	2170	1290	1630
LUS26-2	18	31/8	47/s	2	4	(4) 16d	(4) 16d	1720	2595	1545	1920
LUS26-3	18	45/8	4 3/16	2	31/4	(4) 16d	(4) 16d	1720	2595	1545	2340
LUS28	18	19/16	6 5/8	13/4	3¾	(6) 10d	(6) 10d	1420	2520	1290	1790
LUS28-2	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575
LUS28-3	18	45⁄8	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375
LUS210	18	19/16	7 13/16	13/4	3%	(8) 10d	(4) 10d	1420	2785	1290	2210
LUS210-2	18	31/8	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195
LUS210-3	18	4⅓	83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375

^{1.} de is the distance from the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5,603,580

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECLUS20 3/20 exp. 6/22

CITY OF RICHMOND HILL BUILDING DIVISION

RECEIVED Per:___joshua.nabua

HGUS – Double Shear Joist Hangers

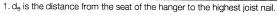
SIMPSON Strong-Tie

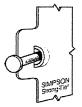
All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

Design:

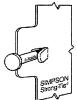
- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

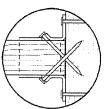

Installation:


- Use all specified fasteners
- Nails: 16d = 0.162" dia x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

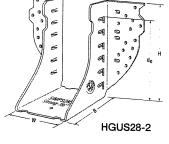
Options:

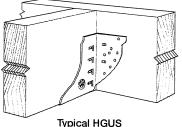
• See current catalogue for options


Model No.	Ga.	Dimensions (in.)				Facto	nore	Factored Resistance (lb.)			
						Fasteners		D.Fir-L		S-P-F	
		w	Н	В	d _e 1	Face	Joist	Uplift	Normal	Uplift	Normal
								$(K_D=1.15)$	(K _D =1.00)	(K _D =1.15)	(K _D =1.00)
HGUS26	12	15/8	5 ¾	5	4 5/32	(20) 16d	(8) 16d	2685	6625	2685	5700
HGUS26-2	12	3 1/16	5 ^{7/} 16	4	4 1/3	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-3	12	4 15/16	5 1/2	4	4 1/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-4	12	6%16	57/16	4	4 1/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS28	12	15/8	7 1/s	5	61/8	(36) 16d	(12) 16d	3310	7675	3100	6900
HGUS28-2	12	3 5/16	73/16	4	61/9	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS28-3	12	4 15/16	7 1/4	4	63/8	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS28-4	12	6%16	73/16	4	6 1/s	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS210	12	1%	9 1/8	5	77/8	(46) 16d	(16) 16d	3535	11070	2510	8090
HGUS210-2	12	3 ⅓16	93/18	4	81/8	(46) 16d	(16) 16d	6840	14015	4855	10270
HGUS210-3	12	4 15/16	91/4	4	83/8	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS210-4	12	6%16	93/16	4	81/8	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS212-4	12	6%16	10%	4	101/8	(56) 16d	(20) 16d	7640	14995	5425	10645
HGUS214-4	12	6%16	12%	4	11 ½	(66) 16d	(22) 16d	10130	16400	7195	11645

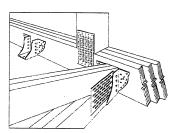


Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5,603,580



Double Shear Nailing Side View. Do not bend tab back.



Double Shear Nailing Top View.

Typical HGUS Installation

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

CITY OF RICHMOND HILL BUILDING DIVISION

(800) 999-5099 / 2 0 2 2 strongtie.com

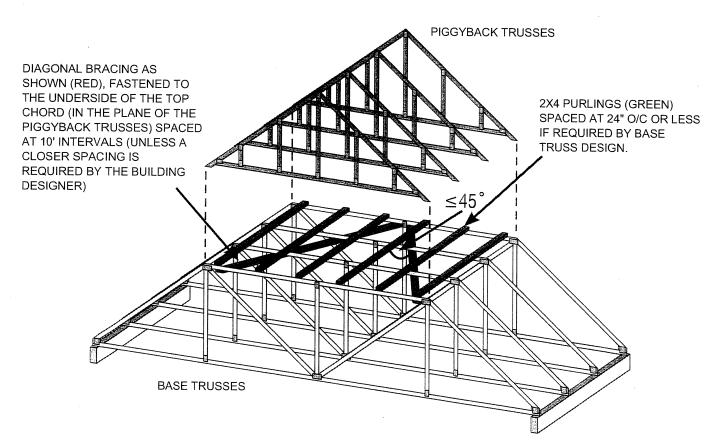
RECEIVED Per: joshua.nabua

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHGUS20 3/20 exp. 6/22

TECH-NOTES


TN 15-001 **Piggyback Bracing**

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

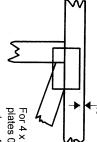
SKETCH FROM BCSI-CANADA 2013

CITY OF RICHMOND HILL **BUILDING DIVISION**

no might benefit from the information.

joshua.nabua

Disclaimer:


OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers w The details have been developed by the DWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technical are not intended to be used without naving a professional engineer review the information for a specific application. The DWTFA takes no responsibility with respect to the professional engineer review the information for a specific application. information provided but has developed this tech-note to offer guidance where it is not currently readily available

Symbols

PLATE LOCATION AND ORIENTATION

and fully embed teeth Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss offsets are indicated Center plate on joint unless x, y

plates 0- 1/16" from outside For 4 x 2 orientation, locate edge of truss.

œ

7

6

G

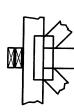
თ Ģ

required direction of slots in connector plates This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 × 4

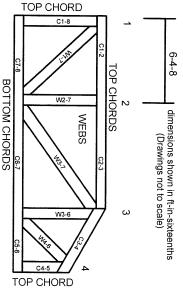

the length parallel to slots. to slots. Second dimension is width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the if indicated. output. Use T or I bracing

BEARING

Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


Industry Standards:

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction

DSB-89:

Building Component Safety Information, Guide to Good Practice for Handling, Connected Wood Trusses Installing & Bracing of Metal Plate Design Standard for Bracing.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS

PRODUCT CODE APPROVALS

ICC-ES Reports

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

section 6.3 These truss designs rely on lumber values established by others Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015

Damage or Personal Injury Failure to Follow Could Cause P General Safety Notes Горену

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See <u>@</u>
- Truss bracing must be designed by an engineer wide truss spacing, individual lateral braces then may require bracing, or alternative Tor I bracing should be considered. For
- Never exceed the design loading shown and nev stack materials on inadequately braced trusses
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.

6

- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria