Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information					
Building number, street name				Unit no.	Lot/con.
NA i - i I i	Dt-ld-	IDIan mark and all and an all			
Municipality	Postal code	Plan number/ other desc	ription		
RICHMOND HILL					
B. Individual who reviews and takes r	esponsibility fo	, 			
Name MICHAEL O'ROURKE		Firm HVAC DESIGNS LTD.			
Street address		ITVAO DEGICITO ETD.	Unit no.		Lot/con.
375 FINLEY AVE			202		N/A
Municipality	Postal code	Province	E-mail		Į.
AJAX	L1S 2E2	ONTARIO	info@hvacdesi	igns.ca	
Telephone number	Fax number		Cell number		
(905) 619-2300	(905) 619-2375		()		
C. Design activities undertaken by in	dividual identifie	ed in Section B. [Build	ding Code Tab	ole 3.5.2.1 OF Divi	sion C]
☐ House	⊠ HVAC	– House	□ F	Building Structura	al
☐ Small Buildings	🗖 Building	g Services	□ F	Plumbing – Hous	е
☐ Large Buildings		on, Lighting and Pow		Plumbing – All Bu	
☐ Complex Buildings	☐ Fire Pro			On-site Sewage S	Systems
Description of designer's work HEAT LOSS / GAIN CALCULATIONS		Model:	2007		
DUCT SIZING			OPT 2ND		
RESIDENTIAL MECHANICAL VENTILATIO	N DESIGN SUMM	ARY During	CENTRELE D	A/FCT CODA 41 F1/)	
RESIDENTIAL SYSTEM DESIGN per CSA-		Project:	CENTREFIELD (V	WEST GORMLEY)	
D. Declaration of Designer					
I MICHAEL O'ROURKE			declare that	at (choose one as ap	propriate).
	nt name)	 		(F F. · · - · · ·
☐ I review and take responsibility fo Division C, of the Building Code. classes/categories.				ction 3.2.4.of appropriate	
Individual BCIN: _ Firm BCIN: _					
I review and take responsibility for designer under subsection 3.2		m qualified in the appropr on C, of the Building Code		an "other	
Individual BCIN:	19669				
		d qualification:	O.B.C SENT	ENCE 3.2.4.1 (4)_
☐ The design work is exempt Basis for exemption from registra		on and qualification requi	rements of the B	uilding Code.	
I certify that:					
•					
 The information contained I have submitted this application 		ule is true to the best of medge and consent of the f			
April 20, 2021			Michan	Oxombe	
Date	•			Signature of Desi	gner

NOTE

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

	SITE NAME: (MLEY)				OPT 2N	D							DATE: Apr-21					ANGE RATE 0.236	HEAT LOSS			CSA-F28	
	BUILDER: I	ROYAL	PINE H	IOMES					TYPE:	2007		1		GFA:	1662			LO# 87526			UMMER	R NATURAL AIR CH	ANGE RATE 0.072	HEAT GAIN	ΔI °F.	13 Si	3-12 PERFORMAI	NCE
	ROOM USE				MBR			ENS					BED-2			BED-3				BATH								
	EXP. WALL				14 9			6					10			16				0 9								
	CLG. HT.				9			9					9			10				9								
		FACTO																		0								
9	GRS.WALL AREA GLAZING	LOSS	GAIN		126			54					90			160				•								
		24.0	40.0		LOSS	GAIN 0		LOSS	GAIN 0			0		GAIN	0	LOSS	GAIN 0				GAIN							
	NORTH EAST	21.8 21.8	16.0 41.6	0	0	0	0	0	0			29	0 632	0 1205	36	0 784	1496		0	0	0							
	SOUTH	21.8	24.9	0	0	0	0	0	0			0	032	0	0	0	0		0	0	0							
		21.8	41.6	28	610	1163	8	174	332			0	0	0	0	0	0		0	0	0							
	SKYLT.		101.2	0	0	0	0	0	0			0	0	0	0	0	0		0	0	0							
	DOORS	25.8	4.3	0	0	0	0	0	0			0	0	0	0	0	0		0	0	0							
NET!	EXPOSED WALL	4.2	0.7	98	412	68	46	193	32			61	257	42	124	521	86		0	0	0							
	SMT WALL ABOVE GR	3.7	0.6	0	0	0	0	0	0			0	0	0	0	0	0		o	0	0							
	EXPOSED CLG	1.3	0.6	295	388	173	138	181	81			245	322	144	166	218	98		63	83	37							
	C EXPOSED CLG	2.8	1.3	0	0	0	0	0	0			0	0	0	26	73	33		0	0	0							
E)	XPOSED FLOOR	2.6	0.4	0	0	0	0	0	0			239	624	103	25	65	11		0	0	0							
BASEMENT/CRA	AWL HEAT LOSS				0			0					0			0				0								
SLAB ON GRA	ADE HEAT LOSS				0			0					0			0				0								
SUB7	TOTAL HT LOSS				1410			549					1834			1662				83								
SUB 7	TOTAL HT GAIN					1405			445					1494			1723				37							
LEVEL FACTO	OR / MULTIPLIER			0.20	0.27		0.20	0.27				0.20	0.27		0.20	0.27			0.20	0.27								
AIR CHAN	NGE HEAT LOSS				386			150					503			456				23								
AIR CHAP	NGE HEAT GAIN					77			24					82			94				2							
	DUCT LOSS				0			0					234			212				0								
	DUCT GAIN					0			0					289			313				0							
	AT GAIN PEOPLE	240		2		480	0		0			1		240	1		240		0		0							
	PLIANCES/LIGHTS					1077			0					1077			1077				0							
	HT LOSS BTU/H				1796			700					2571			2329				105								
TOTAL HT G	GAIN x 1.3 BTU/H					3950			611					4136			4481				51							
	ROOM USE									l 1	K/G/B	T			1				1	FOY		MUD					BAS	\neg
	EXP. WALL										23									32		12					68	
	CLG. HT.										10									11		11					10	
	ļ	FACTO	RS																									
G	GRS.WALL AREA	LOSS	GAIN								232									355		133					476	
	GLAZING										OSS GAIN	N								LOSS	GAIN	LOSS GAIN					LOSS G	3AIN
	NORTH	21.8	16.0							0	0 0								0	0	0	0 0 0					0 0	0
	EAST	21.8	41.6							0	0 0								30	654	1247	0 0 0					0 0	0
	SOUTH	21.8	24.9							8	174 199								0	0	0	0 0 0						0
		21.8	41.6								1699 3241	l							0	0	0	0 0 0					-	291
	SKYLT.		101.2							0	0 0								0	0	0	0 0 0	1					0
	DOORS	25.8	4.3							0	0 0								35	905	149	20 517 85	1					85
	EXPOSED WALL	4.2	0.7								615 101								290 0	1220	201 0	113 476 78						0
	SMT WALL ABOVE GR EXPOSED CLG	3.7 1.3	0.6 0.6							0	0 0								0	0	0	0 0 0	1					124 0
	C EXPOSED CLG	1.3 2.8	1.3							30	84 38								0	0	0	0 0 0	1				"	0
	XPOSED FLOOR	2.6	0.4							0	0 0								0	0	0	0 0 0	1					0
BASEMENT/CRA		2.0	0.4								0								ľ	0	Ĭ	0 0 0	1				2208	٠
	ADE HEAT LOSS										0									0		0	1					
	TOTAL HT LOSS										2573									2779		993					3629	
	TOTAL HT GAIN										3579	,								-	1596	163	1					500
	OR / MULTIPLIER									0.30									0.30	0.36		0.30 0.36	1				0.50 1.05	
	NGE HEAT LOSS										923									997		356	1				3794	
AIR CHAI	NGE HEAT GAIN										196										87	9	1					27
	DUCT LOSS										0									0		0	1				0	
	DUCT GAIN										0										0	0						0
	AT GAIN PEOPLE	240								0	0								0		0	0 0	1				0	0
HEAT GAIN API	PLIANCES/LIGHTS									l	1077	'									0	0						0
TOTAL H	HT LOSS BTU/H GAIN x 1.3 BTU/H										3496 6307									3776	2188	1349 224					7423	685

STRUCTURAL HEAT LOSS: 23545 TOTAL HEAT GAIN BTU/H: 22853 TONS: 1.90 LOSS DUE TO VENTILATION LOAD BTU/H: 1336 TOTAL COMBINED HEAT LOSS BTU/H: 24881

Mehal Ofmuhe.

			EFIELD (\ PINE HO		DRMLEY))		TYPE: 2					DATE:	Apr-21			GFA:	1662	LO#	87526				
HEATING CFM TOTAL HEAT LOSS AIR FLOW RATE CFM RUN COUNT	820 23,545 34.83	A 3rd		LING CFM EAT GAIN RATE CFM	22,633	Ī	а	a/c coil p vailable pr	ace filter pressure	0.6 0.05 0.2 0.35									820 0	R	OUTPUT	AFUE = (BTU/H) = (BTU/H) =	60,000 58,000 820	_
S/A R/A All S/A diffusers 4"x10" unl				5 1 out.	3 1		max	enum press s/a dif pre usted press	ss. loss	0.18 0.03 0.15		grille pre	pressure ess. Loss ssure r/a	0.02				MEDIUM M HIGH HIGH	0 0 1520	т	EMPERATI	CFM @ .6		°F
All S/A runs 5"Ø unless no RUN# ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK	1 MBR 0.90 31 1.97 72 0.17 40 120 160 0.11 5 228 529 3X10 A	2 ENS 0.70 24 0.61 22 0.17 56 150 206 0.08 4 275 252 3X10 B	3 BED-2 1.29 45 2.07 75 0.17 43 160 203 0.08 6 229 382 4X10 B	4 BED-2 1.29 45 2.07 75 0.17 45 170 215 0.08 6 229 382 4X10 B	5 BED-3 1.16 41 2.24 81 0.16 33 120 153 0.11 5 301 595 3X10 C	6 BED-3 1.16 41 2.24 81 0.16 30 140 170 0.1 5 301 595 3X10 C	7 BATH 0.11 4 0.05 2 0.17 15 150 0.1 4 46 23 3X10 C			10 MBR 0.90 31 1.97 72 0.17 36 150 186 0.09 5 228 529 3X10 A				14 K/G/B 1.75 61 3.15 114 0.15 35 120 155 0.1 6 311 581 4X10 A	15 K/G/B 1.75 61 3.15 39 150 0.08 6 311 581 4X10 A			18 FOY 1.89 66 1.09 40 0.17 19 100 119 0.14 5 294 3X10 C	19 FOY 1.89 66 1.09 40 0.17 24 80 0.17 5 485 294 3X10 C	20 MUD 1.35 47 0.22 8 0.17 26 110 0.13 4 539 92 3X10 B	21 BAS 2.47 86 0.23 8 0.16 55 170 225 0.07 6 438 41 4X10 A		23 BAS 2.47 86 0.23 8 0.16 36 140 176 0.09 6 438 41 4X10 A	24 BAS 2.47 86 0.23 8 0.16 10 110 120 0.14 6 438 41 4X10 C
RUN # ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ff/min) COOLING VELOCITY (ff/min) OUTLET GRILL SIZE TRUNK																								
SUPPLY AIR TRUNK SIZE	TRUNK	STATIC	ROUND	RECT			VELOCITY			TRUNK	STATIC	ROUND	RECT			VELOCITY	RETURN A	IR TRUNI	K SIZE STATIC	ROUND	RECT			VELOCITY
TRUNK A TRUNK B TRUNK C TRUNK D TRUNK E TRUNK F	517 304 0 0	0.07 0.07 0.10 0.00 0.00 0.00	9.8 11.3 8.5 0 0	12 16 8 0 0	x x x x x	8 8 8 8 8	(ft/min) 534 582 684 0 0		TRUNK G TRUNK H TRUNK I TRUNK J TRUNK K TRUNK L	0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0	0 0 0 0 0 0	x x x x x	8 8 8 8 8	(ft/min) 0 0 0 0 0 0	TRUNK O TRUNK P TRUNK Q TRUNK R TRUNK S TRUNK T TRUNK T	O O O O O O O O	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0 0 0 0 0 0 0	0 0 0 0 0 0 0	x x x x x x	8 8 8 8 8	(ft/min) 0 0 0 0 0 0 0
RETURN AIR # AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE ROUND DUCT SIZE INLET GRILL SIZE INLET GRILL SIZE	1 0 95 0.15 48 175 223 0.07 6 8 X 14	2 0 120 0.15 34 205 239 0.06 6.8 8 X	3 0 75 0.15 36 245 281 0.05 6 8 X	4 0 95 0.15 40 165 205 0.07 6 8 X 14	5 0 320 0.15 22 220 242 0.06 9.8 6 X 24	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	115 0.15 40 160 200 0.07 6.5 8 X 14	TRUNK V TRUNK W TRUNK X TRUNK Y TRUNK Z DROP	0 820 0 0 820	0.05 0.05 0.05 0.05 0.05 0.05	0 0 14.6 0 0 14.6	0 24 0 0 24	x x x x x	8 8 8 8 10	0 0 615 0 0 492

TYPE: 2007 CENTREFIELD (WEST GORMLEY) SITE NAME:

87526 OPT 2ND RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL \	ENTILATION CAPACITY			9.32.3.5.
a) Direct vent (sealed combustion) only		Total Ventilation Ca	pacity	137.8	_	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Venti	il. Capacity	63.6	_	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Suppleme	ental Capacity	74.2	_	cfm
d) Solid Fuel (including fireplaces)						
e) No Combustion Appliances		Model:	VANEE 65H	Location:	BSM	1 T
HEATING SYSTEM		63.6	cfm	Location.		Approved
						7.551.01.04
Forced Air Non Forced Air		CFM	JST HEAT LOSS CALCULATION ΔT °F	FACTOR		% LOSS
Electric Space Heat		63.6 CFM	X 78 F X	1.08	Х	0.25
		SUPPLEMENTAL F		TALLING CON		
HOUSE TYPE	9.32.1(2)	Location ENS	Model BY INSTALLING CONTRACTOR	cfm 50	HVI	Sones 3.5
		BATH	BY INSTALLING CONTRACTOR	50	✓	3.5
✓ I Type a) or b) appliance only, no solid fuel		PWD	BY INSTALLING CONTRACTOR	50	·	3.5
II Type I except with solid fuel (including fireplaces)		UEAT DECOVEDY	VENTU ATOR		- I	
III Any Type c) appliance		HEAT RECOVERY Model:	VENTILATOR VANEE 65H			9.32.3.11.
		155	cfm high	64		cfm low
IV Type I, or II with electric space heat Other: Type I, II or IV no forced air		75	% Sensible Efficiency @ 32 deg F (0 deg C)		✓ HVI	Approved
Other. Type I, II of IV No forced all						
SYSTEM DESIGN OPTIONS (D.N.H.W.P.	LOCATION OF INS	TALLATION			
		Lot:		Concession		
1 Exhaust only/Forced Air System		Township		Plan:		
2 HRV with Ducting/Forced Air System		·				
3 HRV Simplified/connected to forced air system		Address Roll #		Building Peri	mit #	
4 HRV with Ducting/non forced air system				Dullullig 1 Cil	11IIC #	
Part 6 Design		BUILDER:	ROYAL PINE HOMES			
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Name: Address:				
	3.32.3.3(1)	Address.				
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	cfm	City:				
Other Bedrooms <u>2</u> @ 10.6 cfm <u>21.2</u>	cfm	Telephone #:		Fax#:		
Kitchen & Bathrooms <u>5</u> @ 10.6 cfm <u>53</u>	cfm	INSTALLING CONT	FRACTOR			
Other Rooms <u>2</u> @ 10.6 cfm <u>21.2</u>	cfm	Name:				
Table 9.32.3.A. TOTAL <u>137.8</u>	cfm	Address:				
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	City:				
		Telephone #:		Fax #:		
1 Bedroom 31.8	cfm	DESIGNER CERTIF	FICATION			
2 Bedroom 47.7	cfm	I hereby certify that	this ventilation system has been the Ontario Building Code.	designed		
3 Bedroom 63.6	cfm	Name:	HVAC Designs Ltd.	^		
4 Bedroom 79.5	cfm	Signature:	Micho	al Ofound	e.	
5 Bedroom 95.4	cfm	HRAI#		001820		
TOTAL 63.6 cfm I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUALI	EIED IN THE AD	Date:	I "OTHER DESIGNED" LINIDER DIVISION	April-21	III DING CODE	
ALVIETY AND TAKE NEGLOPILIET FOR THE DEGIGN WORK AND AW QUALI	U III IIIL AP	MALE OMILOUNI NO AN	. O LIX DEGIGIALIX GIADEIX DIAIQIQIA (,, ∪.∠.∪ ∪Γ III⊑ DU	LILUING GODE.	

			Form	nula Sheet (For Air Lea	akage / Ventiliation C	alculation)								
LO#: 875	26	Model: 2007			er: ROYAL PINE HOMES Date: 4/20/2021									
		Volume Calculati	on		Air Change & Delta T Data									
				=					1	1				
use Volume	-1 (5:2)	T =1	10.23				TURAL AIR CHANG		0.236					
Level	Floor Area (ft²)	Floor Height (ft)	Volume (ft³)			SUMMER NA	ATURAL AIR CHANG	SE RATE	0.072]				
Bsmt	731	10	7310											
First Second	731 931	10 9	7383.1 8379	-			Docian To	mperature Diff	oronco					
Third	0	9	0				Tin °C	Tout °C	ΔT °C	ΔT°F				
Fourth	0	9	0			Winter DTDh	22	-21	43	78				
Tourth	<u> </u>	Total:	23,072.1 ft ³	1		Summer DTDc	24	31	7	13				
		Total:	653.3 m ³	†		Summer Bibe			,	13				
			•	.										
	5.2.3	3.1 Heat Loss due to A	ir Leakage			6.2.6	Sensible Gain due	to Air Leakage						
		V.					IZ.							
	$HL_{airb} =$	$LR_{airh} \times \frac{V_b}{3.6} \times$	$DTD_h \times 1.2$		Н	$IG_{salb} = LR_{airc} >$	$\langle \frac{v_b}{2c} \times DTD_c \rangle$	× 1.2						
0.236		5.0		= 2224 W	- I		5.0		_	111 \				
0.230	x <u>181.48</u>	x 43 °C	_ X <u>1.2</u>	= 2224 VV	= 0.072	X 101.40	_ x <u>7°C</u>	X 1.2	=	111 W				
				= 7588 Btu/h	τ Ι				=	378 Btu/h				
				- /366 Btu/II	1				-	376 Btu/1				
	5.2.3.2 He	at Loss due to Mecha	nical Ventilation			6.2.7 Se	nsible heat Gain d	ue to Ventilatio	n					
	$HL_{vairb} =$	$PVC \times DTD_h \times$	$1.08 \times (1 - E)$		HL	$_{vairb} = PVC \times D$	$TD_h \times 1.08 \times$	(1 - E)						
					_									
64 CFM	x 78 °F	x 1.08	x 0.25	= 1336 Btu/h	64 CFM	x <u>13 °F</u>	x 1.08	x 0.25	=	220 Btu/h				
·		_				-	_		="					
			5.2.3.3 Calcula	tion of Air Change Heat	Loss for Each Room (Flo	or Multiplier Section)								
		***				(111)2							
		HL_0	_{airr} = Level Fact	$or \times HL_{airbv} \times \{(H_{airbv}) \times \{$	$(L_{agcr} + HL_{bgcr}) \div$	$(HL_{agclevel} + HL$	bgclevel)}							
				HLairve Air Leakage +	Level Conductive Heat	Air Lookago Hoat Lo	cc Multiplior /I E v							
		Level	Level Factor (LF)	Ventilation Heat Loss	Loss: (HL _{clevel})	_								
				(Btu/h)	LUSS. (HL _{clevel})	HLairbv /	nLievei)							
		1	0.5		3,629	1.04	-6							
		2	0.3]	6,345	0.35	9							
		3	0.2	7,588	5,538	0.27								
		4	0]	0	0.00	0							
		5	0		0	0.00	0							
				+ ventilation heat loss										

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL:	2007		OPT 2ND	BUILDER: ROYAL PINE HOMES	
SFQT:	1662	LO#	87526	SITE: CENTREFIELD (WEST	GORMLEY)
DESIGN A	SSUMPTIONS				
HEATING	R DESIGN TEMP.		°F -6	COOLING OUTDOOR DESIGN TEMP.	°F 88
	DESIGN TEMP.		-6 72	INDOOR DESIGN TEMP. (MAX 75°F)	88 75
BUILDING	DATA				
ATTACHM	IENT:		ATTACHED	# OF STORIES (+BASEMENT):	3
FRONT FA	CES:		EAST	ASSUMED (Y/N):	Υ
AIR CHAN	GES PER HOUR:		2.50	ASSUMED (Y/N):	Υ
AIR TIGHT	NESS CATEGORY:		TIGHT	ASSUMED (Y/N):	Υ
WIND EXP	POSURE:		SHELTERED	ASSUMED (Y/N):	Υ
HOUSE VO	DLUME (ft³):		23072.1	ASSUMED (Y/N):	Υ
INTERNAL	SHADING:	BLINDS	CURTAINS	ASSUMED OCCUPANTS:	4
INTERIOR	LIGHTING LOAD (Btu/h	n/ft²):	1.80	DC BRUSHLESS MOTOR (Y/N):	Υ
FOUNDAT	ION CONFIGURATION		BCIN_1	DEPTH BELOW GRADE:	7.0
LENGTH:	52.0 ft	WIDTH:	20.0 ft	EXPOSED PERIMETER:	68.0

2012 OBC - COMPLIANCE PACKAGE		
	Compliance	Package
Component	SB-12 PERI	ORMANCE
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.20
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.70
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22+1.5	18.50
Basement Walls Minimum RSI (R)-Value	20	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	1.6	-
Skylights Maximum U-Value	2.6	-
Space Heating Equipment Minimum AFUE	0.96	-
HRV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	TE=94%	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

W	eather Stat	tion Description
Province:	Ontario	
Region:	Richmon	d Hill
	Site Do	escription
Soil Conductivity:	Normal c	onductivity: dry sand, loam, clay
Water Table:	Normal (7-10 m, 23-33 ft)
	Foundatio	n Dimensions
Floor Length (m):	15.8	
Floor Width (m):	6.1	
Exposed Perimeter (m):	20.7	
Wall Height (m):	3.0	
Depth Below Grade (m):	2.13	Insulation Configuration
Window Area (m²):	0.7	
Door Area (m²):	1.9	
	Radia	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desigr	n Months
Heating Month	1	
	Founda	tion Loads
Heating Load (Watts):		647

TYPE: 2007 **LO#** 87526

OPT 2ND

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather St	ation Description							
Province:	Ontario							
Region:	Richmond Hill							
Weather Station Location:	Open flat terrain, grass							
Anemometer height (m):	10							
	l Shielding							
Building Site:	Suburban, forest							
Walls:	Heavy							
Flue:	Heavy							
Highest Ceiling Height (m):	6.74							
Building	Configuration							
Type:	Semi							
Number of Stories:	Two							
Foundation:	Full							
House Volume (m³):	653.3							
Air Leaka	age/Ventilation							
Air Tightness Type:	Energy Star Detached (2.5 ACH)							
Custom BDT Data:	ELA @ 10 Pa. 609.9 c	:m²						
	2.50 ACH @ 50) Pa						
Mechanical Ventilation (L/s):	Total Supply Total Exhaust							
	30.0 30.0							
F	lue Size							
Flue #:	#1 #2 #3 #4							
Diameter (mm):	0 0 0 0							
Natural II	nfiltration Rates							
Heating Air Leakage Rate (ACH)	(H): 0.236							
Cooling Air Leakage Rate (ACH/	H): 0.072							

TYPE: 2007 OPT 2ND

SB-12 PERFORMANCE

HVAC DESIGNS ETD.										
		3.								
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.	REVISED AS PER ARCHITECTURALS	APR/2021
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE	N	RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE	SEPT/2020
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY) RICHMOND HILL, ONTARIO

OPT 2ND 2007

1662 sqft

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca

Web: www.hvacdesigns.ca Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

		OSS 24881	BTU/H	# OF RUNS	S/A	R/A	FANS	She
	MAKE	UN I T DATA		3RD FLOOR				
		CARRIER		2ND FLOOR	8	4	2	
	MODEL 59TI	\16A-060-14\	/	1ST FLOOR	5	1	2	
	INPUT	60	MBTU/H	BASEMENT	3	1	0	Dat
	OUTPUT	58	MBTU/H	ALL S/A DIFFU				Sca
e e	COOLING	2.0	TONS	ON LAYOUT. A	LL S/A	RUN	S 5"Ø	
	FAN SPEED	820	cfm @ 0.6" w.c.	UNLESS NOTE ON LAYOUT. U DOORS 1" min.	NDER	CUT	ISE	L

۱S	Sheet Title								
	BA	ASEMENT							
!	F	HEATING							
	L	LAYOUT							
)	Date	SEPT/2020							
	Scale	3/16" = 1'-0"							
Ø	В	CIN# 19669							
	LO#	87526							

CSA-F280-12

SB-12 PERFORMANCE

THE DESIGNOUNCE.										
HVAC LEGEND								3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.	REVISED AS PER ARCHITECTURALS	APR/2021
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE	N	RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE	SEPT/2020
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u></u>	30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY) RICHMOND HILL, ONTARIO

OPT 2ND

2007 1662 sqft

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR **HEATING LAYOUT**

SEPT/2020 Date 3/16" = 1'-0"

BCIN# 19669

PART. SECOND FLOOR PLAN, EL. 'B2'

SECOND FLOOR PLAN, EL. 'B1'

PART. SECOND FLOOR PLAN,

EL. 'A2'

CSA-F280-12

SB-12 PERFORMANCE

HVAC LEGEND								3.			
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.	REVISED AS PER ARCHITECTURALS	APR/2021	
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE	SEPT/2020	
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u>——</u>	30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date	
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS		

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.® AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

Cllent

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY) RICHMOND HILL, ONTARIO

OPT 2ND 2007

1662 sqft

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR HEATING LAYOUT

Date SEPT/2020
Scale 3/16" = 1'-0"

BCIN# 19669