

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

BLOCK 57

Location: Model:

RICHMOND HILL

A2 / UNIT16BK283

Lot #:

Elevation:

Job Track:

51012

PlanLog: Layout ID: 203503 412875

Ref#

Page:

1 of 2

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Half Hip Girder	10 /12	19-05-08	4-01-04	2 x 4 2 x 6	1-03-08	1-07-11 4-01-04	193.91 122.67		
	1	T2 Half Hip	10 /12	19-05-08	5-01-04	2 x 4	1-03-08	1-07-11 5-01-04	84.99 54.50		
	1	T3 Half Hip	10 /12	19-05-08	6-01-04	2 x 4	1-03-08	1-07-11 6-01-04	91.07 58.67		
	2	T4 Half Hip	10 /12	19-05-08	7-01-04	2 x 4	1-03-08	1-07-11 7-01-04	181.47 112.67		
	8	T5 Half Hip	10 /12	19-05-08	8-01-04	2 x 4	1-03-08	1-07-11 8-01-04	766.42 485.33		
	2	T6 Half Hip	10 /12	19-05-08	9-01-04	2 x 4	1-03-08	1-07-11 9-01-04	206.88 129.67		
	5	T7 Common	10 /12	19-05-08	9-07-15	2 x 4	1-03-08	1-07-11 1-05-09	455.71 291.67		
	1	T7G GABLE	10 /12	19-05-08	9-07-15	2 x 4	1-03-08	1-07-11 1-05-09	98.27 63.83		
	1	T8 Common	10 /12	9-06-00	5-07-03	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	43.46 28.83		
	2	T9S Roof Special	10 /12 6 /12	9-06-00	5-07-03	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	95.47 67.33		
	2	T10G GABLE	6 /12	22-08-08	8-01-04	2 x 4	1-05-00	1-02-00 8-01-04	243.75 153.67		
	2	PB01 Piggyback	10 /12	11-08-07	2-00-00	2 x 4		2-00-00	75.36 51.33		
	2	PB02 Piggyback	10 /12	11-08-07	3-00-00		Y OF RICH BUILDING	MOND HILL DIV3-56-061	81.28 54.67		
	2	PB03 Piggyback	10 /12	11-08-07	4-00-00	2 x 4	08/12/	4-00-00	83.07 54.00		
							RECE	IVED		•	·

Per:

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

Model:

Lot #: Elevation: BLOCK 57

A2 / UNIT16BK283

Job Track:

51012

PlanLog: Layout ID: 203503 412875

Ref#

Page:

2 of 2

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	10	J01 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	167.94 106.67		
	5	J02 Jack-Open	3.5 /12	5-10-00	2-04-09	2 x 4	1-03-08	3-14 1-09-11	76.06 46.67		
- NOSESSAN (1992)	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-04	50.28 33.33		
	2	PB04G GABLE	6 /12	8-10-00	4-05-00	2 x 4		4-05-00	56.15 34.33		

TOTAL #TRUSS= 55

TOTAL BFT OF ALL TRUSSES= 1949.84

BFT.

TOTAL WEIGHT OF ALL TRSSES 3051.53 LBS

CITY OF RICHMOND HILL BUILDING DIVISION

08/12/2021

RECEIVED

Per:_

Lumber Yard: TAMARACK LUMBER

Builder: **ROYAL PINE HOMES**

Project: **CENTREFIELD** Location: RICHMOND HILL

BLOCK 57 Model:

Lot #:

Elevation: A2 / UNIT15BLK283 Job Track:

51012 PlanLog: 203503

Layout ID:

412876

Ref#

Page:

1 of 1

Date:

07-08-2021

Designer:

Sales Rep: Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	9	T11 Piggyback Base	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	2302.82 1395.00		
	1	T11G GABLE	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	272.06 169.67		
	1	T11GA GABLE	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	265.46 167.00		
	1 3-ply	T12 Monopitch Girder	10 /12	8-05-08	8-08-04	2 x 4 2 x 8		1-07-11 8-08-04	164.13 108.50		
	2	T13S Scissor	10 /12 6 /12	8-07-00	5-02-10	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	81.56 52.00		
	1	T14 Monopitch	10 /12	8-03-08	8-06-10	2 x 4	1-03-08	1-07-11 8-06-10	45.99 28.83		
	9	PB06 Piggyback	6 /12	17-08-00	4-05-00	2 x 4			462.27 288.00		
	2	PB06G GABLE	6 /12	17-08-00	4-05-00	2 x 4			101.52 62.00		
	5	J02 Jack-Open	3.5 /12	5-10-00	2-04-09	2 x 4	1-03-08	3-14 1-09-11	76.06 46.67		

TOTAL #TRUSS= 33

TOTAL BFT OF ALL TRUSSES= 2317.67

BFT.

TOTAL WEIGHT OF ALL TRSSES 3771.85 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	LJS26DS	
14	Hardware	H2.5T	
2	Hardware	LGT3	

TOTAL NUMBER OF ITEMS= 20

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:__

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL

A1 / UNIT14BLK283

Lot #:

Elevation:

BLOCK 57

51012 203503

PlanLog: Layout ID:

Job Track:

412877

Ref#

Page:

1 of 1

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	6	T11 Piggyback Base	6 /12	45-05-00	8-01-04	2×6	1-03-08 1-03-08	1-02-00 1-02-00	1535.21 930.00		
	1	T11G GABLE	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	272.06 169.67		
	1	T11GA GABLE	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	265.46 167.00		
	3	T11X Piggyback Base	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	746.45 453.00		
	1 3-ply	T15 Monopitch Girder	10 /12	8-06-08	8-09-02	2 x 4 2 x 8	1-03-08	1-07-11 8-09-02	171.4 112.50		
	1	T16G GABLE	10 /12	8-05-00	8-07-14	2 x 4	1-03-08	1-07-11 8-07-14	48.26 30.83		
	9	PB06 Piggyback	6 /12	17-08-00	4-05-00	2 x 4			462.27 288.00		
	2	PB06G GABLE	6 /12	17-08-00	4-05-00	2 x 4			101.52 62.00		
	5	J02 Jack-Open	3.5 /12	5-10-00	2-04-09	2 x 4	1-03-08	3-14 1-09-11	76.06 46.67		
	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-04	50.28 33.33		

TOTAL #TRUSS=

36

TOTAL BFT OF ALL TRUSSES= 2293

BFT.

TOTAL WEIGHT OF ALL TRSSES 3728.96 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	LJS26DS	
15	Hardware	H2.5T	
2	Hardware	LGT3	

TOTAL NUMBER OF ITEMS= 20

CITY OF RICHMOND HILL BUILDING DIVISION

08/12/2021

RECEIVED

Per:

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

A2 / UNIT13BLK283

Project:

CENTREFIELD RICHMOND HILL

Location: Model:

BLOCK 57

Lot #:

Elevation:

Job Track:

PlanLog:

51012 203503

Layout ID:

412878

Ref#

Page:

1 of 2

Date:

07-08-2021 Andrew Conway

Designer: Sales Rep:

Mario DiCano

Roof Trusses

QTY	MARK			,		OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
1 2-ply	T1 Half Hip Girder	.10 /12	19-05-08	4-01-04	2 x 4 2 x 6	1-03-08	1-07-11 4-01-04	193.91 122.67		
1	T2 Half Hip	10 /12	19-05-08	5-01-04	2 x 4	1-03-08	1-07-11 5-01-04	84.99 54.50		
1	T3 Half Hip	10 /12	19-05-08	6-01-04	2 x 4	1-03-08	1-07-11 6-01-04	91.07 58.67		
2	T4 Half Hip	10 /12	19-05-08	7-01-04	2 x 4	1-03-08	1-07-11 7-01-04	181.47 112.67		
8	T5 Half Hip	10 /12	19-05-08	8-01-04	2 x 4	1-03-08	1-07-11 8-01-04	766.42 485.33		
2	T6 Half Hip	10 /12	19-05-08	9-01-04	2 x 4	1-03-08	1-07-11 9-01-04	206.88 129.67		
2	T10G GABLE	6 /12	22-08-08	8-01-04	2 x 4	1-05-00	1-02-00 8-01-04	243.75 153.67		
5	T7 Common	10 /12	19-05-08	9-07-15	2 x 4	1-03-08	1-07-11 1-05-09	455.71 291.67		
1	T7G GABLE	10 /12	19-05-08	9-07-15	2 x 4	1-03-08	1-07-11 1-05-09	98.27 63.83		
1	T8 Common	10 /12	9-06-00	5-07-03	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	43.46 28.83		
2	T9S Roof Special	10 /12 6 /12	9-06-00	5-07-03	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	95.47 67.33		
2	PB01 Piggyback	10 /12	11-08-07	2-00-00	2 x 4		2-00-00	75.36 51.33		
2	PB02 Piggyback	10 /12	11-08-07	3-00-00	2 84JI	F RICHMO	ND HILL ISIO3N ₀₀₋₀₀	81.28 54.67		
2	PB03 Piggyback	10 /12	11-08-07	4-00-00	2 x 4	/12/2(4-00-00	83.07 54.00		
	1 2-ply 1 2 8 2 2 5 1 1 2 2 2 2	PLY TYPE 1 2-ply T1 Half Hip Girder 1 T2 Half Hip T3 Half Hip 2 T4 Half Hip T5 Half Hip 2 T6 Half Hip T6 GABLE 5 T7 Common T7G GABLE 1 T7G GABLE T8 Common 2 T9S Roof Special PB01 Piggyback 2 PB02 Piggyback PB02 Piggyback 2 PB03 PB03	PLY TYPE PITCH 1 T1 Half Hip Girder 10 /12 1 T2 Half Hip In	PLY TYPE PITCH SPAN 1 2-ply T1 Half Hip Girder 10 /12 19-05-08 1 T2 Half Hip 10 /12 19-05-08 1 T3 Half Hip 10 /12 19-05-08 2 T4 Half Hip 10 /12 19-05-08 8 T5 Half Hip 10 /12 19-05-08 2 T10G GABLE 6 /12 22-08-08 5 T7 Common 10 /12 19-05-08 1 T7G GABLE 10 /12 19-05-08 1 T8 Common 10 /12 19-05-08 2 T9S Roof Special 10 /12 9-06-00 2 PB01 Piggyback 10 /12 11-08-07 2 PB02 Piggyback 10 /12 11-08-07 2 PB03 10 /12 10 /12 11-08-07	PLY TYPE PITCH SPAN HEIGHT 1 2-ply Half Hip Girder 10 /12 19-05-08 4-01-04 1 T2 Half Hip Girder 10 /12 19-05-08 5-01-04 1 T3 Half Hip Hip 10 /12 19-05-08 6-01-04 2 T4 Half Hip Hip 10 /12 19-05-08 7-01-04 8 T5 Half Hip 10 /12 19-05-08 8-01-04 2 T6 Half Hip 10 /12 19-05-08 9-01-04 2 T10G GABLE 6 /12 22-08-08 8-01-04 5 T7 Common 10 /12 19-05-08 9-07-15 1 T7G GABLE 10 /12 19-05-08 9-07-15 1 T8 Common 10 /12 19-05-08 9-07-15 1 T8 Common 10 /12 9-06-00 5-07-03 2 PB01 Figgyback 10 /12 11-08-07 2-00-00 2 PB02 Figgyback 10 /12 11-08-07 3-00-00 2 PB03 Fi	PLY TYPE PITCH SPAN HEIGHT LUMBER 1 2-ply Half Hip Girder 10 /12 19-05-08 4-01-04 2 × 4	Picy Type Pitch SPAN Height Lumber LEFT Night	PLY TYPE	Pity Type Pitch SPAN Height Lumber Lefft Right Right	PLV Type

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

A2 / UNIT13BLK283

Project:

CENTREFIELD

Location:

RICHMOND HILL

Model:

BLOCK 57

Lot #:

Elevation:

Layout ID:

51012 203503

PlanLog:

Job Track:

412878

Ref#

Page:

2 of 2

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	10	J01 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	167.94 106.67		
	5	J02 Jack-Open	3.5 /12	5-10-00	2-04-09	2 x 4	1-03-08	3-14 1-09-11	76.06 46.67		
	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-04	50.28 33.33		
	2	PB04G GABLE	6 /12	8-10-00	4-05-00	2 x 4		4-05-00	56.15 34.33		

TOTAL #TRUSS= 55

TOTAL BFT OF ALL TRUSSES= 1949.84

BFT.

TOTAL WEIGHT OF ALL TRSSES 3051.54 LBS

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:_

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC		3VAL =	NE LEC				
412868	T1	2	2	TRUSS DE		J YAL PI	NE HOM	IES		DRWG NO.	
Tamarack Roof Truss, Burlingto				L		ID:wTN	M7ioISByni	Version	8.420 S Jan 21	 2021 MiTek Industries, Inc. Thu Jul 1 10:2: ppxA?Y5Ksd?lytgb5SaLKWA8jj9XBh	2:31 2021 Page 2
PLATES (table is in inches) JT TYPE PLATES B TMVW+p MT20 C TTWW+m MT20 D TMWW-t MT20 E TS-t MT20 F TMW+w MT20 G TMWW-t MT20 H TMWW-t MT20 I BMW1+w MT20 J, M, N J BMWW-t MT20	W LEN Y X 4.0 4.0 1.00 2.00 5.0 6.0 2.25 1.50 4.0 4.0 3.0 6.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0 6.0 5.0 6.0	SPECIFIED CO JT LOC. T 190-12 U 1-0-12 V 50-12 W 9-0-12 X 13-0-12 Y 17-0-12	NCENTRATED LC LC1 MAX- -95 -95 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21		FACE BACK BACK BACK BACK BACK BACK	DIR. VERT VERT VERT VERT VERT VERT	TYPE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL	HEEL	CONN. C1 C1 C1 C1 C1 C1 C1	DXA (TSKSQ (WQQSSALKWAB) 9XBN/	AGUHUNGZU (VA
K BS-t MT20 L BMWWW-t MT20 O BMV1+p MT20	5.0 6.0 5.0 8.0 3.0 6.0	1) C1: A SUIT	ABLE HANGER/N	ECHANICA	L CONNEC	CTION IS F	EQUIRED.				
	HMOND HILL DIVISION										
	2/2021										
Per:	EIVED										
PROFESS H. J. G./ 100000	ALVES TO MY ARTON THE ONT ARTON THE ONT ARTON THE ONT ARTON THE OWN TH										

Structural component only DWG# T-2121151

LUMBER				
LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - F	2x4	DRY	No.2	SPF
G-F	2x4	DRY	No.2	SPF
L - B	2x4	DRY	No.2	SPF
L - I	2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Х			
В	TMVW+p	MT20	4.0	6.0	Edge				
С	TTWW+m	MT20	5.0	6.0	2.25	1.50			
D	TMW+w	MT20	2.0	4.0					
Ε	TMWW-t	MT20	4.0	4.0					
F	TMVW-t	MT20	4.0	6.0					
G	BMV1+p	MT20	3.0	4.0					
Н	BMWW-t	MT20	4.0	6.0					
ı	BS-t	MT20	3.0	6.0					
J	BMWWW-t	MT20	4.0	9.0					
ĸ	BMWW-t	MT20	4.0	6.0					
L	BMV1+p	MT20	3.0	4.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY	FABRICATOR TO BE VERIFIED BY
	THE POST OF LOW IND D	I I ADDICATOR TO BE VERIFIED BY
BUILDING DESIGNER		
DOLLDING DESIGNAEU		
DEADMAC		
BEARINGS		

-	FACTO GROSS R		MAXIMU GROSS			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
G	1073	0	1073	0	0	1-8	1-8
L	1200	0	1200	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	VS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G	759	498 / 0	0/0	0/0	0/0	261 / 0	0/0
L	846	569/0	0/0	0/0	0/0	277 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.50 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS				WEBS				
	C. FACTORED	FACTO					MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO		MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)			CSI (LC)			(LBS)	CSI (LC)	
FR-TO		FROM			LENGTH	FR-TO			
A-B	0 / 41	-91.8		0.13 (1)		K-C	-130 / 29	0.05(1)	
B-C	-971 / 0	-91.8		0.30(1)		B-K	0 / 778	0.18 (1)	
C-D	-1133 / 0	-91.8		0.34 (1)		H-F	0 / 1236	0.28 (1)	
D-E	-1133 / 0	-91.8		0.35 (1)		C- J	0 / 537	0.12 (1)	
	-906 / 0	-91.8		0.35 (1)		H-E	-733 / 0	0.28 (1)	
G-F	-1033 / 0	0.0		0.46 (1)		J- D	-500 / 0	0.19 (1)	
L-B	-1170 / 0	0.0	0.0	0.12 (1)	7.37	J- E	0/315	0.07 (1)	
L-K	0/0	-18.5	-195	0.09 (4)	10.00				
K-J	0 / 741	-18.5		0.03 (4)	10.00				
J- 1	0 / 906	-18.5		0.17 (1)	10.00				
i- H	0 / 906	-18.5		0.21 (1)					
H- G	0/0	-18.5		0.12 (4)	10.00 10.00				
		10.5	. 0.0	0.12 (4)	10.00				

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:

SPECIFIED LOADS: LCADS: LL = DL = LL = DL = AD = 25.6 6.0 0.0 7.4 39.0 PSF PSF PSF BOT CH. TOTAL LOAD

SPACING = IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT).

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL)= L/999 (0.07")

CSI: TC=0.46/1.00 (F-G:1), BC=0.21/1.00 (H-J:1), WB=0.28/1.00 (E-H:1), SSI=0.22/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (H) (INPUT = 0.90) JSI METAL= 0.49 (B) (INPUT = 1.00)

DWG# T-2121152

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412868 **T3** TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 10:22:32 2021 Page 1 ID:wTM7iolSByniqocTeDgf3Pyb9F8-8nNKNLYk5Alsv5Ss9pzpuY2DU63FGclJst_1v2z0TvL ·1-3-8 <u>1-3-8</u> 10-0-12 14-8-0 2x4 || 4x4 = 4x6 = Scale 5x6 \\ D 10.00 12 4x6 II 4x4 = 3x6 == 4x6 = 3x4 II 1-3-8 18-10-8 15.8 5-4-4 14-8-0 4-7-4 TOTAL WEIGHT = 2 X 91 = 182 Ib

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - F	2x4	DRY	No.2	SPF
G-F	2x4	DRY	No.2	SPF
L - B	2x4	DRY	No.2	SPF
L - (2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	w	LEN	Υ	х					
В	TMVW+p	MT20	4.0	6.0	Edge						
C	TTWW+m	MT20	5.0	6.0	2.25	1.50					
D	TMW+w	MT20	2.0	4.0							
Ε	TMWW-t	MT20	4.0	4.0							
F	TMVW-t	MT20	4.0	6.0							
G	BMV1+p	MT20	3.0	4.0							
Н	BMWW-t	MT20	4.0	6.0							
I	BS-t	MT20	3.0	6.0							
J	BMWWW-t	MT20	4.0	9.0							
K	BMWW-t	MT20	4.0	4.0							
L	BMV1+n	MT20	3.0	4.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	AND TOYOUTO OF FOR ICD BY LABURCATOR TO BE ACULTED BY
BUILDING DESIGNER	
BEARINGS	

BEA	RINGS						
JT G	FACTO GROSS R VERT 1073		MAXIMU GROSS DOWN 1073	REACTIC HORZ 0		INPUT BRG IN-SX 1-8	REQRD BRG IN-SX 1-8
Ļ	1200	0	1200	0	0	5-8	5-8

UNFACTORED REACTIONS

1ST LCASE MAX, MIN. COMPONENT REACTIONS

ł .			tent v. OCIVII CIV	ENT HEACHO!	NO.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G	759	498 / 0	0/0	0/0	0/0	261 / 0	0/0
G L	846	569 / 0	0/0	0/0	0/0	277 / 0	0/0
l							

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.62 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	CHORDS MAX. FACTORED FACTORED					WEBS				
							MAX. FACTO	RED		
MEMB.	FORCE	VERT. LO	AD LC	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO	\ <i>-</i> /	()		
A-B	0 / 41	-91.8	-91.8	0.13 (1)	10.00	K-C	-64 / 62	0.04(1)		
B- C	-952 / 0	-91.8	-91.8	0.51 (1)	5.62	B-K	0 / 751	0.17 (1)		
C- D	-931 / 0	-91.8	-91.8	0.28 (1)		H-F	0 / 1112	0.25 (1)		
D-E	-932 / 0	-91.8	-91.8	0.29 (1)	6.01	C-J	0/321	0.07 (1)		
E-F	-708 / 0	-91.8	-91.8	0.29 (1)	6.25	H-E	-758 / 0	0.44 (1)		
G-F	-1037 / 0	0.0	0.0	0.75 (1)	7.71	J- D	-460 / 0	0.27 (1)		
L-B	-1159 / 0	0.0	0.0	0.12 (1)	7.40	J- E	0 / 361	0.08 (1)		
L-K	0/0	-18.5	105	0.12 (4)	10.00					
K-J	0 / 729									
		-18.5		0.19 (1)						
J- I	0 / 708			0.17(1)	10.00					
1- H	0 / 708	-18.5	-18.5	0.17(1)	10.00					
H- G	0/0	-18.5		0.10 (4)	10.00					

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:_

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 6.0 0.0 7.4 PSF PSF PSF BOT CH. TOTAL LOAD 39.0

24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.65") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.06")

CSI: TC=0.75/1.00 (F-G:1), BC=0.19/1.00 (J-K:1), WB=0.44/1.00 (E-H:1), SSI=0.20/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (H) (INPUT = 0.90) JSI METAL= 0.50 (B) (INPUT = 1.00)

Structural component only DWG# T-2121153

JOB NAME TRUSS NAME QUANTITY JOB DESC. PIY **ROYAL PINE HOMES** DRWG NO. 412868 **T4** TRUSS DESC Tamarack Roof Truss, Burlingto Version 8.420 S Jan 21 2021 MTek Industries, Inc. Thu Jul 1 10:22:33 2021 Page 1 ID:wTM7ioISByniqocTeDgf3Pyb9F8-c_xiahZMsUtjXF02iWV2RlbPDWOd??RT5XkaSVz0TvK 3-4-9 1-3-8 13-0-1 2x4 II 4x6 = 10.00 12 4x6 / 4x9 = 4x4 == 3x4 || 15.8 6-6-11 13-0-1 19-5-8 6-5-7 TOTAL WEIGHT = 4 X 91 = 363 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. RULES CHORDS SIZE DESCR. SPF SPF SPF SPF SIZE 2x4 2x4 2x4 2x4 **DESIGN CRITERIA** LUMBER A -D -G -K -BEARINGS DFF DRY No.2 No.2 No.2 No.2 MAXIMUM FACTORED FACTORED REQRD SPECIFIED LOADS GROSS REACTION VERT HORZ DRY GROSS REACTION BRG IN-SX 1-8 5-8 BRG CH. LL = DL = LL = DL = AD = UPLIFT IN-SX 0 1-8 DOWN HORZ 6.0 0.0 7.4 39.0 DRY В 1073 1073 1200 CH. No.2 SPF 5-8 DL TOTAL LOAD G 2x4 DRY No.2 SPF ALL WEBS EXCEPT No.2 SPF UNFACTORED REACTIONS SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM, LIVE V 1ST LCASE COMBINED WIND SOIL DRY: SEASONED LUMBER. 261 / 0 277 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM 0/0 0/0 0/0

PLATES (table is in inches)
JT TYPE PLATES LEN Y TMV+p TMWW-t 3.0 4.0 MT20 6.0 6.0 4.0 6.0 4.0 9.0 6.0 5.0 2.0 4.0 3.0 4.0 3.0 4.0 TTWW+m MT20 2.25 1.50 TMW+w TMVW-t MT20 BMV1+p MT20 MT20 MT20 BMWWW-t BS-t BMWW-t

4.0 4.0

MT20

BMVW1-t

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.62 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

<u>LOADING</u> TOTAL LOAD CASES: (4)

	CHORDS					WEBS				
	C. FACTORED	FACTO	RED				MAX. FACTO	BED		
MEMB.	FORCE	VERT. LO.		MAX	MAX.	MEMB		MAX		
	(LBS)	(PL		CSI (LC)	UNBRAC		(LBS)	CSI (LC)		
FR-TO		FROM			LENGTH	FR-TC) :			
A- B	0 / 41	-9 1.8		0.13(1)		C-J	-59 / 20	0.03(1)		
B- C	0 / 21	-91.8	-91.8	0.15(1)	10.00	J- D	0 / 177	0.05 (4)		
C- D	-930 / 0	-91.8	-91.8	0.16(1)	6.21	D- H	0 / 89	0.02 (1)		
D-E	-759 / 0	-91.8	-91.8	0.68 (1)		H-E	-734 / 0	0.64 (1)		
E-F	-759 / 0	-91.8	-91.8	0.69 (1)	5.62	H-F	0 / 1101	0.25 (1)		
G-F	-1023 / 0	0.0	0.0	0.23 (1)	6.20	K- C	-1167 / 0	0.50(1)		
K-B	-243 / 0	0.0	0.0	0.03(1)	7.81					
K- J	0 / 734	-18.5		0.24 (4)	10.00					
J- I	0 / 699	-18.5		0.24 (4)	10.00					
I- H	0 / 699	-18.5		0.24 (4)	10.00					
H- G	0 / 0	-18.5	-18.5	0.17 (4)	10.00					

Structural component only DWG# T-2121154

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL.)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL.) = L/999 (0.03")
ALLOWABLE DEFL.(TL.)= L/360 (0.65") CALCULATED VERT. DEFL.(TL) = 1/ 999 (0.07")

CSI: TC=0.69/1.00 (E-F:1) , BC=0.24/1.00 (H-J:4) , WB=0.64/1.00 (E-H:1) , SSI=0.29/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (K) (INPUT = 0.90) JSI METAL= 0.26 (C) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **ROYAL PINE HOMES** 412868 TRUSS DESC. **T5** 16 amarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 10:22:34 2021 Page 1 ID:wTM7iolSByniqocTeDgf3Pyb9F8-4AU4o0a_dn?a9PbFGE0Hzz8c8wi1kPZcJAT8_xz0TvJ -1-3-8 0-0 1-3-8 3-11-13 7-9-1 3-11-13 19-5-8 5-10-3 5x6 \\ 2x4 || 4x6 = Scale = 1:43.9 D 10.00 12 4x6 / Ø 4x9 = 3x4 II 1-3-8 18-10-8 0-0 7-9-1 13-7-5 7-9-1 5-10-3 TOTAL WEIGHT = 16 X 96 = 1533 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

LUMBER N. L. G. A. F CHORDS A - D D - F G - F K - B	SIZE 2x4 2x4 2x4 2x4	DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF
K - I I - G	2x4 2x4	DRY	No.2 No.2	SPF SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMV+p	MT20	3.0	4.0							
С	TMW W-t	MT20	4.0	6.0							
D	TTWW+m	MT20	5.0	6.0	2.25	1.50					
Е	TMW+w	MT20	2.0	4.0							
F	TMVW-t	MT20	4.0	6.0							
G	BMV1+p	MT20	3.0	4.0							
Н	BMWWW-t	MT20	4.0	9.0							
. 1	BS-t	MT20	3.0	6.0							
J	BMWW-t	MT20	4.0	4.0							
K	BMVW1-t	MT20	4.0	4.0							

	FACTOR GROSS RE	MAXIMUI GROSS I		INPUT BRG	REQRD BRG		
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
G	1073	0	1073	0	0	1-8	1-8
K	1200	0	1200	0	0	5-8	5-8

UNFACTORED REACTIONS

	131 LUASE		MIN. COMPO	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G	759	498 / 0	0/0	0/0	0/0	261 / 0 .	0/0
K	846	569 / 0	0/0	0/0	0/0	277 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G. K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.24 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, D-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					W E	EBS		
	C. FACTORED	FACTO	RED				MAX.	FACTO	DRED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB		ORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;		BS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	, ,	•	
A-B	0 / 41	-91.8	-91.8	0.13 (1)	10.00	C-J	-144 /	0	0.09(1)
B- C	0 / 26	-91.8	- 9 1.8	0.22 (1)	10.00	J- D	0 /	255	0.06(1)
C-D	-878 / 0	- 9 1.8	-91.8	0.24 (1)	6.24	D- H	-62 /	0	0.04(1)
D-E	-618 / 0	-91.8	-9 1.8	0.55 (1)	6.25	H- E	-665 /	0	0.84 (1)
E-F	-619 / 0	-91.8	-91.8	0.55 (1)	6.25	H-F	0 /	1027	0.23 (1)
G-F	-1026 / 0	0.0	0.0	0.30(1)	6.20	K-C	-1153 /	0	0.68(1)
K-B	-262 / 0	0.0	0.0	0.03 (1)	7.81				
K- J	0 / 748	-18.5	-18.5	0.29 (4)	10.00				
J- I	0 / 656	-18.5		0.30 (4)	10.00				
I- H	0 / 656	-18.5		0.30 (4)					
H- G	0 / 0	-18.5	-18.5	0.13 (4)	10.00				

Structural component only DWG# T-2121155

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:

DESIGN CRITERIA

SPECIFIED LOADS: LUADS: LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 AD = 39.0 CH. вот сн. TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL)= L/999 (0.12")

CSI: TC=0.55/1.00 (E-F:1) , BC=0.30/1.00 (H-J:4) , WB=0.84/1.00 (E-H:1) , SSI=0.26/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES | PLATE | GRIP(DRY) | SHEAR | SECTION | (PSI) | (PLI) | (PLI) | (PLI) | MAX | MIN | MAX | MIN | MAX | MIN | MT20 | 650 | 371 | 1747 | 788 | 1987 | 1873 |

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (K) (INPUT = 0.90) JSI METAL= 0.26 (C) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412868 **T6** TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 10:22:35 2021 Page 1 ID:wTM7iolSByniqocTeDgf3Pyb9F8-YM2S?MbcN57RmZARqxXWWAgpkK48T_xmYqDhWNz0Tvl -1-3-8 0-0 1-3-8 4-7-0 8-11-8 14-2-8 5-3-0 5x6 \\ 2x4 II 4x6 || Scale = 1:49.0 10.00 12 4x4 // 4x6 = 4x4 = 5x8 = 3x4 [[18-10-8 4-7-0 8-11-8 14-2-8 19-5-8 TOTAL WEIGHT = 4 X 103 = 414 lb

LUMBER				
N. L. G. A. F	IULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D-F	2x4	DRY	No.2	SPF
G-F	2x4	DRY	No.2	SPF
L - B	2x4	DRY	No.2	SPF
L - I	2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

1						
PL	ATES (table	is in inches)				
Л	TYPE	PLATES	W	LEN	Υ	Х
В	TMVW+p	MT20	4.0	6.0	Edge	
С	TMWW-t	MT20	4.0	4.0	2.00	1.25
D	TTWW+m	MT20	5.0	6.0	2.25	1.50
Ε	TMW+w	MT20	2.0	4.0		
F	TMVW+p	MT20	4.0	6.0		
G	BMV1+p	MT20	3.0	4.0		
Н	BMWWW-t	MT20	5.0	8.0		
- [BS-t	MT20	3.0	6.0		
J	BMWW-t	MT20	4.0	4.0		
ĸ	BMWW-t	MT20	4.0	6.0		
L	BMV1+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD

DIMIENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER**

DEAL	61402						
	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BBG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
G	1073	0	1073	0	0	1-8	1-8
L	1200	0	1200	0	0	5-8	5-8

UNFACTORED REACTIONS

1	131 CUMSE	IVIAA./	IVIIIV. COMPON	VENT REACTION	VS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G	759	498 / 0	0/0	0/0	0/0	261 / 0	0/0
L	846	569 / 0	0/0	0/0	0/0	277 / 0	0/0
i							0,0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.83 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, D-H, E-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					WE	BS		
MAX	K. FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.		VERT. LO	AD LC	MAX	MAX.	MEMB.		MAX	
	(LBS)	(PL	.F) ·	CSI (LC)	UNBRAC	2	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO	/		
A- B	0 / 41	-91.8	-9 1.8	0.13(1)	10.00	K-C	-132 / 29	0.06(1)	
B-C	-988 / 0	- 9 1.8	-91.8	0.34 (1)	5.83	C- J	-293 / 0	0.25 (1)	
C-D	-803 / 0	-91.8	-91.8	0.33 (1)	6.25	J- D	0 / 305	0.07(1)	
D- E	-509 / 0	-9 1.8	-91.8	0.43 (1)	6.25	D- H	-166 / 0	0.13(1)	
E-F	-509 / 0	-91.8	-91.8	0.43 (1)	6.25	H- E	-596 / 0		
G-F	-1033 / 0	0.0	0.0	0.40(1)	6.18	H- F	0 / 988	0.22(1)	
L- B	-1164 / 0	0.0	0.0	0.12(1)	7.39	B-K	0 / 814	0.18 (1)	
L-K	0/0			0.09 (4)					
K-J	0 / 783	-18.5	-18.5	0.17(1)	10.00				
J- I	0 / 594	-18.5	-18.5	0.18 (4)	10.00				
I- H	0 / 594	-18.5	-18.5	0.18 (4)	10.00				
H- G	0/0	-18.5	-18.5	0.12 (4)	10.00				

PROFESSIONAL ENGINEERS H. J. G., ALVES 100009024 OF ONTARIO POUNT

Structural component only DWG# T-2121156

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED

Per:

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = LL = DL = LL = DL = AD = 25.6 CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.05")

CSI: TC=0.43/1.00 (E-F:1) , BC=0.18/1.00 (H-J:4) , WB=0.32/1.00 (E-H:1) , SSI=0.23/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.77 (B) (INPUT = 0.90) JSI METAL= 0.50 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412868 **T7** 10 Version 8.420 S Jan 21 2021 MITEk Industries, Inc. Thu Jul 1 10:22:36 2021 Page 1 ID:AsmHx6G_2ZhVLsQsbMcljUyapb7-0ZcqDibE8PFlOjldOe2l2OD?SkPDCKivnUyF3qz0TvH Tamarack Roof Truss, Burlington -1-3-8 0-0 1-3-8 4-9-11 4-11-0 1₆5 9-7-8 19-5-8 4-9-11 5x8 II D 10.00 12 5x6 / 4x6 ❖ 4x4 = 3x6 = 4x4 =1-3-8 18-10-8 6-4-2 6-6-11 2-9 0-0 12-10-13 19-5-8 6-4-2 6-4-3 6-6-11 TOTAL WEIGHT = 10 X 95 = 955 It [M][F LUMBER N. L. G. A CHORDS DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER DESIGN CRITERIA SIZE 2x4 2x4 2x4 DESCR. SPF SPF BEARINGS FACTORED LUMBER A - D D - F K - B G - F No.2 No.2 DRY MAXIMUM FACTORED INPUT SPECIFIED LOADS: REORD DRY GROSS REACTION N BRG UPLIFT IN-SX BRG IN-SX GROSS REACTION CH. LL = DL = No.2 SPF VERT HORZ DOWN HORZ 6.0 0.0 7.4 2x4 DRY No.2 SPF SPF K 5-8 CH. 11 2x4 DRY DRY 1073 0 0 1-8 1-8 G No.2 SPF TOTAL LOAD 39.0 2x3 DRY No.2 SPF UNFACTORED REACTIONS 24.0 IN. C/C DRY No.2 SPF DRY No.2

ALL WEBS EXCEPT K - C E - G DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 3.0 4.0 TMWW-t MT20 5.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 TTWW 8.0 Edge TMV+p BMVW1-t MT20 4.0 G H MT20 6.0 4.0 6.0 4.0 6.0 BMWW-t BS-t BMWW-t MT20 MT20 BMVW1-t

Edge - JNDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

	ISILUASE	IVIAX./I	VIIN. COMPO	NENT REACTION	VS.		
Л	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
K	846	569 / 0	0/0	0/0 .	0/0	277 / 0	0/0
G	759	498 / 0	0/0	0/0	0/0	261 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K, G

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.99 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СНО	ORDS					wı	EBS	
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO		MAX	MAX.	MEME	. FORCE	MAX
	(LBS)	(PL		CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM			LENGTH	FR-TC)	
A-B	0 / 41	-91.8		0.13 (1)		C-J	-272 / 0	0.14(1)
B- C	0 / 35	- 9 1.8		0.35 (1)			0/413	0.09 (1)
C-D	-938 / 0	-9 1.8			6.04	D- H	0 / 454	0.10(1)
D- E	-957 / 0	-91.8	-91.8		5.99	H- E	-308 / 0	0.16(1)
E-F	0 / 35	-91.8	-91.8	0.37 (1)			-1166 / 0	0.75(1)
K- B	-285 / 0	0.0		0.03 (1)		E-G	-1174/0	0.80(1)
G-F	-168 / 0	0.0	0.0	0.02 (1)	7.81			
16 1								
K- J	0 / 779			0.24 (4)				
J- I	0 / 556			0.23 (4)				
I- H	0 / 556			0.23 (4)				
H- G	0 / 803	-18.5	-18.5	0.25(4)	10.00			

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED

Per:

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.07")

CSI: TC=0.37/1.00 (E-F:1) , BC=0.25/1.00 (G-H:4) , WB=0.80/1.00 (E-G:1) , SSI=0.17/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTÓSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (E) (INPUT = 0.90) JSI METAL= 0.29 (E) (INPUT = 1.00)

Structural component only DWG# T-2121157

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** 412868 **T7G** TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 10:22:36 2021 Page 1 ID:AsmHx6G_2ZhVLsQsbMcIjUyapb7-0ZcqDibE8PFlOjidOe2l2OD3BkSrCTEvnUyF3qz0TvH

-1-3-8 0-0 1-7-8 3-7-8 2-0-0 5-7-8 2-0-0 7-7-8 9-7-8 2-0-0 11-7-8 13-7-8 2-0-0 15-7-8 2-0-0 17-7-8 19-2-0 19-5-8 4x6 II

Scale = 1:56.5

LUMBER N. L. G. A CHORDS SIZE LUMBER DESCR G L B 2x4 2x4 2x4 No.2 No.2 SPF DRY DRY No.2 SPF 2x4 DRY No.2 SPF SPF ō 2x4 DRY No.2 SPF ALL WERS 243 DRY No.2 SPF ALL GABLE WEBS DRY No.2 SPF DRY: SEASONED LUMBER

GABLE STUDS SPACED AT 2-0-0 OC.

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW+p	MT20	4.0	4.0	1.00	2.00				
	D, E, F, H, I, 、	I, K								
С	TMW+w	MT20	2.0	4.0						
G	TTW+p	MT20	4.0	6.0	Edge					
L	TMVW+p	MT20	4.0	4.0	1.00	2.00				
M		MT20	3.0	4.0						
N	BMWW1-t	MT20	4.0	4.0						
	P, R, S, T, U,									
0	BMW1+w	MT20	2.0	4.0						
Q	BS-t	MT20	3.0	6.0						
W	BMWW1-t	MT20	4.0	4.0						
Х	BMV1+p	MT20	3.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIF	FD RV	FARRICATOR TO	BE VEDICIEN BY
BUILDING DESIGNER	,,	,	TABINGATOR TO	DE VENILIED BY
DOLLDING DESIGNER				
READINGS				

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF G-S.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

		ORDS FACTORED	FACTO	חבת			WE		
								MAX. FACTO	
ı	MEMB.	FORCE	VERT. LO						MAX
		(LBS)	(PL		CSI (LC)	UNBRAC		(LBS)	CSI (LC)
	FR-TO			TO		LENGTH	FR-TO		
1	A-B	0 / 41	-91.8		0.13 (1)		S-G	-123 / 0	0.08(1)
	B- C	-74 / 0	-91.8	-91.8	0.12(1)	6.25	T-F	-209 / 0	0.25 (1)
1	C-D	-30 / 0	-91.8	-91.8	0.05 (1)	6.25	U-E	-173 / 0	0.11 (1)
1	D-E	-34 / 0	-91.8	-91.8	0.05(1)	6.25	V- D	-195 / 0	0.06 (1)
1	E-F	-25 / 0	- 9 1.8	-91.8	0.05 (1)	6.25	W-C	-97 / 0	0.02 (1)
١	F-G	-37 / 0	-91.8	-91.8	0.05 (1)		R- H	-208 / 0	0.25 (1)
1	G-H	-37 / 0	-91.8	-91.8	0.05 (1)		P-1	-176 / 0	0.11 (1)
	H- I	-26 / 0	-91.8		0.05 (1)	6.25	0- J	-180 / 0	0.06 (1)
1	I- J	-32 / 0	-91.8		0.04(1)	6.25	N- K	-185 / 0	0.03 (1)
	J- K	-38 / 0	-91.8	-91.8	0.04 (1)		B-W	0 / 41	0.01 (1)
1	K-L	-34 / 0	-91.8		0.04(1)	6.25	N- L	0/41	0.01 (1)
1	X-B	-301 / 0	0.0	0.0	0.03(1)			0,	0.07 (1)
1	M- L	-113 / 0	0.0	0.0	0.01 (1)				
1					• • •				
İ	X-W	0/0	-18.5	-18.5	0.01 (4)	10.00			
1	W-V	0 / 29	-18.5		0.02 (4)	10.00			
1	V- U	0 / 25	-18.5		0.02 (4)	10.00			
۱	U- T	0 / 22	-18.5		0.02 (4)	10.00			
١	T-S	0 / 19	-18.5		0.02 (4)	10.00			
1	S-R	0 / 19	-18.5		0.02 (4)	10.00			
4	R-Q	0 / 22	-18.5		0.02 (4)	10.00			
١	Q-P	0 / 22	-18.5		0.02 (4)	10.00			
1	P- 0	0 / 25	-18.5		0.02 (4)	10.00			
1	O- N	0 / 29	-18.5		0.02 (4)	10.00			
1	N- M	0/0	-18.5		0.02 (4)	10.00			
١			.0.0	. 5.0	J.J. (+)	10.00			

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED

Per:

TOTAL WEIGHT = 2 X 98 = 197 lb

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = TOP CH. 6.0 BOT CH. PSF TOTAL LOAD = 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, **NBCC 2015**

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.13/1.00 (A-B:1) , BC=0.02/1.00 (N-O:4) , WB=0.25/1.00 (F-T:1) , SSI=0.08/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.51 (N) (INPUT = 0.90) JSI METAL= 0.11 (F) (INPUT = 1.00)

	R D S FACTORED	FACTO	, BED			WE		
MEMB.	FORCE	VERT. LO		MAX	MAX.	мемв.	MAX. FACTO	
	(LBS)	(PL			UNBRAC		FORCE (LBS)	MAX CSI (LC)
FR-TO		FROM	TO	(,	LENGTH		(200)	OGI (EO)
A-B	0 / 41	-91.8	-9 1.8	0.13 (1)		G-C	-27 / 72	0.02 (4)
B- C	-319 / 0	-91.8	- 9 1.8	0.27 (1)	6.25	B-G	0 / 254	0.06 (1)
C-D	-319 / 0	-91.8	-9 1.8	0.27 (1)	6.25	G-D	0 / 254	0.06(1)
D-E	0 / 41	-91.8	-91.8	0.13 (1)	10.00			0.00 (.,
H-B	-617 / 0	0.0	0.0	0.07 (1)	7.81			
F- D	-617 / 0	0.0	0.0	0.07 (1)	7.81			
H- G	0/0	-18.5	-18.5	0.12 (4)	10.00			
G-F	0/0	-18.5	-18.5	0.12 (4)	10.00			

Structural component only DWG# T-2121159

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.27/1.00 (C-D:1) , BC=0.12/1.00 (G-H:4) , WB=0.06/1.00 (B-G:1) , SSI=0.13/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.50 (B) (INPUT = 0.90) JSI METAL= 0.14 (D) (INPUT = 1.00)

N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCF
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
L - B	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
L - K	2x4	DRY	No.2	SPF
K - J	2x4	DRY	No.2	SPF
J - 1	2x4	DRY	No.2	SPF
1 - H	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PLA	PLATES (table is in inches)													
JT	TYPE	PLATES	W	LEN	Y X									
В	TMVW+p	MT20	4.0	4.0	1.00 2.00									
С	TMWW-t	MT20	4.0	4.0	2.00 1.25									
D	TTW+p	MT20	4.0	6.0	Edge									
E	TMW W-t	MT20	4.0	4.0	2.00 1.25									
F	TMVW+p	MT20	4.0	4.0	1.00 2.00									
Н	BMV1+p	MT20	3.0	4.0										
ı	BBWW-m	MT20	5.0	6.0	2.25 2.00									
J	BBWWW-p	MT20	5.0	8.0										
K	BBWW-m	MT20	5.0	6.0	2.25 2.00									
L	BMV1+p	MT20	3.0	4.0										

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
L	458	314/0	0/0	0/0	0/0	144 / 0	0/0
Н	458	314/0	0/0	0/0	0/0	144 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L, H

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS					WEBS				
MAX.	FACTORED	FACTO	RED				MAX. FACTO	BED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO	(/	00. (20)	
A- B	0 / 41	-91.8	-91.8	0.13(1)	10.00	J- D	0 / 268	0.06(1)	
B- C	-354 / 0	-91.8	-91.8	0.09(1)	6.25	J-E	0 / 59	0.01 (1)	
C-D	-414/0	-9 1.8	-91.8	0.11 (1)	6.25	I-E	-279 / 0	0.05(1)	
D-E	-414/0	-91.8	-91.8	0.11(1)	6.25	C- J	0 / 59	0.01(1)	
E-F	-354 / 0	- 9 1.8	-91.8	0.09 (1)		K-C	-279 / 0	0.05(1)	
F-G	0 / 41	- 9 1.8	-91.8	0.13 (1)	10.00	B-K	0 / 328	0.07(1)	
L-B	-635 / 0	0.0	0.0	0.07 (1)	7.81	I-F	0 / 328	0.07(1)	
H-F	-635 / 0	0.0	0.0	0.07 (1)	7.81			(-)	
L- K	0/0	10.5	40.5	0.00 (4)					
K-J		-18.5		0.02 (4)	10.00				
J- 1	0 / 283	-18.5		0.07 (1)	10.00				
J- 1	0 / 283			0.07 (1)	10.00				
1- [1	0/0	-18.5	-18.5	0.02 (4)	10.00				

PROFESSIONAL CHAIR STATE OF THE PROFESSIONAL CHAIR STATE OF THE PROFESSION ALVES TO THE PROFESSION ALV 100009024 OF ONTARIO Structural component only

DWG# T-2121160

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.13/1.00 (A-B:1) , BC=0.07/1.00 (I-J:1) , WB=0.07/1.00 (F-I:1) , SSI=0.10/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX. MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.44 (F) (INPUT = 0.90) JSI METAL= 0.13 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO 412868 T10G Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MTek Industries, Inc. Thu Jul 1 10:22:39 2021 Page 1 ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-R8Izrke7RKetFAUC3nbSg0rZCxUXPq?LTSBvf8z0TvE 5-11-12 2-0-0 1-5-0 0-0 1-11-12 1-11-12 2-0-0 3-11-12 2-0-0 7-11-12 9-11-12 11-11-12 13-10-8 2-0-0 8-10-0 Scale = 1:44.7 4x4 = 6.00 12 0 AB 3x4 II 3x6 == 1-5-0 22.8.8 1-11-12 2-0-0 3-11-12 2-0-0 5-11-12 11-11-12 7-11-12 9-11-12 22-8-8 TOTAL WEIGHT = 4 X 122 = 488 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. RULES N. L. G. A CHORDS AC- B A - G G - J J - O P - O **DESIGN CRITERIA** LUMBER DESCR 2x4 2x4 2x4 2x4 2x4 2x4 DRY No.2 SPF SPECIFIED LOADS: DRY DRY DRY No.2 No.2 THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS CH. LL = DL = LL = DL = AD = 25.6 SPF 6.0 0.0 7.4 THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. No.2 SPF BOT CH. PSF PSF O SPF SPF SPF DRY No.2 AC-BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) TOTAL LOAD 39.0 No.2 <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. 24.0 IN. C/C ALL WEBS 2x3 DRY No.2 SPF ALL GABLE WEBS No.2 SPF LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM DRY: SEASONED LUMBER ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. GABLE STUDS SPACED AT 2-0-0 OC. LOADING TOTAL LOAD CASES: (4) THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 WEBS MAX. FACTORED CHORDS THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. FACTORED
 PLATES (table is in inches)

 JT TYPE PLATES

 B TMV+p MT20
 MEMB. FORCE VERT. LOAD LC1 MAX MAX. FORCE (LBS) MAX CSI (LC) MEMB. LEN (PLF) FROM TO UNBRAC LENGTH FR-TO (LBS) CSI (LC) 3.0 4.0 C, D, E, F, H, I, K, L, M, N C TMW+w MT20 G TS-t MT20 0.0 0.03 (1) 0.14 (1) 0.14 (1) Q- N R- M S- L U- K -200 / 0 -182 / 0 -190 / 0 0.25 (1) 0.23 (1) 0.24 (1) 0.0 7.81 2.0 3.0 4.0 4.0 3.0 A- B B- C 0 / 30 -91.R 6.0 DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. C- D D- E TTW-m MT20 4.0 -91.8 0.05(1) 10.00 -149 / 0 0.19 (1) 0.12 (1) TMVW-t MT20 MT20 10.00 10.00 10.00 0/9 -91.8 -91.8 0.05 (1) V- J AB- C -95 / 0 -118 / 0 BMV1+p BMWW1-t -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 0.04 (1 4.0 E-F 0 / 14 (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD 0.02 (1) F-G G-H H-I MT20 4.0 4.0 AA-D Z-E Y-F -196 / 0 0.04 (1) R, S, U, V, W, X, Y, Z, AA. 0.05 (1) 0.07 (1) 0 / 16 0.04 10.00 BMW1+w BS-t MT20 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 0/190.05 (1) 0.05 (1) 10.00 I- J J- K K- L L- M MT20 3.0 6.0 X- H W- I -180 / 00.11 (1) AC BMV1+n MT20 CSI: TC=0.14/1.00 (A-B:1) , BC=0.02/1.00 (Q-R:4) , WB=0.25/1.00 (N-Q:1) , SSI=0.09/1.00 (A-B:1) 0 / 20 0 / 20 -200 / 0 -79 / 0 0.03 (1) 10.00 -91.8 -91.8 0.05 10.00 0 / 20 0 / 20 -91.8 -91.8 0.05 (1) 0.05 (1) 10.00 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 N- O P- O 0 / 20 -91.8 -91.8 0.05 10.00 0/0 COMPANION LIVE LOAD FACTOR = 1.00 0/0 -18.5 0.02 (4) -18.5 10.00 AB-AA -18.5 -18.5 -18.5 0.02 (4) 0.01 (4) 0.01 (4) 4/0 -185 10.00 AA- Z Z- Y Y- X X- W -9/0 -12/0 -18.5 -18.5 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 10.00 6.25 -14/0-18.5 -18.5 0.01 (4) -18.5 -18.5 0.02 (4) -16 / 0 W-V NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION 6.25 v- u -20 / 0 -18.5 -18.5 0.01 (4) 6.25 0.02 (4) 0.02 (4) 0.02 (4) 0.02 (4) U-T -20 / 0 -18.5 -18.5 6.25 6.25 (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 T-S -20 / 0 -20 / 0 -18.5 -18.5 -18.5 -18.5 6.25 R-Q Q-P -20 / 0 -18.5 -185 0.02 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg.

DWG# T-2121161

CITY OF RICHMOND HILL BUILDING DIVISION

JSI GRIP= 0.59 (J) (INPUT = 0.90) JSI METAL= 0.08 (I) (INPUT = 1.00)

08/12/2021

RECEIVED

Per:

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412868 T11 15 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 10:22:40 2021 Page ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-vKsL24flCdmjtK3PdU7hDENfqLeB8A1Vi6wSCbz0TvD -1-3-8 0-0 1-3-8 9-3-13 13-10-8 19-9-3 31-6-8 36-1-3 40-7-13 45-5-0 46-8-8 1-3-8 5-10-11 6.00 12 4x6 II 4x6 || 5x6 **<** K 5x6 <> Ф s 11 Q 10x12 = 5x6 = 4x6 II 5x8 = 5x6 = 10x12 = 2H2-57 25526DS 1-3-8 0-0 7-8-8 22-8-8 37-8-8 6-2-0 45-5-0 8-10-0 6-2-0 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER TOTAL WEIGHT = 15 X 291 = 4371 lb LUMBE N. L. G. A CHORDS BUILDINGS BEARINGS FACTORED DESCR SPF SPF **DESIGN CRITERIA** SIZE LUMBER No.2 No.2 Ε 2x6 DRY MAXIMUM FACTORED INPUT 2x6 2x6 2x6 2x6 2x6 2x6 REQRD SPECIFIED LOADS: GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX LL = DL = LL = DL = AD = BRG CH. PSF PSF DRY No.2 SPE IN-SX SPF 6.0 DRY No.2 BN 3709 195 -1082 DRY CH. No.2 10.5 PSF 3675 3709 -1082 No.2 SPF 57.3 SPF 2x6 DRY No.2 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT N. MINIMUM DRY BEARING LENGTH AT JOINT N = 4-0. SPACING = 24.0 No.2 SPF BEINFORCING MEMBERS PROVIDE ANCHORAGE AT BEARING JOINT B FOR 1082 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT N FOR 1082 LBS FACTORED UPLIFT 2x8 2x8 LOADING IN FLAT SECTION BASED ON A SLOPE HWH DRY No.2 No.2 SPF OF 2.00/12 SPF PROVIDE FOR 195 LBS FACTORED HORIZONTAL REACTION AT JOINT B THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015 ALL WEBS 2x4 DRY DRY: SEASONED LUMBER. No.2 SPF UNFACTORED REACTIONS MIN. COMPONENT REACTIONS

LIVE PERM LIVE WIND SNOW 1ST LCASE COMBINED DEAD SOIL THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018, ABC 2019
- PART 4 OF OBC 2012 (2019 AMENDMENT) 1634 / 0 0/-1073 625 / 0 0/0 PLATES (table is in inches)
JT TYPE PLATES
B TMBMW1m MT20 59 / -1073 625 / 0 W LEN Y 10.0 12.0 4.00 CSA 086-14 HORIZONTAL REACTIONS ВСО - TPIC 2014 0/0 0/0 139 / -139 0/0 0 /0 TMWW+t MT20 DESIGN ASSUMPTIONS
- SLOPE REDUCTION FACTOR NOT USED
- PERCENTAGE OF GROUND SNOW LOAD IS TMWW-BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B BRACING

MAX. UNBRACED TOP CHORD LENGTH = 3.53 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. MT20 TS-5.0 6.0 5.0 4.0 4.0 MT20 MT20 8.0 TTW+c USER-DEFINED. Ġ TMWW+t TMWW+t (80 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS MT20 6.0 8.0 6.0 TTW+p TMWW-i MT20 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 33.4 P.S.F. SPECIFIED ROOF LIVE LOAD 2.50 2.25 6.0 9.0 1 LATERAL BRACE(S) AT 1/2 LENGTH OF G-U, I-Q. ALLOWABLE DEFL.(LL)= L/360 (1.51")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.24")
ALLOWABLE DEFL.(TL)= L/180 (3.03")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.34") TMBMW1m 10.0 12.0 5.0 6.0 MT20 4.00 Edge MT20 MT20 BMWW-LOADING TOTAL LOAD CASES: (18) BMWWW-t QRST 5.0 8.0 MT20 5.0 6.0 4.0 5.0 BMWW+t MT20 CHORDS WEBS BS-t BMWWW-t BMWW-t CSI: TC=0.41/1.00 (G-I:1) , BC=0.76/1.00 (S-U:1) , WB=0.65/1.00 (G-U:3) , SSI=0.24/1.00 (I-J:2) MAX. FACTORED FACTORED MAX. FACTORED MT20 5.0 8.0 MEMB VERT. LOAD LC1 MAX MAX. мемв. FORCE MAX DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 (LBS) (PLF) M TO CSI (LC) UNBRAC (LBS) CSI (LC) FR-TO FROM Edge - INDICATES REFERENC TOUCHES EDGE OF CHORD. INDICATES REFERENCE CORNER OF PLATE A-B B-X X-C C-D -115.2 -115.2 -115.2 -115.2 0/1 0.09 (2) 10.00 -32 / 371 C- V V- D 0.06 (3) 0.18 (2) 0.15 (2) 0.33 (2) -90 / 264 -826 / 383 0.04 (5) 0.53 (2) SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00 4.06 D- U U- F U- G -2853 / 891 -115.2 -115.2 4 85 -5520 / 1704 -115.2 -115.2 -115.2 -115.2 -115.2 -115.2 3.55 3.73 3.73 -479 / 1736 0.38 (13) D-E E-F F-G 0.65 (3) 0.16 (9) 0.29 (2) -1448 / 490 -5000 / 1604 G- S S-1 -167 / 458 -167 / 458 0.29 (2) -115.2 -115.2 -115.2 -115.2 -115.2 -115.2 3.73 3.82 3.53 3.53 4482 / 1504 0.36 (1) 0.41 (1) -5228 / 1649 -5228 / 1649 -4482 / 1504 0.16(10)AUTOSOLVE HEELS OFF PROFESSIONAL CHOILE H. J. G. ALVES G- H H- I 0.65 (2) 0.38 (14) 0.53 (3) I-Q -1448 / 490 0.41 (1) -479 / 1736 -826 / 383 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 3.82 3.73 3.73 Q-L L-P P-M -115.2 -115.2 0.36 (1 -115.2 -115.2 -115.2 -115.2 -115.2 -115.2 -5000 / 1604 -5000 / 1604 -100 / 264 0.04 (6) K-L L-M 0.29 (3) 0.06 (2) 0.00 (1) -5520 / 1705 0.33 (3) 3.55 W-X -379 / 1962 NAIL VALUES M- Z Z- N N- O -2853 / 893 -4338 / 1148 -115.2 -115.2 -115.2 -115.2 -115.2 -115.2 W-C 2918 / 847 0.49 (1) M-Y 2918 / 846 H 0.49 (1) D HIL Y-Z -381 / 1962 0.00 (1) BUILDING DIVISION GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 4.06 0.18 100009024 R- W -856 / 2550 0.33 0.69 -1532 / 4864 -1432 / 4893 -39.5 -39.5 -39.5 6.25 PLATE PLACEMENT TOL. = 0.250 inches OF ONT ARIO 6.25 6.25 6.25 -39.50.71 -39.5 -39.5 U-T -1381 / 5160 -39.5 PLATE ROTATION TOL. = 5.0 Deg. T- S S- R 1381 / 5160 0.76 0.76 0.76 0.71 6.25 6.25 6.25 6.25 -1327 / 5160 -39.5 -39.5 JSI GRIP= 0.83 (T) (INPUT = 0.90) JSI METAL= 0.92 (T) (INPUT = 1.00) R-Q Q-P P-Y Y-N -39.5 -39.5 -39.5 -39.5 -39.5 -1327 / 5160 -1237 / 4893 -1338 / 4864 -39.50.69 RECEIVED -664 / 2550 Structural component only Per: DWG# T-2121162 1/2

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	DRWG NO.
412868	T11	15	1	TRUSS DESC.		
Tamarack Roof Truss, Burlington					Version 8.420 S Jan 21 2021 M	 iTek Industries, Inc. Thu Jul 1 10:22:40 2021 Page 2
					ID:U6yi?rbeFFwkxf UFm koDybSsJ-vKsL24fle	ComptK3PdU7hDENfqLeB8A1Vi6wSCbz0TvD

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF { 9.2} PSF AT {31-0-0} FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM).INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

CITY OF RICHMOND HILL BUILDING DIVISION

08/12/2021

RECEIVED

Per:_

Structural component only DWG# T-2121162 7/1

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	DOVAL D	INE HOMES		lonus	
412868	T11G	2	1	TRUSS DESC.	NOTALP	INE HOMES		DRWG NO.	
Tamarack Roof Truss, Burlington					ID:U6yi	Vers ?rbeFFwkxf_UF	sion 8.420 S Jan 21 2 m koDvbSsJ-riz67	D21 MiTek Industries	, Inc. Thu Jul 1 10:22:42 2021 Page v99IfT5g8V3cBMo9QPZGTz0Tv
-1-3-8 0-0 1-11-12 3-1 1-3-8 1-11-12 2-0-0	1-12 5-11-12 7-11-12 1 2-0-0 , 2-0-0 , 2-0-	9-11-12 11-11-12 13-10-8 0 , 2-0-0 , 1-10-12 ,		17	-8-0		31-6-8	13-10-8	45-5-0 46-8-8 , 1-3-8
									Scale = 1:75
		5x8 =							
ī	6.00	3x4	К L	M N	5x6 = O P Q	R S	5x8 ≈		
		4			1		3x4 U	3x4 	
	3x4 F G							5x6 =	
3x4 O	E	₩7 WB	ज्ञा जा	जा। जा।	जा। जा।	आ। आ	SII1	X	3x4 Y 3x4
C	W4 W5							ST3 ST4 S	2 3x4 AA
27 W			8(4)		B1 5				SIG SIT WELL ACTO
BC BB B.	A AZ AY	AX AW AV	AU AT AS	AR AQ	AP AO	AN AM	ALAK AJ	A	
3x8 []			5x6 =	,,,	10	OIX OW	5x6 =	AI AH A	AG AF AE AD 3x8 II
1-3-8			· · · · · · · · · · · · · · · · · · ·	45	5.0	·			
0-0 1-11-12 3-11	-12 5-11-12 7-11-12 9 2-0-0 , 2-0-0 , 2-0-0	3-11-12 11-11-12 13-10-8 , 2-0-0 , 1-10-12 ,		45-	5-0	31-6-8			45-5-0
LUMBER N. L. G. A. RULES		DIMENSIONS, S	UPPORTS AND L	OADINGS SPECIF	TED BY FABRIC	ATOR TO BE VERII	FIED BY	T	TOTAL WEIGHT = 2 X 272 = 544
CHORDS SIZE BC- B 2x8 DRY	No.2	ESCR. BEARINGS SPF	GNER					DESIGN CRITERIA SPECIFIED LOAD	_
A - F 2x6 DRY F - J 2x6 DRY J - O 2x6 DRY	No.2 No.2 No.2	SPF	ESIGNED FOR CO EQUIRES RIGID S			*		TOP CH. LL DL	= 25.6 PSF = 6.0 PSF
O - T 2x6 DRY T - X 2x6 DRY X - AC 2x6 DRY	No.2 No.2 No.2	SPF	RIAL TO BE SPF					BOT CH. LL DL TOTAL LOAD	
AD- AB 2x8 DRY BC- AT 2x6 DRY AT- AK 2x6 DRY	No.2 No.2	SPF BRACING SPF TOP CHORD TO	BE SHEATHED	OR MAX. PURLIN	I SPACING = 6.:	25 FT.		SPACING = 24	4.0 IN. C/C
AK- AD 2x6 DRY	No.2	SPF MAX. UNBHACI	ED BOLLOW CHO	RD LENGTH = 10	.00 FT OR RIG	ID CEILING DIREC E LATERALLY RES		LOADING IN FLAT	T SECTION BASED ON A SLOPE
ALL WEBS 2x3 DRY ALL GABLE WEBS 2x3 DRY		SPF LOADING SPF TOTAL LOAD C						THIS TRUSS IS D	ESIGNED FOR RESIDENTIAL OR
DRY: SEASONED LUMBER. GABLE STUDS SPACED AT 2-0-0) OC.	CHORDS MAX. FACT	, ,	een.	w	EBS	_	NBCC 2015	REQUIREMENTS OF PART 9,
		MEMB. FO	DRCE VERT. LO BS) (PL	AD LC1 MAX F) CSI (LC)	UNBRAC	(LBS) C	D IAX SI (LC)		MPLIES WITH: C 2018 , ABC 2019 : 2012 (2019 AMENDMENT)
PLATES (table is in inches)	LEN V	FR-TO BC- B -260 / A- B 0 /	29 -91.8		7.81 AL- T 10.00 AM- S	-186 / 0 0.	21 (1) 21 (1)	- CSA 086-14 - TPIC 2014	
JT TYPE PLATES W B, AB, AD, BC B	LEN Y X	B- C -50 / C- D -24 / D- E -19 /	0 - 9 1.8	-91.8 0.05 (1) -91.8 0.02 (1) -91.8 0.02 (1)	6.25 AN- R 6.25 AO- Q 6.25 AP- P	-183 / 0 0. -183 / 0 0.	21 (1) 21 (1) 21 (1)	DESIGN ASSUMP -OVERHANG NOT	TIONS TO BE ALTERED OR CUT OFF.
C, D, E, G, H, I, U, V, W, Y, Z, AA C TMW+w MT20 3.0 F TS-t MT20 5.0	4.0 2.00 1.25 6.0 2.50 2.75	E-F -13/ F-G -13/ G-H -9/	0 -91.8 0 -91.8	-91.8 0.02 (1) -91.8 0.02 (1)	6.25 AQ- N 6.25 AR- M	-183 / 0 0. -184 / 0 0.	21 (1) 21 (1)	LOAD) EQUALS 2	S.F. G.S.L. PLUS 8.4 P.S.F. RAIN 25.6 P.S.F. SPECIFIED ROOF
J TTW-m MT20 5.0 K, L, M, N, P, Q, R, S K TMW+w MT20 3.0	8.0 2.75 4.00	H-1 -5/ I-J -3/	91.8 91.8	-91.8 0.02 (1) -91.8 0.02 (1)	10.00 AS-L 10.00 AU-K 10.00 AJ-U	-163 / 0 0. -183 / 0 0.	21 (1) 18 (1) 14 (1)	LIVE LOAD	
O TS-t MT20 5.0 T TTW-m MT20 5.0	6.0 8.0 2.75 4.00	J- K 0 / K- L 0 / L- M 0 /	91.8 91.8	-91.8 0.02 (1) -91.8 0.02 (1) -91.8 0.02 (1)	10.00 Al- V 10.00 AH- W 10.00 AG- Y	-182 / 0 0,	09 (1) 06 (1) 04 (1)	CSI: TC=0.06/1.00 (AD-AE:1), WB=0 (AB-AC:1)	(AB-AC:1), BC=0.03/1.00 0.21/1.00 (S-AM:1), SSI=0.07/1.00
AD TMBMV1+p MT20 3.0 AE, AF, AG, AH, AI, AJ, AL, AM, AN	6.0 2.50 2.75 8.0 2.50 3.75 I, AO, AP, AQ, AR, AS,	M-N 0/ N-O 0/ O-P 0/	91.8	-91.8 0.02 (1) -91.8 0.02 (1) -91.8 0.02 (1)	10.00 AF- Z 10.00 AE-AA 10.00 AV- J	-188 / 0 0. -137 / 0 0.	03 (1) 02 (1) 18 (1)	DOL LUMBER=1.0	00 NAIL=1.00 LS BEND=1.10
AU, AV, AW, AX, AY, AZ, BA, BB AE BMW1+w MT20 3.0 AK BS-t MT20 5.0	6.0 6.0	P-Q 0/1 Q-R 0/1 R-S 0/1	91.8	-91.8 0.02 (1) -91.8 0.02 (1) -91.8 0.02 (1)	10.00 BB-C 10.00 BA-D	-137 / 0 0. -188 / 0 0.	02 (1) 03 (1)		AR=1.10 TENS= 1.10 E LOAD FACTOR = 1.00
AT BS-t MT20 5.0 BC TMBMV1+p MT20 3.0	6.0 8.0 2.50 0.50	S- T 0 / 6 T- U -2 / 6	91.8 91.8	-91.8 0.02 (1) -91.8 0.02 (1)	10.00 AY-G 10.00 AX-H	-181 / 0 0. -183 / 0 0.	04 (1) 06 (1) 10 (1)	AUTOSOLVE HEE	LS OFF
		V-W -9/6 W-X -14/6	91.8 91.8	-91.8 0.02 (1) -91.8 0.02 (1) -91.8 0.02 (1)	10.00 AW- I 10.00 6.25	-184 / 0 0.	14 (1)	TRUSS PLATE MA RESPONSIBLE FO TRUSS MANUFAC	NUFACTURER IS NOT OR QUALITY CONTROL IN THE
		Y- Z -20 / (Z-AA -24 / (91.8	-91.8 0.02 (1) -91.8 0.02 (1) -91.8 0.02 (1)	6.25 6.25 6.25			NAIL VALUES	
DEESSIO	Na	AA-AB -51 / (AB-AC 0 / (AD-AB -260 / (91.8 9 -91.8	-91.8 0.05 (1) -91.8 0.06 (1)	6.25 10.00			PLATE GRIP(DR' (PSI) MAX MIN	(PLI) (PLI) MAX MIN MAX MIN
ID PROV	WE THE STREET	BC-BB 0/3	33 -18.5	-18.5 0.03 (1)	7.81			MT20 650 371	1 1747 788 1987 1873 NT TOL. = 0.250 inches
PROFESSION OF LONGON		BB-BA 0 / 2 BA-AZ 0 / 1 AZ-AY 0 / 1	7 -18.5	-18.5 0.01 (1) -18.5 0.01 (4) -18.5 0.01 (4)	10.00 10.00 10.00			PLATE ROTATION	TOL. = 5.0 Deg.
의 H. J. G. AL 10000992	VES Ö	AY-AX 0 / 8 AX-AW 0 / 5 AW-AV 0 / 2	-18.5	-18.5 0.01 (4) -18.5 0.01 (4) -18.5 0.01 (4)	10.00 10.00 10.00	BUILDI	RICHMOND NG DIVISION	JSI GRIP= 0.25 (J) JSI METAL= 0.09 ((INPUT = 0.90) AD) (INPUT = 1.00)
1000332	7 	AV-AU 0/0 AU-AT 0/0 AT-AS 0/0	-18.5 -18.5	-18.5 0.01 (4) -18.5 0.01 (4)	10.00 10.00				
ROIMEE OF (TARIO /	AS-AR 0/0 AR-AQ 0/0	-18.5 -18.5	-18.5 0.01 (4) -18.5 0.01 (4) -18.5 0.01 (4)	10.00 10.00 10.00	U8/1	2/202	.1	
E OF	OMI	AQ-AP 0 / 0 AP-AO 0 / 0 AO-AN 0 / 0	-18.5 -18.5	-18.5 0.01 (4) -18.5 0.01 (4) -18.5 0.01 (4)	10.00 10.00 10.00		OE!\/==		
Structural compor	ent only	AN-AM 0 / 0 AM-AL 0 / 0 AL-AK 0 / 2	-18.5 -18.5	-18.5 0.01 (4) -18.5 0.01 (4) -18.5 0.01 (4)	10.00 10.00 10.00	RE Per:	CEIVED		:
DWG# T-212116	3 1/6	AK-AJ 0 / 2 AJ-AI 0 / 5	-18.5	-18.5 0.01 (4)	10.00 10.00				CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES		DRWG NO.	
412868 Tamarack Roof Truss, Burlingto	T11G	2	1	TRUSS DESC.			-	
					Version ID:U6yi?rbeFFwkxf UFm I	8.420 S Jan 21 2021 koDybSsJ-rjz6Tm	MiTek Industries, Inc. Thu . g?kF0R6eCnkv99lfT5g8	Jul 1 10:22:42 2021 Page 2 3V3cBMo9QPZGTz0TvB
		LOADING TOTAL LOAD O	ASES: (A)					
		CHORDS	3		WEBS			
		(1	ORCE VER' .BS)	CTORED T. LOAD LC1 MAX (PLF) CSI (LC)	MAX. FACTORED MAX. MEMB. FORCE MAX UNBRAC (LBS) CSI	(
		FR-TO Al-AH 0 / AH-AG 0 /	12 -	OM 10 18.5 -18.5 0.01 (4)	LENGTH FR-TO 10.00	(15)		
		AG-AF 0 / AF-AE 0 /	17 25 33	18.5 -18.5 0.01 (4) 18.5 -18.5 0.01 (1) 18.5 -18.5 0.03 (1)	10.00 10.00			
		7.27.2	-	16.5 -16.5 0.03 (1)	10.00			
					•			
	CHMOND HILL G DIVISION							
08/12	2/2021							
DEC	EIVED							
Per:	EIVED							
				•				
			•		•			
						-		
		1				· 1		i i

Structural component only DWG# T-2121163 7/2

JOB NAME TRUSS NAME JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412868 T11GA TRUSS DESC amarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 10:22:43 2021 Page 1 ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-JvXUh5hdVY8lkonzldgOrs?GPYrcLeExO496owz0TvA 31-6-8 44-5-0 45-5-0 46-8-8 1-0-0, 1-3-8 17-8-0 5x6 = 6.00 12 O P . 5x8 ≥ 3x4 || U 5x6 🕏 3x4 II D AA ΑZ ΑV AO AM AL AK 5x6 == 3x8 II ΑJ Al AH AG AD AC 1-3-8 0-0 1-11-12 3-11-12 5-11-12 7-11-12 9-11-12 11-11-12 13-10-8 1-11-12 2-0-0 2-0-0 2-0-0 2-0-0 2-0-0 2-0-0 12-0-0 1-10-12 44-5-0 45-5-0 1-0-0, 30-6-8 LUMBER
N. L. G. A. RULES
CHORDS SIZE
BB- B 2x8 TOTAL WEIGHT = 2 X 265 = 531 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER DESIGN CRITERIA LUMBER DESCR No.2 No.2 B DRY 2x6 2x6 2x6 DRY SPECIFIED LOADS SPF THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS. LL = DL = LL = DL = TOP CH. PSF PSF PSF No.2 SPF O J -6.0 0.0 7.4 SPF DRY No 2 THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. 2x6 2x6 DRY CH. W AB No.2 SPF SPF SPF SPF TOTAL LOAD 39.0 PROVIDE ANCHORAGE AT BEARING JOINT AC FOR 150 LBS F/BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) 2x6 DRY No.2 PSF No.2 No.2 BB-AS 2x6 DRY AS-AL-SPACING = 24.0 IN. C/C DRY No.2 SPF TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. ALL WEBS 2x3 DRY LOADING IN FLAT SECTION BASED ON A SLOPE No.2 SPF EXCEPT AC- AB 2x4 DRY No.2 SPF ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 ALL GABLE WEBS LOADING TOTAL LOAD CASES: (4) No.2 SPF DRY: SEASONED LUMBER. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CHORDS WEBS GABLE STUDS SPACED AT 2-0-0 OC. FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED MAX. FACTORED FORCE МЕМВ. - CSA 086-14 (PLF) FROM TO CSI (LC) UNBRAC LENGTH FR-TO (LBS) (LBS) CSL(LC) - TPIC 2014 BB- B -228 / 0 AJ- T AK- S AM- R 0.0 0.01 (1) 7.81 -168 / 0 PLATES (table is in inches)
JT TYPE PLATES DESIGN ASSUMPTIONS -91.8 -91.8 -91.8 -91.8 0.06 (1) 0.06 (1) 0.04 (1) A-B B-C D-E F-G H-I 0 / 29 -91.8 -91.8 10.00 -212 / 0 -180 / 0 0.24 (1) -OVERHANG NOT TO BE ALTERED OR CUT OFF. LEN Y -6/0 0.20 (1) AN- Q AO- P AP- N -182 / 0 -184 / 0 -183 / 0 0.20 (1) 0.20 (1) 0.21 (1) 0.21 (1) (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF -91.8 10.00 C, D, E, G, H, I, U, V, X, Y, Z, AA 10.00 10.00 0 / 22 -91.8 0.02 TMW+w MT20 MT20 4.0 6.0 2.00 1.25 2.50 2.75 0 / 25 0.02 TS-t 5.0 AQ- M 0.21 (1) 0.21 (1) 0.02 (10.00 -184/0TTW-m MT20 5.0 8.0 2.75 4.00 0 / 30 -91.8 AR- L AT- K AI- U -91.8 0.02 10.00 -190 / 0 S MT20 M, N, P, Q, R, 0.03 (0/34CSI: TC=0.06/1.00 (A-B:1) , BC=0.01/1.00 (AZ-BA:4) , WB=0.24/1.00 (S-AK:1) , SSI=0.07/1.00 (S-T:1) TMW+w 0.19 (1) 3.0 6.0 0 / 30 0 / 35 0 / 35 0.16 (1) 0.09 (1) 0.06 (1) 10.00 -200 / 0 5.0 5.0 5.0 J- K K- L L- M TS-t TTW-m MT20 6.0 -91.8 -91.8 0.02 (10.00 AH- V -181 / 0 8.0 6.0 4.0 MT20 2.75 4.00 -91.8 -91.8 -91.8 -91.8 0.02 (10.00 TS-t TMW+w DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 w 0 / 35 0 / 35 0 / 35 -91.8 -91.8 -91.8 -179/00.04 (1) MT20 3.0 2.00 Edge M- N N- O O- P Q- R R- S T- U U- V 0.02 (1 10.00 AE-Z -183 / 0 0.03 AC, AD, AE, AF, AG, AH, AR, AT, AU, AV, AW, AX, AC BMW1+w MT20 AJ. AK. AM. AN, AO, AP, AQ, -91.8 0.021 10.00 7, AZ, BA 3.0 6.0 COMPANION LIVE LOAD FACTOR = 1.00 -91.8 -91.8 -91.8 0/350.02 -152 / 0 0.17 (1) 0 / 35 0.03 (1) 0.03 (1) 0.04 (1) 0.02 10.00 BA-C -181/0AUTOSOLVE HEELS OFF AL BS-t AS BS-t MT20 50 60 -153 / 0 -187 / 0 -91.8 0.03 10.00 A7- D 0 / 35 0.03 10.00 AY-E AX-G TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE BB 0 / 35 TMBMV1+p -181 / 0 0.06(1) MT20 3.0 8.0 2.50 0.50 0 / 29 0.09 (1) 0.16 (1) -91.8 0.03 10.00 AW- H TRUSS MANUFACTURING PLANT 10.00 -91.8 -91.8 0.03 V-W 0 / 30 -91.8 -91.8 -91.8 NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION AC-AB 0/3 0.00 (1) W- X X- Y Y- Z 0 / 30 0 / 25 0 / 19 0.02 10.00 -91.8 0.02 (1 10.00 (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 -91.8 -91.8 -91.8 0.03 (1) 0.03 (1) PROFESSIONAL CHARLES 10.00 10.00 PLATE PLACEMENT TOL. = 0.250 inches BB-BA -18.5 -18.5 -18.5 -18.5 -18.5 0/0 0.01 (4) 0.01 (4) 10.00 6.25 BA-AZ AZ-AY AY-AX -11/0 -17/0 PLATE ROTATION TOL. = 5.0 Deg. 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (4) -18.56.25 -18.5 -18.5 -18.5 -18.5 -18.5 -23 / 0 JSI GRIP= 0.29 (AB) (INPUT = 0.90) JSI METAL= 0.06 (BB) (INPUT = 1.00) AX-AW -27 / 0 6.25 **CITY OF R** AW-AV AV-AU -30 / 0 -18.5 0.01 (4) 6.25 100009024 -18.5 -18.5 0.01 (4) 0.01 (4) 6.25 6.25 -33 / 0 -18.5 **BUILDING DIVISION** -18.5 -18.5 ALLAT -35 / 0 AT-AS AS-AR AR-AQ -18.5 -18.5 0.01 (4) 6.25 0.01 (4) 0.01 (4) 0.01 (4) -35 / 0 -35 / 0 -18.56.25 FOUNDE OF ONT ARE -18.5 -18.5 6.25 6.25 -18.5 AQ-AP AP-AO AO-AN AN-AM 6.25 6.25 6.25 6.25 -35 / 0 -18.5-18.5 0.01 (4) 0.01 (4) 0.01 (4) -35 / 0 -185 -185 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 -35 / 0 -35 / 0 -18.5 -18.5 AM-AL AL-AK AK-AJ 0.01 (4) RECEIVED 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (4) 6.25 6.25 6.25 -35/0-18.5 Structural component only -35 / 0 Per: DWG# T-2121164

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY F	PLY	JOB DESC.	BOYA	L PINE H	OMES			DRWG	NO		
412868	T11GA	2		TRUSS DESC		LIMEII	CIVILO			Bittive	140.		
Tamarack Roof Truss, Burlington							Ve	ersion 8.420	S Jan 21 202	MiTek Indu	stries, Inc. Thu	lul 1 10:22:43	3 2021 Page :
			**************	······································	ID	:U6yi?rbeF	HWKXT L	J-m_koDy	bSsJ-JvXUl	5hdVY8lk	onzidgOrs?Gf	PYrcLeExO	496owz0Tv
Edge - INDICATES REFERENCE	CE CORNER OF PLATE	LOADING TOTAL LOAD CASE	ES: (4)										
TOUCHES EDGE OF CHORD		CHORDS				WEBS							
		MAX. FACTORI MEMB. FORG (LBS)	DE VERT. LO	DAD LC1 MAX	MAX.	MEMB. F	FORCE	MAX					
		FR-TO AH-AG -26/0	FROM -18.5	LF) CSI (LC TO -18.5 0.01 (4	LENGTH	FR-TO	(LBS)	CSI (LC)					
		AG-AF -22/0 AF-AE -17/0	-18.5 -18.5	-18.5 0.01 (4 -18.5 0.01 (4	4) 6.25 4) 6.25								
		AE-AD -10/0 AD-AC 0/0	-18.5 -18.5	-18.5 0.01 (4 -18.5 0.01 (4	4) 6.25 4) 10.00								
									-				
		-											
											*		
,													
	loi												
PROFESS	IONALE												
PROFESS 100009 PROFESS 100009	TELL TO												
B HVG	(IVES E)			CITY OF		IMOND DIVISIO		-					
H. J. G. A 100009	024/												
	777			08	/12/	202	21		-				
Porpos	FONTARIO			001	/								
MEG	FON	·		D	ECE	IVFD							

RECEIVED

Per:__

Structural component only DWG# T-2121164 %

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HO	MES		DRWG NO.	
412868	T11X	3	1	TRUSS DESC.					
Tamarack Roof Truss, Burlington					ID:U6yi?rbeFFv	Version 8.420 S vkxf UFm koDyb	Jan 21 2021 N SsJ-FHfE6ni	MiTek Industries, Inc. Thit1AO0z5xMP1iswH5	u Jul 1 10:22:45 2021 Page SUNMKjoQyErOeDtoz0Tv
		WIND LOAD APP	PLIED IS DERIVE	ED FROM REFERE	NCE VELOCITY PRESS	NUBE OF (9.2) PSF A	AT		
	·	(31-0-0) FT-IN-S; COEFFICIENTS, WIND PRESSUR (OPEN TERRAIN	X REFERENCE I , CpCg, BASED O RE IS BASED ON V}, AND TRUSS I	HEIGHT ABOVE G ON THE (MAIN WII N DESIGN (CATEG IS DESIGNED TO I	NCE VELOCITY PRESS RADE AND USING EXT ND FORCE RESISTING ORY 2). BUILDING MAY BE LOCATED AT LEAST ND BOTTOM CHORD DI	ERNAL PEAK SYSTEM].INTERNAL BE LOCATED ON [{0-0} FT-IN-SX AWA	- AY		
		FROM EAVE.TR AND 5.0 PSF RI	USS UPLIFT IS I ESPECTIVELY.	BASED ON TOP A	ND BOTTOM CHORD DI	EAD LOADS OF 5.0	PSF		
	·						-		
·									
PROFESSION BY	NAL ENGIN								
H. J. G./AI 1000090	VES EN							Y OF RICHM BUILDING DI	
	//						1	08/12/2	2021
OF OF	ONTARIO							RECEIV	/ED

Structural component only DWG# T-2121165

Per:_

JOB NAME TRUSS NAME **ROYAL PINE HOMES** QUANTITY JOB DESC. DRWG NO. 412868 3

amarack Roof Truss, Burlington

Version 8.420 S Jan 21 2021 MTek Industries, Inc. Thu Jul 1 14:26:56 2021 Page 1 ID:6ZMXwLBWm_sGlyG7JmrkJzyb8gQ-nvQw1T0xihGCAeTABW3ZDuOJVGkC3gPkrlA_b6z0QKD

4-2-12

Scale = 1:46.7

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:

	LUMBER				
	N. L. G. A. F	RULES			
	CHORDS	SIZE		LUMBER	DESCR.
ĺ	A - C	2x4	DRY	No.2	SPF
i	D - C	2x4	DRY	No.2	SPF
ı	F - A	2x6	DRY	No.2	SPF
	F - D	2x8	DRY	No.2	SPF
	ALL WEBS	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS

CHORD	S #ROW	S SURFACE SPACING (IN	LOAD(PLF)
TOP CH	ORDS : (0.122"X3") SPIRAL	, NAILS
A- C	1	12	TOP
C-D	1	12	TOP
F- A	2	12	TOP
BOTTOM	M CHORE	S: (0.122"X3") SF	IRAL NAILS
F- D	2	4	SIDE(957.4
	(0.122"X3	3") SPIRAL NAILS	•
2x4	1	6	

STAGGER NAILS BY HALF THE SURFACE SPACING IN

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE COPRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OF A THE TOP OF THE OPPOSITE SIDE OF A SIDE OR ON THE TOP

PLA	TES	(table	is in	inches)	
IT	TVDE	=	DI	ATEC	

JT	TYPE	PLATES	W	LEN	Y X
Α	TMVW-p	MT20	5.0	8.0	Edge
В	TMWW-t	MT20	5.0	6.0	2.00 1.50

Structural component only DWG# T-2121166 //_

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
DISI DING DEGLES	AND COMBINED ST EAST FABRICATION TO BE VERIFIED BY
BUILDING DESIGNER	
DEADINGS	

REQRD BRG
IN-SX
3-8
5-8

PROVIDE ANCHORAGE AT BEARING JOINT D FOR 2445 LBS FA PROVIDE ANCHORAGE AT BEARING JOINT F FOR 2340 LBS FA

PROVIDE FOR 477 LBS FACTORED HORIZONTAL REACTION AT JOINT F

UNFACTORED REACTIONS

	1ST LCASE		MIN. COMPO	NENT REACTIO	NS		
JΤ	COMBINED	0.1011	LIVE	PERMLIVE	WIND	DEAD	SOIL
D	5726	3507 / 0	974 / 0	0/0	325 / -2372	1298 / 0	0/0
F	6045	3700 / 0	1028 / 0	0/0	280 / -2332	1371 / 0	0/0
HORIZONTAL REACTIONS							
г		0/0	0/0	0/0	341 / -225	0/0	0 /0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D, F

BANKLINGE MAX. UNBRACED TOP CHORD LENGTH = 4.63 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x6 DRY SPF No.2 T-BRACE AT C-D, B-D

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% COMMON WIRE NA OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (18)

IOIAL	LUAU C	ASES: (18)								
	ORDS							WEE	3 S		
	C. FACT		FACTO					ſ	MAX. FAC	TORED	
MEMB.	F	ORCE	VERT. LO	DAD LC1	MAX	MAX.	ME	MB.	FORC	E MAX	
	(L	LBS)	(P	LF)	CSI (LC) UNBF	RAC		(LBS)	CSI	
FR-TO			FROM		, .		TH FR	-TO	(220)	-	(20)
A-B	-6013 /	1767	-115.2	-115.2	0.197				2461 / 8415	0.45	(9)
B-C		194						. n .e	928 / 2271	0.45	
		159	0.0		0.13 (1				409 / 4817		
F- A		1502			0.12 (2			1	409 / 401 /	0.26	(2)
	00007	1002	0.0	0.0	0.12 (2	., ,	+3				
F-G	-455 /	305	-39.5	-30 5	0.54 (3)E				
G-H		305	-39.5								
H-E		305			0.54 (3						
E-I			-39.5		0.54 (3						
	-1504/		-39.5		0.68 (2						
I- J		4649			0.68 (2		25				
J- D	-1504 /	4649	-39.5	-39.5	0.68 (2	() 6.2	25				
			RATED LO	ADS (LE	3S)						
JT	LOC.	LC1	MAX-	MAX	+ i	FACE	DIR.		TYPE	HEEL	CON
G	1-1-4	-2700	-2700	61	5 B/	ACK	VERT		OTAL		C1
Н	3-1-4	-2700	-2700	61	5 B/	ACK	VERT		OTAL		C1
1	5-1-4	-2700	-2700			ACK	VERT		OTAL	~~	C1
J	7-1-4	-2700	-2700	61		ACK	VERT		OTAL		C1
				• • • • • • • • • • • • • • • • • • • •					U177L		U

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

TOTAL WEIGHT = 3 X 59 = 178 lb DESIGN CRITERIA

SPECIFIED LOADS:

TOP CH. LL = DL = DL = TOTAL LOAD = 33.4 PSF 6.0 10.5 7.4 57.3

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018, ABC 2019
- PART 4 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

DESIGN ASSUMPTIONS
- SLOPE REDUCTION FACTOR NOT USED
- PERCENTAGE OF GROUND SNOW LOAD IS USER-DEFINED

(80 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 33.4 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/180 (0.56")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04")

CSI: TC=0.19/1.00 (A-B:2) , BC=0.68/1.00 (D-E:2) , WB=0.45/1.00 (B-E:3) , SSI=0.89/1.00 (D-E:3)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (B) (INPUT = 0.90) JSI METAL= 0.56 (E) (INPUT = 1.00)

CONTINUED ON PAGE 2

JOB NAME TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PIN	E HOMES	}	DRWG N	0.	
412868 T12	1	3	TRUSS DESC.						
Tamarack Roof Truss, Burlington			1	D:6ZMXwLBWn	v n sGlyG7Jn	ersion 8.420 S Jan 2 nrkJzyb8gQ-nvQv	1 2021 MiTek Industr v1T0xihGCAeTAE	ries, Inc. Thu Jul 1 14:26:56 : BW3ZDuOJVGkC3gPkrlA	2021 Page 2
PLATES (table is in inches) JT TYPE PLATES W LEN Y X C TMV+p MT20 3.0 4.0 D BMVW1+ MT20 5.0 6.0 E BMWW+t MT20 5.0 12.0 F BMV1+p MT20 3.0 8.0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.	WIND LOAD API	ABLE HANGER/I PLIED IS DERIVI SX REFERENCE 6, CpCg, BASED IRE IS BASED OI IN), AND TRUSS RUSS UPLIET IS	MECHANICAL COI ED FROM REFERI HEIGHT ABOVE W ON THE (MAIN W N DESIGN (CATEC IS DESIGNED TO RASED OF TOP A	NNECTION IS REC	QUIRED. PRESSURE C	NE (0 0) POE 47			A BOZOGI V
				• .					
			•						
								•	
PROFESSIONAL									
PROFESSIONAL CHEST TO THE PROFESSIONAL CHIEF							BUILDIN	ICHMOND HILL NG DIVISION 2/2021	

Structural component only DWG# T-2121166 377

RECEIVED

JOB NAME TRUSS NAME ROYAL PINE HOMES QUANTITY JOB DESC. DRWG NO. 412868 Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MTek Industries, Inc. Thu Jul 1 10:22:47 2021 Page 1 ID:6ZMXwLBWm_sGlyG7JmrkJzyb8gQ-Cgn?WTk8ZnekDP5lXSlK?iAvC9B_GSzXJi7Kxhz0Tv6 ·1-3-8 · <u>1-3-8</u> 4-1-12 8-3-8 10.00 12 4x4 // Ø 4x4 || 4v6 = 4x4 = 1-3-8 7-8-8 4-1-12 8-3-8 4-1-12 TOTAL WEIGHT = 46 LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BUILLANGS BEARINGS FACTORED **DESIGN CRITERIA** CHORDS SIZE LUMBER DESCR 2x4 DRY SPF A - D E - D No 2 MAXIMUM FACTORED GROSS REACTION REORD SPECIFIED LOADS: 2x4 2x4 DRY No.2 No.2 GROSS REACTION BBG BRG IN-SX TOP CH. LL = DL = BOT CH. LL = DL = TOTAL LOAD = CH. 25.6 SPF HORZ VERT HORZ DOWN UPLIFT IN-SX 6.0 0.0 7.4 PSF PSF PSF DRY No.2 SPF 1-8 584 0 5-8 5-8 ALL WEBS EXCEPT No.2 2x3 SPF 39.0 24.0 IN. C/C DRY: SEASONED LUMBER. DEAD SOIL THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, 0/0 111/0 PLATES (table is in inches)
JT TYPE PLATES BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, G THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) LEN Y 4.0 1.4.0 2.4 4.0 4.0 6.0 Y X 1.00 2.00 TMVW+p TMWW-t MT20 MT20 $\frac{\textbf{BRACING}}{\textbf{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.}$ MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 4.0 3.0 4.0 4.0 2.00 1.25 TMV+p BMVW1-t MT20 MT20 MT20 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF BMV1+p 4.0 1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-E. LIVE LOAD END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW ALLOWABLE DEFL(LL)= Ĺ/360 (0.28") CALCULATED VERT. DEFL(LL)= L/ 999 (0.00") ALLOWABLE DEFL(TL)= L/360 (0.28") CALCULATED VERT. DEFL(TL)= L/999 (0.01") LOADING TOTAL LOAD CASES: (4) CSI: TC=0.20/1.00 (B-C:1) , BC=0.11/1.00 (E-F:4) , WB=0.25/1.00 (C-E:1) , SSI=0.14/1.00 (B-C:1) CHORDS $W \in B^{\cdot}S$ FACTORED VERT. LOAD LC1 MAX MAX. (PLF) CSI (LC) UNBF MAX. FACTORED MAX. FACTORED MEMB. MEMB. FORCE DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 (LBS) CSI (LC) UNBRAC LENGTH FR-TO FROM -91.8 -91.8 FB-TO то -91.8 0.13 (1) -91.8 0.20 (1) -91.8 0.20 (1) 0.0 0.05 (1) A-B B-C C-D E-D F- C C- E B- F 0.03 (4) 0.25 (1) 0.06 (1) 10.00 0 / 80 COMPANION LIVE LOAD FACTOR = 1.00 -292 / 0 6.25 6.25 -376 / 0 0 / 259 -30 / 0 -143 / 0 -554 / 0 -91.8 0.0 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 6.25 7.81 G-B 0.0 0.0 0.06 (1) G-F F-E -18.5 -18.5 0.09 (4) -18.5 -18.5 0.11 (4) NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PROFESSIONAL THE PROPERTY OF ALVES PLATE ROTATION TOL. = 5.0 Deg. CITY OF RICHMOND HILL JSI GRIP= 0.45 (B) (INPUT = 0.90) JSI METAL= 0.12 (B) (INPUT = 1.00) **BUILDING DIVISION** 08/12/2021 100009024 OF ONTARIO RECEIVED

Per:

Structural component only DWG# T-2121168

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO 412868 T15 TRUSS DESC Tamarack Roof Truss, Burlington

Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 14:26:59 2021 Page 1 ID:6ZMXwLBWm_sGlyG7JmrkJzyb8gQ-BU62fV2q_cen16CksecGqW0roTowG?gAXGOeCRz0QK/ -1-3-8 0-0 1-3-8 8-6-8

3x4 II 10.00 12 5x6 / 7x12 |

CITY OF RICHMOND HILL **BUILDING DIVISION**

Scale = 1:47.

08/12/2021

RECEIVED

LOJO3-50525

8-6-8

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR DRY SPF A - D E - D 2x4 No 2 2x4 2x6 DRY No.2 No.2 SPF 2x8 DRY No.2 SPE ALL WEBS 2x4 DRY No.2 SPF EXCEPT C - E 2x4 DRY 2100F 1.8E SPF DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE	LOAD(PLF)									
SPACING (IN)										
TOP CHORDS: (0.122"X3") SPIRAL NAILS										
A-D 1 12	TOP									
D-E 1 12	TOP									
G-B 2 12	TOP									
BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS										
G-E 2 4	SIDE(1158									
WEBS: (0.122"X3") SPIRAL NAILS	WEBS: (0.122"X3") SPIRAL NAILS									
2x4 2 5										
E-C 1 6										
F-B 1 6										

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

Structural component only DWG# T-2121169 [/2

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
DIEL DING DECIGNISE	WIRE CONDINGS OF ECILIED BY LYBRICATOR TO BE VEHILIED BY
BUILDING DESIGNER	
READINGS	

	41400						
	FACTOR GROSS RE		MAXIMUI GROSS			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	6070	0	6150	0	-1933	3-8	3-8
G	6160	0	6267	510	-1724	5-8	5-8

PROVIDE ANCHORAGE AT BEARING JOINT E FOR 1933 LBS FACTORED PROVIDE ANCHORAGE AT BEARING JOINT G FOR 1724 LBS FACTORED

PROVIDE FOR 510 LBS FACTORED HORIZONTAL REACTION AT JOINT G

UNF	ACTORED RE	EACTIONS					
	1ST LCASE		MIN. COMPO	VENT REACTIO	NS		
JΤ	COMBINED		LIVE	PERM.LIVE	WIND	DEAD	SOIL
E	4483	2710 / 0	794 / 0	0/0	329 / -1877	1032/0	0/0
G	4541	2790 / 0	785 / 0	0/0	252 / -1731	1037 / 0	0/0
HOR	IZONTAL RE	ACTIONS	1				
G		0/0	0/0	0/0	364 / -238	0/0	0 /0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, G

MAX. UNBRACED TOP CHORD LENGTH = 4.82 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x6 DRY SPF No.2 T-BRACE AT D-E

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (18)

CHORDS MAX. FACTORED WEBS FAC: CERT. (DAD CERT. (DAD CERT. (PLF) CS: CER FACTORED MAX. FACTORED MEMB. VERT. LOAD LC1 MAX MAX. (PLF) CSI (LC) UNBRAC FORCE MEMB. FORCE (LBS) MAX CSI (LC) (LBS) FR-TO LENGTH FR-TO A-B B-C 0 / 59 10.00 4.82 F- C -2191 / 7523 C- E -6253 / 2074 0.40 (3) 0.61 (2) -5428 / 1581 -171 / 196 -222 / 159 C-D E-D G-B 6.25 7.81 B-F -1276 / 4351 0.23 (2) -5039 / 1395 -39.5 -39.5 -39.5 -39.5 G-H -488 / 322 -39.5 0.41 (2) 6.25 -39.5 0.41 (2) -39.5 0.55 (2) 6.25 6.25 -488 / 322 -1369 / 4202 0.55 (2)

Į									
SPE	CIFIED CO	VCENTRA	TED LOA	DS (LBS)					
ĨΙ	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
F	4-3-12	-2645	-2645	594	FRONT	VERT	TOTAL		C1
	2-3-12	-2645	-2645	594	FRONT	VERT	TOTAL		C1
1	6-3-12	-2645	-2645	594	FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

DESIGN CRITERIA

LL = 33.4 DL = 6.0 LL = 10.5 DL = 7.4 AD = 57.3 TOP CH. BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015

TOTAL WEIGHT = 3 X 62 = 185 lb

THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018, ABC 2019
- PART 4 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS
- SLOPE REDUCTION FACTOR NOT USED
- PERCENTAGE OF GROUND SNOW LOAD IS USER-DEFINED

(80 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 33.4 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL) = L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/180 (0.57")
CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSI: TC=0.19/1.00 (B-C:2) , BC=0.55/1.00 (E-F:2) , WB=0.61/1.00 (C-E:2) , SSI=0.45/1.00 (F-G:3)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE.FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.84 (C) (INPUT = 0.90) JSI METAL= 0.38 (C) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. ROYAL PINE HOMES	DRWG NO.
412868	T15	1	3	TRUSS DESC.	Driver No.
Tamarack Roof Truss, E	Burlington			Version 8.420 S Jan 21 20 ID:6ZMXwLBWm sGiyG7JmrkJzyb8gQ-BU62fV2	 21 MiTek Industries, Inc. Thu Jul 1 14:26:59 2021 Page g cen16CksecGaW0roTowG?aAXGOeCRz0Ok
PLATES (table is in ir	nches)				,

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF { 9.2} PSF AT {31-0-0} FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE {MAIN WIND FORCE RESISTING SYSTEM, INTERNAL WIND PRESSURE IS BASED ON DESIGN [CATEGORY 2], BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST {0-0} FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

Structural component only DWG# T-2121169

CITY OF RICHMOND HILL BUILDING DIVISION

08/12/2021

RECEIVED

Per:_

JOB NAME TRUSS NAME JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412868 T16G TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.420 S Jan 21 2021 MTek Industries, Inc. Thu Jul 1 10:22:49 2021 Page 1 ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-83ulx9IO4OuSSjF7etno47FHvzumkMiqm0cR0Zz0Tv4

LLMBER
N. L. G. A. RULES
CHORDS SIZE
K - B 2x4
A - F 2x4
G - F 2x4
K - G 2x4 SIZE DESCR. SPF SPF LUMBER No.2 No.2 DRY DRY No.2 SPE DRY No.2 SPF ALL WEBS 2x3 ALL GABLE WEBS DRY No.2 SPF DRY No.2 SPF DRY: SEASONED LUMBER.

GABLE STUDS SPACED AT 2-0-0 OC.

PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х			
В	TMVW+p	MT20	4.0	4.0	1.00	2.00			
C,	D, E								
С	TMW+w	MT20	2.0	4.0					
F	TMV+p	MT20	3.0	4.0					
G	BMV1+p	MT20	3.0	4.0					
Н	BMW1+w	MT20	2.0	4.0					
1	BMW1+w	MT20	2.0	4.0					
J	BMWW1-t	MT20	4.0	4.0					
κ	BMV1+p	MT20	3.0	4.0					

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	RDS FACTORED	FACTORED			W E B S MAX. FACTORED			
MEMB.	FORCE	VERT. LO		MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	, ,	
K-B	-230 / 0	0.0	0.0	0.02(1)	7.81	H- E	-209 / 0	0.17(1)
A-B	0 / 41	-91.8	-91.8	0.13(1)	10.00	I- D	-164 / 0	0.07(1)
B- C	-3/0	-91.8	-91.8	0.06(1)	10.00	J- C	-224 / 0	0.05(1)
C- D	-15/0	-91.8	-91.8	0.06(1)	6.25	B- J	0/14	0.00 (1)
D- E	0/0	-91.8	-91.8	0.05(1)	10.00			
E-F	-12/0	-9 1.8	-91.8	0.05(1)	6.25			
G-F	-78 / 0	0.0	0.0	0.03 (1)	6.25			
K-J	0/0	-18.5	-185	0.02 (4)	10.00			
J-1	0/6	-18.5		0.02 (4)	10.00			
I- H	0/3	-18.5		0.02 (4)	10.00			
H- G	0/0	-18.5		0.02 (4)	10.00			

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = TOP CH. 25.6 6.0 0.0 7.4 PSF PSF BOT CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 48 II

Scale = 1:47.1

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.13/1.00 (A-B:1) , BC=0.02/1.00 (I-J:4) , WB=0.17/1.00 (E-H:1) , SSI=0.08/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL' IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.17 (B) (INPUT = 0.90) JSI METAL= 0.12 (C) (INPUT = 1.00)

Structural component only DWG# T-2121170

JOB NAME	TRUSS NAME	QUANTITY PL	Y JOB DESC.	ROYAL PINE HOMES	DRWG NO.
112868 amarack Roof Truss, Burli	PB01	4 1	TRUSS DESC.		
0-0	2-4-13			ID:WIM/IOISByniqocieDgf3P)	20 S Jan 21 2021 Mir [†] ek Industries, Inc. Thu Jul 1 10:22:25 2021 Page yb9F8-rRSgvxTLk0tsa1PWErLA63G6hIhw7XHHFH09Ayz0Tv
L	2-4-13		4-7-13	7-0-10	47-13 11-8-7 Soale = 1:15
	6x9 \\			Out II	- 4x6 =
I	c			2x4 D	E
10.00 12					
	7.		W2		
50			""	Wi	W3 G
ET B				31	
*\		************	***************************************	*'	
	Н		***************************************	G	F
3x4 =	= 2x4			4x9 ==	3x4
7-9					
0.0	2-4-13		4-7-13	7-0-10	47.13 11-8-7
MBER		DIMENSIONS, SUPPO		ED BY FABRICATOR TO BE VERIFIED BY	TOTAL WEIGHT A VAN AND AND AND AND AND AND AND AND AND A
L. G. A. RULES HORDS SIZE - C 2x4 DR'	LUMBER DES Y No.2 SI	SCR. BEARINGS			DESIGN CRITERIA
- E 2x4 DR' - E 2x4 DR'	Y No.2 SI Y No.2 SI	PF FACTORED PF GROSS REACT PF JT VERT HO		BRG BRG	SPECIFIED LOADS: TOP CH. LL = 25.6 PSF DL = 6.0 PSF
- F 2x4 DR' .L WEBS 2x3 DR'		PF F 197 0 B 170 0 PF H 263 0	197 0 0 170 0 0	11-0-14	BOT CH. LL = 0.0 PSF DL = 7.4 PSF
Y: SEASONED LUMBE	R.	PF H 263 0 G 641 0	263 0 0 641 0 0	11-0-14 11-0-14 11-0-14 11-0-14	TOTAL LOAD = 39.0 PSF SPACING = 24.0 IN. C/C
		UNFACTORED REACTION 1ST LCASE	TIONS MAX./MIN. COMPONENT RI	FACTIONS	
ATES (table is in inches TYPE PLATES TMB1-I MT20	s) W LEN Y X 3.0 4.0	JT COMBINED 5	SNOW LIVE PERI	M.LIVE WIND DEAD SC 0/0 0/0 48/0 0/	
TTWW+m MT20 TMW+w MT20	6.0 9.0 Edge 1.75 2.0 4.0	H 188 11	0/0 0/0 0	0/0	O SMALL BUILDING REQUIREMENTS OF PART 9
TMVW-t MT20 BMV1+p MT20 BMWWW1-t MT20	4.0 6.0 3.0 4.0 4.0 9.0	BEARING MATERIAL	TO BE SPF NO.2 OR BETTER		THIS DESIGN COMPLIES WITH:
BMW1+w MT20	2.0 4.0	BRACING TOP CHORD TO BE S	SHEATHED OR MAX. PURLIN	SPACING = 6.25 FT.	- PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14
DUCHES EDGE OF CHO	ENCE CORNER OF PLATE ORD.			00 FT OR RIGID CEILING DIRECTLY API	PLIED TPIC 2014
		LOADING TOTAL LOAD CASES:		THE PARTY OF THE P	ED. (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD
		CHORDS		WEBS	CSI: TC=0.34/1.00 (D-E:1) , BC=0.10/1.00 (G-H:4) ,
		MAX. FACTORED MEMB. FORCE (LBS)	FACTORED VERT. LOAD LC1 MAX M (PLF) CSI (LC) U	MAX. FACTORED IAX. MEMB. FORCE MAX	WB=0.08/1.00 (D-G:1) , SSI=0.21/1.00 (D-E:1)
		FR-TO A-B 0 / 14	FROM TO L -91.8 -91.8 0.02 (1)	ENGTH FR-TO 10.00 H- C -181 / 0 0.03 (1)	DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10
		J- C -54 / 0 C- D 0 / 0	-91.8 -91.8 0.01 (1) -91.8 -91.8 0.03 (1) -91.8 -91.8 0.34 (1)	6.25 G-D -533 / 0 0.08 (1) 10.00 G-E 0 / 0 0.00 (1)	COMPANION LIVE LOAD FACTOR = 1.00
		D-E 0/0 F-E -162/0	-91.8 -91.8 0.34 (1) 0.0 0.0 0.02 (1)	10.00 I-J -112/0 0.00 (1) 7.81	TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.
		B-I 0/38 I-H 0/38 H-G 0/26	-18.5 -18.5 0.05 (4)	10.00	NAIL VALUES
		G-F 0/0	-18.5 -18.5 0.10 (4) -18.5 -18.5 0.10 (4)	10.00	PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN
					MT20 650 371 1747 788 1987 1873
- EE	SSION				PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg.
PROFE	THE PARTY OF THE P			CHMOND HILL G DIVISION	JSI GRIP= 0.27 (D) (INPUT = 0.90) JSI METAL= 0.11 (D) (INPUT = 1.00)
\$ 671	01/M K				33. N.E. 7.E. 3. 17 (5) (114) 61 2 1.00)
S H.J.(SSIONAL STICE		08/12	2/2021	
1000	009024				
13/	1/2/			EIVED	
Roman	OF ONT ARIO		Per:		
					•
Structural cor DWG# T-212	nponent only 21145				

2x3 DRY DRY: SEASONED LUMBER.

GABLE STUDS SPACED AT 2-0-0 OC.

PL	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Х						
В	TMB1-I	MT20	3.0	4.0								
С	TMW+w	MT20	2.0	4.0								
D	TMW+w	MT20	2.0	4.0								
E	TMV+p	MT20	3.0	4.0								
	BMV1+p	MT20	3.0	4.0								
	BMW1+w	MT20	2.0	4.0								
Н	BMW1+w	MT20	2.0	4.0								
F G H		MT20	2.0	4.0								

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE	BS			
	. FACTORED	FACTORE)				MAX.	FACTO	RED	
MEMB.	FORCE	VERT. LOAD	LC1 N	ΛAX	MAX.	MEMB.	F	ORCE	MAX	
	(LBS)	(PLF)	CS	(LC)	UNBRAC		i	LBS)	CSI (LC)	
FR-TO		FROM TO			LENGTH	FR-TO	,	,	()	
A-B	0 / 17	-91.8 -9	1.8 0.	05 (1)	10.00	G-D	-158	/ 0	0.03(1)	
B-J	-17/0	-91.8 -9	1.8 0.	02 (4)	6.25	H- C	-307		0.05 (1)	
J-C	-4 / 1	-91.8 -9	1.8 0.	13 (1)	10.00	I- J	-172		0.00 (1)	
C-D	-21 / 0	-91.8 -9	1.8 0.	13 (1)	6.25				0.00 (1)	
D-E	-5/0	-91.8 -9		05 (1)	10.00					
F-E	-84 / 0	0.0	0.0 0.0	02 (1)	7.81					
				. ,						
B-1	0 / 14	-18.5 -1	B.5 O.	10 (1)	10.00					
I-H	0 / 14	-18.5 -1	B.5 0.	10 (1)	10.00					
H-G	0 / 4	-18.5 -1	B.5 0.6	07 (1)	10.00					
G-F	0/0	-18.5 -1	3.5 0.0	D2 (4)	10.00					

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED

Per:

SPACING = 24.0 IN. C/C

THIS TRUSS'IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, **NBCC 2015**

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.13/1.00 (C-D:1), BC=0.10/1.00 (B-I:1), WB=0.05/1.00 (C-H:1), SSI=0.14/1.00 (B-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.20 (B) (INPUT = 0.90) JSI METAL= 0.13 (C) (INPUT = 1.00)

Structural component only DWG# T-2121148

LUMBER										
N. L. G. A. RULES										
CHORDS	SIZE		LUMBER	DESCR.						
A - D	2x4	DRY	No.2	SPF						
D - G	2x4	DRY	No.2	SPF						
B - F	2x4	DRY	No.2	SPF						
				0, 1						
ALL WEBS	2x3	DRY	No.2	SPF						
DRY: SEASO	NED L	JMBER.	:	.						
			No.2	SPF						

	L WEBS 2 Y: SEASON	x3 DRY ED LUMBER.		No.2			S
	ATES (table	is in inches)		I EN	v	v	
71	TYPE	PLATES	W	LEN	Υ	Х	

LATES (MICHES)										
JT	TYPE	PLATES	W	LEN	Υ :	X				
В	TMB1-I	MT20	3.0	4.0						
С	TMW+w	MT20	2.0	4.0						
D	TTWW+p	MT20	4.0	6.0	Edge					
Ε	TMW.+w	MT20	2.0	4.0	•					
F	TMB1-I	MT20	3.0	4.0						
Н	BMWW1-t	MT20	4.0	4.0						
l	BMWW1-t	MT20 .	4.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	DRED	INPUT	REORD
	GROSS R	EACTION	GROSS	REACTIC	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
В	340	0	340	0	0	15-9-6	15-9-6
F	340	0	340	0	0	15-9-6	15-9-6
Н	610	0	610	0	0	15-9-6	15-9-6
1	610	0	610	0	0	15-9-6	15- 9 -6

UNFACTORED REACT	IONS
1ST LCASE	MAX

	151 LUASE	MAX./I	MAX./MIN. COMPONENT REACTIONS									
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
В	239	166 / 0	0/0	0/0	0/0	73 / 0	0/0					
F	239	166 / 0	0/0	0/0	0/0	73 / 0	0/0					
Η.	432	283 / 0	0/0	0/0	0/0	149 / 0	0/0					
1	432	283 / 0	0/0	0/0	0/0	149 / 0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, F, H, I

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 6.25 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS	WEBS						
	FACTORED	FACTO					MAX. FACTO	RED
MEMB.	FORCE	VERT. LO		MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL		CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM			LENGTH	FR-TO		
A-B	0 / 17	-91.8	-91.8	0.05(1)	10.00	D- H	-197 / 0	0.07(1)
B- K	-199 / 0	-91.8	-91.8	0.06 (4)	6.25	H-E	-396 / 0	0.07 (1)
K-C	-143 / 0	-91.8	-91.8	0.23 (1)	6.25	I- D	-197 / 0	0.07(1)
C- D	0 / 54	-91.8	-91.8	0.24 (1)	10.00	C-1	-396 / 0	0.07 (1)
D-E	0 / 54	-91.8	-91.8	0.24(1)	10.00	J- K	-69 / 58	0.00 (1)
E- M	-143 / 0	-91.8	-91.8	0.23 (1)	6.25	L- M	-69 / 58	0.00 (1)
M- F	-199 / 0	-91.8	-91.8	0.06 (4)	6.25			,
F-G	0 / 17	-91.8	-91.8	0.05 (1)	10.00			
B-J	0 / 149	-18.5	-185	0.08-(1)	10.00			
J- i	0 / 149	-18.5		0.12 (4)	10.00			
i- H	0 / 40	-18.5		0.12 (4)	10.00			
H- L	0 / 149	-18.5	-18.5					
L-F	0 / 149	-18.5	-18.5		10.00			
		10.0	. 5.0	0.00 (1)	10.00			

PROFESSIONAL CHARLES H. J. G., ALVES 1000090 OF ONT ARIO POUNT

Structural component only DWG# T-2121149

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:_

SPECIFIED LOADS: TOP CH. LL = PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.24/1.00 (C-D:1) , BC=0.12/1.00 (I-J:4) , WB=0.07/1.00 (D-H:1) , SSI=0.15/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION

(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.24 (B) (INPUT = 0.90) JSI METAL= 0.08 (E) (INPUT = 1.00)

GABLE STUDS SPACED AT 2-0-0 OC.

2x4

2x3

2x3 DRY DRY: SEASONED LUMBER.

ALL WEBS

ALL GABLE WEBS

PLATES	table is in it	nches)			
JT TYPE		TES V	V L	EN Y	′ >
B TMB1		T20 3	.0 4.	.0	
C, D, F, G					
C TMW-		720 2	.0 4.	.0	
E TTW-		T20 4	.0 4.	.0	
H TMB1		20 3	.0 4.	.0	
J, K, L, M,					
J BMW	i+w Mī	20 2	.0 4.	0	

DRY

No.2

No.2

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

SPF

SPF

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CH	ORDS					WE	BS	
MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.		MAX
1	(LBS)	(PI	_F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		` '
A-B	0 / 17	- 9 1.8		0.05 (1)	10.00	L-E	-131 / 0	0.04(1)
B-P	-44 / 0	-91.8	-91.8	0.02 (4)		M- D	-160 / 0	0.03 (1)
P-C	-44 / 0	-91.8	-91.8	0.13 (1)		N- C	-306 / 0	0.05(1)
C-D	-60 / 0	-91.8	-91.8	0.13 (1)	6.25	K-F	-160/0	0.03(1)
D-E	-45 / 0	-91.8	-91.8	0.05 (1)		J- G	-306 / 0	0.05 (1)
E-F	-45 / 0	-91.8	-91.8	0.05 (1)		O- P	-171 / 5	0.00(1)
F-G	-60 / 0	-91.8	-91.8	0.13 (1)		Q-R	-171 / 5	0.00(1)
G-R	-44 / 0	-91.8	- 9 1.8	0.13 (1)				
R-H	-44 / 0	-91.8	-91.8	0.02 (4)				
H- I	0 / 17	-91.8	-91.8	0.05 (1)	10.00			
n 0	0							
B-O	0 / 49	-18.5		0.10(1)				
0- N	0 / 49	-18.5	-18.5	0.10(1)				
N-M	0 / 39	-18.5	-18.5	0.07(1)				
M-L	0 / 36	-18.5	-18.5	0.02 (4)				
L-K	0 / 36	-18.5	-18.5	0.02 (4)				
K-J	0 / 39	-18.5	-18.5	0.07(1)				
7- Ø	0 / 49	-18.5		0.10(1)				
Q-H	0 / 49	-18.5	-18.5	0.10 (1)	10.00			
I								

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:

CSA 086-14 - TPIC 2014

SPACING = 24.0 IN. C/C

CH.

TOTAL LOAD

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

6.0 0.0 7.4

39.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

CSI: TC=0.13/1.00 (G-R:1) , BC=0.10/1.00 (H-Q:1) , WB=0.05/1.00 (G-J:1) , SSI=0.14/1.00 (B-O:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.13 (G) (INPUT = 1.00)

Structural component only DWG# T-2121150

JOB NAME	TRUSS NAME	louantin/	In. V	LIGORGEO		
412868		QUANTITY	PLY	JOB DESC. ROYAL PIN	E HOMES	DRWG NO.
Tamarack Roof Truss, Burlington	J03	15	1	TRUSS DESC.	Version 8 420 S. Jan 21 3	2021 MiTek Industries, Inc. Thu Jul 1 10:22:24 2021 Page 1
	-1-3-8	0-0		ID:U6	Syi?rbeFFwkxf_UFm_koDybSsJ	-NFulicSizjl?ytqKh7qxZsj_uuLTO5E80d2cdWz0Tv
	1-3-8				3-7-0	3-7-0
11						C
				4.00 12		
4.5						
٦			F			
7		В		T1		
 A		,			B1	
_			\times			
		3x4 =	E			0
	1-3-8				2-7-14	U 5-5 4 2
		0-0	5-8			0 ¹ / ₃ 3-7-0
		L			3-7-0	3-7-0 TOTAL WEIGHT = 15 X 10 = 151 ii
LUMBER N. L. G. A. RULES CHORDS SIZE	LUMBER DESCR	BUILDING DESIG	PPORTS AND LO NER	OADINGS SPECIFIED BY FABRICAT	FOR TO BE VERIFIED BY	DESIGN CRITERIA
A - C 2x4 DRY B - D 2x4 DRY	LUMBER DESCR No.2 SPF No.2 SPF	FACTOR GROSS RE		IMUM FACTORED INPUT SS REACTION BRG	REQRD	SPECIFIED LOADS:
DRY: SEASONED LUMBER.	110.2	JT VERT	HORZ DOW		BRG IN-SX 5-8	TOP CH. LL = 25.6 PSF DL = 6.0 PSF BOT CH. LL = 0.0 PSF
		B 320 D 57	0 320 0 57	0 0 5-8 0 0 5-8	5-8 5-8	DL = 7.4 PSF TOTAL LOAD = 39.0 PSF
PLATES (table is in inches)		VALUE IN PAREN	ITHESIS INDICA	TES EFFECTIVE BEARING LENGT	<u>гн</u>	SPACING = 24.0 IN. C/C
JT TYPE PLATES W B TMB1-I MT20 3.0		BEVELED PLATE	OR SHIM REQU	JIRED TO PROVIDE FULL BEARIN	G SURFACE WITH TRUSS	THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR
		CHORD AT JT(S): C	THE TOTAL OLD BEAUTY	a oora Aoe wiiii iiloog	SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015
		1ST LCASE JT COMBINED	MAX./MIN	L COMPONENT REACTIONS LIVE PERM, LIVE WIND		THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019
		C 98 B 224	76 / 0 160 / 0	LIVE PERM.LIVE WIND 0/0 0/0 0/0 0/0 0/0	DEAD SOIL 22/0 0/0 64/0 0/0	- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014
		D 42	16 / 0	0/0 0/0 0/0	26 / 0 0 / 0	(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN
		BEARING MATER	IAL TO BE SPF	NO.2 OR BETTER AT JOINT(S) C,	B, D	LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD
		TOP CHORD TO	BE SHEATHED (OR MAX. PURLIN SPACING = 6.25 RD LENGTH = 10.00 FT OR RIGID	FT.	ALLOWABLE DEFL.(LL)= L/360 (0.19")
		1		ETER CORNER JOINTS MUST BE I		CALCULATED VERT. DEFL.(LL) = L/ 999 (0.01") ALLOWABLE DEFL.(TL) = L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.02")
		LOADING TOTAL LOAD CAS				CSI: TC=0.15/1.00 (C-F:1) . BC=0.12/1.00 (B-F:1)
		CHORDS	,_o. (J)	WEI	3 S	WB=0.00/1.00 (E-F:1) , SSI=0.11/1.00 (B-E:1)
		MAX. FACTOR	RCE VERT. LO	RED PAD LC1 MAX MAX. MEMB.	MAX. FACTORED FORCE MAX	DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10
		FR-TO (LB:	FROM	LF) CSI (LC) UNBRAC TO LENGTH FR-TO -91.8 0.13 (5) 10.00 E-F	(LBS) CSI (LC)	COMPANION LIVE LOAD FACTOR = 1.00
		B-F -10/0 F-C 0/2	-91.8	-91.8 0.13 (5) 10.00 E-F -91.8 0.04 (4) 6.25 -91.8 0.15 (1) 10.00	-138 / 5 0.00 (1)	TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE
•		B-E 0/0	-18.5	-18.5 0.12 (1) 10.00		TRUSS MANUFACTURING PLANT .
		E-D 0/0	-18.5	-18.5 0.12 (1) 10.00		NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
	•	CANTILEVER AN	ALYSIS HAS BEI	EN CONSIDERED IN THIS DESIGN		(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN
						MT20 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches
CESSIC	DAVA					PLATE ROTATION TOL. = 5.0 Deg.
PROFESSIO	THE STATE OF THE S					JSI GRIP= 0.20 (B) (INPUT = 0.90)
ROFESSIO ROFESSIO R. J. G. AL 1000090	/n (E)			i Sianne and a series	_	JSI METAL= 0.05 (B) (INPUT = 1.00)
H. J. G. AI	VES B			RICHMOND HILL		·
1000090	24		BUIL	DING DIVISION		
1.4	77. I		08/	12/2021		·
POUNCE OF	TIRIO /		301	, _ 0_ 1		
NOE OF	OMI		D	ECEIVED		
				ECEIVED		
Structural compor DWG# T-212114	nent only I4	4		·		

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components

2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.

- 3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.
- 4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.
- 5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

- 1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.
 - 2- Lumber is to be the sizes and grade specified on the truss drawing.
 - 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6- The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)
- 7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals.
- 8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols, numbering system and General Safety notes.

General Safety notes.	
CITY OF RICHMOND HILL BUILDING DIVISION	
08/12/2021	
RECEIVED Per:	

T-1800213

Feb 09, 2018

BEARING ANCHORAGE BY TOE-NAILS FOR LATERAL CAPACITY

B97791H1

NAIL TYPE	MENERAL		arinentia.	(EDENDING(ED)
			S-P-F	D. FIR
COMMON	3.00	0.144	132	147
WIRE	3.25	0.144	132	147
WIRE	3.50	0.160	159	177
COMMON	3.00	0.122	97	108
SPIRAL	3.25	0.122	97	108
SPIRAL	3.50	0.152	145	162

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/12/2021

RECEIVED

Per:

NOTES:

- 1. Rafter and ceiling members may be anchored to top and bottom chords of girder truss by toe-nailing rafter and ceiling members to girder chords provided the reaction does not exceed the lateral capacities in the table. Hangers (specified by others) are required for reactions higher than the maximum toe-nail capacity. Reactions are based on factored loads.
- 2. Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA 086-14, section 12.9.4.1.
- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- 4. Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in tables below.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42 (SPF), G = 0.49 (D. Fir).
- 6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See next page for nailing on bearing plate).
- 7. For loads due to **wind** the nail lateral capacity in this table may be multiplied by 1.15 (K_D factor).
- 8. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 9. Nail values in this table comply with CSA O86-14, section 12.9.4

This design is not valid after April 30, 2021.

TOE-NAIL INSTALLATION

Nail type	Common wire	Common wire Common spiral Common wire		Common spiral
Nail dia. (in)	0.160	0.152 0.144		0.122
	(3.5)	' nail)	(3" and 3	3.25" nail)
LUMBER SIZE	N .	MAXIMUM NUME	er (o) aroleaya	LS
2X4 SPF	2	2	3	3
2X4 D. Fir	2	2	2	2
2X6 SPF	X6 SPF 4		4	5
2X6 D. Fir	3	3	3	4

Bradford, Ontario L3Z 3G7

R U D

BEARING ANCHORAGE BY TOE-NAILS FOR WIND LOADING

B97791H2

NAIL TYPE			eta energia. Wae garage yeten			
	(iii)	(119)	S-P-F	D. FIR		
COMMON	3.00	0.144	30	42		
WIRE	3.25	0.144	32	45		
WIITE	3.50	0.160	38	52		
COMMON	3.00	0.122	26	36		
SPIRAL	3.25	0.122	28	40		
SFIRAL	3.50	0.152	36	50		

Note: If using truss with D. Fir lumber and S-P-F bearing plate, use values in table for S-P-F.

NOTES:

- 1. Truss chord, rafter, or ceiling members may be anchored to bearing plate by toe-nails, provided that the actual factored uplift force due to wind or earthquake load does not exceed the withdrawal capacities in the table. Hangers (specified by others) are required for uplift forces that are higher than the maximum toe-nail withdrawal capacity.
- 2. Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor JA in CSA 086-14, section 12.9.5.2.
- 3. For 9-3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- 4. Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in table above.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42(SPF), G = 0.49(D. Fir).

6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See drawing on detail B37579H1).

MiTek Canada Inc 100 Industrial Rd. Bradford, Ontario L3Z 3G7

April 2, 2020

C. Cordogiannis

POVINCE OF ON

HUS/LJS – Double Shear Joist Hangers

SIMPSON Strong-Tie

All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: See table Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA O86 -14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

• See current catalogue for options

0 0

0 0

0

Typical LJS26DS

Installation

HUS210 (HUS26, HUS28, similar)

Typical HUS Installation

Typical HUS Installation (Truss Designer to provid

quantity for connecting multiple RICHMOND HILL members together BUILDING DIVISION

08/12/2021

	R	E	C	Ε	IV	E
Por						

1. de is the distance from the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

(800) 999-5099 strongtie.com

HGUS - Double Shear Joist Hangers

SIMPSON
Strong-Tie

All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge **Finish:** G90 galvanized

Design:

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%.
 No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Options:

· See current catalogue for options

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

CITY OF RICHMOND HILL BUILDING DIVISION

08/12/2021

H - Seismic and Hurricane Ties

SIMPSON
Strong-Tie

The H connector series provides wind and seismic ties for trusses and rafters. **Material:** 18 gauge **Finish:** G90 galvanized

Design: • Factored resistances are in accordance with CSA 086-14

 Factored resistances have been increased 15%. No further increase is permitted.

Installation: • Use all specified fasteners

- Nails: 8d = 0.131" dia. x 2½" long common wire, 8d x 1½" = 0.131" x 1½ long, 10d x 1½" = 0.146" x 1½" long
- H1 can be installed with flanges facing outwards
- Hurricane ties do not replace solid blocking

Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows: Factored Shear/Resisting Shear + Factored Tension/Resisting Tension ≤ 1.0.

Install diagonally across from each other for minimum 2x truss.

Nailing into both sides of a single ply 2x truss may cause the wood to split.

31/6

H2.5T

H2.5T Installation

(Nails into both top plates)

H3 Installation

CITY OF RICHMOND HILHOA
BUILBION DIVISION Stallation

08/12/2021

			Fasteners			lb.)					
34-4-1			i astellels		D.Fir-L S				S-P-F	S-P-F	
Model No.	Ga.				Uplift	Nor	mal	linii#	Normal		
IVU.	-	To Rafter	To Plates	To Studs	opini	F ₁	F ₂	Uplift	F ₁	F ₂	
			-		(K _D =1.15)			$(K_0=1.15)$ $(K_0=1.15)$			
H1	18	(6) 8d x 1½"	(4) 8d		740	685	300	680	485	215	
H2A	18	(5) 8d x 1½"	(2) 8d x 11/2"	(5) 8d x 1½"	830	220	75	590	155	55	
H2.5A	18	(5) 8d	(5) 8d	-	805	160	160	755	160	160	
H2.5T	18	(5) 8d	(5) 8d		835	175	240	740	160	210	
НЗ	18	(4) 8d	(4) 8d	_	740	180	265	615	125	190	
H10A	18	(9) 10d x 11/2"	(9) 10d x 1½"		1735	795	410	1505	565	290	

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- Factored resistances are for one anchor. A
 minimum rafter thickness of 2½" must be used
 when framing anchors are installed on each side of
 the joist and on the same side of the plate.
- When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- 4. Hurricane ties are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable. For a Continuous Load Path, connections must be on same side of the wall.

RECEIVED

LUS – Double Shear Joist Hangers

SIMPSON Strong-Tie

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

Options:

• These hangers cannot be modified

_	_	
	W	<i>V/////</i>
	93	V////I
M	1 15	V/ I/A
		V / / //
4		

CITY OF RICHMOND	HILL
BUILDING DIVISIO	N

LUS28

08/12/2021

RECEIVED

D	_	10
_	-	•

			Dimensi	one (in	١	Fasteners Factored Resistance (b.)		
Model			ופווטווונ	0119 (111.	,	i asteriers		D.Fir-L			P-F	
No.	Ga.	141		_		F	Joist		Uplift	Normal	Uplift	Normal
		W	Н	В	d _e ¹	Face Joist ((K _D =1.15)	(K _D =1.00)	(K ₀ =1.15)	(K _D =1.00)	
LUS24	18	19/16	31/8	13/4	1 ¹⁵ / ₁₆	(4) 10d	(2) 10d	710	1630	645	1155	
LUS24-2	18	31/8	31/8	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435	
LUS26	18	19/16	43/4	13/4	3%	(4) 10d	(4) 10d	1420	2170	1290	1630	
LUS26-2	18	31/8	41//8	2	4	(4) 16d	(4) 16d	1720	2595	1545	1920	
LUS26-3	18	45/8	43/16	2	31/4	(4) 16d	(4) 16d	1720	2595	1545	2340	
LUS28	18	19/16	6%	13/4	3¾	(6) 10d	(6) 10d	1420	2520	1290	1790	
LUS28-2	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575	
LUS28-3	18	45/8	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375	
LUS210	18	19/16	7 13/16	13/4	37/8	(8) 10d	(4) 10d	1420	2785	1290	2210	
LUS210-2	18	31/8	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195	
LUS210-3	18	4%	83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375	

^{1.} de is the distance from the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

TECH-NOTES

TN 15-001 Piggyback Bracing

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC. CITY OF RICHMOND HILL SKETCH FROM BCSI-CANADA 2013

08/12/2021

RECEIVED

Disclaimer:

OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technical representation of the representation of the technical representation provided but has developed this technote to offer guidance where it is not currently readily available.

Symbols

PLATE LOCATION AND ORIENTATION

Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss and fully embed teeth. Center plate on joint unless x, y offsets are indicated.

required direction of slots in This symbol indicates the plates 0-1/18" from outside edge of truss.

* Plate location details available in MITek connector plates.

software or upon request.

PLATE SIZE

4 × 4

width measured perpendicular to slots. Second dimension is The first dimension is the plate the length parallel to slots.

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated. indicated by symbol shown and/or

BEARING

ndicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

Industry Standards:

for Light Metal Plate Connected Wood Trusses Truss Design Procedures and Specifications TPIC:

Design Standard for Bracing. Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate DSB-89: BCSI:

Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO HE LEM

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS. Per PRODUCT CODE APPROVALS

RICHMOND

BUILDING DIVISION

 α

11996-L, 10319-L, 13270-L, 12691

CCMC Reports:

© 2007 MTek® All Rights Reserved

МПек Engineering Reference Sheet: MII-7473C rev. 10-'08

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative 1, 1, or Eliminator oracing should be considered. ۲,
- Never exceed the design loading shown and never stack materials on inadequately braced trusses. က်
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other. Š,
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by TPIC. ý.
- Design assumes trusses will be suitably protected from the environment in accord with TPIC. ۲.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. ထ်
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. ۶.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection. ö.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

OF

- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all partions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient. 9.
- Design assumes manufacture in accordance with TPIC Quality Criteria. 20.