

TAMARACK ROOF TRUSSES INC. 31-10-00 6/12 Plan Log: Layout ID: Job Track: J1(16) 51012 413423 5-10-08 201953 14-00-00 2 PLY Date: Project: CENTREFIELD Builder / Location: **ROYAL PINE HOMES** 2020-10-14 Sales: 31-00-00 10-06-00 Mario DiCano **PB1**(3) 49-10-00 RICHMOND HILL Designer: LC THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC IF UTILIZED FOR ANY OTHER PURPOSE.

Mittek ver 8.3.3.247 20-05-00 6/12 2 PLY T25 11-00-00 5-10-08 T11Z4 T11Z5 12-00-00 5-10-08 J1(3) Model / Elevation: 38-10 / C 1-00-00 5-10-08 411-00 6/12 J1(6 FLAT ROOF 6/12 FLAT ROOF ALL CONV. FRAMING TO CONFORM WITH PART 9 OF O.B.C.2012 (2019 AMENDMENT) ROOF RAFTERS THAT CROSS MEET OVER TRUSSES TO BE 224 SPF @ 24"O. WITH A 2'X4 VERT. POST TO THE TRUSS UNDER NEATH AT EACH CROSS PT. VERT. POST LONGER THAN 6" TO HAVE LATERAL BRACING SO THAT THE DISTANCE BETWEEN END PT. & BETWEEN ROWS OF BRACING DOES NOT EXCEED 6" 19-00-00 11-10-00 7-02-00 12-10-00 31-10-00 BUILDING **DESIGN LOADS:** Ss = 31.3 psf(2019 AMENDMENT)
OCCUPANCY: RESIDENTIAL DESIGN CONFORMS WITH OBC 2012 DENOTES CONV. FRAMING PART: 9 HARDWARE: LUS24 - (O) LUS26-2 - (VV) TCSL = 25.6 psf TCDL = 6.0 psf BCLL = 0.0 psf BCDL = 7.4 psf JS26DS - (V)

49-10-00

5-00-00

da

ASPHALT SHINGLES
12" FINISHED OH.
R.T.M.C. 2 6 2X6 EXTERIOR WAL 2X6 FASCIA BOARD

S

T1 **T2**

T3

T4 T5C T₆C

T7C

T6C(3)

T7

T6

T5 **T4 T3**

T2 **T1Z2**

T17

T16

T15

ALL ROOF PITCHES ARE 8/12
UNLESS OTHERWISE NOTED

Sr = 8.4 psf

ROOF TRUSSES INC. ALPA LUMBER GROUP

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL 38-10

Α

Lot #:

Elevation:

Job Track:

51012

PlanLog: Layout ID: 201953 406506

Ref#

12606

Page:

1 of 3

Date:

10-14-2020

Designer:

Leo Chen

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK			·		OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	8 /12	31-00-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	293.47 181.33		
	1 2-ply	T1Z Hip Girder	8 /12	31-00-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	293.47 181.33		
	2	T2 Hip	8 /12	31-00-00	5-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	255.62 161.00		
	2	T3 Hip	8 /12	31-00-00	6-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	269.73 168.67		ā
	2	T4 Hip	8 /12	31-00-00	7-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	267.35 169.67		
	1	T5 Hip	8 /12	31-00-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	141.02 87.67		
	1	T5C Hip	8 /12	31-00-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	141.02 87.67		
	1	T6 Hip	8 /12	31-00-00	9-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	149.53 93.33	,	
	4	T6C Hip	8 /12	31-00-00	9-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	598.12 373.33		
	1	T7 Hip	8 /12	31-00-00	10-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	156.28 97.33		
	1	T7C Hip	8 /12	31-00-00	10-01-04	2 x 4	1-03-0 <mark>8</mark> 1-03-08	1-04-13 Chī04-98F R BUILDI	156.28 IC971330N NG DIVIS		
	1	T8A Hip Girder	.8 /12	12-00-00	5-03-13	2 x 4 2 x 6	1-03-08	1-04-13/1 2-06-13	64.29 40.33	21	
	1	T9A Common	8 /12	12-00-00	5-11-13	2 x 4	1-03-08		CE1.69El nie ³³ 6 ⁷ dev	O vitt	
	2	T10 Common	8 /12	10-00-00	4-08-13	2 x 4	1-03-08	1-04-13 1-04-13	80.97 51.00		

Lumber Yard: TAMARACK LUMBER

Builder: **ROYAL PINE HOMES**

Project: CENTREFIELD Location: RICHMOND HILL

Model: 38-10

Lot #:

Elevation: Α Job Track:

51012

PlanLog: Layout ID: 201953 406506

Ref#

12606

Page: Date:

2 of 3

Designer:

10-14-2020 Leo Chen

Sales Rep:

Mario DiCano

Roof Trusses

•	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	T10S Scissor	8 /12 6 /12	10-00-00	4-08-13	2 x 4	1-03-08	1-04-13 1-04-13	82.73 54.00		
	1 2-ply	T11 Monopitch Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		
	1 2-ply	T11Z Monopitch Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		
	1	T12 Common	8 /12	7-10-00	4-00-02	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	34.51 22.00		
	1	T12G GABLE	8 /12	7-10-00	4-00-02	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	32 21.00		
	2	T12S Common	8 /12	7-10-00	5-02-02	2 x 4	1-03-08	2-06-13 2-06-13	74.21 49.67		-
	3	PB1 Piggyback	8 /12	7-10-11	2-00-00	2 x 4			64.14 43.00		
	20	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	335.89 213.33		
	1	C1 Jack-Open	8 /12	1-10-15	2-08-02	2 x 4	1-03-08 1-01	1-04-13 2-08-02	9.34 6.33		
	1	C2 Jack-Open	8 /12	2-00-00	4-00-02	2 x 4	1-03-08 1-10-15	1-04-13 2-08-13	12.08 7.67		
	1	C3 Jack-Open	8 /12	1-10-15	2-08-02	2 x 4	1-03-08 3-11-09	1-04-13 C ₂ I ₀₈₋₀₂ F R BUILDI	13.76 ICI9.00ON NG DIVIS	D HILL ION	
	1	C4 Jack-Open	8 /12	3-04-15	3-08-02	2 x 4	1-03-08 2-05-09	1-04-13/1 3-08-02	615.83 9.67.	21	

TOTAL #TRUSS= 60

TOTAL BFT OF ALL TRUSSES= 2334.67

TOTAL WEIGHT OF ALL TRSSES 3710.08 LBS BFT. Per:____danielle.devitt

HARDWARE

QTY	TYPE	MODEL	LENGTH
1	Hardware	LJS26DS	
6	Hardware	LUS24	

Lumber Yard: TAMARACK LUMBER

Builder: **ROYAL PINE HOMES**

Project: CENTREFIELD

Location: RICHMOND HILL

Model: 38-10

Lot #:

Elevation: Α Job Track:

PlanLog:

51012 201953

Layout ID: Ref#

406506 12606

Page: Date:

3 of 3 10-14-2020

Designer:

Leo Chen

Sales Rep: Mario DiCano

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	LUS26-2	

TOTAL NUMBER OF ITEMS= 10

CITY OF RICHMOND HILL **BUILDING DIVISION**

11/16/2021

RECEIVED danielle.devitt

Lumber Yard: TAMARACK LUMBER

Builder: ROYAL PINE HOMES

Project: CENTREFIELD Location: RICHMOND HILL

Model: 38-10

Lot #:

Elevation: B

Job Track:

PlanLog:

51012 201953

Layout ID:

406445

Ref# Page: 12629 1 of 2

Date:
Designer:

06-04-2021 Leo Chen

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK				T	OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	T2 Hip	8 /12	31-00-00	5-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	255.62 161.00		
	2	T3 Hip	8 /12	31-00-00	6-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	269.73 168.67		
	2	T4 Hip	8 /12	31-00-00	7-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	267.35 169.67		
	1	T5 Hip	8 /12	31-00-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	141.02 87.67		
	1	T5C Hip	8 /12	31-00-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	141.02 87.67		
	1	T6 Hip	8 /12	31-00-00	9-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	149.53 93.33		
	4	T6C Hip	8 /12	31-00-00	9-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	598.12 373.33		
	2	T7C Hip	8 /12	31-00-00	10-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	312.55 194.67		
	1	T15 Hip Girder	8 /12	12-00-00	4-01-04	2 x 4	1-03-08	1-04-13 1-04-13	49.71 31.17		
	1	T16 Hip	8 /12	12-00-00	5-01-04	2 x 4	1-03-08	1-04-13 1-04-13	54.15 34.50		
	1	T17 Common	8 /12	12-00-00	5-04-13	2 x 4	1-03-08	C1-04-13 C104-13F F BUILDI	RIC ⁴⁷ ,65 NG DIVIS	D HILL ION	
	1	T18 Hip Girder	8 /12	19-04-00	5-07-04	2 x 4 2 x 6	1-03-08	1- <mark>04-1</mark> 3/1 2-10-13	62.83	21	
	1	T19 Hip	8 /12	19-04-00	6-04-04	2 x 4	1-03-08	1-04-13 E Pe2 <u>÷10-13</u> da	CESSE niesserder	D /itt	
	1 2-ply	T20 Monopitch Girder	6 /12	5-10-08	5-07-04	2 x 4 2 x 6		2-08-00 5-07-04	72.57 47.00		

Lumber Yard: TAMARACK LUMBER

Builder: **ROYAL PINE HOMES**

38-10

Project: CENTREFIELD Location: RICHMOND HILL

Model:

Lot #:

Elevation: В Job Track:

Layout ID:

51012 201953

PlanLog:

406445 12629

Ref# Page:

2 of 2

Date: Designer:

06-04-2021 Leo Chen

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T21 Hip Girder	8 /12	31-00-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	298.15 185.33		
<u> </u>	1 2-ply	T21Z Hip Girder	8 /12	31-00-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	298.15 185.33		
	1 2-ply	T51 Monopitch Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	60.47 38.67		
	3	PB1 Piggyback	8 /12	7-10-11	2-00-00	2 x 4			64.14 43.00		
	28	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	470.25 298.67		
	1	J11 Jack-Open	6 /12	5-10-08	5-07-04	2 x 4	1-03-08	2-08-00 5-07-04	20.59 13.50		
	6	J12 Jack-Open	4 /12	3-07-00	2-01-03	2 x 4	1-09-08	3-15 1-06-04	63.95 40.00		
	1	J13 Jack-Closed	6 /12	5-10-08	5-07-04	2 x 4	1-03-08	1-02-00 5-07-04	35.39 23.33		
	1	J14 Jack-Closed	6 /12	5-10-08	4-02-13	2 x 4	1-03-08	1-02-00 4-02-13	32.52 22.17		

TOTAL #TRUSS= 68

TOTAL BFT OF ALL TRUSSES= 2444.35

BFT.

TOTAL WEIGHT OF ALL TRSSES 3889.03 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
3	Hardware	LJS26DS	
. 4	Hardware	LUS24	

TOTAL NUMBER OF ITEMS= 9

CITY OF RICHMOND HILL **BUILDING DIVISION**

11/16/2021

RECEIVED

Per: danielle.devitt

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

38-10

С

Location: Model:

RICHMOND HILL

Lot #:

Elevation:

Job Track:

51012

PlanLog: Layout ID: 201953 413423

Ref#

12606

Page:

1 of 2

Date:

10-14-2020

Designer:

Leo Chen

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK #	REMARKS
	1 2-ply	T1 Hip Girder	8 /12	31-00-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	293.47 181.33		
	1 2-ply	T1Z2 Hip Girder	8 /12	31-00-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	293.47 181.33		
	2	T2 Hip	8 /12	31-00-00	5-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	255.62 161.00		
	2	T3 Hip	8 /12	31-00-00	6-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	269.73 168.67		
	2	T4 Hip	8 /12	31-00-00	7-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	267.35 169.67		
	1	T5 Hip	8 /12	31-00-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	141.02 87.67		
	1	T5C Hip	8 /12	31-00-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	141.02 87.67		
	1	T6 Hip	8 /12	31-00-00	9-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	149.53 93.33		
	4	T6C Hip	8 /12	31-00-00	9-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	598.12 373.33		
	1	T7 Hip	8 /12	31-00-00	10-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	156.28 97.33		
	1	T7C Hip	8 /12	31-00-00	10-01-04	2 x 4	1-03-08 1-03-08	1-04-13 C1704-03F R BUILDI	156.28 RIC97(330N NG DIVIS		
	1 2-ply	T11Z4 Monopitch Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00/ 4-01-04/	658.39 37.67	21	
	1 2-ply	T11Z5 Monopitch Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02- <mark>00</mark> E Pe ⁴⁻ 01-04 da	CE839El nie ³⁷ 6 ⁷ dev	D vitt	
	1	T15 Hip Girder	8 /12	12-00-00	4-01-04	2 x 4	1-03-08	1-04-13 1-04-13	49.71		

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

Model:

38-10

С

Lot #:

Elevation:

Job Track:

51012

PlanLog:

201953

Layout ID:

413423 12606

Ref# Page:

Date:

2 of 2

Designer:

10-14-2020 Leo Chen

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK			-		OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	.1	T16 Hip	8 /12	12-00-00	5-01-04	2 x 4	1-03-08	1-04-13 1-04-13	54.15 34.50		
	1	T17 Common	8 /12	12-00-00	5-04-13	2 x 4	1-03-08	1-04-13 1-04-13	47.65 29.17		
	1	T25 Hip Girder	8 /12	11-00-00	4-01-04	2 x 4	1-03-08	1-04-13 1-04-13	46.9 29.83		
	3	PB1 Piggyback	8 /12	7-10-11	2-00-00	2 x 4			64.14 43.00		
	31	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	520.63 330.67		

TOTAL #TRUSS= 61

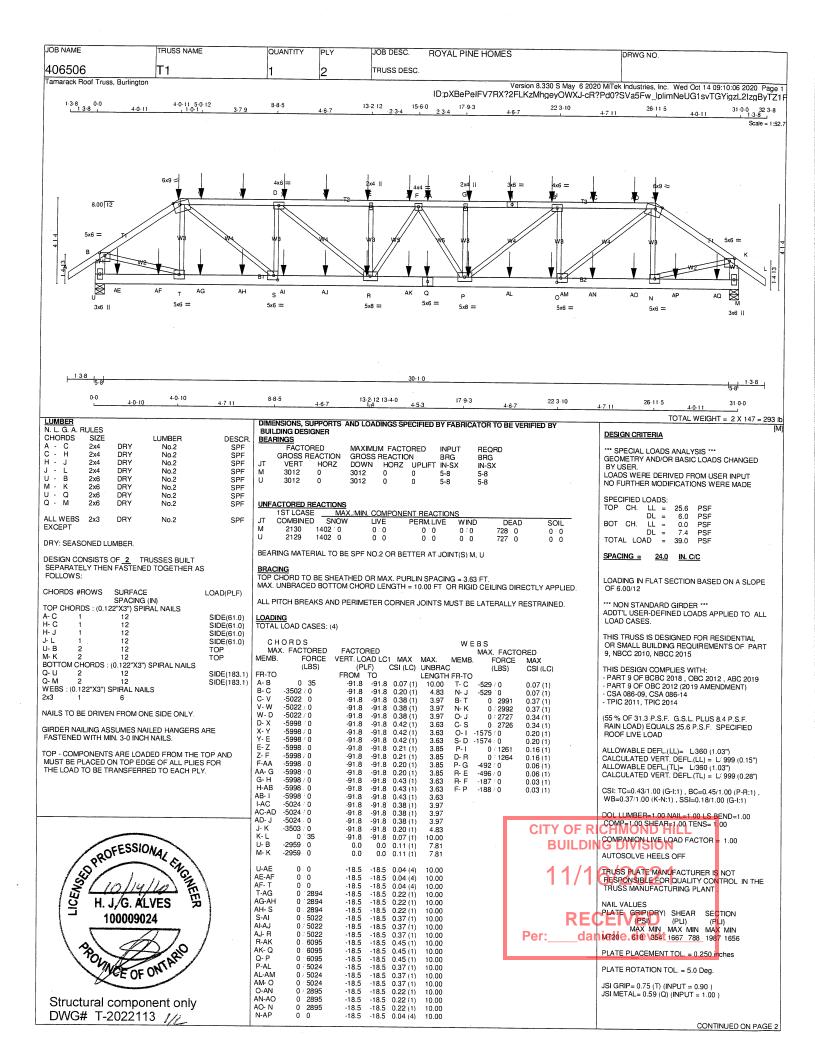
TOTAL BFT OF ALL TRUSSES= 2272.34

BFT.

TOTAL WEIGHT OF ALL TRSSES 3621.84 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
1	Hardware	LJS26DS	
2	Hardware	LUS24	
2	Hardware	LUS26-2	


TOTAL NUMBER OF ITEMS= 5

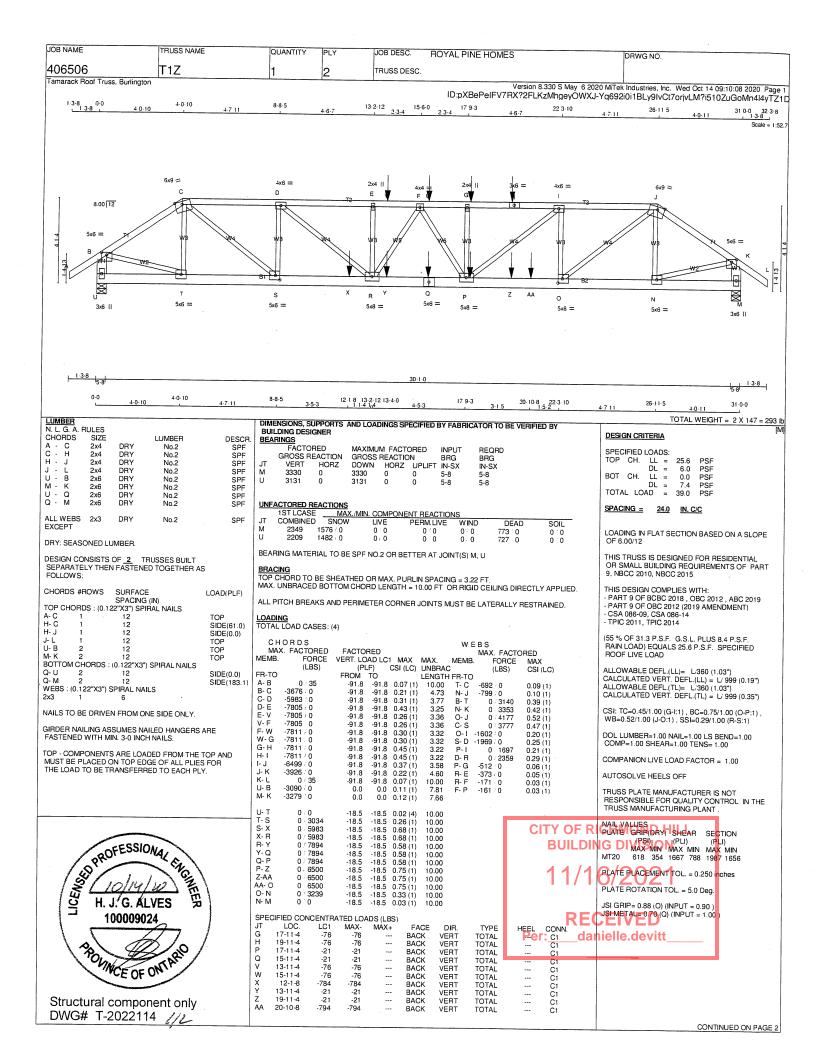
CITY OF RICHMOND HILL **BUILDING DIVISION**

11/16/2021

RECEIVED

danielle.devitt

JOB NAME	TRUSS NAME	QUANTITY PLY JOB DESC.	ROYAL PINE HOMES	DRWG NO.
406506	T1	1 2 TRUSS DESC.		
Tamarack Roof Truss, Burlin	ngton		Version 8.330 S May 6 2020	MITER Industries, Inc. Wed Oct 14 09:10:07 2020 Page 2
PLATES (table is in inche JT TYPE PLATES B TM/W-p MT20 C TTWW-m MT20 D TM/W-W MT20 E TMW-W MT20 E TMW-W MT20 E TMW-W MT20 I TMW-W MT20 I TMW-W MT20 I TMW-W MT20 J TTWW-m MT20 J TTWW-m MT20 M BMV1+p MT20 M BMV1+p MT20 O BM/W-W MT20 D BM/W-W MT20 S BM/W-W-W MT20 D BM/W-W MT20 D BM/W-	S) W LEN Y X 5.0 6.0 1.50 3.00 6.0 9.0 1.75 3.75 4.0 6.0 2.0 4.0 4.0 4.0 3.0 6.0 6.0 9.0 1.75 3.75 5.0 6.0 1.50 3.00 5.0 6.0	C	UNBRAC (LBS) CSI (LC) LENGTH FR-TO 10.00 ACE DIR. TYPE HEEL CONN. ONT VERT DEAD C1 ONT VERT TOTAL C1	µчGuub Y8K?JQHcВhpCclpVH9w7ai1WCeyTZ1



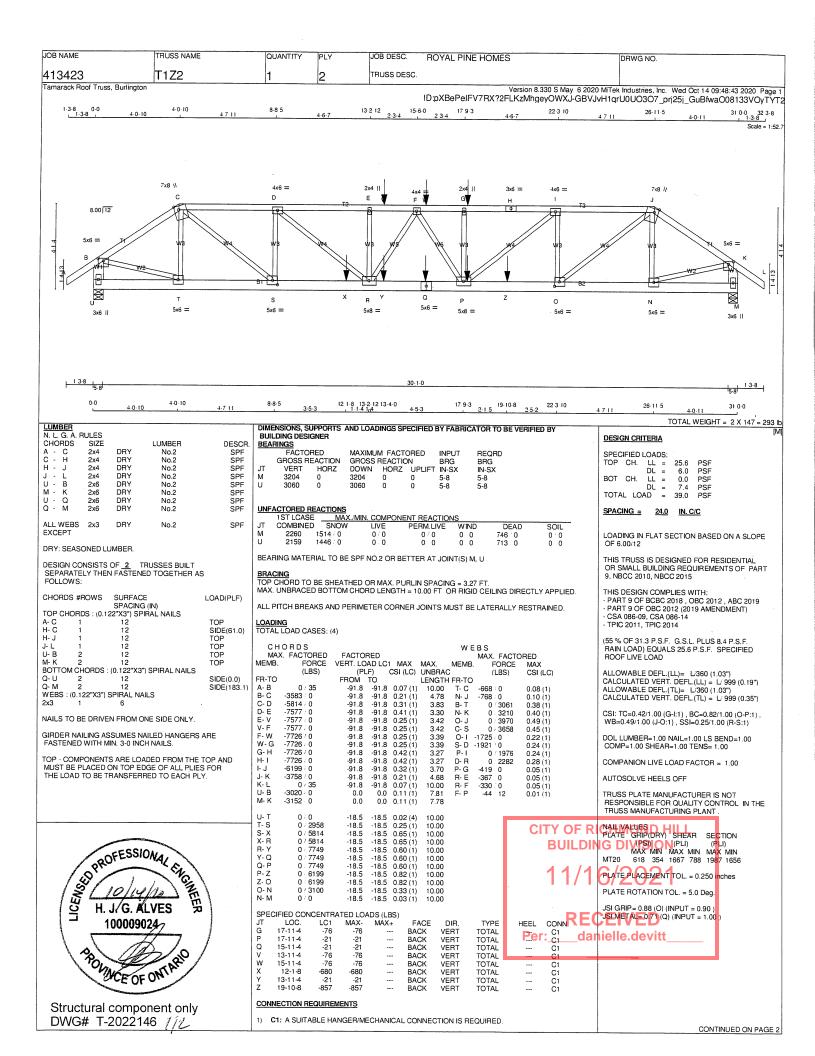
Structural component only DWG# T-2022113 ペル

CITY OF RICHMOND HILL BUILDING DIVISION

11/16/2021

RECEIVED
Per:___danielle.devitt_

JOB NAME		TRUS	S NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	DRWG NO.
406506		T1Z	-	1	2	TRUSS DESC	,	
Tamarack Roof T	russ, Burlingto	n					1/ : 0.00	
							Version 8.33	30 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 09:10:08 2020 Page
							ID:pXBePeIFV/RX?2FLKzI	MhgeyOWXJ-Yq692i0i1BLy9IvCt7orjvLM?i510ZuGoMn4I4yTZ
i								
PLATES (table	is in inches)							
JT TYPE	PLATES	W LEN	N Y X					
B TMVW-p	MT20	5.0 6.0		CONNECTION F	EOI IIDEMEN	TC		
C TTWW-m	MT20	6.0 9.0		CONTRACTION	EGO!! (ENIEN	10		
D TMWW-t	MT20	4.0 6.0		1) C1: A SUIT	ARI E HANGE	ED/MECHANICAL CO	ONNECTION IS REQUIRED.	
E TMW+w	MT20	2.0 4.0		1, 011 /1 0011	ADEL HANGE	- INVILONATIONE C	SINNECTION IS REQUIRED.	
F TMWW-t	MT20	4.0 4.0						
G TMW+w	MT20	2.0 4.0						
H TS-t	MT20	3.0 6.0						
I TMWW-t	MT20	4.0 6.0						
J TTWW-m		6.0 9.0	1.75 4.00					
K TMVW-p		5.0 6.0	1.50 3.00					
M BMV1+p		3.0 6.0						
N BMWW-t		5.0 6.0						
O BMWW-t		5.0 6.0	2.50 2.50					
P BMWWW-t		5.0 8.0						
Q BS-t		5.0 6.0						
R BMWWW-t		5.0 8.0						
S BMWW-t		5.0 6.0	2.50 2.50					
T BMWW-t		5.0 6.0						
U BMV1+p	MT20	3.0 6.0						


Structural component only DWG# T-2022114 W

CITY OF RICHMOND HILL BUILDING DIVISION

11/16/2021

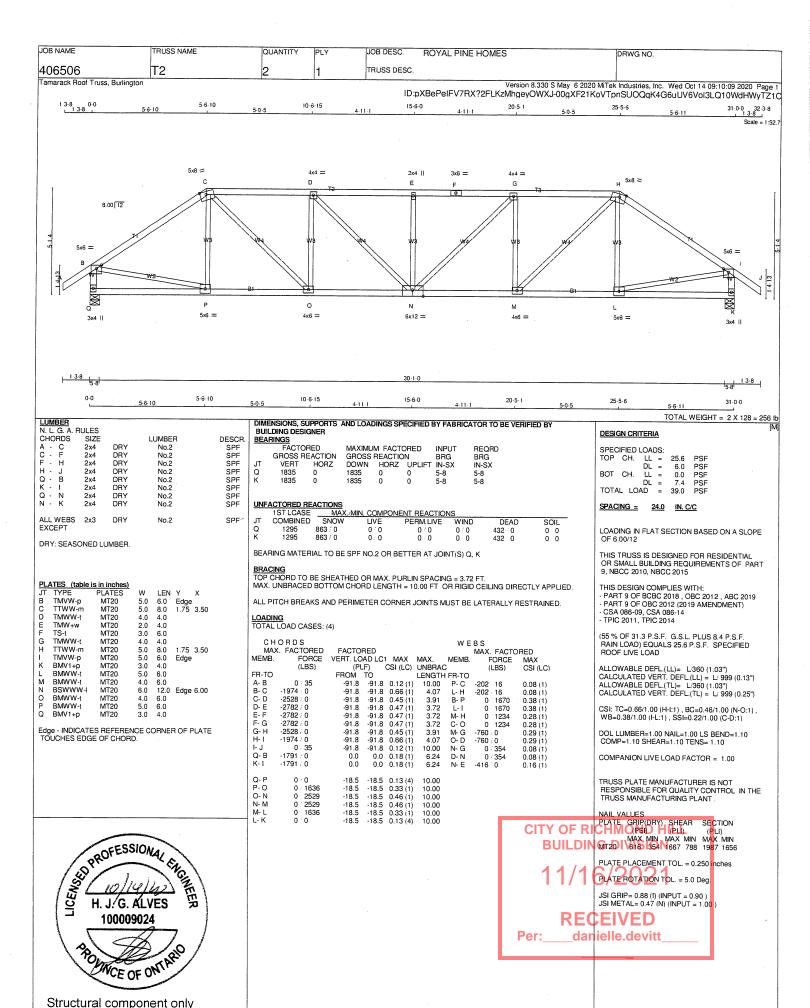
RECEIVED

Per: danielle.devitt

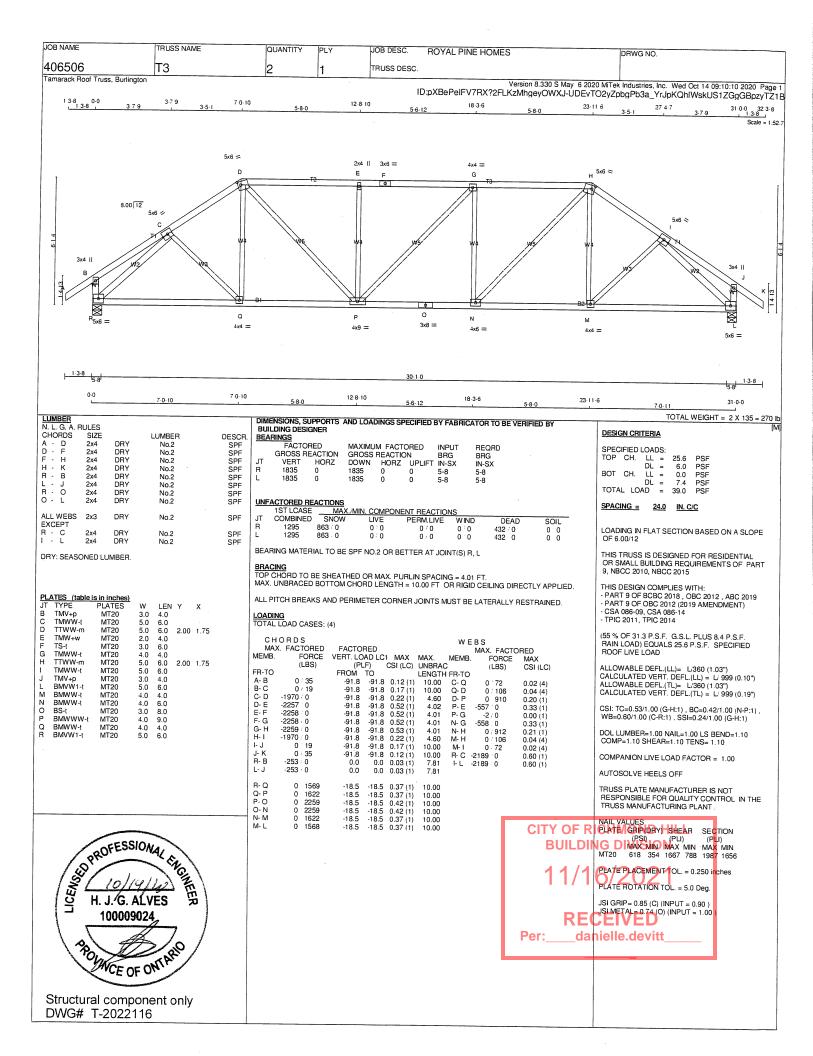
JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	DRWG NO.
413423	T1Z2	1	2	TRUSS DESC.		
Tamarack Roof Truss, B	Burlington	· · · · · · · · · · · · · · · · · · ·			Version 8.330 S May 6 ID:pXBePeIFV7RX?2FLKzMhgeyOWXJ-G	2020 MiTek Industries, Inc. Wed Oct 14 09:48:43 2020 Pa BVJvH1qrU0UO3O7 prj25j GuBfwaO08133VOyT
PLATES (table is in in JT TYPE PLAT B TMVW-p MT2 C TTWW+m MT3	TES W LEN Y X 20 5.0 6.0 1.50 3.00	CONNECTION	N REQUIREMENT			

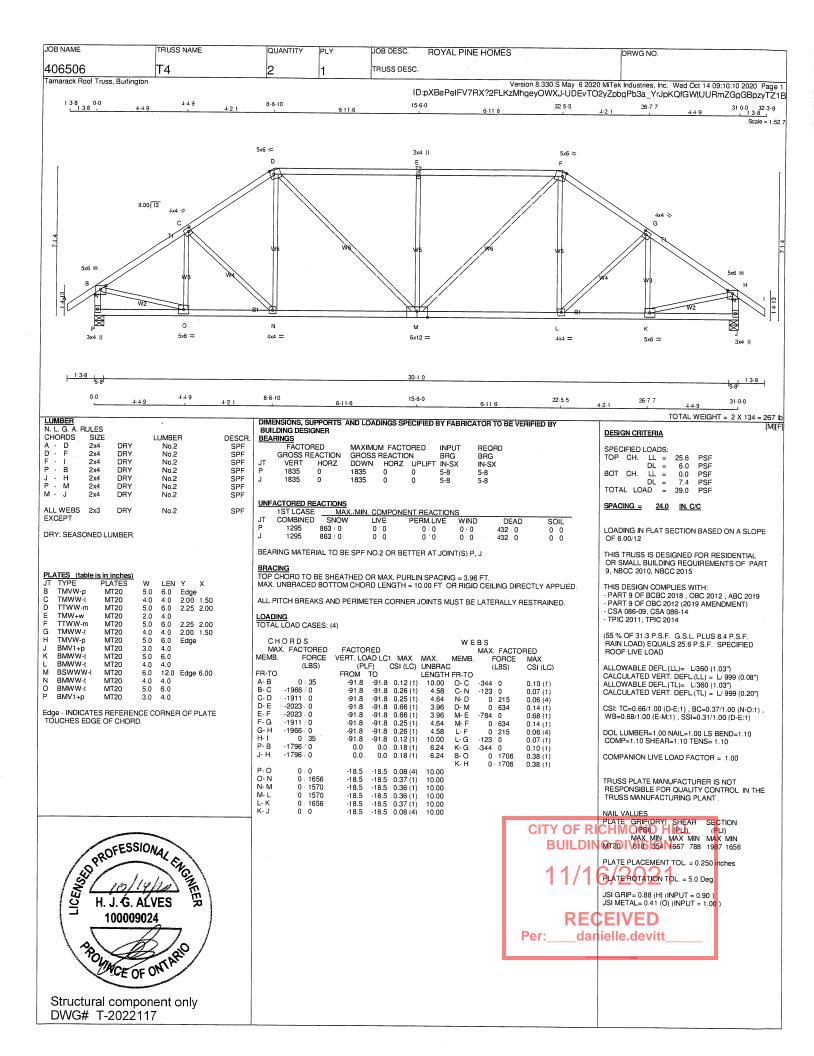
Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

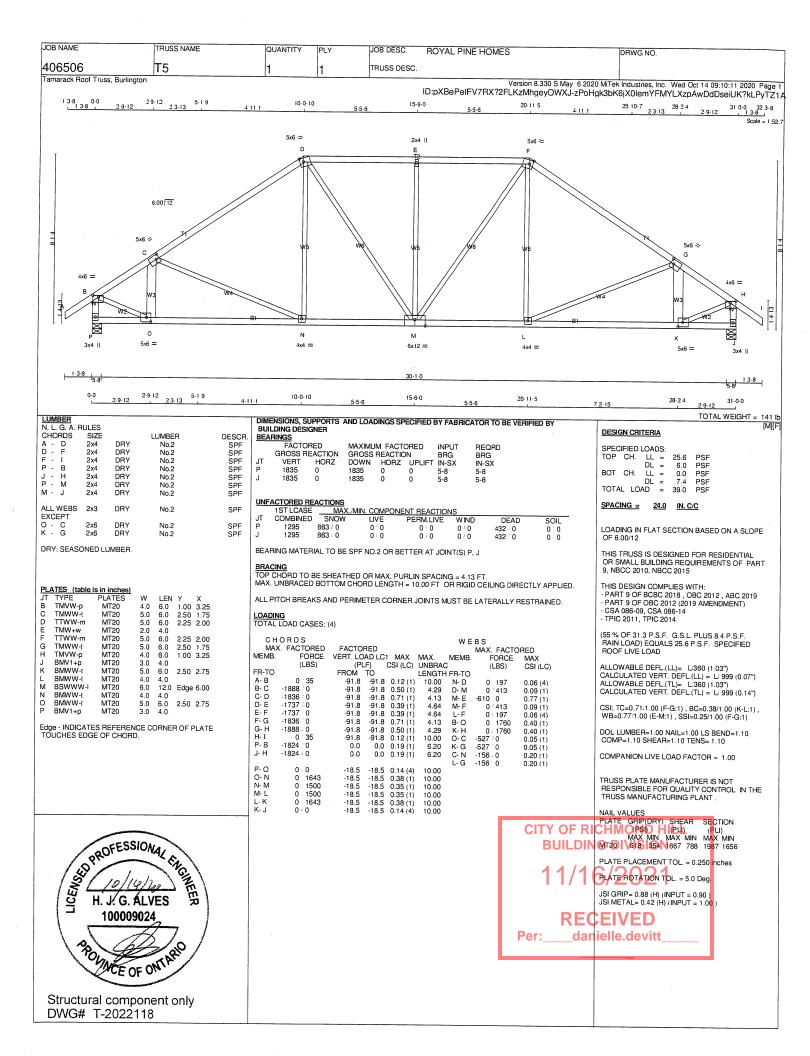
1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

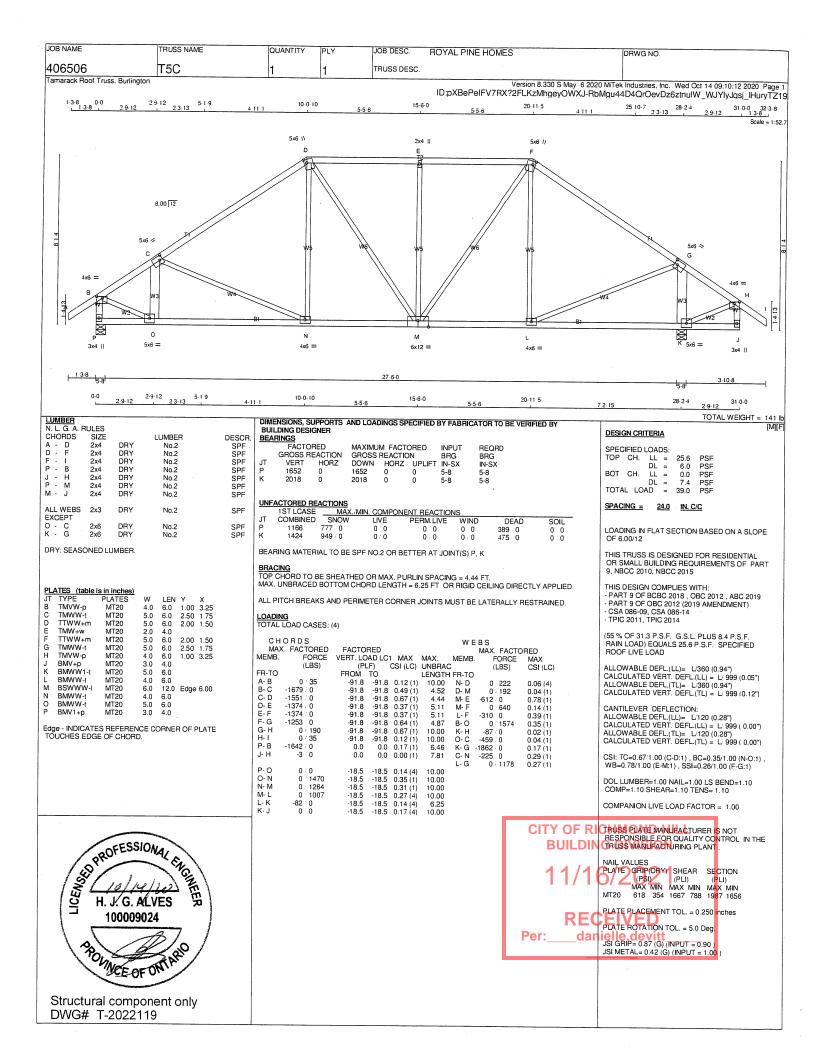

Structural component only DWG# T-2022146 2/2

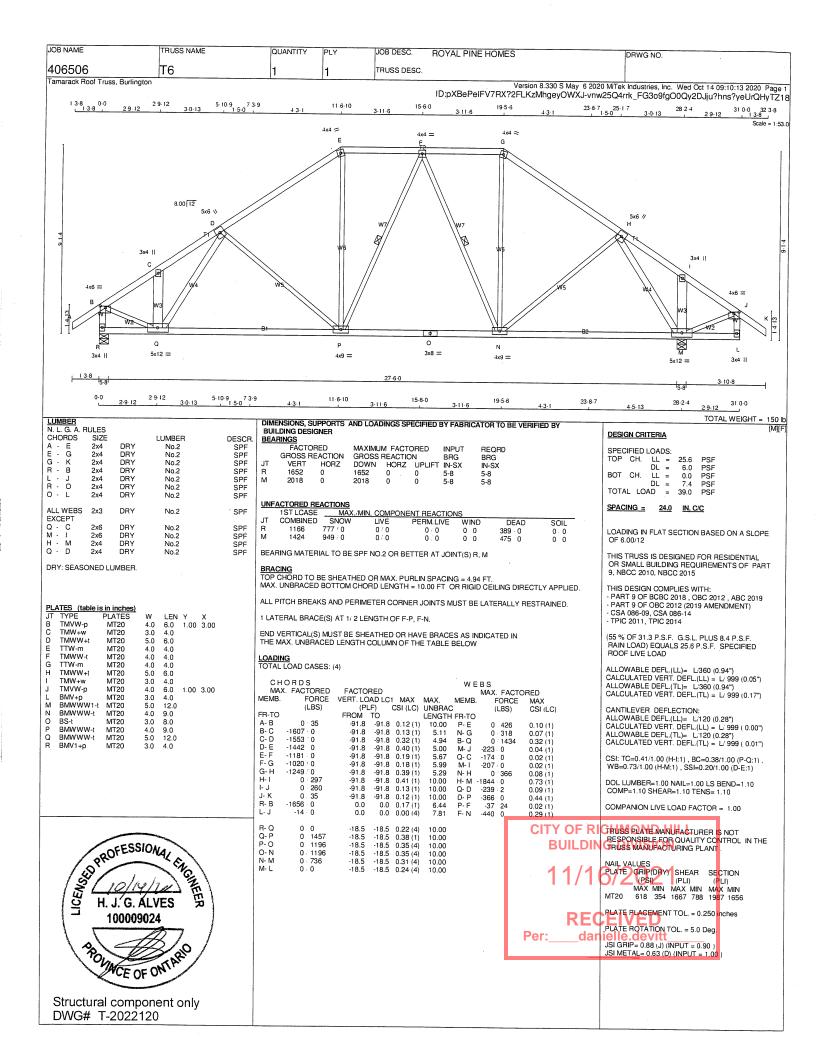
CITY OF RICHMOND HILL BUILDING DIVISION

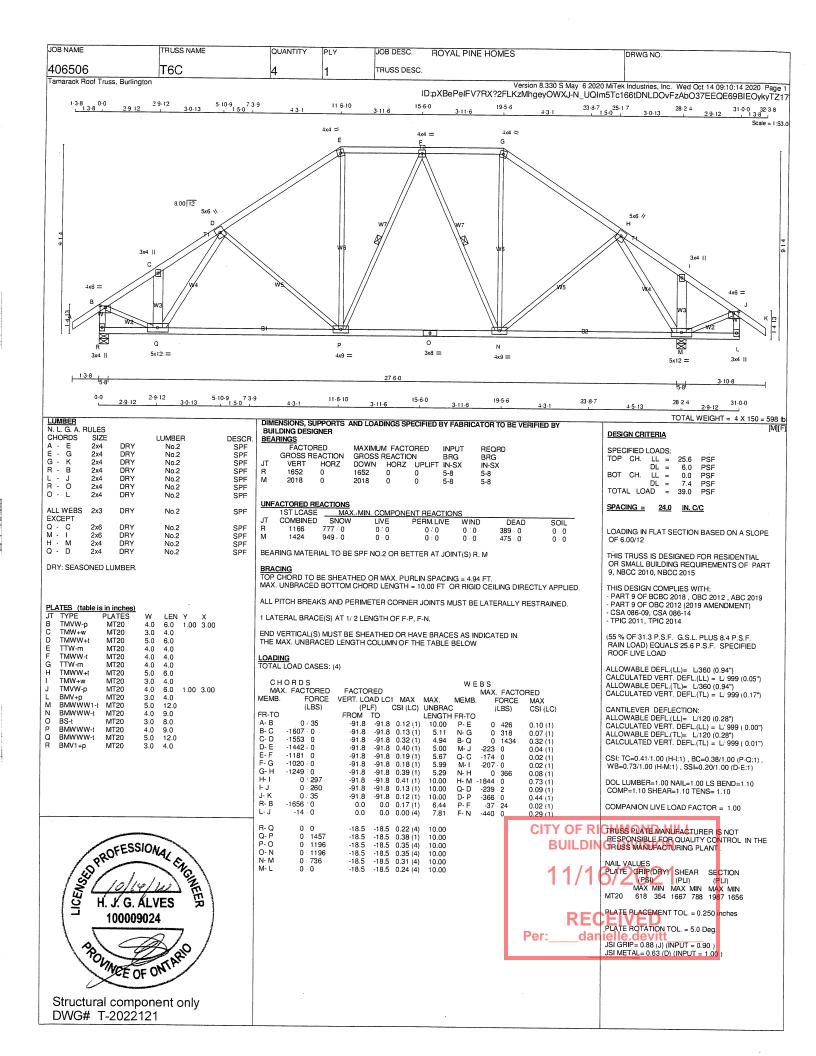

11/16/2021

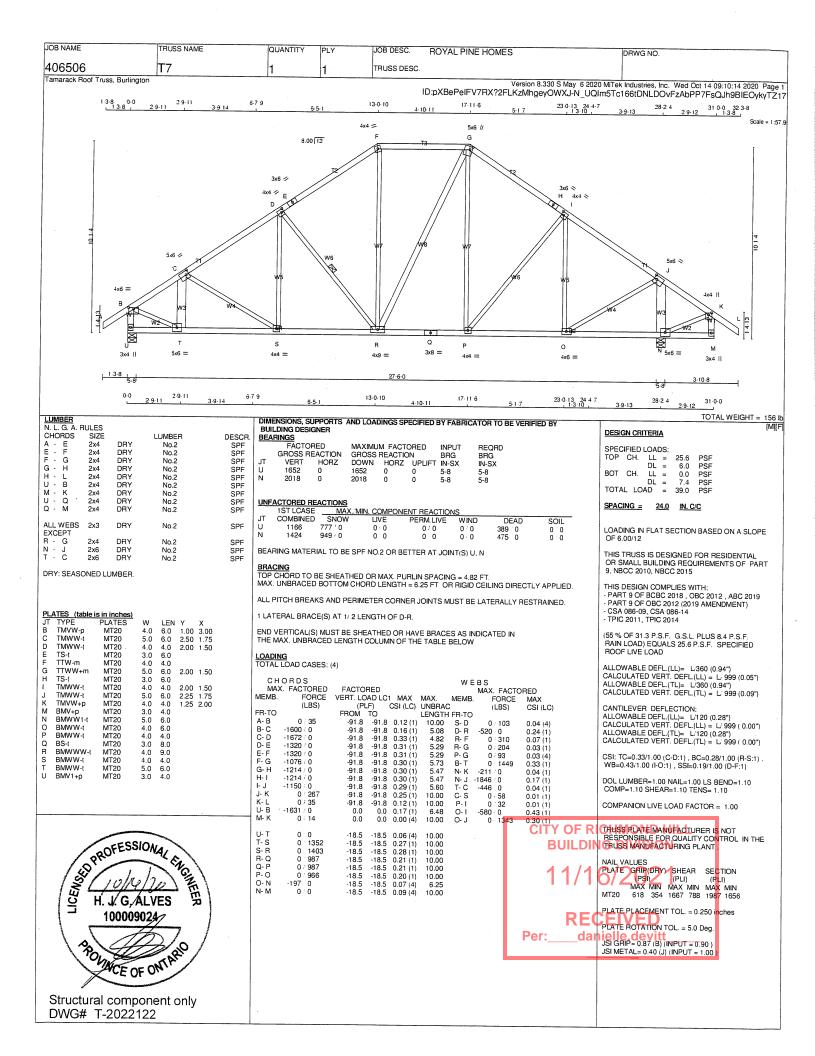

RECEIVED

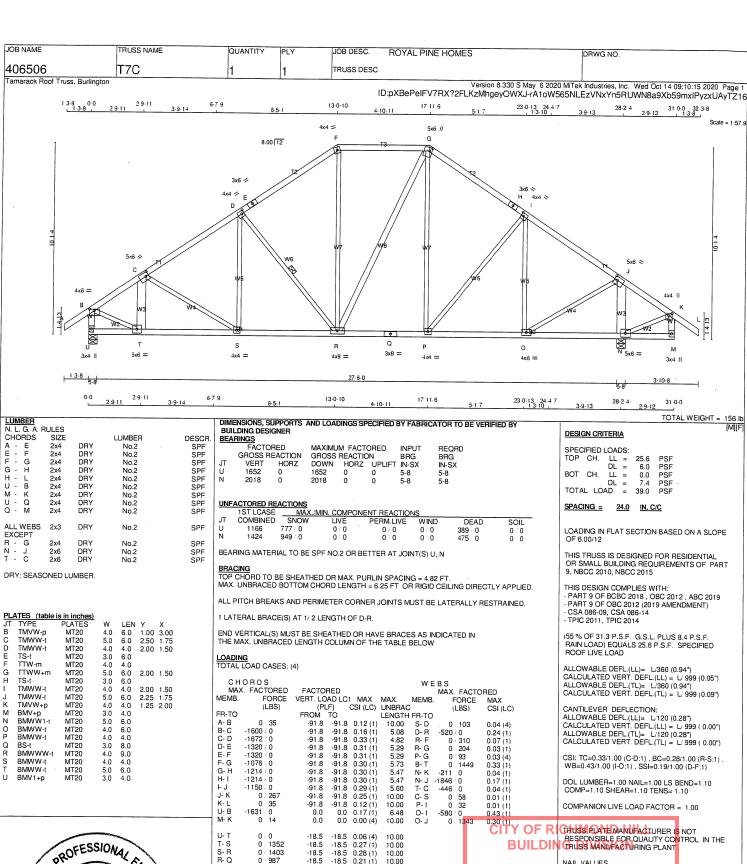

Per:____danielle.devitt

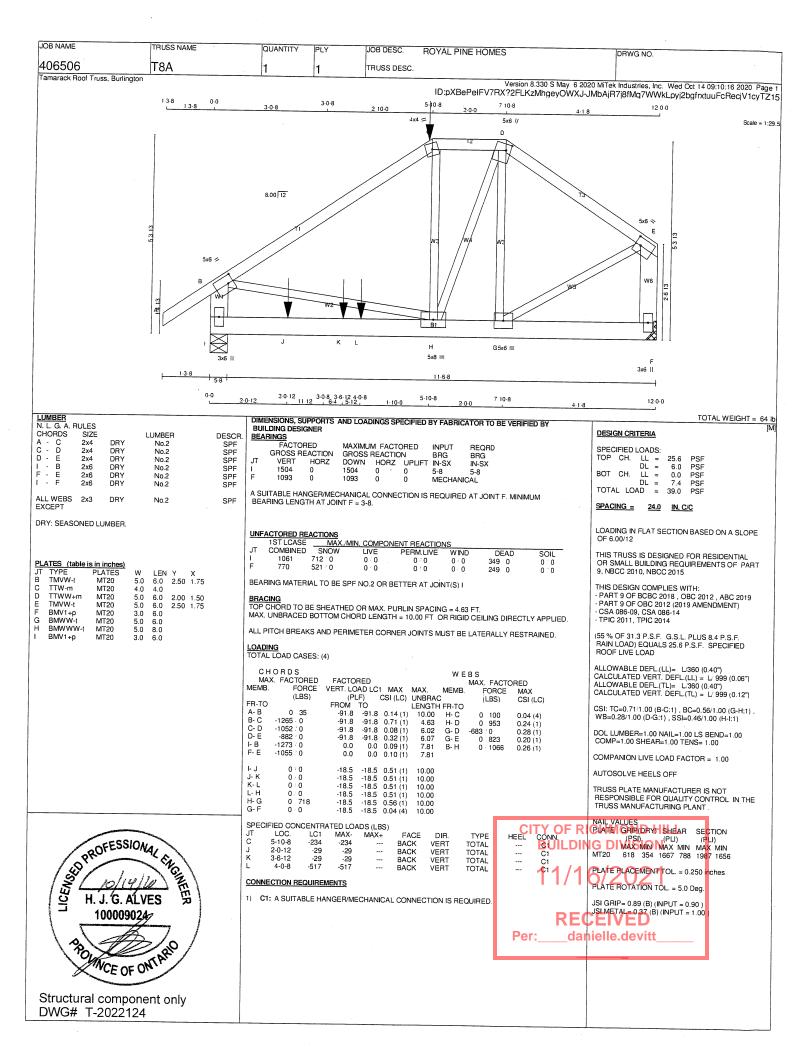


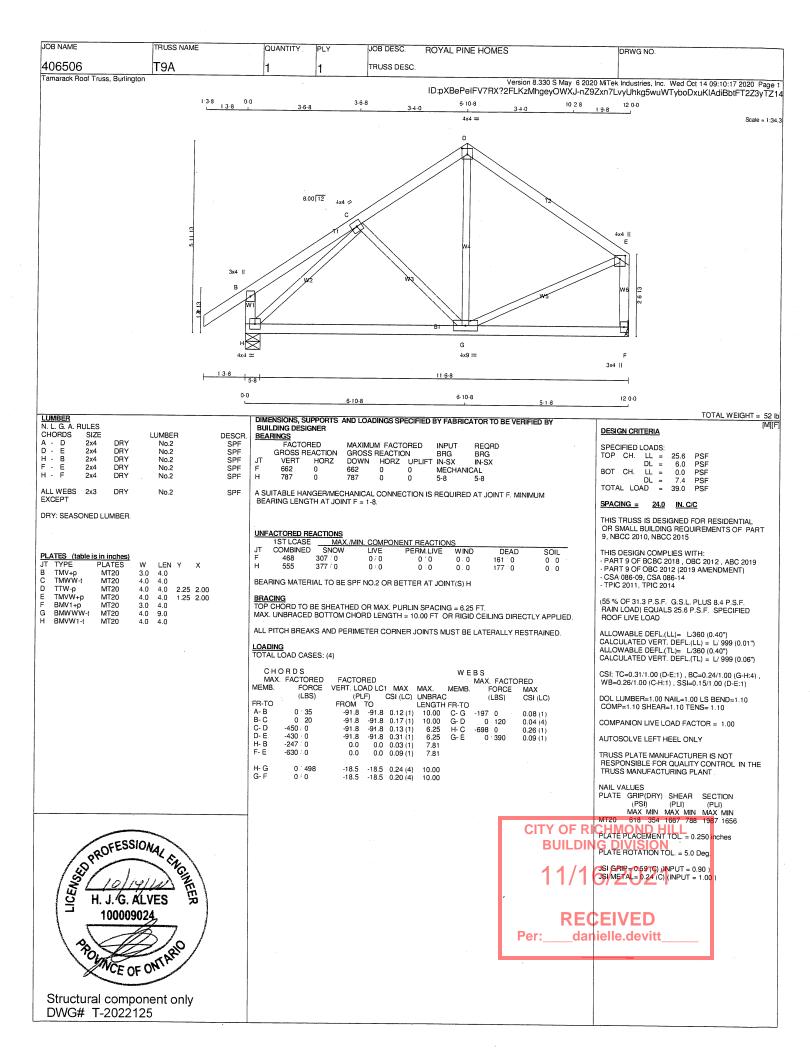

DWG# T-2022115

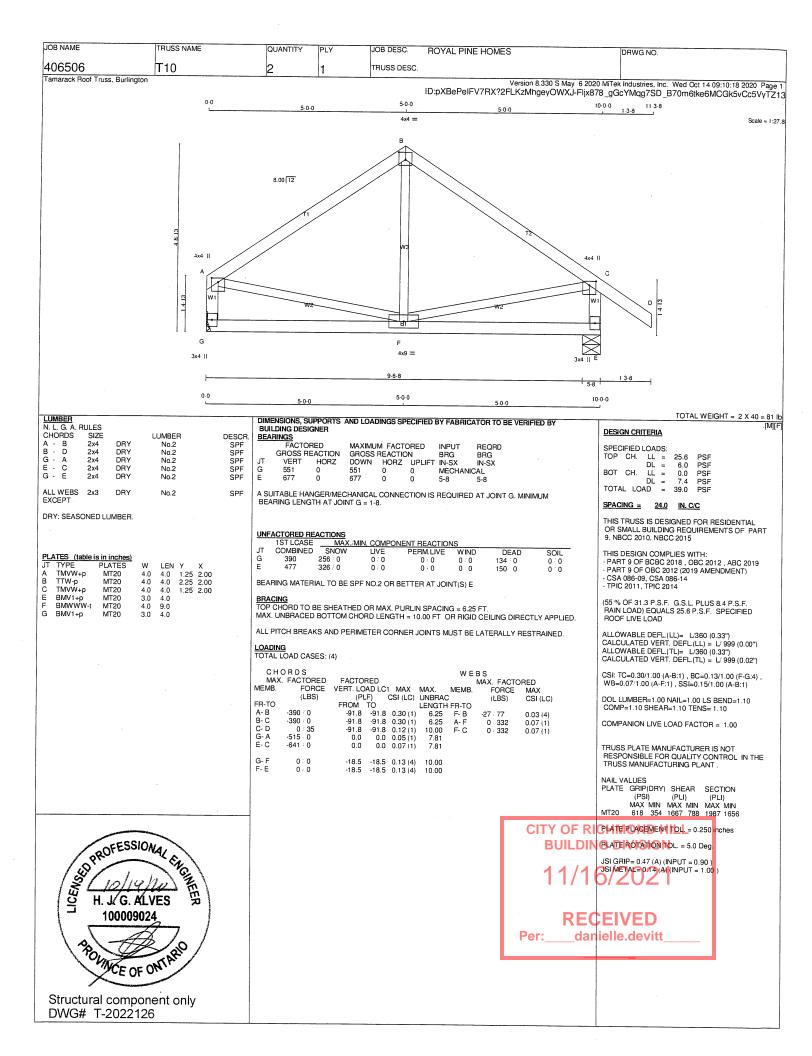


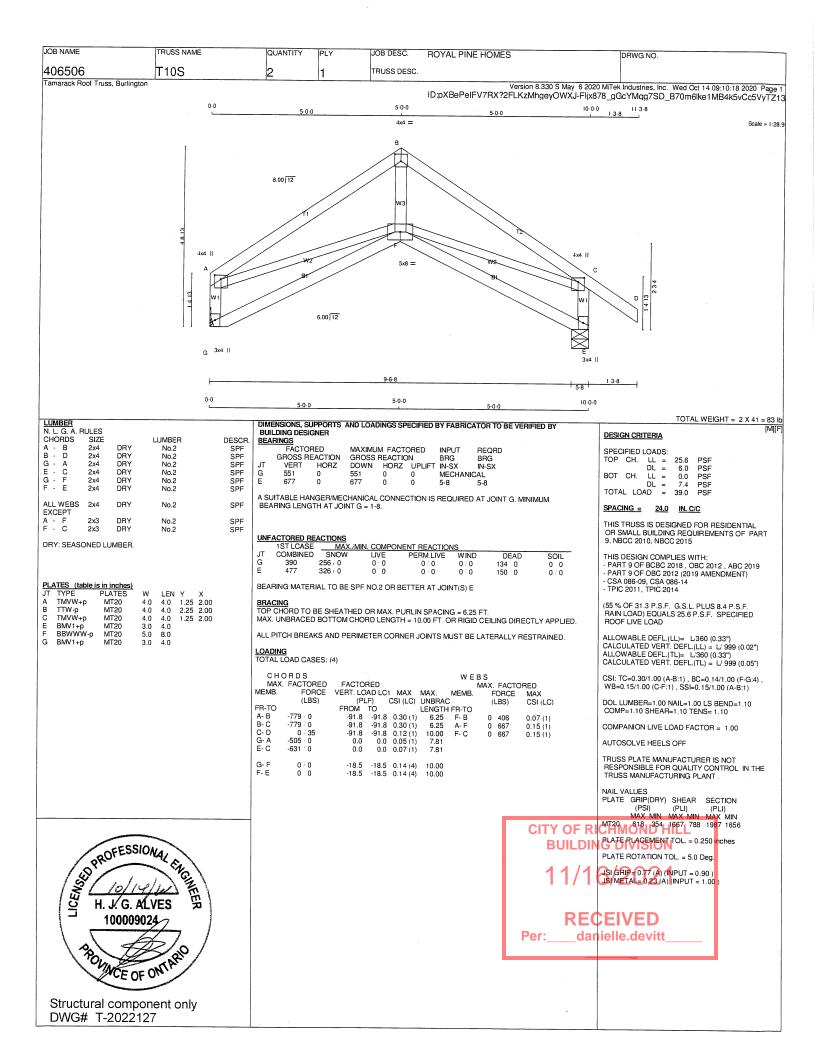




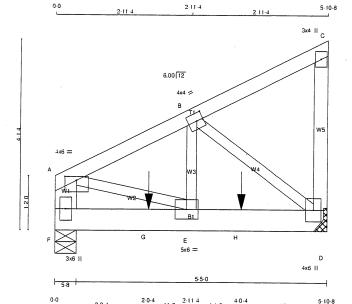

Structural component only DWG# T-2022123


0 · 0 0 · 13 0 · 14 0 · 98 T- S R- Q P- O N 0 / 987 0 / 966 97 · 0 0 · 0 · -18.5 -18.5 -18.5 -18.5 0.21 (1) 0.20 (1) 10.00 -197 -18.5 -18.5 0.07 (4) 6 25


0.09 (4)


N-M

ATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. Per: JSI GRIP= 0.87 (B) (INPUT = 0.90) JSI METAL= 0.40 (J) (INPUT = 1.00



JOB NAME TRUSS NAME JOB DESC. QUANTITY **ROYAL PINE HOMES** DRWG NO 406506 T11 TRUSS DESC

amarack Roof Truss, Burlington

Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 09:10:19 2020 Page 1 ID:pXBePeIFV7RX?2FLKzMhgeyOWXJ-kxHJMT9cRakP__FJ0xVQgDILI8zN5e0uKZy9dxyTZ12

TOTAL WEIGHT = 2 X 29 = 58 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

<u>BEA</u>	<u>RINGS</u>						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REORD
	GROSS RI	EACTION	GROSS	REACTIO	N	BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
)	1134	0	1134	Ó	0	MECHANI	CAL
=	1232	0	1232	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 3-8.

LOAD(PLF)

TOF TOP TOP SIDE(0.0)

DESCR SPF SPF SPF

SPF

SPF

BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS WEBS : (0.122"X3") SPIRAL NAILS

TOP CHORDS: (0.122"X3") SPIRAL NAILS

LUMBER N. L. G. A. RULES CHORDS SIZE

CCAD

L WEBS

FOLLOWS:

A- C C- D F- A

CHORDS #ROWS

SIZE

DRY

DRY

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS

SURFACE

12

12

SPACING (IN)

244

2x6

2x3

DRY: SEASONED LUMBER.

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

LUMBER

No.2 No.2

No.2

No.2

No.2

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL	ATES (table					
JT	TYPE	PLATES	W	LEN	Υ	
Α	TMVW-p	MT20	4.0	6.0	1.00	
В	TMWW-t	MT20	4.0	4.0	2.00	
_	T					

JT	TYPE	PLATES	W	LEN	Υ	Χ	
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00	
В	TMWW-t	MT20	4.0	4.0	2.00	1.75	
С	TMV+p	MT20	3.0	4.0			
D	BMVW1+p	MT20	4.0	6.0			
Ε	BMWW-t	MT20	5.0	6.0			

Structural component only DWG# T-2022128 1/2

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	NS		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	799	540 / 0	0 / 0	0 / 0	0 / 0	259 0	0 0
F	867	589 / 0	0 / 0	0 / 0	0.10	279 . 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

М

FI

 $\frac{\textbf{BRACING}}{\textbf{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 6.25 \, \text{FT.} \\ \textbf{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \, \text{FT. OR RIGID CEILING DIRECTLY APPLIED.} \\ \end{cases}$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS FACTORED	FACTO	RED			W E	BS MAX. FACTO	OCD.
ИЕМВ.	FORCE (LBS)	VERT. LO	AD LC1		UNBRAC		FORCE (LBS)	MAX CSI (LC)
3- C 0- C	-1261 0 -11 0 -110 0		-91.8 -91.8 0.0		6.25 7.81	A- E E- B	0 1176	0.15 (1) 0.14 (1) 0.17 (1)
=- A =- G =- E =- H +- D	-979 / 0 0 / 0 0 / 0 0 / 1137 0 / 1137	-18.5 -18.5	-18.5 -18.5 -18.5	0.03 (1) 0.17 (1) 0.17 (1) 0.19 (1) 0.19 (1)	10.00 10.00 10.00			

LOC. 2-0-4 DIR. TYPE LC₁ MAX--755 MAX+ TOTAL -755 FRONT VERT 4-0-4 -453 -453

CONNECTION REQUIREMENTS

SPECIFIED CONCENTRATED LOADS (LBS)

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

SPECIFIED LOADS LL = DL = LL = CH. 25.6 6.0 BOT CH. 0.0 PSF DI TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

Scale = 1:23.7

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-09, CSA 086-14 TPIC 2011, TPIC 2014

% OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.02")

CSI: TC=0.06/1.00 (A-B:1), BC=0.19/1.00 (D-E:1), WB=0.17/1.00 (B-D:1), SSI=0.29/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

PLATE GRIP(DRY) SHEAR SECTION

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

(PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN

618 354 1667 788 1987 1656 CITY OF R PLATE PLACEMENT TOL. = 0.250 inches BUILDII

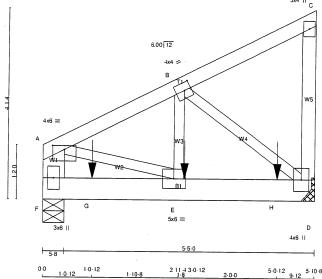
PLATE ROTATION TOL. = 5.0 Deg JSI GRIP= 0.77 (B) MNPUT = 0.90) JSI METAL= 0.26 (D) (INPUT = 1.00

NAIL VALUES

RECEIVED danielle.devitt

HEEL CONN

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOME		lacevo ve	
406506	T11	1	2	TRUSS DESC.	NOTAL FINE HOWE	=5	DRWG NO.	
Tamarack Roof Truss, Burlingto			<u></u>		ID:nXRePalEV7RX	Version 8.330 S May 6 2020 Mi ?2FLKzMhgeyOWXJ-kxHJM	Tek Industries, Inc. Wed Oct 14 0	9:10:19 2020 Page 2
PLATES (table is in inches)					IO.DXBOT OIL VITIX	ZI Erczwingey CW Xo-KXI IJWI	SCHARF FJUXVQQDILIBZIN	SeuukZy9axy1Z12
PLATES (table is in inches) JT TYPE PLATES F BMV1+p MT20	W LEN Y X 3.0 6.0							
								·
								-
						·		
						CITY OF RIC		
PROFESSI 10/14 H. J. G. M	ONALE					BUILDING		
10/10/10	16 II					11/16	/2021	
H. J. G. A	LVES B						•	
100009	024						EIVED	
18	%/o/					Per:danie	lle.devitt	
ROUNCE OF	ONTAK						_	
The same of the sa								
Structural compo DWG# T-20221	onent only 28 7/12							


JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO 406506 T11Z TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.330 S May 6 2020 MTek Industries, Inc. Wed Oct 14 09:10:20 2020 Page 1 ID:pXBePeIFV7RX?2FLKzMhgeyOWXJ-C8rhZpAECtsGb8qVae0fDRrW?YK1q5u1ZDhiANyTZ1:

2 11-4 5-10-8 3x4 II C 6.00 12

Scale = 1:23.7

LUMBER N. L. G. A. RULES CHORDS SIZE DESCR. SPF SPF SPF SPF SIZE LUMBER DRY DRY DRY No.2 No.2 2x6 No.2 ALL WEBS 2x3 DRY No.2 SPE DRY: SEASONED LUMBER

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS

CHORDS #ROWS SURFACE LOAD(PLF) SPACING (IN)
TOP CHORDS: (0.122"X3") SPIRAL NAILS A- C C- D F- A 12 TOP TOP TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(183.1) WEBS: (0.122"X3") SPIRAL NAILS

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.

REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP SIDE OR ON THE TOP

PLATES (table is in inches)

JΤ	TYPE	PLATES	W	LEN	Υ	X	
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00	
В	TMWW-t	MT20	4.0	4.0	2.00	1.75	
С	TMV+p	MT20	3.0	4.0			
D	BMVW1+p	MT20	4.0	6.0			
Ε	BMWW-t	MT20	5.0	6.0			

Structural component only DWG# T-2022129

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	AND TOWNS OF TOWNED BY LABRICATION TO BE VENIFIED BY
BEARINGS	

EΑ	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REORD
	GROSS RI	EACTION	GROSS	REACTIO	N	BRG	BRG
•	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1147	0	1147	0	0	MECHANIC	CAL
	1100	0	1100	0 -	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	MIN. COMPON	VENT REACTION	٧S			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
D	809	545 0	0 / 0	0 / 0	0 0	264 / 0	0 · 0	
F	776	523 / 0	0 : 0	0 * 0	0 / 0	253 0	0 0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	RDS FACTORED	FACTO	RED.			W E	BS MAX. FACTO)BED
MEMB.	FORCE (LBS)	VERT. LO	AD LC		MAX. UNBRAC	МЕМВ		MAX CSI (LC)
FR-TO	, ,	FROM		,	LENGTH			031 (20)
A- B	-963 / 0	-91.8	-91.8	0.06(1)	6.25	A- E	0 902	0.11(1)
B- C	-12 : 0	-91.8		0.06(1)		E- B	0 779	0.10(1)
D- C	-108 0	0.0		0.01(1)		B- D	-1098 0	0.13(1)
F- A	-774 / 0	0.0	0.0	0.03 (1)	7.81			
F- G G- E E- H H- D	0 / 0 0 / 0 0 / 872 0 : 872	-18.5 -18.5 -18.5 -18.5	-18.5 -18.5	0.12 (1) 0.12 (1) 0.17 (1) 0.17 (1)	10.00 10.00 10.00 10.00			

SPECIFIED CONCENTRATED LOADS (LBS) FACE BACK BACK LC1 -375 MAX--375 JT LOC MAX+ DIR. TYPE TOTAL 3-0-12 1-0-12 VERT -375 VERT TOTAL 5-0-12 -376 -376 TOTAL

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = LL = DL = LL = DL = 25.6 PSF DL PSF PSF BOT CH. 0.0 TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

TOTAL WEIGHT = 2 X 29 = 58 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , OBC 2012 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-09, CSA 086-14 - TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.17/1.00 (D-E:1) , WB=0.13/1.00 (B-D:1) , SSI=0.12/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 618 354 1667 788 1987 1656

CITY OF R PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.53 (B) (INPUT = 0.90) JSI METAL= 0.20 (D) (INPUT = 1.00

RECEIVED danielle.devitt

HEEL: CONN.

C1

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOM	ES	DRWG NO.
406506	T11Z	1	2	TRUSS DESC.			
Tamarack Roof Truss, Burlington					ID:pXBePeIFV7RX?	Version 8.330 S May 6 2020 Mi 2FLKzMhgeyOWXJ-C8rhZpA	 Fek Industries, Inc. Wed Oct 14 09:10:20 2020 Page 2 ECtsGb8qVae0fDRrW?YK1q5u1ZDhiANyTZ11
PLATES (table is in inches) JT TYPE PLATES F BMV1+p MT20	W LEN Y X 3.0 6.0						
							4
PROFESSION H. J/G. AL 10000902	? - 					CITY OF RICH BUILDING 11/16/ RECE Per:danie	/2021
Structural compor DWG# T-202212	nent only						

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **ROYAL PINE HOMES** DRWG NO 406445 T11Z3 TRUSS DESC Tamarack Roof Truss, Burlingto Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 09:39:42 2020 Page 1

2-11-4

3x4 || 6.00 12 W5 B1 G Ε 5x6 =

TOTAL WEIGHT = 2 X 29 = 58 lb

Scale = 1:23.7

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR. SPF SPF SPF DRY A D 2x4 No 2 CCAD DRY DRY No.2 No.2 2x4 DRY SPF 2x6 No.2 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

SURFACE SPACING (IN) CHORDS #ROWS LOAD(PLF) TOP CHORDS : (0.122"X3") SPIRAL NAILS A- C C- D F- A 10 SIDE(152.7) 12 TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(122.0) WEBS : (0.122"X3") SPIRAL NAILS

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)
JT TYPE PLATES
A TMVW-p MT20 w LEN Y 6.0 6.0 4.0 4.0 4.0 1.00 3.00 TMWW-t BCDE TMV+p MT20 3.0 6.0 BMVW1+p MT20 4.0 BMWW-

Structural component only DWG# T-2022137

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	-
	AND ECADINGS OF COLUMN BY LABRICATOR TO BE VERIFIED BY	
BUILDING DESIGNER		

2-11-4

4-0-4

<u>BEA</u>	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REORD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	3248	0	3248	0	0	MECHANIC	CAL
F	1279	0	1279	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

5-8

0.0

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	2288	1553 : 0	0 / 0	0 / 0	0 0	734 0	0.0
F	901	613 / 0	0 - 0	0 - 0	0.0	288 0	0 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.19 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

JT G

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E	BS		
	C. FACTORED	FACTO					MAX. FACT	ORED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB	. FORCE	MAX	
	(LBS)	(PL	.F)	CSI (LC)	UNBRAG	0	(LBS)	CSI	(LC)
FR-TO		FROM	TO		LENGTH	FR-TO			,,
A-B	-1975 0	-91.8	-91.8	0.07(1)	6.19	A- E	0 1835	0.23	(1)
B- C	-9 : 0	-91.8	-91.8	0.05(1)	10.00	E-B	0 1933	0.24	
	-115 / 0	0.0	0.0	0.01(1)	7.81	B- D	-2232 0	0.27	
F- A	-1470 / 0	0.0	0.0	0.05(1)	7.81				1.,
F-E	0:0	-18.5	-185	0.24(1)	10.00				
E- G	0 : 1774	-18.5		0.73 (1)	10.00				
G-H	0 / 1774	-18.5	-18.5						
H- D	0 1774	-18.5	-18.5		10.00				
SPECIF	IED CONCENTI	RATED LOA	ADS (LE	35)					
JT	LOC. LC1		MAX		ACE [JIR.	TYPE	HEEL	CON

FRONT

VERT

TOTAL

HEEL CONN

CONNECTION REQUIREMENTS

-1986

4-0-4

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

-1986

DESIGN CRITERIA

D

5-6-45-10-8

SPECIFIED LOADS: LL = DL = 25.6 6.0 0.0 7.4 PSF BOT CH. LL PSF DL TOTAL LOAD 39.0 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-09, CSA 086-14 - TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.04")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.73/1.00 (D-E:1) , WB=0.27/1.00 (B-D:1) , SSI=0.71/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

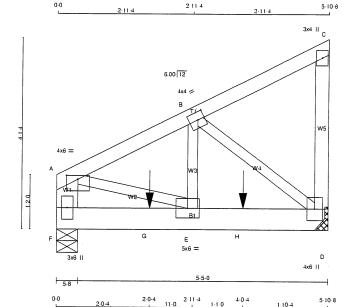
AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 618 354 1667 788 1987 1656

OF R PLATE PLACEMENT TOL. = 0.250 inches **BUILDI** PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (D) (INPUT = 0.90) JSI METAL= 0.40 (D) (INPUT = 1.00


RECEIVED danielle.devitt

JOB NAME	TRUSS NAME	lour many	1	Longo		
		QUANTITY	PLY	JOB DESC. TRUSS DESC.	ROYAL PINE HOMES	DRWG NO.
Tamarack Roof Truss, Burlington	T11Z3.		2	li .	Version 8.330 S May 6 2020 Mi	Tek Industries, Inc. Wed Oct 14 09:39:42 2020 Page 2
					Version 8.330 S May 6 2020 Mii ID:pXBePeIFV7RX?2FLKzMhqeyOWXJ-c6JoNIU	TFFsF_wX8oidsd?pcFpZNgyzOkMWy?FyTYbV
PLATES (table is in inches) JT TYPE PLATES W F BMV1+p MT20 3.0	LEN Y X					
PROFESSION INCE OF O	MIARIO					DIVISION
Structural compone DWG# T-2022137	ent only Yv					

JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES PLY DRWG NO 413423 TRUSS DESC T11Z4

Tamarack Roof Truss, Burlington

Version 8.330 S May 6 2020 MTek Industries, Inc. Wed Oct 14 09:48:44 2020 Page 1 ID:pXBePelFV7RX?2FLKzMhgeyOWXJ-kO3i7d2Scn8L0DzJYXMybIGFaIhzf6A9Mhod1ryTYT

LUMBER N. L. G. A N. L. G. A. CHORDS SIZE DESCR SPF SPF SPF LUMBER A D - C 2x4 DRY No.2 No.2 No.2 2x4 DRY Ā 2x6 DRY No.2 SPF ALL WEBS 2x3 DRY DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE LOAD(PLF) SPACING (IN) TOP CHORDS: (0.122"X3") SPIRAL NAILS A- C C- D F- A TOP TOP TOP 12 BOTTOM CHORDS : (0.122"X3") SPIRAL NAILS SIDE(0.0) WEBS: (0.122"X3") SPIRAL NAILS

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL/	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Х			
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00			
В	TMWW-t	MT20	4.0	4.0	2.00	1.75			
С	TMV+p	MT20	3.0	4.0					
D	BMVW1+p	MT20	4.0	6.0					
Е	BMWW-t	MT20	5.0	6.0					

Structural component only DWG# T-2022147 1/2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	985	0	985	0	0	MECHAI	VICAL
F	949	0	949	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	695	466 / 0	0 / 0	0 : 0	0 / 0	229 0	0 0
F	669	449 0	0 / 0	0 , 0	0 / 0	221 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

LOC. 2-0-4

4-0-4

	ORDS K. FACTORED	FACTOR	RED			W E	BS MAX. FACTO	RED
MEMB.	FORCE	VERT. LO.	AD LC1	MAX	MAX.	MEMB	FORCE	MAX
	(LBS)	(PL	F) -	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO	. ,	LENGTH	FR-TO		
A- B	-1005 / 0	-91.8	-91.8	0.06(1)	6.25	A- E	0 941	0.12(1)
B- C	-12 - 0	-91.8	-91.8	0.06(1)	6.25	E- B	0 827	0.10(1)
D- C	-108 / 0	0.0	0.0	0.01(1)	7.81	B- D	-1145 0	0.14(1)
F- A	-803 / 0	0.0	0.0	0.03 (1)	7.81			
F- G	0/0	-18.5	-18.5	0.09(1)	10.00			
G-E	0 / 0	-18.5	-18.5	0.09(1)	10.00			
E- H	0 910	-18.5	-18.5	0.17(1)	10.00			
H- D	0 / 910	-18.5	-18.5	0.17 (1)	10.00			
SPECIE	TIED CONCENT	DATEDIO	ne a r	001				

FRONT

FRONT

VERT

TYPE

TOTAL

TOTAL

HEEL CONN.

LC1 -453 -453 CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

-453

-453

DESIGN CRITERIA

SPECIFIED LOADS LL = DL = LL = 25.6 6.0 0.0 7.4 CH. PSF PSF CH. DL TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

TOTAL WEIGHT = 2 X 29 = 58 lb

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , OBC 2012 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-09, CSA 086-14 - TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.17/1.00 (D-E:1) , WB=0.14/1.00 (B-D:1) . SSI=0.18/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION

(PSI) (PLI) (PLI) (PLI) MAX MIN MAX MI Ç1 OF RI PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP = 0.57 (B) (INPUT = 0.90) JSI METAL = 0.20 (D) (INPUT = 1.00)

RECEIVED

danielle.devitt

IOD NAME	TDUGG MANE	Tours many		Longo				
JOB NAME 413423	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOM	ES	DRWG NO.	
413423 Tamarack Roof Truss, Burlington	T11Z4	1	2	TRUSS DESC.		Version 8.330 S May 6 2020 MiTo X?2FLKzMhgeyOWXJ-kO3j7d2	ek Industries, Inc. Wed Oct 14 09:4	8:44 2020 Page 2
					ID:pXBePeIFV7R	X?2FLKzMhgeyOWXJ-kO3i7d2	2Scn8L0DzJYXMybIGFaIhzf6	A9Mhod1ryTYT1
PLATES (table is in inches) JT TYPE PLATES W F BMV1+p MT20 3.	LEN Y X 0 6.0							
						CITY OF RICH BUILDING	IMOND HILL	,
PROFESSION 10/14/ H. J. G. AL' 10000902	W. C. C.					11/16/		
	9-1					RECE Per:daniel	IVED le.devitt	
POUNCE OF C	MTA							
Structural compon DWG# T-202214	ent only 7							

JOB NAME TRUSS NAME QUANTITY JOB DESC. PI V **ROYAL PINE HOMES** DRWG NO 413423 T11Z5 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 09:48:45 2020 Page 1 ID:pXBePeIFV7RX?2FLKzMhgeyOWXJ-Cac4Kz34N5GCdMYV6EtB7WpPGi?ZOaFJbLYAZHyTYTq

> 6.00 12 4x4 / R1 G Ε D 4x6 II 2-11-4 4-11-4

> > TOTAL WEIGHT = 2 X 29 = 58 lb

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - A	2x6	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	DNED L	JMBER.		

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS **FOLLOWS**

CHORD	S #ROWS	SURFACE	LOAD(PLF)				
		SPACING (IN)					
TOP CH	ORDS: (0.1	22"X3") SPIRAL NAII	LS				
A- C	1	12	TOP				
C- D	1	12	TOP				
F- A	2	12	TOP				
BOTTON	M CHORDS	(0.122"X3") SPIRAL	NAILS				
F- D	2	12	SIDE(0.0)				
WEBS: (0.122"X3") SPIRAL NAILS							

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NALING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PL	ATES (table	is in inches)					
JT	TYPE	PLATES	W	LEN	Υ	X	
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00	
В	TMWW-t	MT20	4.0	4.0	2.00	1.75	
С	TMV+p	MT20	3.0	4.0			
D	BMVW1+p	MT20	4.0	6.0			
F	RMWW-t	MT20	5.0	6.0			

Structural component only DWG# T-2022148

DIMENSIONS, SUPPORTS	IND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	The service of the se
BUILDING DESIGNER	*
DEADINGS	

BEA	HINGS						
	FACTO	RED	MAXIMUI	M FACTO	INPUT	REORD	
	GROSS R	EACTION	GROSS I	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	1235	0	1235	0	0	MECHANIC	CAL
F	497	0	497	n	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 3-8.

UNFACTORED REACTIONS

	151 LUASE	NAX./N	MN. COMPO	NENT REACTION	٧S			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
D	872	582 / 0	0 / 0	0/0	0 / 0	290 0	0 0	
F	351	232 / 0	0 · 0	0 / 0	0 0	119 0	0 0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

0.0

 $\frac{\textbf{BRACING}}{\textbf{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.}$ MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS K. FACTORED FORCE (LBS)	FACTOR VERT. LOA (PLI	AD LC1		MAX. UNBRAC	W E	MAX. FAC	E MAX	
FR-TO	(250)	FROM		031 (EU)	LENGTH		(LBS)	CSI	LC)
A- B	-606 / 0	-91.8	-91.8	0.07(1)	6.25	A-E	0 573	0.07	(1)
B- C	-13 0	-91.8	-91.8	0.06(1)	6.25	E-B	0 372	0.05	
D- C	-106 / 0	0.0	0.0	0.01(1)	7.81	B- D	-697 · 0	0.08	
F- A	-529 / 0	0.0	0.0	0.02(1)	7.81				,
F-E	0 / 0	-18.5	-18.5	0.06(1)	10.00				
E-G	0 / 554	-18.5	-18.5	0.28(1)	10.00				
G-D	0 554	-18.5	-18.5	0.28 (1)	10.00				
SPECIF	TED CONCENTE	RATED LOA	DS (LE	3S)					
JT	LOC. LC1	MAX-	MAX.		ACE [DIR.	TYPE	HEEL	CONN.
G	4-11-4 -765	-765		- BA	CK VE	RT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = DL = LL = 25.6 PSF 6.0 0.0 BOT CH. = 7.4 = 39.0 TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.28/1.00 (D-E:1) , WB=0.08/1.00 (B-D:1), SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

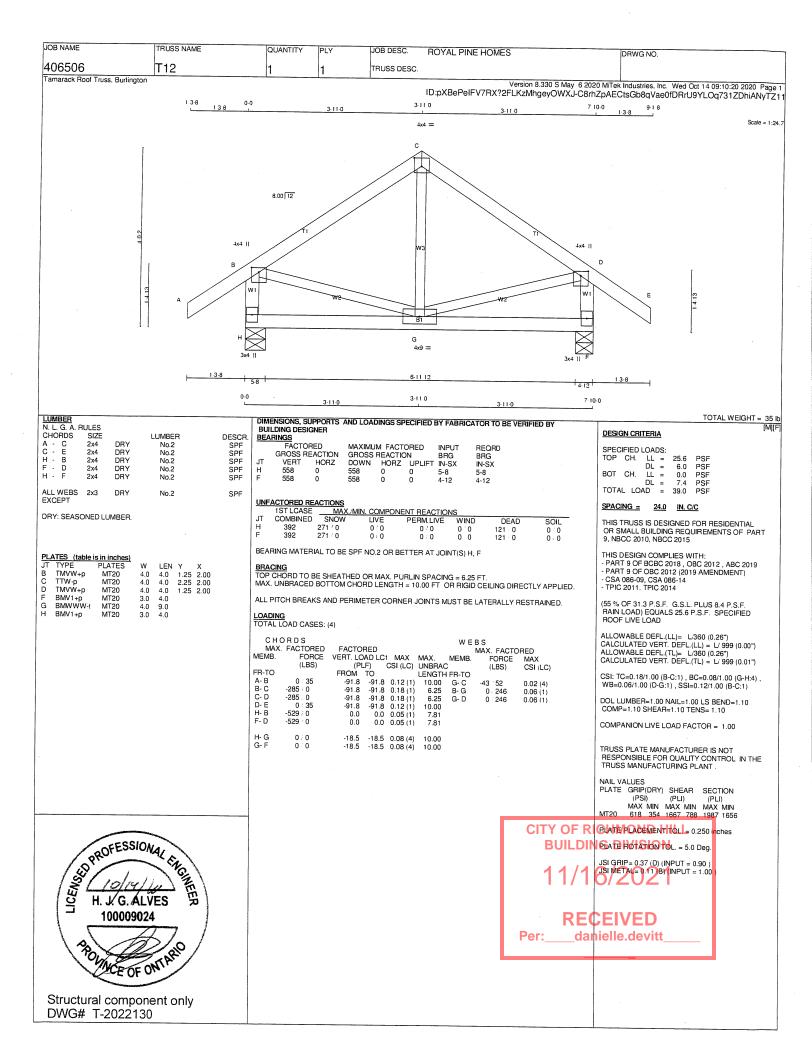
NAIL VALUES

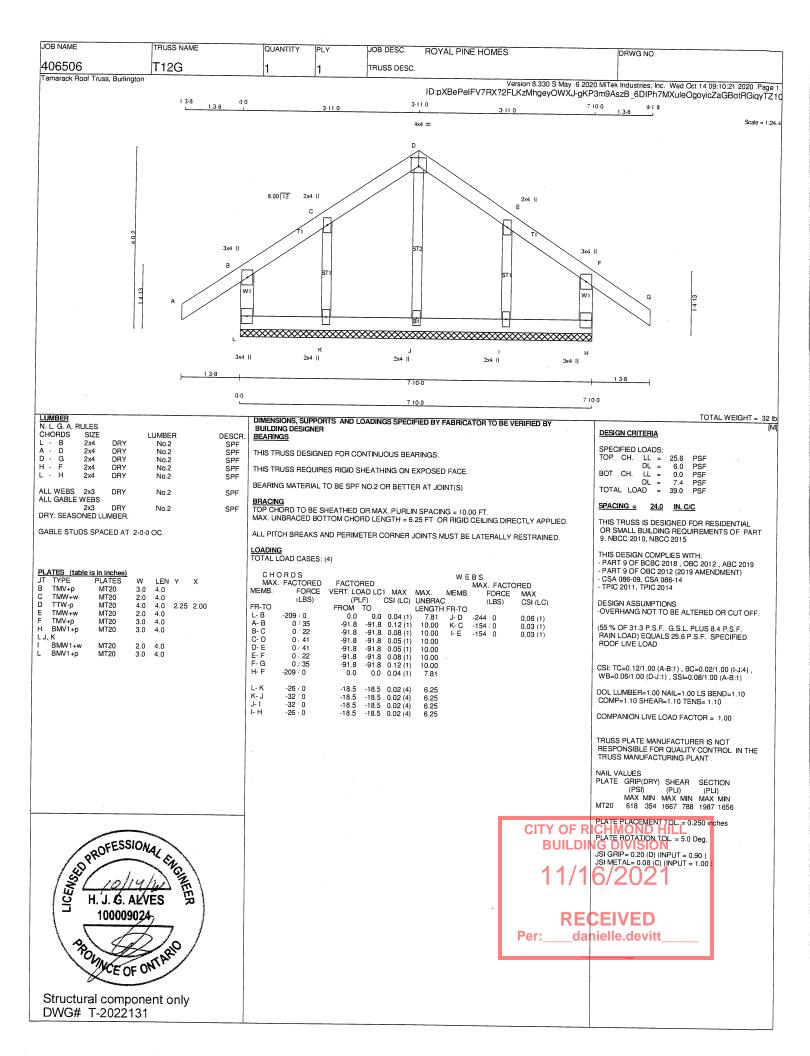
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

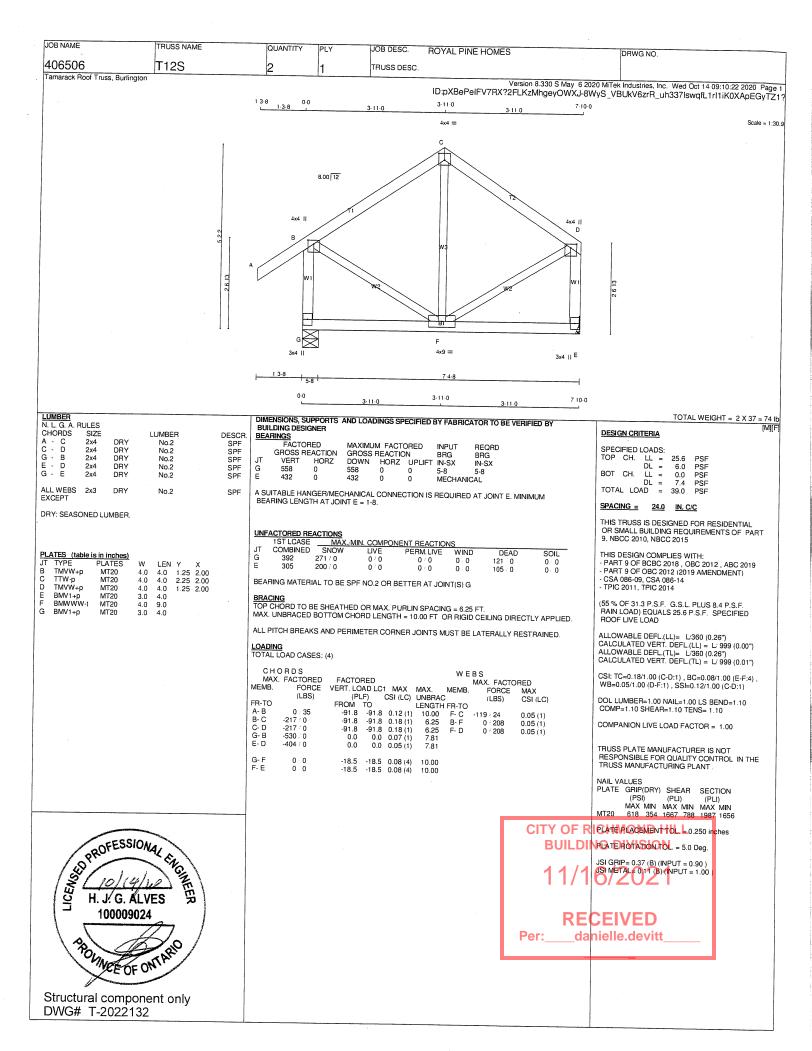
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 618 354 1667 788 1987 1656 PLATE PLACEMENT TOL. = 0.250 inches

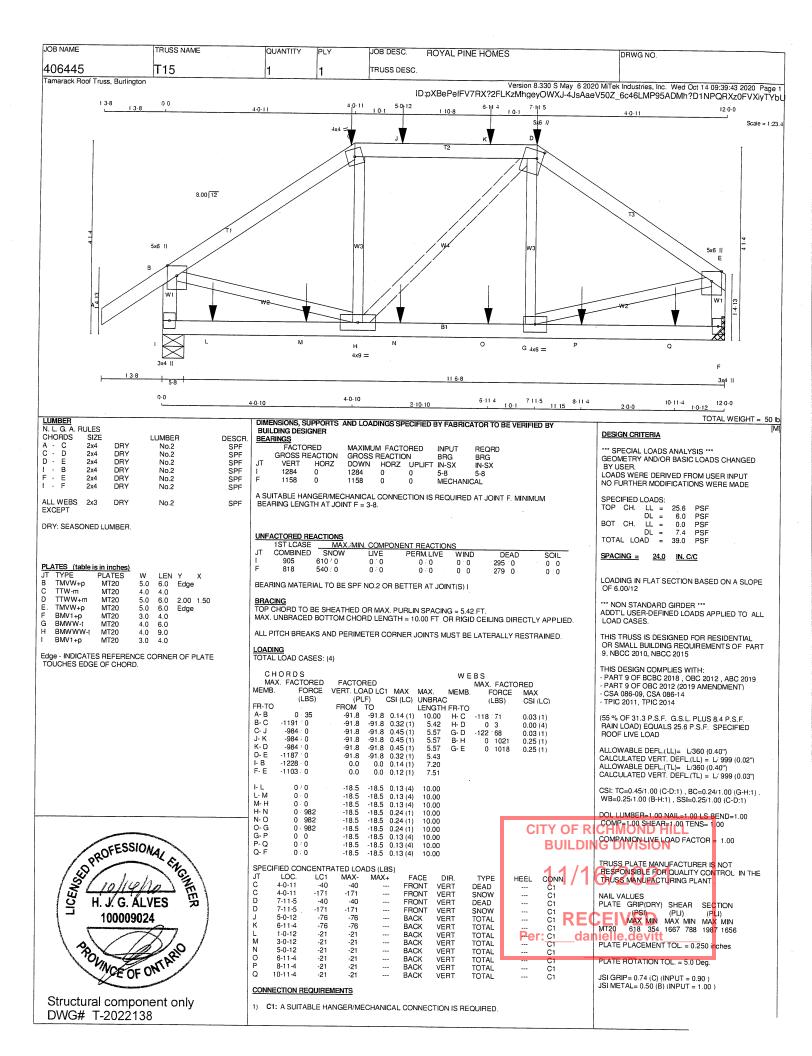
PLATE ROTATION TOL. = 5.0 Deg.

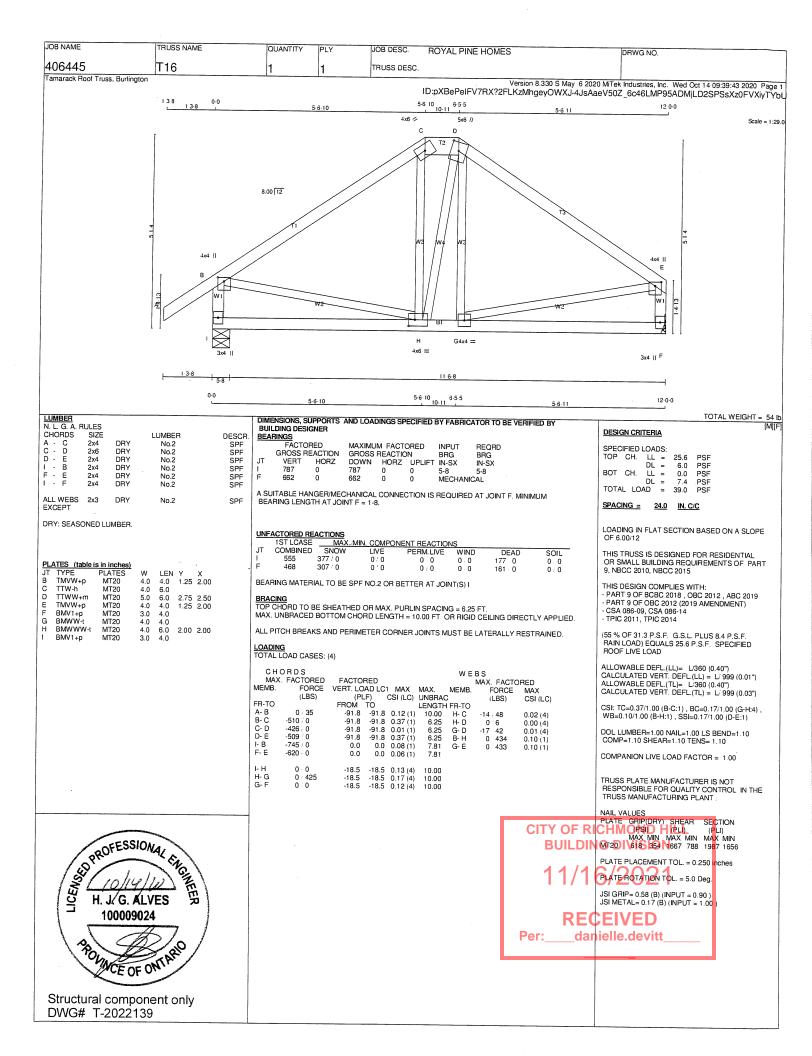
JSI GRIP= 0.28 (D) (INPUT = 0.90) JSI METAL= 0.12 (D) (INPUT = 1.00

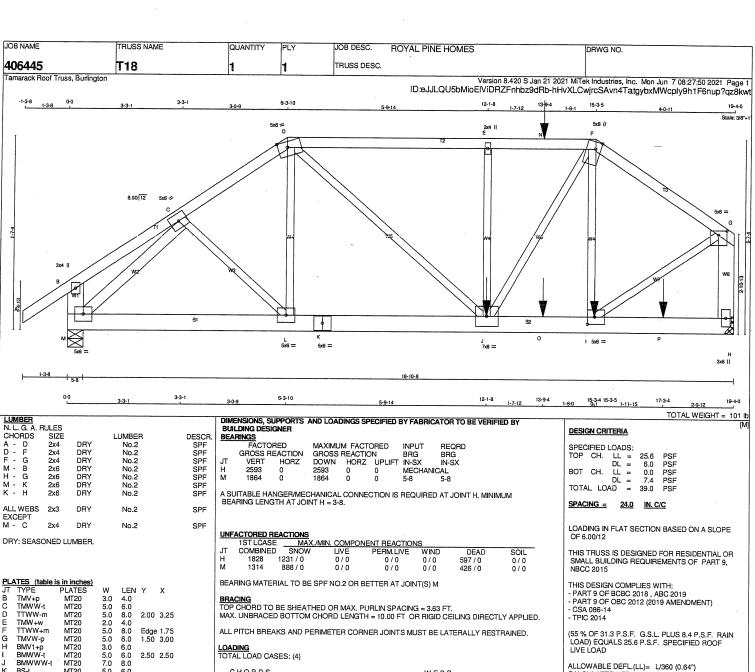

RECEIVED danielle.devitt


CITY OF R


BUILDII


CONTINUED ON PAGE 2


JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOM	ES	DRWG NO.	
413423	T11Z5	1	2	TRUSS DESC.				
Tamarack Roof Truss, Burlington	1			ID	:pXBePelFV7RX?2Fl	Version 8.330 S May 6 2020 LKzMhgeyOWXJ-Cac4Kz3	MiTek Industries, Inc. Wed Oct 14 (4N5GCdMYV6EtB7WpPGi?ZC	09:48:45 2020 Page 2
PLATES (table is in inches) JT TYPE PLATES F BMV1+p MT20	W LEN Y X 3.0 6.0						· ·	
H. J. G. Al 1000090	77 					BUILDIN 11/1(CHMOND HILL G DIVISION 6/2021 EEIVED ielle.devitt	
Structural compo	nent only 18 7		-					



JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. ROYAL PINE HOMES DRWG NO. 406445 T17 TRUSS DESC amarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Wed Oct 14 09:39:44 2020 Page 1 ID:pXBePeIFV7RX?2FLKzMhgeyOWXJ-YVQZn_Wknt6zEEhXv6gKiQvt7dNM8vBgBg?348yTYbT 1 3-8 0.0 12-0-0 1 3-8 4x4 = Scale = 1:31.4 8.00 12 4x4 || D 4x9 = 3x4 II E 11-6-8 0.0 6-0-0 12:0-0 6-0-0 TOTAL WEIGHT = 48 lb LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED B' MIF **BUILDING DESIGNER** DESIGN CRITERIA SIZE BEARINGS FACTORED LUMBER DESCR SPECIFIED LOADS:
TOP CH. LL =
DL =
BOT CH. LL =
DL =
TOTAL LOAD = A - C C - D G - B No.2 No.2 SPF 2x4 DRY MAXIMUM FACTORED INPLIT REORD DRY GROSS REACTION BRG
DOWN HORZ UPLIFT IN-SX
787 0 0 5-8 GROSS REACTION BRG IN-SX 25.6 6.0 0.0 PSF 2x4 VERT 787 HORZ 0 No.2 SPF D 2x4 DRY No.2 SPF 5-8 PSF MECHANICAL 662 662 0 0 39.0 ALL WEBS 2x3 DRY No.2 SPF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8. EXCEPT SPACING = 24.0 IN. C/C DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015 UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW MIN. COMPONENT REACTIONS
LIVE PERM.LIVE V THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014 SOIL 0 0 0 0 WIND DEAD PLATES (table is in inches)
JT TYPE PLATES 0 / 0 0/0 177 0 161 0 LEN Y 307 0 4.0 4.0 4.0 4.0 4.0 4.0 1.25 2.00 2.25 2.00 TMVW+p MT20 TTW-p TMVW+p MT20 MT20 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G 1.25 2.00 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT 4.0 BMV1+p MT20 3.0 (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED 9.0 BMWWW-t MT20 BMV1+p MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED ROOF LIVE LOAD ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED ALLOWABLE DEFL.(LL)= L/360 (0.40")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.40")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03") LOADING TOTAL LOAD CASES: (4) CHORDS CSI: TC=0.43/1.00 (C-D:1) , BC=0.19/1.00 (F-G:4) , WB=0.09/1.00 (B-F:1) , SSI=0.18/1.00 (C-D:1) MAX. FACTORED FACTORED
VERT. LOAD LC1 MAX MAX. MAX. FACTORED MEMB. MEMB. FORCE VEHT LOAD LCT MAX
(PLF) CSI (LC)
FROM TO
-91.8 -91.8 0.12 (1)
-91.8 -91.8 0.43 (1)
-91.8 -91.8 0.43 (1) CSI (LC) UNBRAC LENGTH FR-TO (LBS) (LBS) CSI (LC) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 FR-TO A- B B- C C- D G- B E- D F- C B- F F- D 0.03 (4) 0.09 (1) 0.09 (1) 10.00 -9 · 100 0 · 412 6.25 6.25 7.81 -488 / 0 COMPANION LIVE LOAD FACTOR = 1.00 -488 0 -745 0 0 - 412 -619 0 0.0 0.0 0.06(1) 7.81 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. G-F F-E 0 / 0 -18.5 -18.5 0.19 (4) -18.5 -18.5 0.19 (4) 10.00 NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN MT20 618 354 1667 788 1987 1656 CITY OF RIPLATE PLACEMENT TOLL = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. BUILDIN JSI GRIP= 0.57 (B) (INPUT = 0.90)

PROFESSIONAL ENGINEERS TO 19 100009024

Structural component only DWG# T-2022140

RECEIVED
Per: danielle.devitt

MT20 MT20 6.0 BMWW-t BMVW 1-t MT20 5.0 6.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

	OHDS					W E	EBS		
MAX	C. FACTORED	FACTO	RED				MAX. FAC	TORED	
MEMB.	FORCE	VERT. LO	AD LC	1 MAX	MAX.	MEMB	. FORCE	E MAX	
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC	;	(LBS)		
FR-TO		FROM	TÓ		LENGTH	FR-TO		()	
A- B	0 / 35	-91.8	-91.8	0.14(1)	10.00	L-D	0/100	0.04 (4)	
B- C	0 / 16	-91.8	-91.8	0.14(1)	10.00	D- J	0 / 1092		
C-D	-2063 / 0	-91.8	-91.8	0.21 (1)	4.50	J-E	-623 / 0	0.28 (1)	
D- E	-2514 / 0	-91.8	-91.8	0.65 (1)	3.63	J-F	0 / 1435		
E-Ņ	-2514 / 0	-91.8	-91.8	0.55 (1)	3.63	I-F	-378 / 0	0.17(1)	
N-F	-2514 / 0	-91.8	-91.8	0.55 (1)	3.63	I- G	0 / 2075	0.51 (1)	
F- G	-2142 / 0	-91.8	-91.8	0.39 (1)	4.22	C-L	0 / 131	0.03(1)	
M-B	-241 / 0	0.0	0.0	0.02(1)	7.81	M- C	-2251 / 0	0.49(1)	
H- G	-2446 / 0	0.0	0.0	0.25 (1)	6.56				
M- L	0 / 1605	-18.5	105	0.28 (1)	10.00				
L- K	0 / 1701	-18.5							
K-J	0 / 1701		-18.5						
J- 0	0 / 1771	-18.5	-18.5						į
0-1	0 / 1771	-18.5	-18.5					CIT'	١
I- P		-18.5		0.37 (1)				CII	
I- I-	0/0	-18.5	-18.5	0.19(1)	10.00				

SPE	CIFIED CON	ICENTRA	TED LOA	DS (LBS)			
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE
1	15-3-4	-214	-214		BACK	VERT	TOTAL
J	12-1-8	-968	-9 68		BACK	VERT	TOTAL
N	13-9-4	-122	-122		BACK	VERT	TOTAL
0	13-9-4	-29	-29		BACK	VERT	TOTAL
D	1721	04.4	014		D 4 O 1	VEDT	TOTAL

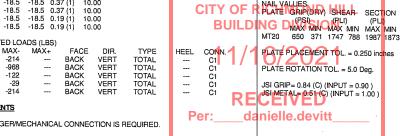
CONNECTION REQUIREMENTS

0/0

P-H

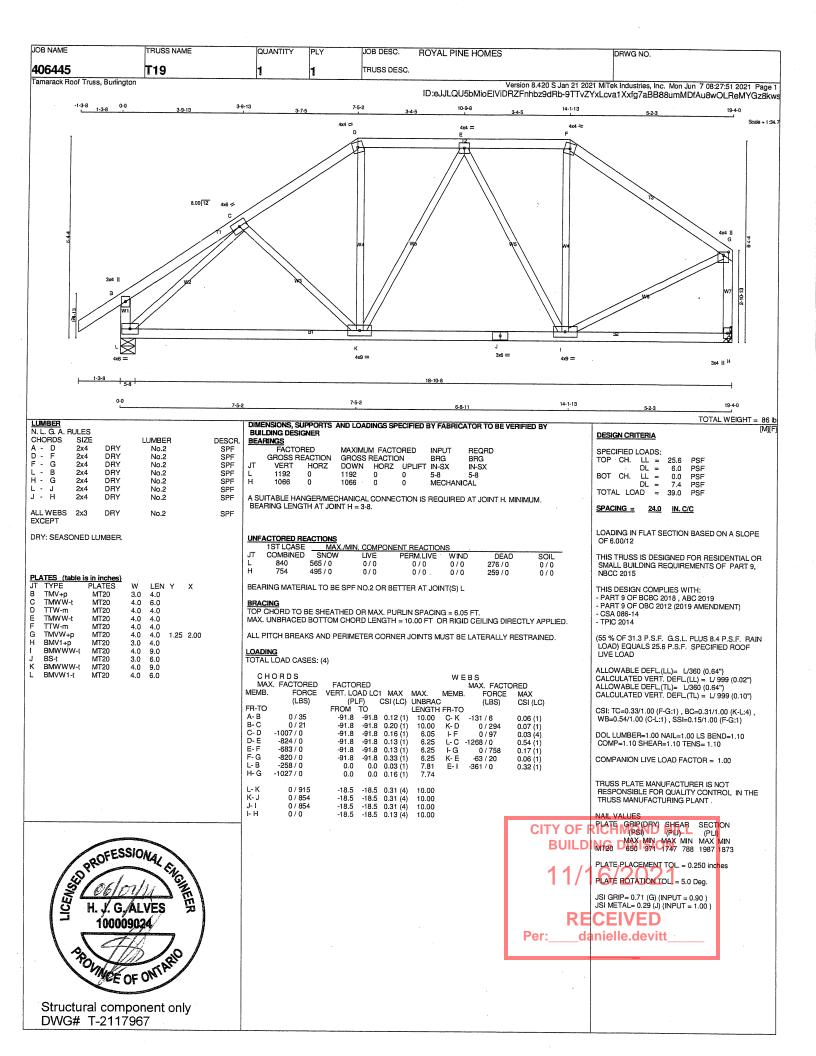
1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

ALLOWABLE DEFL.(LL)= L/360 (0.64")
CALCULATED VERT. DEFL.(LL)= L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.64")
CALCULATED VERT. DEFL.(TL)= L/999 (0.11")

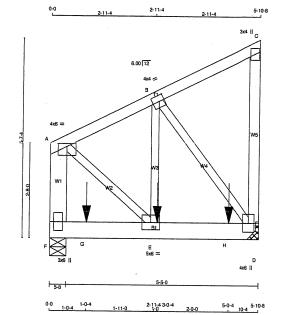

CSI: TC=0.65/1.00 (D-E:1) , BC=0.37/1.00 (I-J:1) , WB=0.51/1.00 (G-I:1) , SSI=0.28/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00


AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT



Structural component only DWG# T-2117966

JOB NAME TRUSS NAME QUANTITY JOB DESC **ROYAL PINE HOMES** DRWG NO. 406445 T20 TRUSS DESC Tamarack Roof Truss, Burlingtor

Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Mon Jun 7 08:27:52 2021 Page 1 ID:eJJLQU5bMioElViDRZFnhbz9dRb-df1HmtyzNDiu95EshIjQgMR_Bd0ldgMYZ5Nw4iz8kw

LUMBER N. L. G. A. BULES DESCR. SPF SPF SPF CHORDS SIZE 2x4 LUMBER - C No.2 No.2 No.2 No.2 DRY 2x4 2x6 DRY D SPF ALL WEBS 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	OS #ROWS		LOAD(PLF)			
TODO	10000 . 10 4	SPACING (IN)				
	1.0): 6UHOF	22"X3") SPIRAL	VAILS			
A-C	1	12	TOP			
C-D	1	12	TOP			
F- A	2	12	TOP			
вотто	M CHORDS	: (0.122"X3") SPIF	RAL NAILS			
F- D	2	12	SIDE(183.1)			
WEBS: (0.122"X3") SPIRAL NAILS						
2~2	4 .	6				

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NALING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN	Y	Х	
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00	
В	TMWW-t	MT20	4.0	4.0	2.00	1.75	
С	TMV+p	MT20	3.0	4.0			

Structural component only DWG# T-2117968

DIMENSIONS SHOODER	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
DIMILIACIONO, SUFFOR 13	WAS CONDINGS SECTIFIED BY LABRICATOR TO BE AFRIFIED BA
BUILDING DESIGNER	
DOILDING DESIGNEN	
DEADINGS	

<u>sea</u>	HINGS						
	FACTO GROSS R		MAXIMU GROSS			INPUT BRG	REQRD BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
)	1394	0	1394	0	0	MECHANIC	CAL
	1680	0	1680	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0

UNFACTORED REACTIONS

	1ST LCASE	MAX,/N	AIN. COMPO	VENT REACTION	VS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	983	660 / 0	0/0	0/0	0/0	323 / 0	0/0
F	1185	794 / 0	0/0	0/0	0/0	391 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTO	RED			W E	BS MAX. FACTO	BED	
MEMB.	FORCE (LBS)	VERT. LO	F)		UNBRAC		. FORCE (LBS)	MAX CSI (LC)	
FR-TO A- B B- C	-776 / 0 -13 / 0	FROM -91.8 -91.8	-91.8 -91.8	0.07 (1) 0.06 (1)	6.25	E-B B-D	0 / 924 -1142 / 0	0.11 (1) 0.20 (1)	
D- C F- A	-106 / 0 -1005 / 0	0.0		0.03 (1) 0.05 (1)	7.81 7.81	A-E	0 / 892	0.11 (1)	
F- G G- E E- H H- D	0 / 0 0 / 0 0 / 705 0 / 705	-18.5	-18.5 -18.5	0.25 (1) 0.25 (1) 0.17 (1) 0.17 (1)	10.00 10.00				
	5,705	10.5	-10.5	0.17 (1)	10.00				

SPECIFIED CONCENTRATED LOADS (LBS) JT E G LOC. 3-0-4 LC1 -453 TYPE TOTAL DIR. VERT -453 -803 FRONT TOTAL TOTAL 1-0-4 -803 FRONT VERT

CONNECTION REQUIREMENTS

5-0-4

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = LL = DL = PSF PSF 6.0 0.0 7.4 BOT CH. LL PSE TOTAL LOAD 39.0 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

TOTAL WEIGHT = 2 X 36 = 73 lt

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.25/1.00 (E-F:1) , WB=0.20/1.00 (B-D:1) , SSI=0.22/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

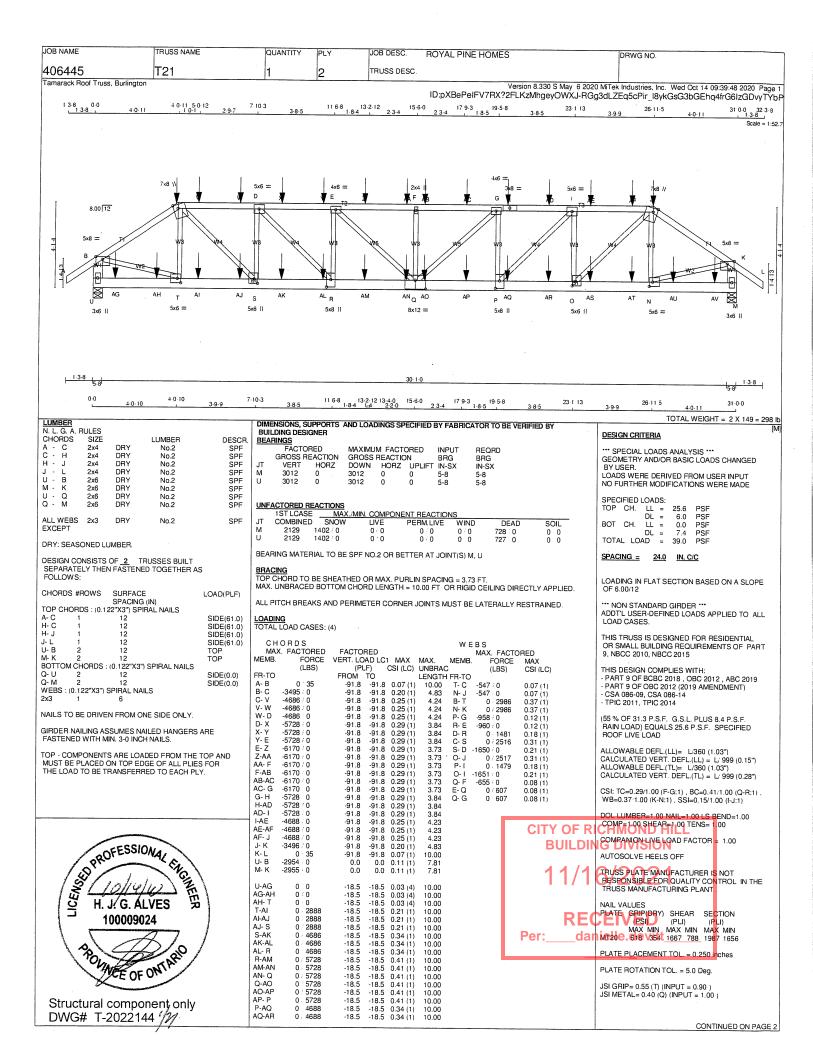
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI)

MT20 N650 N71 1747 788 1987 1873 CIGY OF I PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.60 (B) (INPUT = 0.90) JSI METAL= 0.16 (D) (INPUT = 1.00)


RECEIVED

danielle.devitt

HEEL CONN.

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. RO	YAL PINE HOMES		DRWG NO.	
406445	T20	1	2	TRUSS DESC.				
Tamarack Roof Truss, Burlington					ID:eJJLQU5bMioE	Version 8.420 S Jan 21 2021 IVIDRZFnhbz9dRb-df1H	MiTek Industries, Inc. Mon Jun 7 08:2 mtyzNDiu95EshIjQgMR Bd0IdgI	7:52 2021 Page 2 MYZ5Nw4iz8kwr
PLATES (table is in inches) PLATES JT TYPE PLATES D BMVW1+p MT20 4.0 E BMWW+t MT20 5.0 F BMV1+p MT20 3.0	LEN Y X 0 6.0 0 6.0 0 6.0							
				·				
						CITY OF RI	CHMOND HILL	
PROFESSION	// / 					BUILDIN 11/1	IG DIVISION 6/2021 CEIVED hielle.devitt	
Structural compor DWG# T-211796	nent only							

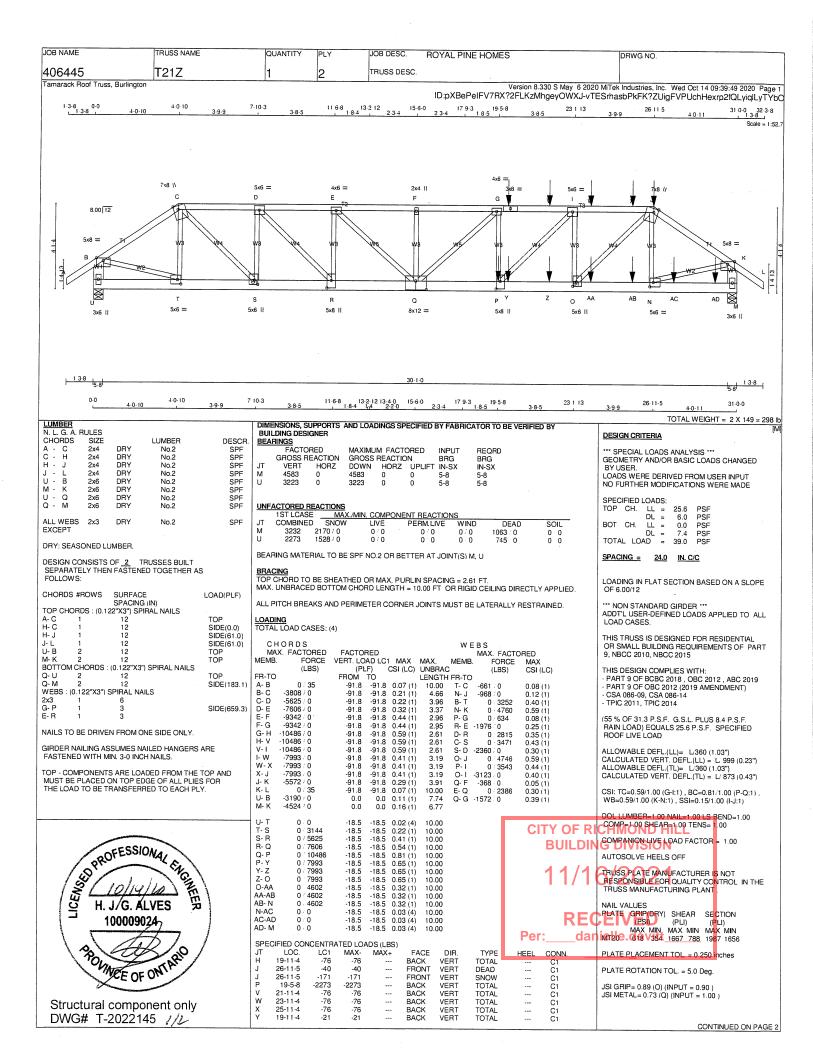
JOB NAME		Т	RUSS	S NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE	HOMES			DRWG NO.
406445		Т	21		1	2	TRUSS DESC.					
Tamarack Roof	Truss, Burling	ton						ID:pXBePeIF	Vers V7RX?2FL	sion 8.330 S May 6 202 KzMhgeyOWXJ-RG	20 MiTel	l k Industries, Inc. Wed Oct 14 09:39:48 2020 Page ZEq5cPir I8ykGsG3bGEhq4frG6IzGDvyTYb
PLATES (table	e is in inches) PLATES MT20	W 5.0	LEN 8.0	IYX Edge	LOADING TOTAL LOAD O	ASES:						
C TTWW+m D TMWW-t E TMWW-t F TMW+w G TMWW-t H TS-t	MT20 MT20 MT20 MT20 MT20 MT20 MT20	7.0 5.0 4.0 2.0 4.0 3.0	8.0 6.0 6.0 4.0 6.0 8.0	Edge 2.50	FR-TO (I		FACTORED ERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO	MAX. MEMB. UNBRAC LENGTH FR-TO	BS MAX. FACTO FORCE (LBS)	DRED MAX CSI (LC)		

TS-t
TMWW-t
TMWW-m
TMVW-p
BMV1+p
BMWW-t
BMWW-t
BMWW+t
BMWW+t
BMWW+t
BMWW+t
BMWW+t
BMWW+t
BMWW+t
BMWW+t 8.0 Edge 2.50 8.0 Edge 6.0 6.0 2.50 2.00 6.0 2.50 2.00 8.0 4.25 2.50 12.0 5.00 6.00 8.0 4.25 2.50 6.0 2.50 2.00 6.0 2.50 2.00 6.0 2.50 2.00 5.0 7.0 5.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 3.0 J K M Z O P O R S F U Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

TOTAL LOAD CASE	:S: (4)				
CHORDS MAX. FACTORE MEMB. FORC (LBS) FR-TO AR-O 0 :468: O-AS 0 :288: AS-AT 0 :288: AT-N 0 :288: N-AU 0 :0 AU-AV 0 :0 AV-M 0 /0	E VERT. LOAD LC1 (PLF) C FROM TO 8 -18.5 -18.5 9 -18.5 -18.5 9 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5		(LBS)		
JT LOC. L C 4-0-11 C 4-0-11 C 4-0-11 J 26-11-5 J 26-11-5 V 5-0-12 W 7-0-12 X 9-0-12 X 9-0-12 Z 13-0-12 AA 15-0-12 AB 15-11-4 AC 17-11-4 AB 23-11-4 AG 1-0-12 AH 3-0-12 AH 3-0-12 AH 3-0-12 AH 3-0-12 AH 13-0-12 A	NTRATED LOADS (LB: LC1 MAX MAX+ 40 40 40 1699 -169976 -767676 -767676 -76	FACE DIR. FRONT VERT FRONT VERT FRONT VERT FRONT VERT	TYPE DEAD SNOW TOTAL DEAD SNOW TOTAL	C	27

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

PROFESSIONAL ENGINEE 10/14/20 H. J. G. ALVES 100000024 100009024 ROUNCE OF ONTARIO


Structural component only DWG# T-2022144 グレ

CITY OF RICHMOND HILL **BUILDING DIVISION**

11/16/2021

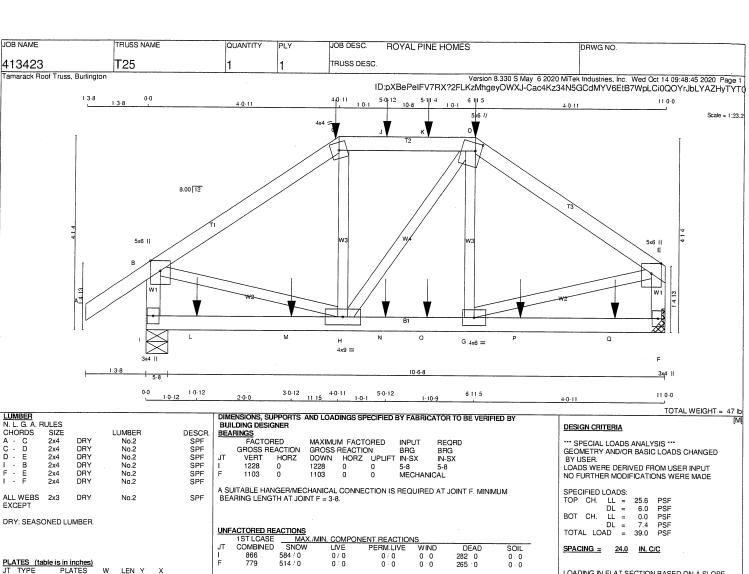
RECEIVED

_danielle.devitt

OB NAME		TRUSS N	IAME	QL	JANTITY	PLY		JOB DESC	C. RO	YAL PIN	IE HOMES				DRWG NO.		
106445		T21Z		1		2		TRUSS DE	ESC.								
amarack Roof T	russ, Burling	iton										ersion 8.3	30 S May 6	2020 MiT	ek Industries Ind	Wed Oct 14	09:39:50 2020 F
									ID:p	XBePelF	V7RX?2FL	.KzMhge	/OWXJ-N	fog21bU	Mjs6y98hGNr	kyh9s02G3	YVvZabSNHoy
PLATES (table	is in inches)																
JT TYPE	PLATES		Y X	SPE	CIFIED CON	CENTRA	TED LO	ADS (LBS)						1			
B TMVW-p	MT20		Edge	JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.				
C TTWW+m	MT20		Edge 2.50	Z	21-11-4	-21	-21		BACK	VERT	TOTAL		C1	- 1			
D TMWW-t E TMWW-t	MT20 MT20	5.0 6.0 4.0 6.0		AA	23-11-4	-21	-21 -21 -21		BACK	VERT	TOTAL		C1				
F TMW+w	MT20	2.0 4.0		AB AC	25-11-4 27-11-4	-21 -21	-21		BACK	VERT	TOTAL		C1				
G TMWW-t	MT20	4.0 6.0		AD	29-11-4	-21 -21	-21 -21		BACK	VERT	TOTAL		C1	1			
H TS-t	MT20	3.0 8.0		1 20	23-11-4	-21	-21		BACK	VERT	TOTAL		C1				
TMWW-t	MT20	5.0 6.0		CON	NECTION R	EQUIREM	ENTS										
J TTWW+m	MT20	7.0 8.0 E	Edge 2.50											-			
< TMVW-p	MT20	5.0 8.0 E	Edge	1) (C1: A SUITA	ABLE HAN	IGER/ME	ECHANICA	L CONNEC	TION IS F	REQUIRED.						
M BMV1+p	MT20	3.0 6.0															
N BMWW-t	MT20		2.50 2.00	1													
D BMWW+t BMWW+t	MT20		2.50 2.00														
D BSWWW-I	MT20 MT20		4.25 2.50 5.00 6.00														
R BMWW+t	MT20		1.25 2.50														
S BMWW+t	MT20		2.50 2.00														
BMWW-t	MT20		2.50 2.00														
J BMV1+p	MT20	3.0 6.0		- 1										1			

7.0 5.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Z	21-11-4	-21	-21	 BACK	VERT	TOTAL	 C1
AA	23-11-4	-21	-21	 BACK	VERT	TOTAL	 C1
AB	25-11-4	-21	-21	 BACK	VERT	TOTAL	 C1
AC	27-11-4	-21	-21	 BACK	VERT	TOTAL	 C1
AD	29-11-4	-21	-21	 BACK	VERT	TOTAL	 C1
CON	NECTION RE	QUIREN	<u>IENTS</u>				


Structural component only DWG# T-2022145 ツン

CITY OF RICHMOND HILL **BUILDING DIVISION**

11/16/2021

RECEIVED

_danielle.devitt

PLA	ATES (table)	s in inches)				
JT	TYPE	PLATES	W	LEN	Υ	X
В	TMVW+p	MT20	5.0	6.0	Edge	
С	TTW-m	MT20	4.0	4.0	-	
D	TTWW+m	MT20	5.0	6.0	2.00	1.50
Е	TMVW+p	MT20	5.0	6.0	Edge	
F	BMV1+p	MT20	3.0	4.0		
G	BMWW-t	MT20	4.0	6.0		
Н	BMWWW-t	MT20	4.0	9.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

3.0 4.0

MT20

BMV1+p

LOADING TOTAL LOAD CASES: (4) CHORDS WEBS FACTORED VERT. LOAD LC1 MAX MAX. FACTORED MAX. FACTORED MEMB. FORCE MAX MEMB (LBS) (PLF) CSI (LC) UNBRAC (LBS) CSI (LC) FROM -91.8 FR-TO LENGTH FR-TO 0 / 35 -91.8 0.14(1) A- B B- C 10.00 H- C -113 65 0.03(1)-91.8 0.32 (1) -91.8 0.33 (1) -91.8 0.33 (1) 5.56 5.94 5.94 5.94 H- D G- D B- H 0 3 -116 62 0 958 0.00 (4) 0.03 (1) -1118 / 0 -923 / 0 -918 C- J J- K -91.8 -91.8 0.24(1) -923 -91.8 -91.8 0.33(1) G-E 0 / 956 0.24(1) -91.8 0.0 -91.8 0.0 0.32 (1) 0.13 (1) D- E -1114 -1047 0.12(1) 0.0 0.0 -18.5 -18.5 0 0 0 0 0 0 0 L- M M- H 0 0 923 923 0.13 (4) 10.00 -18.50.13 (4) 0.22 (1) 0.22 (1) -18.5 -185 10.00 -18.5 -18.5 10.00

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

O- G G- P P- Q -18.5 0.22 (1) -18.5 0.13 (4) -18.5 0.13 (4) 923 -18.5 10.00 0 10.00 10.00 Q- F 0. -18.5 0.13(4) 10.00 SPECIFIED CONCENTRA TED LOADS (LBS) 70000 FACE LOC LC1 MAX-MAX+ DIR TYPE FRONT FRONT VERT DEAD SNOW 4-0-11 4-0-11 6-11-5 -171 -40 -171 -40 -171 -76 -76 FRONT VERT DEAD 6-11-5 -171 FRONT VERT SNOW 5-0-12 5-11-4 FRONT -76 -76 -21 -21 -21 -21 TOTAL VER1 TOTAL TOTAL TOTAL 1-0-12 -21 -21 -21 FRONT VERT LMZOP 3-0-12 5-0-12 5-11-4 7-11-4 FRONT VERT VERT

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.56 FT.

CONNECTION REQUIREMENTS

Q

-21

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

FRONT

FRONT

VERT

TOTAL

TOTAL

-21

LOADING IN FLAT SECTION BASED ON A SLOPE

NON STANDARD GIRDER *** ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.37")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL) = L/360 (0.37") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.03")

CSI: TC=0.33/1.00 (C-D:1) , BC=0.22/1.00 (G-H:1) , WB=0.24/1.00 (B-H:1) , SSI=0.21/1.00 (C-D:1)

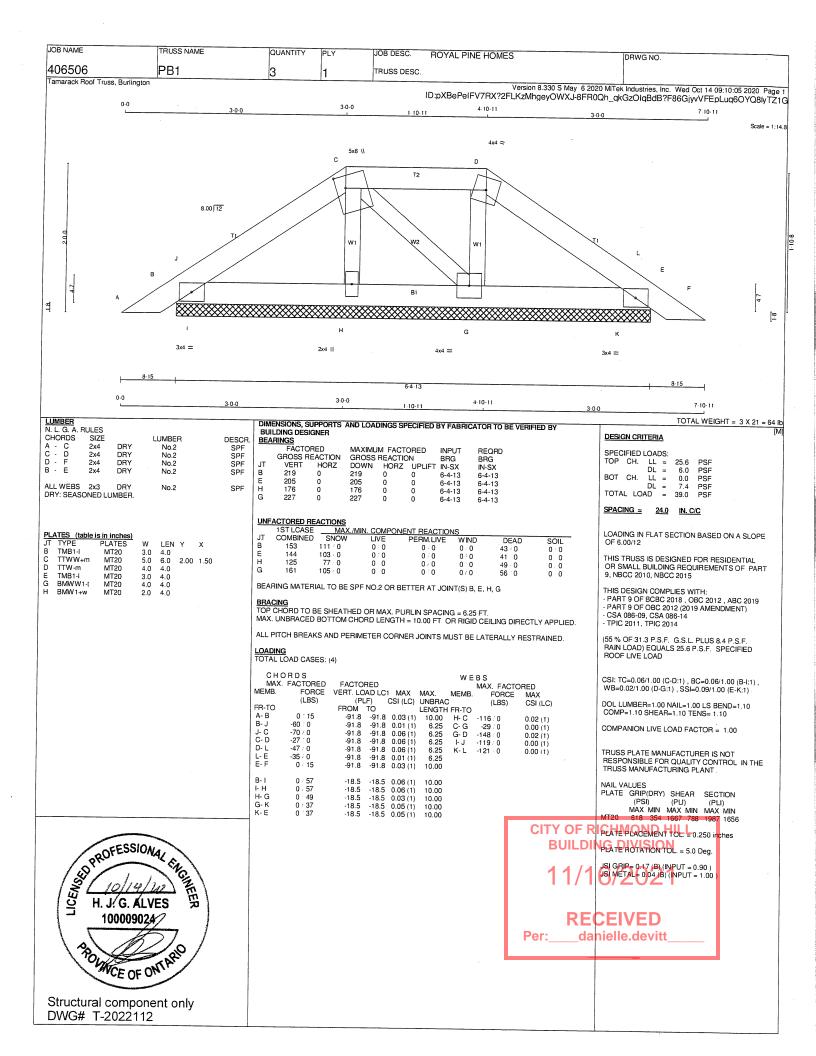
00 LS BEND=1.00 CITY OF RICHMP-100 SHEAR 1.00 TENS= 1.00 BUILDIN COMPANION LIVE LOAD FACTOR = 1.00

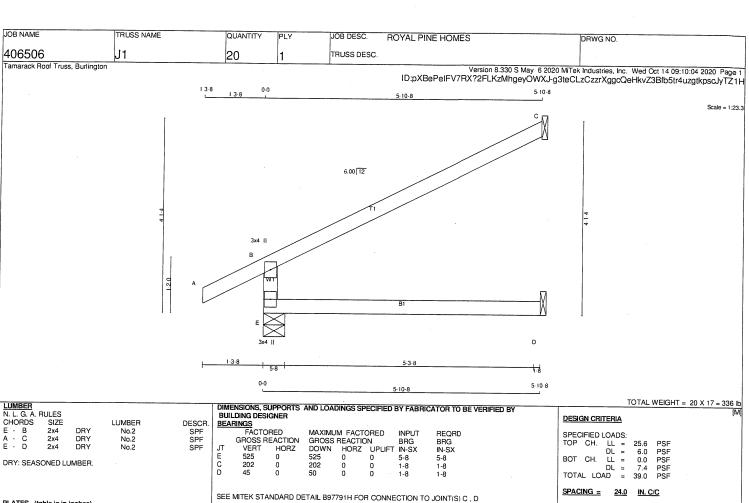
HEEL

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. CONN C1 NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
PLATE GRIP(DRY) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 618 354 1667 788 1987 1656 PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP = 0.69 (G) (INPLIT = 0.90) JSI METAL= 0.47 (B) (INPUT = 1.00)


Structural component only DWG# T-2022149


JOB NAME TRUSS NAME QUANTITY JOB DESC PLY **ROYAL PINE HOMES** DRWG NO. 406445 T51 TRUSS DESC Tamarack Roof Truss, Burlingtor Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Mon Jun 7 08:27:53 2021 Page 1 ID:pXBePeIFV7RX?2FLKzMhgeyOWXJ-5sbf_Dzb8XqlmFp2F?EfDZ_991L3M68hol7Tc8z8kwc Scale = 1:23. 6.00 12 4x6 II D 4-0-4 5-6-4 5-10-8 TOTAL WEIGHT = 2 X 30 = 60 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. I. G. A. BULES BUILDING DESIGNER **DESIGN CRITERIA** LUMBER DESCR BEARINGS DRY INPUT BRG A - C D - C 2x4 2x4 No.2 SPF SPF FACTORED MAXIMUM FACTORED REQRD SPECIFIED LOADS: GROSS REACTION VERT HORZ DRY No 2 GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX LL = DL = LL = DL = AD = BRG CH. IN-SX PSF PSF Ď DRY 2x6 No.2 SPF 3076 3076 MECHANICAL 0.0 7.4 ALL WEBS 2x3 DRY SPF TOTAL LOAD 39.0 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0 SPACING = 24.0 IN. C/C DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS: THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, UNFACTORED REACTIONS
1ST LCASE _____MA NBCC 2015 CHORDS #ROWS SURFACE LOAD(PLF) MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND SPACING (IN) COMBINED SOIL THIS DESIGN COMPLIES WITH: TOP CHORDS: (0.122"X3") SPIRAL NAILS 711/0 - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) 0/0 A- C C- D TOP 569 / 0 0/0 0/0 0/0 SIDE(152.7) BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F TPIC 2014 BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(183.1) (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF WEBS: (0.122"X3") SPIRAL NAILS TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. E-B SIDE(488.6) 2x3 ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/399 (0.01")
ALLOWABLE DEFL.(TL)= L/380 (0.20")
CALCULATED VERT. DEFL.(TL) = L/3999 (0.02") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. NAILS TO BE DRIVEN FROM ONE SIDE ONLY. LOADING TOTAL LOAD CASES: (4) GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS. CHORDS WEBS CSI: TC=0.12/1.00 (A-B:1) , BC=0.22/1.00 (D-E:1) , WB=0.30/1.00 (B-E:1) , SSI=0.33/1.00 (D-E:1) TOP - COMPONENTS ARE LOADED FROM THE TOP AND MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR мемв. FORCE THE LOAD TO BE TRANSFERRED TO EACH PLY DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 (LBS) CSI (LC) FR-TO LENGTH FR-TO SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED A-B B-C D-C -91.8 -91.8 0.0 -91.8 0.12 (1) -91.8 0.07 (1) 0.0 0.00 (1) 6.25 6.25 A-E 0 / 1400 E-B 0 / 2403 B-D -2480 / 0 -1525 / 0 0.17 (1) TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE -24 / 0 -31 / 0 COMPANION LIVE LOAD FACTOR = 1.00 0.30(1) 7.81 0.27 (1) F-A -1112/0 0.0 0.0 0.04 (1) AUTOSOLVE RIGHT HEEL ONLY SIDE OR ON THE TOP. -18.5 0.08 (1) 10.00 TRUSS PLATE MANUFACTURER IS NOT E-G G-D 0 / 1374 -18.5 -18.5 0.22 (1) RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 10.00 PLATES (table is in inches)
JT TYPE PLATES 0 / 1374 -18.5 -18.5 0.22 (1) LEN Y TMVW-p TMWW-t MT20 MT20 4.0 5.0 6.0 1.00 3.00 SPECIFIED CONCENTRATED LOADS (LBS) ABCD MAIL VALUES 6.0 JT LOC LC1 MAX-MAX+ FACE DIR TYPE CONN PLATE GRIP(DRY) SHEAR SECTION TMV+p BMVW1+p 4-0-4 5-6-4 MT20 3.0 40 TOTAL (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MT20 4.0 FRONT VERT TOTAL MT20 650 371 1747 788 1987 1873 **CITY OF** CONNECTION REQUIREMENTS PROFESSIONAL ENGINEERS OF LONGISCON THE STATE PLATE PLACEMENT TOL. = 0.250 inches BUILD 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.74 (B) (INPUT = 0.90) JSI METAL= 0.38 (E) (INPUT = 1.00) RECEIVED 100009024 danielle.devitt POLINGE OF ONT ARIO

Structural component only DWG# T-2117969 #/2

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES		DRWG NO.	
406445	T51	1	2	TRUSS DESC.				
Tamarack Roof Truss, Burlington					ID:pXBePelFV7RX?2	Version 8.420 S Jan 21 202 FLKzMhgeyOWXJ-5sb	1 MiTek Industries, Inc. Mon Jun 7 08: f Dzb8XqlmFp2F?EfDZ 991L3M	27:53 2021 Page 2 68hol7Tc8z8kwo
PLATES (table is in inches)								
JT TYPE PLATES E BMWW+t MT20	W LEN Y X 5.0 8.0 4.25 2.50 3.0 6.0							
1 ΒΙΝΙΝ1+ ρ ΙΝΙ120 3	5.0 6.0				4			
							*	
						•		
								•
						V.		
						-		
	-							
	·							
						-		
							RICHMOND HILL	
OFESSI	ONAL				*	BUILDI	NG DIVISION	
PROFESSI SUPROFESSI US H. J. G. A 1000090	TE.					11/1	6/2021	
1 8 COG/67	(2) []					/	3, 2 3 2 1	
의 H. J. G. A	LVES %					RE	CEIVED	
							nielle.devitt	
18/1						-		
PONNEE OF	ONTA				•			
	·							
Structural compo DWG# T-21179	onent only 69			:				

PLATES (table is in inches)
JT TYPE PLATES ۱۸/ LEN Y 3.0 4.0 BMV1+p

UNFACTORED REACTIONS MAX SNOW 257 : 0 113 : 0 ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND COMBINED DEAD SOIL ECD 0/0 0/0 0 0 111 · 0 26 · 0 36 · 0 0/0 0 1 0 0 0 139 0.50 0:0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS MAX. FACTORED FACTORED
VERT LOAD LC1 MAX MAX. MAX. FACTORED MEMB FORCE PLF) CSI (LC)
FROM TO
0.0 0.0 0.13 (4)
-91.8 -91.8 0.12 (1)
-91.8 -91.8 0.54 (1) CSI (LC) UNBRAC LENGTH FR-TO (LBS) FR-TO E- B A- B B- C 7.81 0 . 28 -30 0 E- D 0:0 -18.5 -18.5 0.13 (4) 10.00

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2010, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, OBC 2012, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-09, CSA 086-14
- TPIC 2011, TPIC 2014

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

 $(55\,\%$ OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03")

CSI: TC=0.54/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0), SSI=0.24/1.00 (B-C:1)

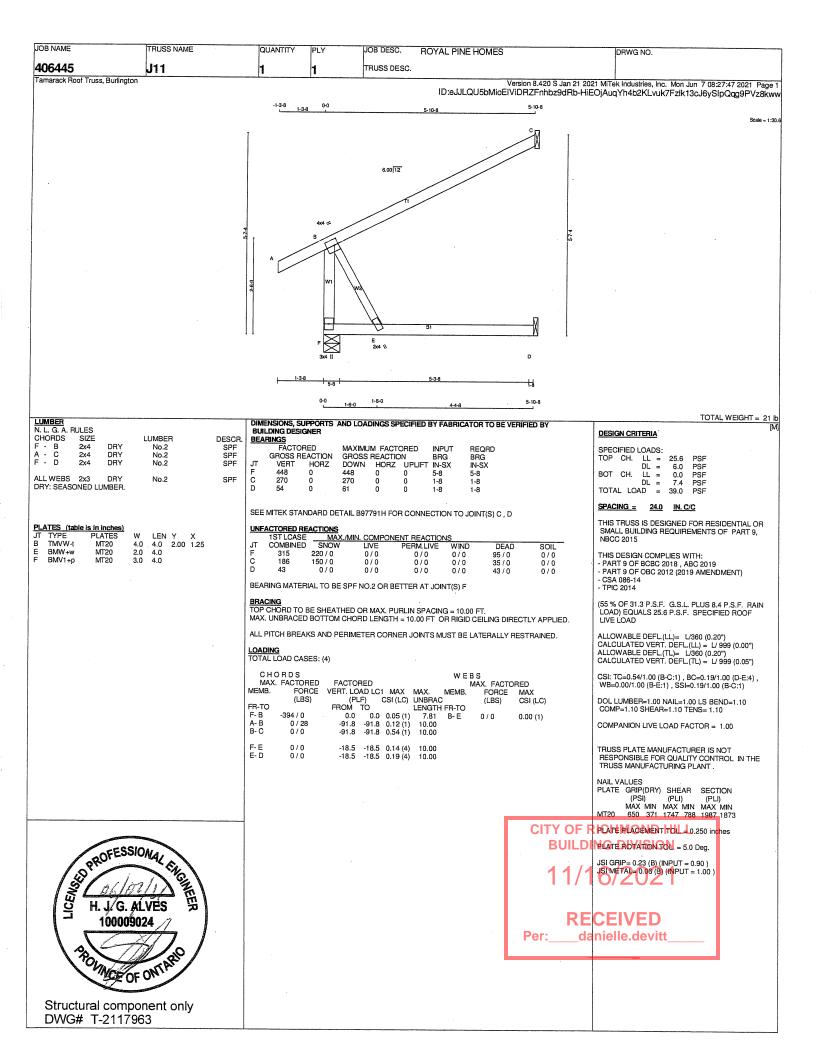
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

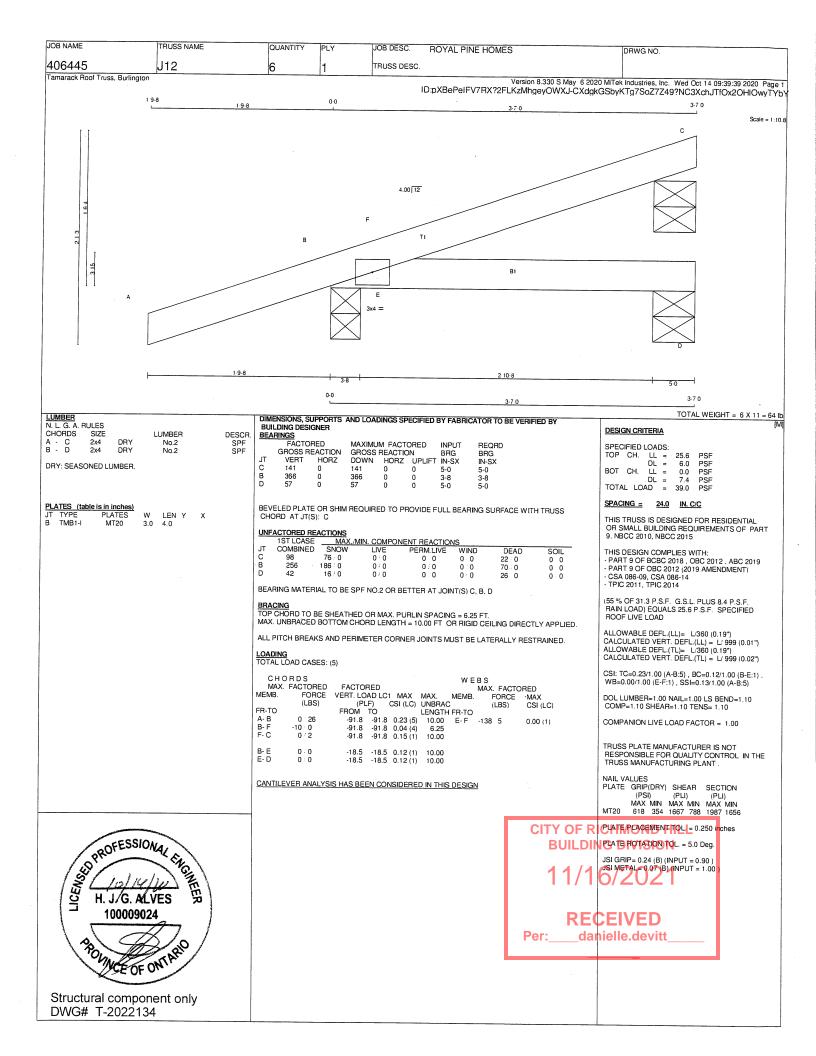
COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

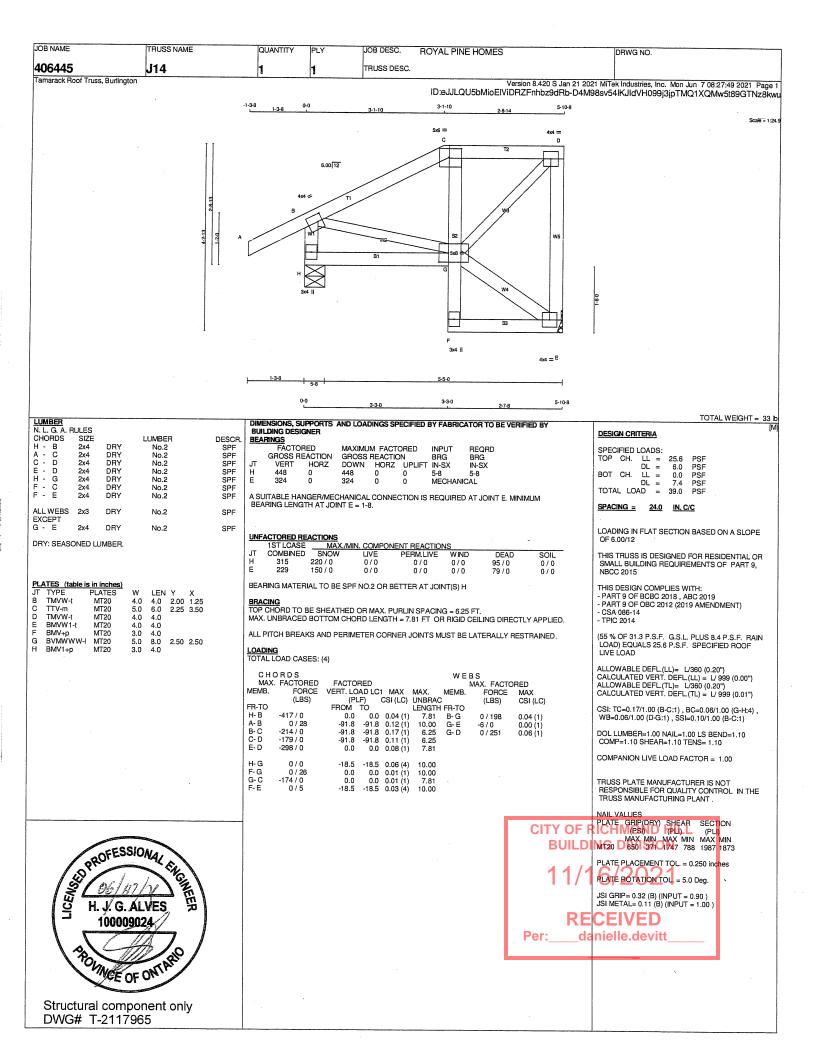
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

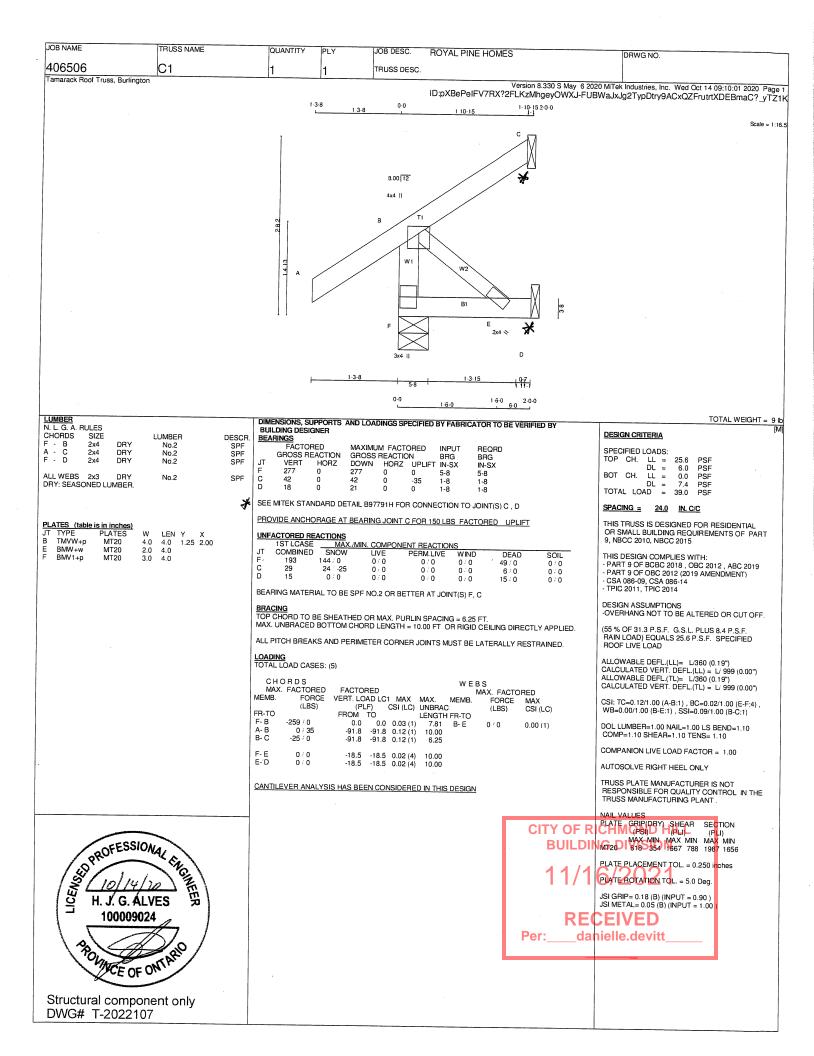
CITY OF R CHATTI CRIP(DRY) SHEAR SECTION (PLI) (PLI) (PSI) (PLI) (PLI) (PSI) (PLI) (PLI) (PSI) (


PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg.

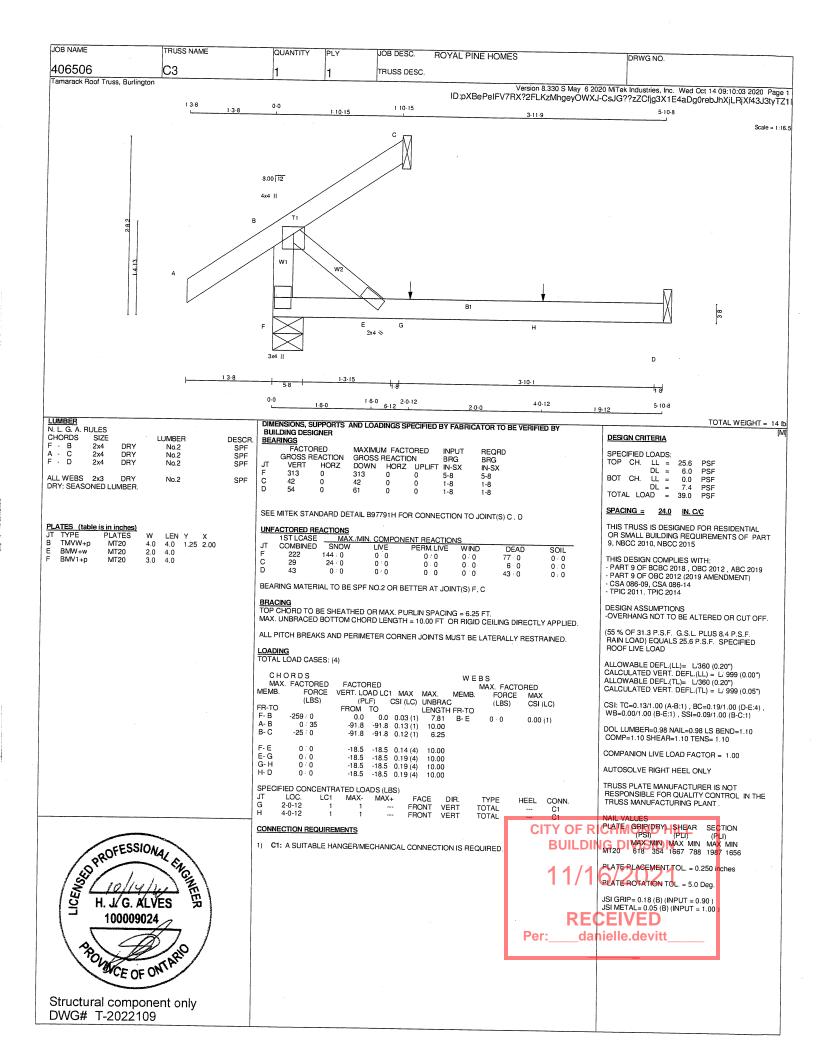

JSI GRIP= 0.19 (E) (INPUT = 0.90) JSI METAL= 0.13 (B) (INPUT = 1.00 RECEIVED

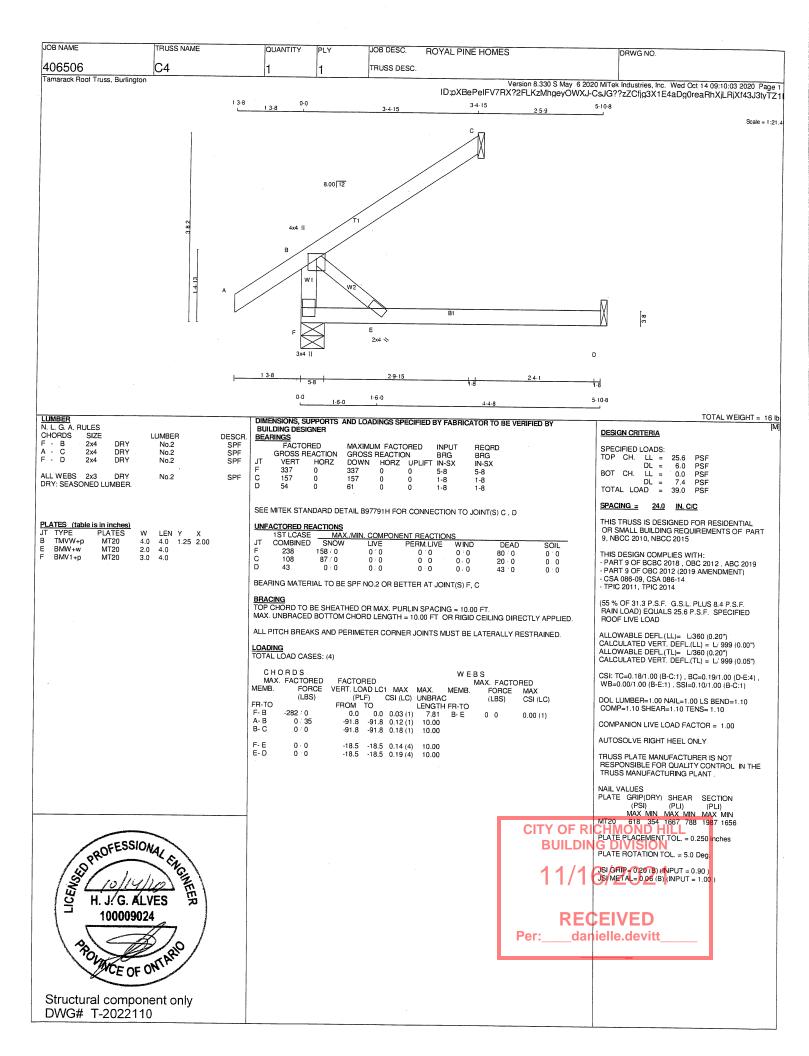
danielle.devitt


Structural component only DWG# T-2022111






JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES PLY DRWG NO 406445 J13 TRUSS DESC Tamarack Roof Truss, Burlingtor Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Mon Jun 7 08:27:48 2021 Page 1 Scale = 1:30.6 4x4 = 6.00 12 3x4 II 4x4 = 1-3-8 5-8 TOTAL WEIGHT = 35 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER **DESIGN CRITERIA** LUMBER No.2 No.2 DESCR. SPF SPF SIZE H - B A - D E - D H - G F - C DRY DRY DRY FACTORED SPECIFIED LOADS: MAXIMUM FACTORED INPUT RECED GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX BRG IN-SX LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 AD = 39.0 GROSS REACTION TOP CH. DOWN 2x4 No.2 SPE VERT 448 HORZ PSF PSF PSF DRY DRY SPF 448 SPF MECHANICAL Ε 2x4 DRY No.2 SPF TOTAL LOAD PSF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8. ALL WEBS DRY No.2 SPF SPACING = 24.0 IN. C/C EXCEPT G - E 244 DRY No.2 SPF THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, DRY: SEASONED LUMBER. UNFACTORED REACTIONS
1ST LCASE MAX NBCC 2015 MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM,LIVE WIND THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) COMBINED DEAD SOIL 0/0 315 220 / 0 0/0 0/0 0/0 0/0 PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H Y X 2.00 1.25 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 MT20 MT20 MT20 MT20 MT20 3.0 4.0 4.0 TMV+p TMVW-t BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF 2.00 1.75 BMVW1-t MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED. LIVE LOAD BMV+p BVMWWW-I 3.0 5.0 MT20 MT20 2.50 2.50 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01") BMV1+p 4.0 LOADING TOTAL LOAD CASES: (4) CHORDS MAX. FACTORED MEMB. FORCE W E B S MAX. FACTORED CSI: TC=0.16/1.00 (D-E:1) , BC=0.06/1.00 (G-H:4) , WB=0.09/1.00 (D-G:1) , SSI=0.13/1.00 (B-C:1) FACTORED VERT. LOAD LC1 MAX MAX. MEMB. MAX CSI (LC) FORCE CSI (LC) UNBRAC LENGTH FR-TO (LBS) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 0.0 -91.8 -91.8 -91.8 -91.8 H-B 0.0 0.04 (1) 0.05 (1) 7.81 B- G 0 / 230 A-B B-C C-D E-D -91.8 0.12 (1) -91.8 0.13 (1) -91.8 0.13 (1) 0 / 28 10.00 G- F -11/0 0/381 0.00 (1) 0.09 (1) COMPANION LIVE LOAD FACTOR = 1.00 -237 / 0 -249 / 0 G-D 6.25 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE -295 / 0 0.0 0.16(1) 7.81 0/0 18.5 0.06 (4) 0.0 0.02 (1) 10.00 TRUSS MANUFACTURING PLANT. F-G G-C 10.00 7.81 10.00 0 / 26 0.0 0.02 (1) 0.03 (4) -327 / 0 0.0 NAIL VALUES 0/10 CITY OF PLATE PLACEMENT TOL. = 0.250 inches PROFESSIONAL CHEMEN PLATE ROTATION TOL. = 5.0 Deg. **BUILD** JSI GRIP= 0.40 (G) (INPUT = 0.90) JSI METAL= 0.12 (B) (INPUT = 1.00) RECEIVED 100009024 nielle.devitt POUNCE OF ONT ARE


Structural component only DWG# T-2117964

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components

2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.

- 3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.
- 4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.
- 5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.

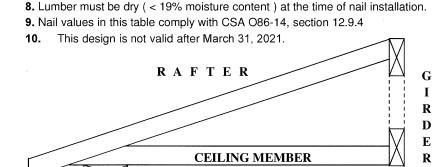
- 2- Lumber is to be the sizes and grade specified on the truss drawing.
- 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6- The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)

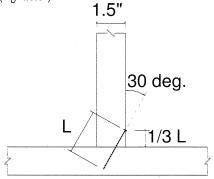
7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals. $\frac{11}{16}$

8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols, numbering system and General Safety notes.

1800218 daniell Feb. 09, 2018

BEARING ANCHORAGE BY TOE-NAILS FOR LATERAL CAPACITY


B97791H1


NAIL TYPE	LENGTH	DIAMETER	NAIL LATERAL CAPACITY (LB)			
NAIL THE	(IN)	(IN)	S-P-F	D. FIR		
COMMON	3.00	0.144	132	147		
WIRE	3.25	0.144	132	147		
WIRE	3.50	0.160	159	177		
COMMON	3.00	0.122	97	108		
SPIRAL	3.25	0.122	97	108		
SPINAL	3.50	0.152	145	162		

NOTES:

- 1. Rafter and ceiling members may be anchored to top and bottom chords of girder truss by toe-nailing rafter and ceiling members to girder chords provided the reaction does not exceed the lateral capacities in the table. Hangers (specified by others) are required for reactions higher than the maximum toe-nail capacity. Reactions are based on factored loads.
- 2. Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA O86-14, section 12.9.4.1.
- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- 4. Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in tables below.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42 (SPF), G = 0.49 (D. Fir).
- 6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See next page for nailing on bearing plate).

7. For loads due to wind the nail lateral capacity in this table may be multiplied by 1.15 (K_D factor).

TOE-NAII	INSTAI	LATION
1 () 1 ' - 1 / 2 1		

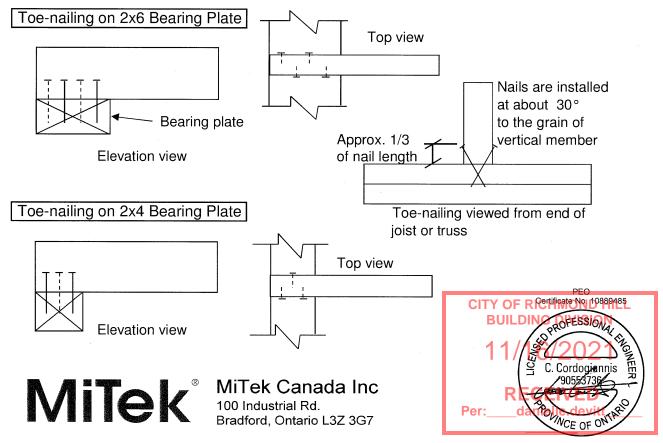
Nail type	Common wire	Common spiral	Common wire	Common spiral					
Nail dia. (in)	0.160	0.152	0.122						
	(3.5'	(3.5" nail) (3" and 3.25" nail)							
LUMBER SIZE	MAXIMUM NUMBER OF TOE-NAILS								
2X4 SPF	2	2	3	3					
2X4 D. Fir	2	2	2	2					

2X6 SPF	4	4	4	5
2X6 D. Fir	3	3	3	4

December 2, 2019

U

BEARING ANCHORAGE BY TOE-NAILS FOR WIND LOADING


B97791H2

NAIL TYPE	LENGTH	DIAMETER	NAIL WITHDRAW	AL CAPACITY (LB)	
NAILTIPE	(IN)	(IN)	S-P-F	D. FIR	Note:
COMMON	3.00	0.144	30	42	D. Fir
WIRE	3.25	0.144	32	45	bearin
WIRE	3.50	0.160	38	52	in tabl
COMMON	3.00	0.122	26	36	
SPIRAL	3.25	0.122	28	40	
SFIRAL	3.50	0.152	36	50	

Note: If using truss with D. Fir lumber and S-P-F pearing plate, use values n table for S-P-F.

NOTES:

- 1. Truss chord, rafter, or ceiling members may be anchored to bearing plate by toe-nails, provided that the actual factored uplift force due to wind or earthquake load does not exceed the withdrawal capacities in the table. Hangers (specified by others) are required for uplift forces that are higher than the maximum toe-nail withdrawal capacity.
- 2. Toe nail capacities shown in the table are for **one** toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA O86-14, section 12.9.5.2.
- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- **4.** Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in table above.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42(SPF), G = 0.49(D. Fir).
- **6.** Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See drawing on detail B37579H1).
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA O86-14, section 12.9.5
- 9. This design is not valid after March 31, 2021.

TECHNICAL BULLETIN

HUS/LJS – Double Shear Joist Hangers

SIMPSON Strong-Tie

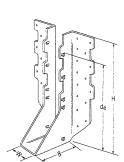
All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: See table **Finish:** G90 galvanized

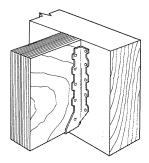
Design:

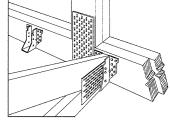
- Factored resistances are in accordance with CSA O86 -14.
- Uplift resistances have been increased 15%.
 No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

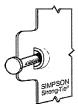

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Options:


• See current catalogue for options


LJS26DS

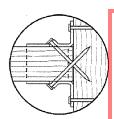
HUS210 (HUS26, HUS28, similar)


Typical HUS Installation

Typical HUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

		Di	Dimensions (in.)				Fasteners		Factored Resistance (lb.)				
Model								D.F	ir-L ·	S-P-F			
No.	Ga.	w	Н	В	d _e ¹	Face	Joist	Uplift (K _D =1.15)	Normal (K _D =1.00)	Uplift (K _D =1.15)	Normal (K _D =1.00)		
								lb.	lb.	lb.	lb.		
LJS26DS	18	19/16	5	3½	45/8	(16) 16d	(6) 16d	2055	4265	1460	4115		
HUS26	16	15/8	5%	3	315/16	(14) 16d	(6) 16d	2705	4940	2065	3875		
HUS28	16	15/8	73/32	3	63/32	(22) 16d	(8) 16d	3605	5365	2675	4345		
HUS210	16	15/8	93/32	3	731/32	(30) 16d	(10) 16d	4505	5795	4010	4740		
HUS1.81/10	16	113/16	9	3	8	(30) 16d	(10) 16d	4505	6450	4010	5200		

 $1.\,d_{\text{e}}$ is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

CITY OF BULLOTH

Double
Shear
Nailing
Top View.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHUS20 3/20 exp. 6/22

(800) 999-5099 strongtie.com

TECHNICAL BULLETIN

LUS – Double Shear Joist Hangers

SIMPSON Strong-Tie

LUS28

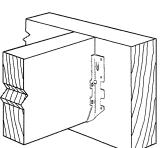
Н

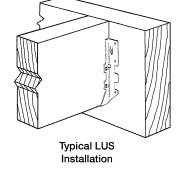
de

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

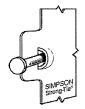
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.


Installation:

- · Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

Options:


• These hangers cannot be modified

			Dimensi	ons (in)	Faste	eners		actored Re		
Model			Difficiono (iiii)		, 401	, , , , , , , , , , , , , , , , , , , ,	D.F	ir-L	S-P-F		
No.	Ga.	14/	.,			F	1-:-4	Uplift	Normal	Uplift	Normal
		W	Н	В	d _e ¹	Face	Joist	(K _D =1.15)	$(K_D = 1.00)$	(K _D =1.15)	$(K_D = 1.00)$
LUS24	18	19/16	31/8	13/4	1 15/16	(4) 10d	(2) 10d	710	1630	645	1155
LUS24-2	18	31/8	31/8	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435
LUS26	18	19/16	43/4	13/4	3%	(4) 10d	(4) 10d	1420	2170	1290	1630
LUS26-2	18	31/8	4 1/8	2	4	(4) 16d	(4) 16d	1720	2595	1545	1920
LUS26-3	18	45/8	4 3/16	2	31/4	(4) 16d	(4) 16d	1720	2595	1545	2340
LUS28	18	19/16	6%	13/4	3¾	(6) 10d	(6) 10d	1420	2520	1290	1790
LUS28-2	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575
LUS28-3	18	45/8	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375
LUS210	18	19/16	7 13/16	13/4	3%	(8) 10d	(4) 10d	1420	2785	1290	2210
LUS210-2	18	31/8	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195
LUS210-3	18	45/8	8 3/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375

^{1.} de is the distance from the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECLUS20 3/20 exp. 6/22

(800) 999-5099 strongtie.com

HGUS - Double Shear Joist Hangers

SIMPSON Samouli

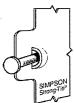
All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

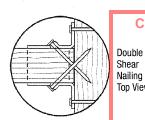

- Use all specified fasteners
- Nails: 16d = 0.162" dia x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Options:

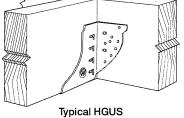
See current catalogue for options

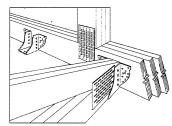
		Г)imensi	ons (in)	Faste		Factored Resistance (lb.)				
Model	_		Dinionolona (III.)			1 401011013		D.Fir-L		S-P-F		
No. Ga.	Ga.	w		_		F	la:at	Uplift	Normal	Uplift	Normal	
		W H B d _e ¹ Face Joist	Joist	(K _D =1.15)	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$					
HGUS26	12	1%	5%	5	4 5/32	(20) 16d	(8) 16d	2685	6625	2685	5700	
HGUS26-2	12	35/16	57/16	4	4 1/8	(20) 16d	(8) 16d	4385	8950	3100	6355	
HGUS26-3	12	4 15/16	5½	4	4 1/8	(20) 16d	(8) 16d	4385	8950	3100	6355	
HGUS26-4	12	6%	57/16	4	4 1/8	(20) 16d	(8) 16d	4385	8950	3100	6355	
HGUS28	12	1%	7 1/8	5	61/8	(36) 16d	(12) 16d	3310	7675	3100	6900	
HGUS28-2	12	35∕16	73/16	4	6 1/8	(36) 16d	(12) 16d	6070	12980	4310	9215	
HGUS28-3	12	4 15/16	7 1/4	4	6%	(36) 16d	(12) 16d	6070	12980	4310	9215	
HGUS28-4	12	6%16	73/16	4	6 1/8	(36) 16d	(12) 16d	6070	12980	4310	9215	
HGUS210	12	15⁄8	91/8	5	77/8	(46) 16d	(16) 16d	3535	11070	2510	8090	
HGUS210-2	12	3 5/16	93/16	4	8 1/8	(46) 16d	(16) 16d	6840	14015	4855	10270	
HGUS210-3	12	4 15/16	91/4	4	8 %	(46) 16d	(16) 16d	6840	14645	. 4855	10400	
HGUS210-4	12	6%16	93/16	4	8 1/8	(46) 16d	(16) 16d	6840	14645	4855	10400	
HGUS212-4	12	6%16	10%	4	101/8	(56) 16d	(20) 16d	7640	14995	5425	10645	
HGUS214-4	12	6%16	12%	4	111/8	(66) 16d	(22) 16d	10130	16400	7195	11645	

1. de is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5.603.580

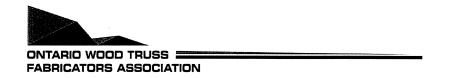

Double Shear Nailing Side View. Do not bend tab back.

HGUS28-2

Installation

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

BU


This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

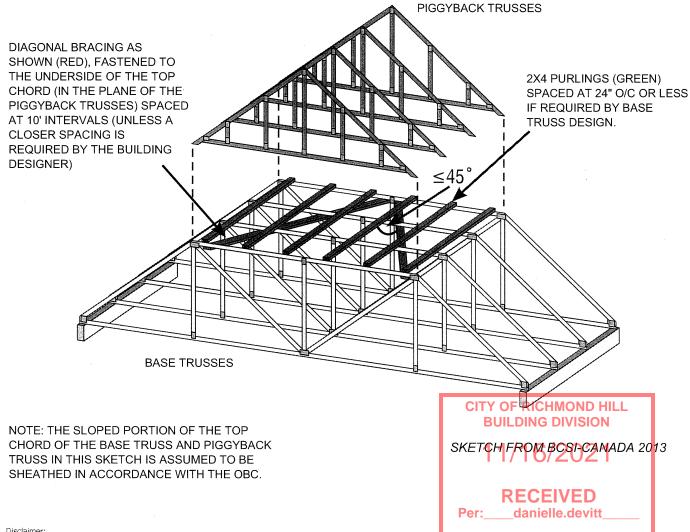
© 2020 Simpson Strong-Tie Company Inc.

T-SPECHGUS20 3/20 exp. 6/22

Top View.

(800) 999-5099 strongtie.com

TECH-NOTES


TN 15-001 Piggyback Bracing

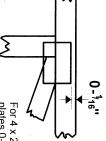
Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

Disclaimer:


OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technote are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to the information provided but has developed this technote to offer guidance where it is not currently readily available.

Symbols

PLATE LOCATION AND ORIENTATION

and fully embed teeth. Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss offsets are indicated Center plate on joint unless x, y

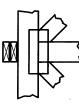
plates 0- 1/16" from outside For 4 x 2 orientation, locate

edge of truss.

connector plates required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request

PLATE SIZE

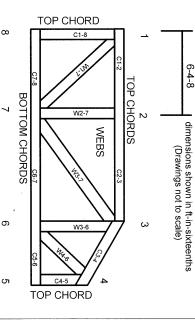

the length parallel to slots. to slots. Second dimension is width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

output. Use T or I bracing if indicated. Indicated by symbol shown and/or by text in the bracing section of the

BEARING

number where bearings occur. reaction section indicates joint Min size shown is for crushing only (supports) occur. Icons vary but Indicates location where bearings


ANSI/TPI1: Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction

Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses. **Building Component Safety Information** Design Standard for Bracing

DSB-89: BCSI:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

NUMBERS/LETTERS CHORDS AND WEBS ARE IDENTIFIED BY END JOINT

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

section 6.3 These truss designs rely on lumber values established by others Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves bracing should be considered may require bracing, or alternative Tor I

danielle.devitt

- Never exceed the design loading shown and never stack materials on inadequately braced trusses
- designer, erection supervisor, property owner and all other interested parties. Provide copies of this truss design to the building
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others
- . Do not cut or alter truss member or plate without prior approval of an engineer
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.