Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Informa	tion	ation dependency of	i sya esperadarilita asartin	ing a kalangan pangan pang Pangan pangan panga	Proposition	elle manne et en et partie et et
Building number, stree					Unit no.	Lot/con.
Municipality		Postal code	Plan number/ other des	cription		
BRAMPTON						
B. Individual who r	eviews and takes	responsibility fo		alex Property of Philips	contratification of a section in	
Name MICHAEL O'ROURKE			Firm HVAC DESIGNS LTD.			
Street address			IIIVAO DEGIGINO ETD.	Unit no.		Lot/con.
375 FINLEY AVE				202		N/A
Municipality AJAX		Postal code L1S 2E2	Province ONTARIO	E-mail info@hvacd	lociano oo	
Telephone number		Fax number	ONTARIO	Cell number	esiglis.ca	
(905) 619-2300		(905) 619-2375		()		
C. Design activities	undertaken by in	dividual identifie	ed in Section B. [Build	Company (196	PROCESSOR OF THE PROPERTY OF THE PARTY OF TH	Sant References Francisco
☐ House☐ Small Building	e	⊠ HVAC	HouseServices		Building StructuraPlumbing – Hous	
☐ Large Building	s	Detection	ion, Lighting and Po	wer 🗆	Plumbing – All B	uildings
☐ Complex Build		☐ Fire Pr			On-site Sewage	Systems
Description of designer HEAT LOSS / GAIN C			Model:	1804 CNR		
DUCT SIZING						
RESIDENTIAL SYSTE			ARY Project:	FORESTSIDE		
D. Declaration of D	•	-F200-12	ament and the state of the state of the state of		Oraci casa canana	en en 1911 de la companya de la comp
I MICHA				declare	that (choose one as ap	nnronriate):
		rint name)		deolare	that (oncode one as ap	propriate).
	of the Building Code.		on behalf of a firm registe the firm is registered, in t		section 3.2.4.of appropriate	
	Individual BCIN: Firm BCIN:					
I review an designer"	d take responsibility f under subsection 3.		m qualified in the appropron C, of the Building Code		as an "other	
	Individual BCIN: Basis for exemption	19669 rom registration and	d qualification:	O.B.C SE	ENTENCE 3.2.4.1	<u>(4)</u>
	work is exempt xemption from registr		ion and qualification requon:	irements of the	Building Code.	
I certify that:						
	formation contained submitted this applica		ule is true to the best of n edge and consent of the t			
				mel	and Offmula	
June 19		_		- rer pass	· · · · · · · · · · · · · · · · · · ·	ignor
Date					Signature of Des	eigner

NOTE:

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

BUILCREE NOVEMENT WILE TYPE LINE CHIEF	SITE NAME: I																			Apr-19							CHANGE RATE 0.428				ΔT°F. 7			SA-F280-	
ESP. WALL CHEST VALL MET CHEST VALL CHE		ROYAL	. PINE I	HOMES					TYPE:	1804 C					GFA:	2260			LO#	78930				JMMER	RNATU	IRAL AIR	CHANGE RATE 0.134				ΔT°F. 1	1	SB-12 P	ACKAGE	11
CLL IT PUTCHS PUTCH																														2					
Color					16			20			13			10			29						0						12						
GRISWALL AREA (JOSE) CAMP GRISWALL AREA (JOSE)	CLG. HT.				9			9			9			9			9						9						10						
GLAZING CLOSE GAN CLOSE																																			
MORTH 238 144 0 0 0 0 0 0 0 0 0		LOSS	GAIN																				•												
EAST 120- 30- 30- 30	GLAZING				LOSS	GAIN		LOSS	GAIN	- 1	LOSS	GAIN		LOSS	GAIN		LOSS	GAIN					LOSS	GAIN					LOSS	GAIN					
SOUTH 26 22 0 0 0 1 29 22 20 0 0 1 29 22 20 20 0 0 0 0 0 0			14.6	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-						0				-		-					
WEST 128 38.3 34 78 128 38.7 28 128 34 78 128 34 28 0 0 0 0 0 0 0 0 0				0	0	0		-			-	0	32	665	1227																				
SIGNATION SAL 1607 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SOUTH	20.8	22.9	0	0	0	11	229	252	21	436	480	0	0	0	27	561	618				0	0	0				23	478	526					
DOORS 27 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WEST	20.8	38.3	34	706	1303	11	229	422	0	0	0	0	0	0	0	0	0				0	0	0				0	0	0					
NETEROPSISSIAN LALL ACCORDANGE MALE ALL BOOK STATE AND ACCORDANGE MALE ACCORDANGE MALE AND ACCORDANGE MALE	SKYLT.	36.4	100.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				0	0	0				0	0	0					
NET COMPANIENDE MAIN ALL ADDRESSES 25 25 25 25 25 25 25 2	DOORS	24.7	3.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				0	0	0				0	0	0					
EMPORED CLG 27 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NET EXPOSED WALL	4.4	0.6	110	479	71	158	688	102	96	418	62	58	253	37	214	932	138				0	0	0				78	340	50					
NO ATTICE SPOSED EL, COR. 27 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NET EXPOSED BSMT WALL ABOVE GR	3.5	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				0	0	0				0	0	0					
EXPOSED PLOOP 2.5 0.4 14 35 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EXPOSED CLG	1.3	0.6	205	257	114	100	125	56	100	125	56	105	132	59	173	217	96				91	114	51				0	0	0					
SASE DIG REGARD LOSS SUBTOTAL HT LOSS SUBTOTA	NO ATTIC EXPOSED CLG	2.7	1.2	0	0	0	0	0	0	0	0	0	12	32	14	0	0	0				0	0	0				0	0	0					
SLAB ON GRADE HEAT LOSS SUBTOTAL HT CORN SUBT	EXPOSED FLOOR	2.5	0.4	14	35	5	0	0	0	0	0	0	0	0	0	0	0	0				0	0	0				0	0	0					
SUSTOTAL HT LOSS 1477 1494 1271 3980 1082 22126 114 1021 1305	BASEMENT/CRAWL HEAT LOSS				0			0			0			0			0						0						0						
SUB TOTAL HT GAIN 1-94	SLAB ON GRADE HEAT LOSS				0			0			0			0			0						0						0						
LEVEL FACTOR MULTIPLIER 0.10 0.21 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20	SUBTOTAL HT LOSS				1477			1271			980			1082			2126						114						1212						
ARI CHANGE HEAT CLOSS ARI CHANGE HEAT CLOSS DUCT CLOSS	SUB TOTAL HT GAIN					1494			831			598			1337			1619						51						1305					
ARI CHANGE HEAT GAIN DUCT LOSS DUCT CARN DUCT CARN DUCT CARN HEAT GAIN PEOPLE 240 2 480 0 0 163 1 204 1 240 1 240 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LEVEL FACTOR / MULTIPLIER			0.10	0.21		0.10	0.21		0.10	0.21		0.10	0.21		0.10	0.21					0.10	0.21					0.20	0.37						
DUCT CANN	AIR CHANGE HEAT LOSS				314			270			208			230			452						24						449						
DUCT GAN HEAT GANN FEORED 20	AIR CHANGE HEAT GAIN					76			42			30			68			82						3						66					
HEAT CIAM PEOPLE 240	DUCT LOSS				179			0			119			131			258						14						0						
HET COAN APPLIANCES LIGHTS TOTAL HT COSN BTUM	DUCT GAIN					245			0			63			204			234						5						0					
TOTAL HT LOSS BTUM TOTAL HT LOSS BTUM S	HEAT GAIN PEOPLE	240		2		480	0		0	0		0	1		240	1		240				0		0				0		0					
TOTAL HT GAIN x 1.3 BTUH 3503	HEAT GAIN APPLIANCES/LIGHTS					400			0			0			400			400						0						0					
ROOM USE EXP. WALL 28 30 15 26 10 14 47 5 112 11	TOTAL HT LOSS BTU/H				1970			1541			1307			1442			2835						152						1661						
ERP. WALL 28 330 15 26 10 14 47 5 5 6 10 10 10 10 10 10 10	TOTAL HT GAIN x 1.3 BTU/H					3503			1135			899			2924			3348						76						1783					
ERP. WALL CLG. HT. FACTORS GAIN CLG. HT. GAIN CLG. HT. FACTORS GAIN CLG. HT. GAIN CL																											•								_
CLG. HT. FACTORS GAIN FACTORS GAIN FACTORS GAIN LOSS GAI																																			
FACTORS GRS.WALL AREA LOSS GAIN GLAZING GRS.WALL AREA LOSS GAIN LOSS GAIN LOSS GAIN LOSS GAIN NORTH LOSS GAIN NORTH LOSS GAIN																																			
GRS.WALLAREA LOSS GAIN GLAZING GLAZING GLAZING NORTH 20.3 14.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CLG. HT.				10			10			10			9			10			9			10			10								9	
GLAZING CLOSS GAIN CLOSS GAIN CLOSS GAIN LOSS																																			
NORTH 20.8 14.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		LOSS	GAIN																																
EAST 20.8 38.3 32 665 1227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																																			
SOUTH 20.8 22.9 23 478 526 23 478 526 23 478 526 18 374 412 0 0 0 0 12 249 274 14 291 320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						-		-	-		-				-						-		-	-									_		
WEST 20.8 38.3 0 0 0 0 145 2684 0 0 0 0 43 893 1648 0 0 0 0 0 0 0 0 0							-	-	-	-	-	-	_	-		-	-				-		-	-	•	-									
SKYLT. 38.4 100.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																																			
DOORS 24.7 3.7 0 0 0 10 247 37 0 0 0 0 10 247 37 0 0 0 0 10 247 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-		-					•	-					-	-		-	-	-	-		-	•									
NET EXPOSED WALL NET EXPOSED BUSH WALL ABOVE GR A. 4. 4. 6. 6. 0 225 980 145 197 858 127 127 553 82 163 710 105 80 349 52 114 497 74 416 1813 269 30 131 19 NET EXPOSED CLG EXPOSED CLG 1.3 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-	-	-		-	-	-	-	-	_	-	-	-	-	-	-	-	-		-	-	-	-									
NO ATTIC EXPOSED CLG 1.3 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																																	_		
EXPOSED CLG 1.3 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						145																					9						-		
NO ATTIC EXPOSED CLG				-	-	0	-	-	-	-	-	-	_	-	-	-	-	-		-	-	-	-	-	-	-	!								- 1
EXPOSED FLOOR 2.5 0.4 206 513 76 0 0 0 72 179 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						-			-												-			-									•		
BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT COSS SUBTOTAL HT GAIN SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS 975 1123 448 1328 502 445 1844 372 500 100 100 100 100 100 100 100 100 100				-	-	-	_	-	-		-	-	_	-	-	-	0	-		0	-			-	0	-	' 						_		
SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN 1974 3373 635 2202 125 348 746 3089 624 545 5445 5445 5445 5445 1824 545 18		2.5	0.4	206		76	0		0	72		27	0		0	0	0	0	0	0	0	0	-	0	0		'						-		
SUBTOTAL HT LOSS SUB TOTAL HT GAIN 1974 3373 1635 2202 125 348 735 92 5445 456 456 126 126 126 126 126 126 126 126 126 12					•			•			•			•			•			•			•			•							3	881	
SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS BOUTH AIR CHANGE HEAT GAIN DUCT LOSS BOUTH AIR CHANGE HEAT GAIN CHANGE HEAT GAIN DUCT LOSS BOUTH AIR CHANGE HEAT GAIN DUCT GAIN CHANGE HEAT					-			-			-			-			-			-			-			-									
LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS 975 1123 2448 1328 502 445 1844 372 500 0.30 0.60 0.00 0.0				1	2636		1	3037			1210			2224		l	842			746			3089				. 1						*		_ [
AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN DUCT				1		1974	1		3373			635			2202			125			348			735			2								ذ ا
AIR CHANGE HEAT GAIN				0.20			0.20			0.20			0.30			0.30			0.30			0.30			0.30										
DUCT LOSS 361 0 166 0 0 0 0 0 0 DUCT GAIN 247 0 107 0 0 0 0 0 0 0					975			1123			448			1328			502			445			1844												
DUCT GAIN 247 0 107 0 0 0 0 0 0 0						101			172			32			112			6			18			37			•								j.
				1	361		1	0			166			0			0			0			0			0	1							0	
				1			1		-						-			-			•			-) [-	
HEAT GAIN PEOPLE 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		240		0		-	0		-	0		-	0			0		-	0		-	0		-	0) [0		
HEAT GAIN APPLIANCES/LIGHTS 400 400 400 400 0 0 0 400						400			400			400			400			400			0			0)								J
TOTAL HT LOSS BTU/H 3972 4160 1824 3552 1344 1191 4934 996 11434				1	3972		1	4160			1824			3552		l	1344			1191			4934				1						1		
TOTAL HT GAIN x 1.3 BTU/H 3538 5128 1525 3528 690 476 1004 126 114	TOTAL HT GAIN x 1.3 BTU/H					3538			5128			1525			3528			690			476			1004		12	6							114	.3

TOTAL HEAT GAIN BTU/H:

31009

TONS: 2.58

LOSS DUE TO VENTILATION LOAD BTU/H: 1223

STRUCTURAL HEAT LOSS: 44317

TOTAL COMBINED HEAT LOSS BTU/H: 45540

Michael O'Kounte.

		FOREST ROYAL I		MES			TYPE: 1804 CNI	3			DATE:	Apr-19			GFA:	2260	LO#	78930				
HEATING CFM	970			LING CFM	970		furnace pressure furnace filter	0.6 0.05			<i>57</i> ,112.	. ф. 10			0.7		CARRIE			AFUE =	96 %	
TOTAL HEAT LOSS AIR FLOW RATE CFM	,	Δ		IEAT GAIN RATE CFM	,		a/c coil pressure available pressure	0.2								5A-60-12 I SPEED	60			(BTU/H) = (BTU/H) =		
							for s/a & r/a	0.35								LOW	0			` ,	,	
RUN COUNT	4th	3rd	2nd	1st	Bas											EDLOW	785		DESI	GN CFM =		_
S/A	0	8	5	6	3		plenum pressure s/a	0.18			pressure	0.17				MEDIUM	845			CFM @ .	6 " E.S.P.	
R/A	0	3	1	1	1		max s/a dif press. loss	0.03			ess. Loss	0.02			MEDIL	IM HIGH	970					
All S/A diffusers 4"x10" unl				out.			min adjusted pressure s/a	0.15	adj	usted pre	essure r/a	0.15				HIGH	1030	Т	EMPERAT	URE RISE	55	_ °F
All S/A runs 5"Ø unless not	ted other	wise on la	ayout.																			
RUN#	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
ROOM NAME	MBR	ENS	WIC	BED-2	BED-3	BED-3	BATH	MBR	KT/BR	LV/DN	PWD-2	FAM	FAM	OFF	LAUN	PWD	FOY	MUD	BAS	BAS	BAS	OFF
RM LOSS MBH.	0.99	1.54	1.31	1.44	1.42	1.42	0.15	0.99	1.82	3.97	1.66	2.08	2.08	1.78	1.34	1.19	4.93	1.00	3.81	3.81	3.81	1.78
CFM PER RUN HEAT	22	34	29	32	31	31	3	22	40	87	36	46	46	39	29	26	108	22	83	83	83	39
RM GAIN MBH.	1.75	1.14	0.90	2.92	1.67	1.67	0.08	1.75	1.53	3.54	1.78	2.56	2.56	1.76	0.69	0.48	1.00	0.13	0.38	0.38	0.38	1.76
CFM PER RUN COOLING	55	36	28	92	53	53	2	55	48	111	56	81	81	55	22	15	32	4	12	12	12	55
ADJUSTED PRESSURE	0.17	0.17	0.17	0.16	0.17	0.17	0.17	0.17	0.17	0.15	0.17	0.16	0.16	0.17	0.17	0.17	0.15	0.17	0.16	0.16	0.16	0.17
ACTUAL DUCT LGH.	52	57	67	64	66	69	42	47	23	50	49	41	34	14	16	7	40	25	10	16	22	24
EQUIVALENT LENGTH	210	180	200	170	190	200	180	200	170	130	160	150	150	100	110	120	120	100	110	120	110	120
TOTAL EFFECTIVE LENGTH	262	237	267	234	256	269	222	247	193	180	209	191	184	114	126	127	160	125	120	136	132	144
ADJUSTED PRESSURE	0.07	0.07	0.06	0.07	0.07	0.06	0.08	0.07	0.09	0.08	0.08	0.08	0.09	0.15	0.14	0.14	0.1	0.14	0.14	0.12	0.12	0.12
ROUND DUCT SIZE	5	4	4	6	5	5	4	5	5	6	5	5	5	5	4	4	6	4	6	6	6	5
HEATING VELOCITY (ft/min)	162	390	333	163	228	228	34	162	294	444	264	338	338	286	333	298	551	252	423	423	423	286
COOLING VELOCITY (ft/min)	404	413	321	469	389	389	23	404	352	566	411	595	595	404	252	172	163	46	61	61	61	404
OUTLET GRILL SIZE	3X10	3X10	3X10	4X10	3X10	3X10	3X10	3X10	3X10	4X10	3X10	3X10	3X10	3X10	3X10	3X10	4X10	3X10	4X10	4X10	4X10	3X10
TRUNK	Α	Α	В	В	В	В	В	Α	В	В	В	Α	Α	E	D	D	D	E	E	E	D	E
RIIN#																						

RUN # ROOM NAME RM LOSS MBH. M PER RUN HEAT RM GAIN MBH. FER RUN COOLING JISTED PRESSURE CTUAL DUCT LGH.
RM LOSS MBH. TM PER RUN HEAT RM GAIN MBH. TER RUN COOLING JSTED PRESSURE
M PER RUN HEAT RM GAIN MBH. ER RUN COOLING USTED PRESSURE
M PER RUN HEAT RM GAIN MBH. ER RUN COOLING USTED PRESSURE
RM GAIN MBH. ER RUN COOLING JSTED PRESSURE
ER RUN COOLING JSTED PRESSURE
JSTED PRESSURE
JIVALENT LENGTH
FECTIVE LENGTH
JSTED PRESSURE
ROUND DUCT SIZE
VELOCITY (ft/min)
VELOCITY (ft/min)
UTLET GRILL SIZE
JIVALENT FECTIVE JSTED PR ROUND DL VELOCIT

SUPPLY AIR TRUNK SIZE																	RETURN A	IR TRUN	K SIZE					
	TRUNK	STATIC	ROUND	RECT			VELOCITY			TRUNK	STATIC	ROUND	RECT			VELOCITY		TRUNK	STATIC	ROUND	RECT			VELOCITY
	CFM	PRESS.	DUCT	DUCT			(ft/min)			CFM	PRESS.	DUCT	DUCT			(ft/min)		CFM	PRESS.	DUCT	DUCT			(ft/min)
TRUNK A	170	0.07	7.5	10	Х	8	306		TRUNK G	0	0.00	0	0	Х	8	0	TRUNK O	0	0.05	0	0	Х	8	0
TRUNK B	289	0.06	9.5	14	Х	8	372		TRUNK H	0	0.00	0	0	Х	8	0	TRUNK P	0	0.05	0	0	Х	8	0
TRUNK C	459	0.06	11.3	20	Х	8	413		TRUNK I	0	0.00	0	0	Х	8	0	TRUNK Q	0	0.05	0	0	Х	8	0
TRUNK D	246	0.10	7.8	8	X	8	554		TRUNK J	0	0.00	0	0	X	8	0	TRUNK R	0	0.05	0	0	Х	8	0
TRUNK E	266	0.12	7.7	8	Х	8	599		TRUNK K	0	0.00	0	0	Х	8	0	TRUNK S	0	0.05	0	0	Х	8	0
TRUNK F	0	0.00	0	0	Х	8	0		TRUNK L	0	0.00	0	0	Х	8	0	TRUNK T	0	0.05	0	0	Х	8	0
																	TRUNK U	0	0.05	0	0	Х	8	0
																	TRUNK V	0	0.05	0	0	Х	8	0
RETURN AIR #	1	2	3	4	5											BR	TRUNK W	0	0.05	0	0	Х	8	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		TRUNK X	970	0.05	15.6	28	Х	8	624
AIR VOLUME	130	95	260	290	75	0	0	0	0	0	0	0	0	0	0	120	TRUNK Y	560	0.05	12.7	18	Х	8	560
PLENUM PRESSURE	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	TRUNK Z	0	0.05	0	0	Х	8	0
ACTUAL DUCT LGH.	55	70	41	50	74	1	1	1	1	1	1	1	1	1	1	14	DROP	970	0.05	15.6	24	Х	10	582
EQUIVALENT LENGTH	175	135	220	140	240	0	0	0	0	0	0	0	0	0	0	140								
TOTAL EFFECTIVE LH	230	205	261	190	314	1	1	1	1	1	1	1	1	1	1	154								
ADJUSTED PRESSURE	0.06	0.07	0.06	0.08	0.05	14.80	14.80	14.80	14.80	14.80	14.80	14.80	14.80	14.80	14.80	0.10								
ROUND DUCT SIZE	7	6	9.1	8.8	6	0	0	0	0	0	0	0	0	0	0	6								
INLET GRILL SIZE	8	8	8	8	8	0	0	0	0	0	0	0	0	0	0	8								
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х								
INLET GRILL SIZE	14	14	30	30	14	0	0	0	0	0	0	0	0	0	0	14								

TYPE: 1804 CNR

LO# 78930

SITE NAME: FORESTSIDE RESIDENTIA	L MECH	ANICAL V	VENTILATION DESI	IGN SUMM	ARY				
COMBUSTION APPLIANCES	9.	.32.3.1(1)	SUPPLEMENTAL	VENTILATIO	N CAPACITY				9.32.3.5
a) VDirect vent (sealed combustion) only			Total Ventilation C	apacity			169.6	_	cfm
b) Positive venting induced draft (except fireplaces)			Less Principal Ven	itil. Capacity		_	63.6	_	cfm
c) Natural draft, B-vent or induced draft gas fireplace			Required Supplem	ental Capacit	/		106.0	_	cfm
d) Solid Fuel (including fireplaces)									
e) No Combustion Appliances			PRINCIPAL EXHA	UST FAN CA	PACITY				
			Model:	LIFE	BREATH RNC	5-HEX	Location:	E	BSMT
HEATING SYSTEM			63.6	cfm	3.0	sones		✓	HVI Approved
Forced Air Non Forced A	ir		PRINCIPAL EXHA	UST HEAT L		ATION			% LOSS
			CFM 63.6 CFM	Х	ΔΤ °F 74 F	Х	factor 1.08	Х	% LOSS 0.24
Electric Space Heat			SUPPLEMENTAL	FANS		ı	NUTONE		
HOUSE TYPE		0.22.4(2)	Location ENS		Model		cfm 50	HVI	Sones
HOUSE ITPE		9.32.1(2)	BATH		TXEN050C TXEN050C		50	✓	0.3
✓ I Type a) or b) appliance only, no solid fue	el		PWD-2		TXEN050C		50	✓	0.3
II Type I except with solid fuel (including fi	renlaces)		PWD	(TXEN050C		50	✓	0.3
	торійосоў		HEAT RECOVERY						9.32.3.11
III Any Type c) appliance			Model: 108	LIFEBF	EATH RNC5-F	IEX	59		cfm low
IV Type I, or II with electric space heat					-				
Other: Type I, II or IV no forced air			76		nsible Efficiend deg F (0 deg (-		✓	HVI Approved
			LOCATION OF IN						
SYSTEM DESIGN OPTIONS	0.	N.H.W.P.	LOCATION OF IN	STALLATION					
1 Exhaust only/Forced Air System			Lot:			Со	ncession		
			Township			Pla	ın:		
2 HRV with Ducting/Forced Air System			Address						
3 HRV Simplified/connected to forced air s	system		Roll #			Bu	ilding Perm	nit #	
4 HRV with Ducting/non forced air system			BUILDER:	POV	AL PINE HOM				
Part 6 Design			Name:	KOT	AL FINE HOW	_3			
TOTAL VENTUATION CARACITY		20.0.0(4)							
TOTAL VENTILATION CAPACITY		.32.3.3(1)	Address:						
Basement + Master Bedroom 2 @ 21.2 cfm	42.4	cfm	City:						
Other Bedrooms 2 @ 10.6 cfm	21.2	cfm	Telephone #:			Fa	x #:		
Kitchen & Bathrooms5 @ 10.6 cfm	53	cfm	INSTALLING CON	ITRACTOR					
Other Rooms	53.0	cfm	Name:						
Table 9.32.3.A. TOTAL	169.6	cfm	Address:						
PRINCIPAL VENTILATION CAPACITY REQUIRED		20.0.4 (4)	City:						
		32.3.4.(1)	Telephone #:			Fa	x #:		
1 Bedroom	31.8	cfm	DESIGNER CERT	IFICATION					
2 Bedroom	47.7	cfm	I hereby certify tha	t this ventilation		been desiç	gned		
3 Bedroom 6	63.6	cfm	in accordance with Name:		uilding Code. C Designs Ltd				
4 Bedroom 7	79.5	cfm	Signature:		111	Mehad !	Ofounde		
5 Redroom	95.4	cfm	HRAL#		, , ,		11820		

Total: 26,331.0 ft ³ Total: 745.6 m ³ 5.2.3.1 Heat Loss due to Air Leakage	WINTER NATU SUMMER NAT Winter DTDh Summer DTDc	Tin °C 22 24 24 24 25 25 24 25 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	ERATE Emperature Diffe Tout °C -19 30 to Air Leakage × 1.2	0.428 0.134	4/22/2019 ΔΤ °F 74 11 203 W
Volume Ploor Area (ft²) Floor Height (ft) Volume (ft³) Floor Area (ft²) Floor Area (ft²) Floor Height (ft) Volume (ft³) Floor Area (ft²) Floor Height (ft) Volume (ft³) Floor Area (ft²)	WINTER NATU SUMMER NATU SUMMER NATU Winter DTDh Summer DTDc $6.2.6 \text{ Se}$ $G_{Salb} = LR_{airc} \times$	URAL AIR CHANG Design Te Tin °C 22 24 Insible Gain due $\frac{V_b}{3.6} \times DTD_c$	ERATE Emperature Diffe Tout °C -19 30 to Air Leakage × 1.2	0.134 erence ΔT °C 41 6	74 11
Floor Area (ft²) Floor Height (ft) Volume (ft³) Isimt 573 9 5157 Isint 573 9 7677 Isint 0 9 0 Total: 26,331.0 ft³ Total: 745.6 m³ Total: 745.6 m³ Total: 574.6 m³ Total: 745.6 m³ Total:	SUMMER NAT Winter DTDh Summer DTDc $6.2.6 \text{ Se}$ $G_{Salb} = LR_{airc} imes$	Design Te Tin °C 22 24 Insible Gain due $\frac{V_b}{3.6} \times DTD_c$	emperature Difference Tout °C -19 30 to Air Leakage × 1.2	0.134 erence ΔT °C 41 6	74 11
Floor Area (ft²) Floor Height (ft) Volume (ft³) Ismt 573 9 5157 Isrist 573 9 5157 Isrist 573 9 5157 Isrist 573 9 5157 Isrist 573 9 7677 Isrist 600 834 10 8340 Isrist 853 9 7677 Isrist 700 9 0 Total: 26,331.0 ft³ Total: 745.6 m³ Isrist 745.6 m³ Isrist 573 9 5157 Isrist 57	SUMMER NAT Winter DTDh Summer DTDc $6.2.6 \text{ Se}$ $G_{Salb} = LR_{airc} imes$	Design Te Tin °C 22 24 Insible Gain due $\frac{V_b}{3.6} \times DTD_c$	emperature Difference Tout °C -19 30 to Air Leakage × 1.2	0.134 erence ΔT °C 41 6	74 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Winter DTDh Summer DTDc 6.2.6 Se $G_{Salb} = LR_{airc} \times$	Design Te Tin °C 22 24 Insible Gain due $\frac{V_b}{3.6} \times DTD_c$	emperature Difference Tout °C -19 30 to Air Leakage × 1.2	erence	74 11
First 573 9 5157 8200d 834 10 8340 8340 853 9 7677 90000 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	Summer DTDc $ 6.2.6 \text{Se} $ $ G_{Salb} = LR_{airc} \times $	Tin °C 22 24 24 24 25 25 24 25 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	Tout °C -19 30 to Air Leakage × 1.2	ΔT °C 41 6	74 11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Summer DTDc $ 6.2.6 \text{Se} $ $ G_{Salb} = LR_{airc} \times $	Tin °C 22 24 24 24 25 25 24 25 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	Tout °C -19 30 to Air Leakage × 1.2	ΔT °C 41 6	74 11
Third 853 9 7677 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Summer DTDc $ 6.2.6 \text{Se} $ $ G_{Salb} = LR_{airc} \times $	Tin °C 22 24 24 24 25 25 24 25 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	Tout °C -19 30 to Air Leakage × 1.2	ΔT °C 41 6	74 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Summer DTDc $ 6.2.6 \text{Se} $ $ G_{Salb} = LR_{airc} \times $	$\begin{array}{c} 22 \\ 24 \end{array}$ ensible Gain due $\frac{V_b}{3.6} \times DTD_c :$	-19 30 to Air Leakage × 1.2	41 6	74 11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Summer DTDc $ 6.2.6 \text{Se} $ $ G_{Salb} = LR_{airc} \times $	ensible Gain due $\frac{V_b}{3.6} \times DTD_c$	30 to Air Leakage × 1.2	=	11 203 W
5.2.3.1 Heat Loss due to Air Leakage $HL_{airb} = LR_{airh} \times \frac{V_b}{3.6} \times DTD_h \times 1.2 $ $ \times 207.11 \times 41^{\circ}C \times 1.2 = 4389W = 0.134 $ $ = 14974 \text{ Btu/h} $	$IG_{salb} = LR_{airc} \times$	$\frac{V_b}{3.6} \times DTD_c$	× 1.2	- !	
$HL_{airb} = LR_{airh} \times \frac{V_b}{3.6} \times DTD_h \times 1.2$ $\times 207.11 \times 41^{\circ}C \times 1.2 = 4389W = 0.134$ $= 14974 \text{ Btu/h}$	$IG_{salb} = LR_{airc} \times$	$\frac{V_b}{3.6} \times DTD_c$	× 1.2	- !	
$HL_{airb} = LR_{airh} \times \frac{V_b}{3.6} \times DTD_h \times 1.2$ $\times 207.11 \times 41^{\circ}C \times 1.2 = 4389W = 0.134$ $= 14974 \text{ Btu/h}$	$IG_{salb} = LR_{airc} \times$	$\frac{V_b}{3.6} \times DTD_c$	× 1.2	- !	
.428 x 207.11 x 41 °C x 1.2 = 4389 W = 0.134		5.0		- !	
.428 x 207.11 x 41 °C x 1.2 = 4389 W = 0.134		5.0		- !	
.428 x 207.11 x 41 °C x 1.2 = 4389 W = 0.134		5.0		- !	
= 14974 Btu/h		x <u> </u>	. X	- !	
				=	693 Rtu/
5.2.3.2 Heat Loss due to Mechanical Ventilation					
	6.2.7 Sens	ible heat Gain d	ue to Ventilatio	n	
$HL_{vairh} = PVC \times DTD_h \times 1.08 \times (1 - E)$ HL_{vc}	$_{vairb} = PVC \times DT$	$D_h \times 1.08 \times$	(1 - E)		
1					
1.05 x 1.08 x 0.24 = 1.223 Btu/h 1.08 64 CFM	x 11 °F	x 1.08	x 0.24	=	181 Btu/
				-	
5.2.3.3 Calculation of Air Change Heat Loss for Each Room (Floor	or Multiplier Section)				
	(>-			
$HL_{airr} = Level\ Factor \times HL_{airbv} \times \{(HL_{agcr} + HL_{bgcr}) \div (HL_{agcr} + HL_{bgcr})\}$	$(HL_{agclevel} + HL_{bg})$	gclevel)}			
HLairve Air Leakage + Level Conductive Heat	Air Leakage Heat Loss	Multiplier /I E v			
Level Level Factor (LF) Ventilation Heat Loss Loss: (HL _{clevel})	HLairby / HL				
(Btu/h)	HLAIIDV / HL	level)			
1 0.4 5,445	1.100				
2 0.3 7,525	0.597				
3 0.2 14,974 8,096	0.370				
4 0.1 7,050	0.212				
5 0 0	0.000				

HEAT LOSS AND GAIN SUMMARY SHEET

		116/41	LOSS AND G	, (iii 33 iviivi) (iii 31 iii 21	
MODEL:	1804 CNR			BUILDER: ROYAL PINE HOMES	
SFQT:	2260	LO#	78930	SITE: FORESTSIDE	
DESIGN A	SSUMPTIONS				
DESIGNA					
HEATING			°F	COOLING	°F
OUTDOO	R DESIGN TEMP.		-2	OUTDOOR DESIGN TEMP.	86
INDOOR [DESIGN TEMP.		72	INDOOR DESIGN TEMP. (MAX 75°F)	75
BUILDING	G DATA				
ATTACHM	1ENT:		ATTACHED	# OF STORIES (+BASEMENT):	4
FRONT FA	ACES:		EAST	ASSUMED (Y/N):	Υ
AIR CHAN	IGES PER HOUR:		3.57	ASSUMED (Y/N):	Υ
AIR TIGHT	TNESS CATEGORY:		AVERAGE	ASSUMED (Y/N):	Υ
WIND EX	POSURE:	:	SHELTERED	ASSUMED (Y/N):	Υ
HOUSE V	OLUME (ft³):		26331.0	ASSUMED (Y/N):	Υ
INTERNAL	_ SHADING:	BLINDS	/CURTAINS	ASSUMED OCCUPANTS:	4
INTERIOR	LIGHTING LOAD (Btu/h	n/ft²):	1.27	DC BRUSHLESS MOTOR (Y/N):	Υ
FOUNDAT	TION CONFIGURATION		BCIN_1	DEPTH BELOW GRADE:	5.5 ft
LENGTH:	44.0 ft	WIDTH:	20.0 ft	EXPOSED PERIMETER:	112.0 ft

2012 OBC - COMPLIANCE PACKAGE		
	Compliand	e Package
Component		A1
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22	17.03
Basement Walls Minimum RSI (R)-Value	20 ci	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	0.28	-
Skylights Maximum U-Value	0.49	-
Space Heating Equipment Minimum AFUE	0.96	-
HRV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	0.8	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Wea	ther Sta	tion Description
Province: Region:	Ontario Brampto	
		escription
Soil Conductivity:	Normal	conductivity: dry sand, loam, clay
Water Table:	Normal ((7-10 m, 23-33 ft)
Fo	undatio	on Dimensions
Floor Length (m):	13.4	
Floor Width (m):	6.1	
Exposed Perimeter (m):	34.1	
Wall Height (m):	2.7	
Depth Below Grade (m):	1.68	Insulation Configuration
Window Area (m²):	0.8	
Door Area (m²):	0.0	
	Radi	iant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ation Loads
Heating Load (Watts):		1137

TYPE: 1804 CNR **LO#** 78930

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Stat	ion Des	cripti	ion		
Province:	Ontar	io			
Region:	Bram	pton			
Weather Station Location:	Open	flat te			
Anemometer height (m):	10				
	Shieldin	g			
Building Site:	Subur	ban, fo	orest		
Walls:	Heavy	/			
Flue:	Heavy	/			
Highest Ceiling Height (m):	9.60				
Building C	onfigura	ation			
Type:	Semi				
Number of Stories:	Three	!			
Foundation:	Full				
House Volume (m³):	745.6				
Air Leakag	e/Ventil	atior)		
Air Tightness Type:	Prese	nt (196	51-) (3.	57 ACH	⊣)
Custom BDT Data:	ELA @) 10 Pa	ì.		993.9 cm ²
	3.57				ACH @ 50 Pa
Mechanical Ventilation (L/s):	To	tal Sup	ply		Total Exhaust
		30.0			30.0
Flu	e Size				
Flue #:	#1	#2	#3	#4	
Diameter (mm):	0	0	0	0	
Natural Infi	ltration	Rate	S		
Heating Air Leakage Rate (ACH/H) :	C	.42	8	
Cooling Air Leakage Rate (ACH/H):	C	.13	4	

TYPE: 1804 CNR **LO#** 78930

1804 - CNR

FORESTSIDE BRAMPTON, ONTARIO

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper.

Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

LAYOUT

JUNE/2018 3/16" = 1'-0" BCIN# 19669

LO# 78930

FORESTSIDE BRAMPTON, ONTARIO

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper.

Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

HEATING LAYOUT

JUNE/2018 3/16" = 1'-0" BCIN# 19669

78930

1804 - CNR

1804 - CNR

FORESTSIDE BRAMPTON, ONTARIO

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

HEATING LAYOUT

JUNE/2018 3/16" = 1'-0"

BCIN# 19669

78930