

Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information				
Building number, street name Opt. 5	Bed		Lot:	
50-3	3		Lot/con.	
Municipality Brampton	Postal code	Plan number/ other description		
B. Individual who reviews and takes responsibility for design	gn activities			
Name David DaCosta		Firm	gtaDesigns Inc.	
Street address 2985 Drew Roa	d, Suite 202		Unit no.	Lot/con.
Municipality Mississauga	Postal code L4T 0A4	Province Ontario	E-mail <u>dave@gtadesi</u>	gns.ca
Telephone number	Fax number		Cell number	
(905) 671-9800 C. Design activities undertaken by individual identified in S		') 494-9643 ilding Code Table 3	(416) 268-6	820
o. Design activities undertaken by individual identified in o	cotion B. [Bu	maing oode rable t	5.5.2.1 OF DIVISION O	
☐ House ☐ HVAC – H			■ Building Structural	
☐ Small Buildings ☐ Building Se			☐ Plumbing – House	
☐ Large Buildings ☐ Detection, ☐ Complex Buildings ☐ Fire Protection	Lighting and Po	wer	Plumbing – All BuildingsOn-site Sewage System	
	del Certification		Project #:	PJ-00067
Description of designer's work	aci oci illoatioi		Layout #:	JB-02086
Heating and Cooling Load Calculations		Builder	Highcastle Homes	5
Air System Design		Project	Riverwalk Phase 2	2
Residential mechanical ventilation Design Summary Residential System Design per CAN/CSA-F280-12		Model	Opt. 5 Bed 50-3	
Residential New Construction - Forced Air		SB-12	Package J	
D. Declaration of Designer			. uoge c	
l David DaCosta	declare that (c	choose one as appro	priate):	
(print name)	I			
☐ I review and take responsibility for t 3.2.4 Division C of the Building Coo				
classes/categories.	ie. i am quaimec	a, and the min is registe	ered, in the appropriate	
Individual BCIN:			•	
Firm BCIN:			_	
☑ I review and take responsibility for "other designer" under subsection				
Individual BCIN:	3296	64		
Basis for exemp	tion from registra	ation: E	Division C 3.2.4.1. (4)	
☐ The design work is exempt from the	e registration and	d qualification requirem	nents of the Building Code.	
Basis for exemp	tion from registra	ation and qualification:		
I certify that:				
The information contained in this schedule is true to the best of m	ny knowledge.			
I have submitted this application with the knowledge and consent	of the firm.			
May 9, 2016		Mane St.	Circ .	
Date		Signature of De	signer	

NOTE:

1. For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d), of Division C, Article 3.2.5.1. of Division C and all other persons who are exempt from qualifications under Subsections 3.2.4. and 3.2.5.of Division C.

2. Schedule 1 does not require to be completed a holder of a license, temporay license, or a certificate of authorization, issed by the Ontario Associstion of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited licence to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

Page 2

	Heat I	oss a	nd gain	са	Icul	ation	sum	nma	ry she	et	CSA-F28			ndard No. 1
These documents iss	sued for the use of				Н	ighcast	tle Hor	mes			T	Layo	ut No).
and may not be used	I by any other perso	ns withou	t authorization.	Doc					truction are	signed in ı	ed.	JB-0	208	6
-			Ві	uild	ling l	ocatio	on .				l			
Address (Model):	50-3					Site:		iverwa	alk Phase	2				
Model:	Opt. 5 Bed					Lot:								
City and Province:	Brampton					Postal co	ode:							
-	·		Calc	ula	tions	s base	d on							
Dimensional informa	tion based on:													
Attachment:	Detached					Front fac	ing:	Eas	t/West		A	ssume	d? '	Yes
No. of Levels:	3	Ventilated	d? Included	I		Air tightn	ess:	196	1- Presen	t (ACH=3	3. 57) A	ssume	d? '	Yes
Weather location:	Brampton					Wind exp	oosure:	She	eltered					
HRV?	VanEE		60H	ł		Internal	shading:	Lig	ht-translu	cent O	cupants:		6	
Sensible Eff. at -25C	55%	Apparent	Effect. at -0C	6	8%	Units:			Imperia	l Ar	ea Sq ft:		3454	1
Sensible Eff. at -0C	65%													
	Heating design	n condit	ions					Co	oling des	sign con	ditions			
Outdoor temp -2.			Mean soil tem		48	Outdoor	temp	86	Indoor tem		Latitude:		44	
	Above gra	de walls	·				·		Below	grade wa	alls			
Style A: As per	Selected OBC	SB12	Package J	R	22	Style A:	As p	er Se	lected OF	SC SB12	Packa	ge J	R	12
Style B: Exi	sting Walls (Wh	en Applic	cable)	R	12	Style B:								
Style C:						Style C:								
Style D:						Style D:								
	Floors	n soil							Ce	ilings				
Style A: As per	Selected OBC	SB12	Package J			Style A:	As p	er Se	lected OF	BC SB12	Packa	ge J	R	50
Style B:						Style B:	As p	er Se	lected OE	BC SB12	Packa	ge J	R	31
	Exposed	floors				Style C:								
Style A: As per	Selected OBC		Package J	R	31				D	oors				
Style B:						Style A:	As p	er Se	lected OE	BC SB12	Packag	ge J	R	3.01
	Windo	ows				Style B:								
Style A: As per	Selected OBC	SB12	Package J	R	3.15	Style C:								
	ing Windows (W	hen App	licable)	R	1.99				Sk	ylights				
Style C:	<u> </u>		<u> </u>			Style A:	As p	er Se	lected OF		Packag	ge J	R	2.03
Style D:						Style B:						_		
Attached documents	: As per S	Shedule 1	<u> </u>			<u> </u>								
Notes:	•		Resident	tial N	New C	onstruc	tion - F	Force	d Air					
			Calcu	ılatio	ons r	erform	ed by							
Name:	David DaCosta				- I	Postal co			0A4					
Company:	gtaDesigns Inc					Telephor	ne:		5) 671-980	00				
Address:	2985 Drew Roa		202			Fax:			6) 268-682					
City:	Mississauga					E-mail			e@gtade					
									- 5	J				

Builder: Highcastle Homes

Air System Design

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

SB-12 Package J

Date: May 9, 2016 Opt. 5 Bed

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under Division C subsection 3.2.5. of the Building Code.

Project #

PJ-00067

Page 3

Project: Riverwal	k Phase	2	ı	Model:			Opt. 5					Sy	stem	1		of the Bui ndividual		ae. 32964	Ma	ne La	S. Ext	7 [David DaC	Costa		ject # out #		00067 02086
DESIGN LOAD SPECIFICATION	s			AIR DISTI	RIBUTION	& PRES	SURE					FURNACE	/AIR HAI	NDLER D	ATA:			BOILER/W	ATER HE	ATER D	ATA:			7	A/C UNIT I	DATA:		
Level 1 Net Load	19,712	htu/h	•		nt Externa				0.5 '	'w c	•	Make	•	Ama			•	Make				уре			Amana		3.0 1	on.
Level 2 Net Load	21,954				l Equipme				0.225 '			Model	G	3MEC96-0				Model			-	,,,,			Cond		3.0	···
Level 3 Net Load	19,148				Design Pr			-	0.275 '			Input Btu/		800				Input Btu/	h						Coil		3.0	
Level 4 Net Load		btu/h			ranch Lon		ctive Le	nath	300 f			Output Bt		768				Output Bt										
Total Heat Loss	60,814				ım Pressu	-		•	0.138 '			E.s.p.		0.5	0 '	' W.C.		Min.Outpu			А	WH						
Total Heat Gain	32,902	btu/h	:	S/A Plenu	ım Pressu	ire			0.14 '	'w.c.		Water Ter	np			deg. F.		•				Blo	wer DATA	\ :				
Combo System HL + 10%	66,895				ir Flow Pr		ing Fact	or		fm/btuh		AFUE	•	969		•		Blower Sp	eed Selec	cted:	W2				Blower Ty	oe E	СМ	
Building Volume Vb	41573 1			_	Air Flow Pr	-	-			fm/btuh		Aux. Heat													(Brushle			.5.(2))
Ventilation Load	3,580	Btuh.		_			R/A Temp		70 d	deg. F.	:	SB-12 Pac	kage	Packa	ge J		1	Heating C	heck	1172 c	fm			(Cooling C	neck	1172 c	fm
Ventilation PVC	95.4	cfm					S/A Temp)	131 0	deg. F.									_							_		
Supply Branch and Grill Sizing			I	Diffuser le	oss _	0.01	'w.c.					Temp. Ris	e>>> _	61	leg. F.		:	Selected of	fm>	1172 c	fm		C	Cooling A	ir Flow Ra	ate _	1172 c	fm
							Leve	el 1													Level	2						
S/A Outlet No.	22	23	24	25	26										12	13	14	15	16	17	18	19	20	21				
Room Use	BASE	BASE	BASE	BASE	BASE										LAUND	PWD	DEN	FAM	KIT	KIT	DIN	LIV	LIV	FOY				
Btu/Outlet	3942	3942	3942	3942	3942										2997	721	2395	2805	2046	2046	2530	1815	1815	2782				
Heating Airflow Rate CFM	76	76	76	76	76										58	14	46	54	39	39	49	35	35	54				
Cooling Airflow Rate CFM	9	9	9	9	9										83	8	51	66	79	79	99	73	73	61				
Duct Design Pressure	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Actual Duct Length	22	17	23	38	49										55	50	55	48	26	21	7	23	28	36				
Equivalent Length	90	80	100	70	120	70	70	70	70	70	70	70	70	70	90	80	110	140	130	120	80	100	100	120	70	70	70	70
Total Effective Length	112	97	123	108	169	70	70	70	70	70	70	70	70	70	145	130	165	188	156	141	87	123	128	156	70	70	70	70
Adjusted Pressure	0.12	0.13	0.11	0.12	0.08	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.09	0.10	0.08	0.07	0.08	0.09	0.15	0.11	0.10	0.08	0.19	0.19	0.19	0.19
Duct Size Round	6	6	6	6	6										6	3	6	6	6	6	6	5	5	5				
Outlet Size	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	3x10	4x10	4x10	4x10	4x10	4x10	3x10	3x10	3x10	4x10	4x10	4x10	4x10
Trunk	C	_		Α	В										_	_	В	В		Δ	F	_	С	_				
Trunk	L	С	A	A	ь										В	В	В	ь	A	A			L	D				
Trunk	C	, t	А	A	В		Leve	el 3							В	В	В	В	А	А	Level	4	·	D				
S/A Outlet No.	1	2	3	4	5	6	Leve	el 3 8	9	10	11				В	В	В	В	A	A		4	, ,	U				
	Ţ.			4 COMP		-	Leve 7 BED 3		9 BED 4	10 S.ENS	11 BED 5				В	В	В	В	A	A		4	<u> </u>	D				
S/A Outlet No.	1	2	3	4	5	-	7	8	-						В	В	В	В	A	A		4	C	В				
S/A Outlet No. Room Use	1 MAST	2 MAST	3 ENS	4 COMP	5 BED 2 EI	NS 2&3	7 BED 3	8 BED 4	BED 4	S.ENS	BED 5				В	В	В	В	A	<u> </u>		4		D				
S/A Outlet No. Room Use Btu/Outlet	1 MAST 1566	2 MAST 1566	3 ENS 1718	4 COMP 1549	5 BED 2 EI 1174	NS 2&3 606	7 BED 3 2904	8 BED 4 1743	BED 4 1743	S.ENS 2066	BED 5 2513				В	В	В	В	A			4	<u> </u>					
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM	1 MAST 1566 30	2 MAST 1566 30	3 ENS 1718 33	4 COMP 1549 30	5 BED 2 EI 1174 23	NS 2&3 606 12	7 BED 3 2904 56	8 BED 4 1743 34	BED 4 1743 34	S.ENS 2066 40	BED 5 2513 48	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13		0.13	0.13	0.13	0.13	0.13	0.13	0.13
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM	1 MAST 1566 30 43	2 MAST 1566 30 43	3 ENS 1718 33 32	4 COMP 1549 30 39	5 BED 2 EI 1174 23 35	NS 2&3 606 12 11	7 BED 3 2904 56 91	8 BED 4 1743 34 44	BED 4 1743 34 44	S.ENS 2066 40 24	BED 5 2513 48 50	0.13	0.13	0.13							Level				0.13	0.13	0.13	0.13
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length	1 MAST 1566 30 43 0.13 61 170	2 MAST 1566 30 43 0.13 49 120	3 ENS 1718 33 32 0.13 60	4 COMP 1549 30 39 0.13 48 140	5 BED 2 EI 1174 23 35 0.13 20 100	NS 2&3 606 12 11 0.13 27 120	7 BED 3 2904 56 91 0.13 51	8 BED 4 1743 34 44 0.13 44 130	BED 4 1743 34 44 0.13 46 120	S.ENS 2066 40 24 0.13 52 110	BED 5 2513 48 50 0.13 67 130	70	70	70	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13 70	0.13	0.13	70	70	70	70
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length	1 MAST 1566 30 43 0.13 61	2 MAST 1566 30 43 0.13 49	3 ENS 1718 33 32 0.13 60	4 COMP 1549 30 39 0.13 48	5 BED 2 EI 1174 23 35 0.13 20	NS 2&3 606 12 11 0.13 27	7 BED 3 2904 56 91 0.13 51	8 BED 4 1743 34 44 0.13	BED 4 1743 34 44 0.13 46	S.ENS 2066 40 24 0.13 52	BED 5 2513 48 50 0.13 67				0.13	0.13	0.13	0.13	0.13	0.13	Level	0.13	0.13	0.13				
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length	1 MAST 1566 30 43 0.13 61 170	2 MAST 1566 30 43 0.13 49 120	3 ENS 1718 33 32 0.13 60	4 COMP 1549 30 39 0.13 48 140	5 BED 2 EI 1174 23 35 0.13 20 100	NS 2&3 606 12 11 0.13 27 120	7 BED 3 2904 56 91 0.13 51	8 BED 4 1743 34 44 0.13 44 130	BED 4 1743 34 44 0.13 46 120	S.ENS 2066 40 24 0.13 52 110	BED 5 2513 48 50 0.13 67 130	70	70	70	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13 70	0.13	0.13	70	70	70	70
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length	1 MAST 1566 30 43 0.13 61 170 231	2 MAST 1566 30 43 0.13 49 120	3 ENS 1718 33 32 0.13 60 130	4 COMP 1549 30 39 0.13 48 140	5 BED 2 EI 1174 23 35 0.13 20 100 120	NS 283 606 12 11 0.13 27 120 147	7 BED 3 2904 56 91 0.13 51 100	8 BED 4 1743 34 44 0.13 44 130	BED 4 1743 34 44 0.13 46 120 166	S.ENS 2066 40 24 0.13 52 110 162	BED 5 2513 48 50 0.13 67 130 197	70 70	70 70	70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70	0.13 70 70	0.13 70 70	0.13 70 70	70 70	70 70	70 70	70 70
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size	1 MAST 1566 30 43 0.13 61 170 231 0.06 6	2 MAST 1566 30 43 0.13 49 120 169 0.08	3 ENS 1718 33 32 0.13 60 130 190 0.07	4 COMP 1549 30 39 0.13 48 140 188 0.07 5	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11 4 3x10	NS 2&3 606 12 11 0.13 27 120 147 0.09	7 BED 3 2904 56 91 0.13 51 100 151 0.09	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6	BED 4 1743 34 44 0.13 46 120 166 0.08 6	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10	70 70	70 70	70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70	0.13 70 70	0.13 70 70	0.13 70 70	70 70	70 70	70 70	70 70
S/A Outlet No. Room Use Bttl/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round	1 MAST 1566 30 43 0.13 61 170 231 0.06 6	2 MAST 1566 30 43 0.13 49 120 169 0.08 6	3 ENS 1718 33 32 0.13 60 130 190 0.07	4 COMP 1549 30 39 0.13 48 140 188 0.07 5	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11	NS 2&3 606 12 11 0.13 27 120 147 0.09	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6	BED 4 1743 34 44 0.13 46 120 166 0.08 6	S.ENS 2066 40 24 0.13 52 110 162 0.08 5	BED 5 2513 48 50 0.13 67 130 197 0.07 6	70 70 0.19	70 70 0.19	70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size	1 MAST 1566 30 43 0.13 61 170 231 0.06 6	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 3x10 A	4 COMP 1549 30 39 0.13 48 140 188 0.07 5	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11 4 3x10 E	NS 2&3 606 12 11 0.13 27 120 147 0.09	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6	BED 4 1743 34 44 0.13 46 120 166 0.08 6	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19	0.13 70 70 0.19 4x10	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19 4x10	0.13 70 70 0.19	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk	1 MAST 1566 30 43 0.13 61 170 231 0.06 6	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 3x10 A	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11 4 3x10 E	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6	BED 4 1743 34 44 0.13 46 120 166 0.08 6	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing	0.13 70 70 0.19 4x10	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	70 70 0.19	70 70 0.19	70 70 0.19 4x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing	1 MAST 1566 30 43 0.13 61 170 231 0.06 6 4x10 B	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 3x10 A	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11 4 3x10 E	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM	1 MAST 1566 30 43 0.13 61 170 231 0.06 6 4x10 B	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 3x10 A Grill Pres	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11 4 3x10 E	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10 D	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure	1 MAST 1566 30 43 0.13 61 170 231 0.06 6 4x10 B	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 3x10 A	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11 4 3x10 E	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C 'w.c 7R 120 0.12	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr Trunk	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM F	0.13 70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length	1 MAST 1566 30 43 0.13 61 170 231 0.06 6 4x10 B	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 190 0.07 4 3x10 A Grill Pres 3R 100 0.12	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11 4 3x10 E S 5R 312 0.12 7	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C 7w.c 7R 120 0.12 22	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10 D	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM I	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 supply Tru	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Round	70 70 0.19 4x10 Rect. \$	70 70 0.19 4x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length	1 MAST 1566 30 43 0.13 61 170 2231 0.06 6 4x10 B	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 0 A 3x10 A Grill Pres 3R 100 0.12 36 175	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D sure Loss 4R 110 0.12 40 195	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11 4 3x10 E 5 FR 312 0.12 7 125	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E 0.02 6R 120 0.12 17 205	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C 7 W.c 7 R 120 0.12 22 125	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10 D	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr Trunk Drop	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM 1172 1172	0.13 70 70 0.19 4x10 Press. F	0.13 70 70 0.19 4x10 18.0 18.0 13.5	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10 20x8	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T	0.13 70 70 0.19 4x10 supply Tru frunk	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM F 620 326 433	0.13 70 70 0.19 4x10 Press. 1	70 70 0.19 4x10 Round 13.0 10.5 11.0	70 70 0.19 4x10 Rect. \$ 18x8 12x8 14x8	70 70 0.19 4x10 Size 14x10 10x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Equivalent Length Total Effective Length	1 MAST 1566 30 43 30.13 61 170 231 0.06 6 4x10 B 1R 110 0.12 34 235 269	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 3x10 A Grill Pres 3R 100 0.12 36 175 211	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D sure Loss 4R 110 0.12 40 195 235	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11 4 3x10 E 5 R 312 0.12 7 125 132	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E 0.02 6R 120 0.12 17 205 222	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C 7R 120 0.12 22 125 147	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10 D	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B 11R 0.12 50 50	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr Trunk Drop	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM I 1172 1172 640	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Rect. \$2 24x12 30x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T	0.13 70 70 0.19 4x10 supply Tru	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing FM F 620 326 433 190	0.13 70 70 0.19 4x10 Press. I	70 70 0.19 4x10 Round 13.0 10.5 11.0 8.5	70 70 0.19 4x10 Rect. \$ 18x8 12x8 14x8 8x8	70 70 0.19 4x10 Size 14x10 10x10 10x10 107	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure	1 MAST 1566 30 43 0.13 61 170 231 0.06 6 4x10 B 1R 110 0.12 34 235 269 0.04	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 3x10 A Grill Pres 3R 100 0.12 36 175 211	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D sure Loss 4R 110 0.12 40 195 235 0.05	5 BED 2 EI 1174 23 35 5 0.13 20 100 120 0.11 4 3x10 E 5R 312 0.12 7 125 132 0.09	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E 0.02 6R 120 0.12 17 205 222 0.05	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C 7R 120 0.12 22 125 147 0.08	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D 8RR 190 0.12 17 125 142 0.08	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10 D	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr Trunk Orop	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM I 1172 1172 640	0.13 70 70 0.19 4x10 Press. F	0.13 70 70 0.19 4x10 18.0 18.0 13.5	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10 20x8	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 <u>S</u> T	0.13 70 70 0.19 4x10 supply Tru	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM F 620 326 433	0.13 70 70 0.19 4x10 Press. 1	70 70 0.19 4x10 Round 13.0 10.5 11.0	70 70 0.19 4x10 Rect. \$ 18x8 12x8 14x8	70 70 0.19 4x10 Size 14x10 10x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round	1 MAST 1566 30 43 30.13 61 170 231 0.06 6 4x10 B 1R 110 0.12 34 235 269	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 3x10 A Grill Pres 3R 100 0.12 36 175 211	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D sure Loss 4R 110 0.12 40 195 235	5 BED 2 EI 1174 23 35 0.13 20 100 120 0.11 4 3x10 E 5 R 312 0.12 7 125 132	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E 0.02 6R 120 0.12 17 205 222	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C 7R 120 0.12 22 125 147	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D 8R 190 0.12 17 125 142 0.08 8.0	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10 D	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B 11R 0.12 50 50	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr Trunk Orop	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM I 1172 1172 640	0.13 70 70 0.19 4x10 Press. F	0.13 70 70 0.19 4x10 18.0 18.0 13.5	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10 20x8	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 <u>S</u> T	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing FM F 620 326 433 190	0.13 70 70 0.19 4x10 Press. I	70 70 0.19 4x10 Round 13.0 10.5 11.0 8.5	70 70 0.19 4x10 Rect. \$ 18x8 12x8 14x8 8x8	70 70 0.19 4x10 Size 14x10 10x10 10x10 107	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure	1 MAST 1566 30 43 0.13 61 170 231 0.06 6 4×10 B 1R 110 0.12 34 235 269 0.04 7.5 8	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 3x10 A 3rill Pres 3R 100 0.12 36 175 211 0.06 6.0	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D sure Loss 4R 110 0.12 40 195 235 0.05 7.0 8	5 BED 2 EI 1174 23 35 5 0.13 20 100 120 0.11 4 3x10 E 5 S S 312 0.12 7 125 132 0.09 9.5 8	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E 0.02 6R 120 0.12 17 205 222 0.05 7.5	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C 'w.c 7R 120 0.12 22 125 147 0.08 7.0 8	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D 8RR 190 0.12 17 125 142 0.08	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10 D	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D 10R 0.12 50 0.24	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B 11R 0.12 50 50	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr Trunk Drop 2	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM I 1172 1172 640	0.13 70 70 0.19 4x10 Press. F	0.13 70 70 0.19 4x10 18.0 18.0 13.5	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10 20x8	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T	0.13 70 70 0.19 4x10 Gupply Truk	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing FM F 620 326 433 190	0.13 70 70 0.19 4x10 Press. I	70 70 0.19 4x10 Round 13.0 10.5 11.0 8.5	70 70 0.19 4x10 Rect. \$ 18x8 12x8 14x8 8x8	70 70 0.19 4x10 Size 14x10 10x10 10x10 107	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Inlet Size " "	1 MAST 1566 30 43 0.13 61 170 231 0.06 6 4x10 B 1R 110 0.12 34 235 269 0.04 7.5 8 x	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A 2R 110 0.12 37 195 232 0.05 7.0	3 ENS 1718 33 32 0.13 60 190 0.07 4 3x10 A 3rill Pres 3R 100 0.12 36 175 211 0.06 6.0	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D sure Loss 4R 110 0.12 40 195 235 7.0	5 BED 2 EI 1174 23 35 5 0.13 20 100 120 0.11 4 3x10 E S S S 312 0.12 7 125 132 0.09 9.5 8 x	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E 0.02 6R 120 0.12 17 205 222 0.05 7.5 8 x	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C 7R 120 0.12 22 125 147 0.08 x	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D 8R 1990 0.12 17 125 142 0.08 8.0 FLC	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10 D	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B 11R 0.12 50 0.24	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr Trunk Drop 2 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM I 1172 1172 640	0.13 70 70 0.19 4x10 Press. F	0.13 70 70 0.19 4x10 18.0 18.0 13.5	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10 20x8	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T	0.13 70 70 0.19 4x10 Gupply Truk	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing FM F 620 326 433 190	0.13 70 70 0.19 4x10 Press. I	70 70 0.19 4x10 Round 13.0 10.5 11.0 8.5	70 70 0.19 4x10 Rect. \$ 18x8 12x8 14x8 8x8	70 70 0.19 4x10 Size 14x10 10x10 10x10 107	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Inlet Size	1 MAST 1566 30 43 0.13 61 170 231 0.06 6 4×10 B 1R 110 0.12 34 235 269 0.04 7.5 8	2 MAST 1566 30 43 0.13 49 120 169 0.08 6 4x10 A 2R 110 0.12 37 195 232 0.05 7.0 8	3 ENS 1718 33 32 0.13 60 130 190 0.07 4 3x10 A 3rill Pres 3R 100 0.12 36 175 211 0.06 6.0	4 COMP 1549 30 39 0.13 48 140 188 0.07 5 3x10 D sure Loss 4R 110 0.12 40 195 235 0.05 7.0 8	5 BED 2 EI 1174 23 35 5 0.13 20 100 120 0.11 4 3x10 E 5 S S 312 0.12 7 125 132 0.09 9.5 8	NS 2&3 606 12 11 0.13 27 120 147 0.09 3 3x10 E 0.02 6R 120 0.12 17 205 222 0.05 7.5	7 BED 3 2904 56 91 0.13 51 100 151 0.09 6 4x10 C 'w.c 7R 120 0.12 22 125 147 0.08 7.0 8	8 BED 4 1743 34 44 0.13 44 130 174 0.07 6 4x10 D 8R 1990 0.12 17 125 142 0.08 8.0 FLC	BED 4 1743 34 44 0.13 46 120 166 0.08 6 4x10 D	S.ENS 2066 40 24 0.13 52 110 162 0.08 5 3x10 D 10R 0.12 50 0.24	BED 5 2513 48 50 0.13 67 130 197 0.07 6 4x10 B 11R 0.12 50 0.24	70 70 0.19 4x10	70 70 0.19 4x10 Return Tr Trunk Orop 2	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing CFM I 1172 1172 640	0.13 70 70 0.19 4x10 Press. F	0.13 70 70 0.19 4x10 18.0 18.0 13.5	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10 20x8	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T	0.13 70 70 0.19 4x10 Gupply Truk	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing FM F 620 326 433 190	0.13 70 70 0.19 4x10 Press. I	70 70 0.19 4x10 Round 13.0 10.5 11.0 8.5	70 70 0.19 4x10 Rect. \$ 18x8 12x8 14x8 8x8	70 70 0.19 4x10 Size 14x10 10x10 10x10 107	70 70 0.19

Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643

e-mail dave@gtadesigns.ca Highcastle Homes May 9, 2016 Weather Data -2.2 86 20 48.2 Page 4 Opt. 5 Bed Project # P.I-00067 System 1 2012 OBC Project: Riverwalk Phase 2 Model: 50-3 Heat Loss ^T 74.2 deg. F Ht gain ^T 11 deg. F GTA: 3454 Layout # JB-02086 Level 1 BASE Run ft. exposed wall A 181 A Run ft. exposed wall B В В В В В Ceiling height 2.0 AG 1447 Area Floor area **Exposed Ceilings A** Α Α Α Α Α Α Α Α Exposed Ceilings B В Flr Flr Flr Flr Flr Exposed Floors Flr Flr Flr Flr 362 Gross Exp Wall A Gross Exp Wall B Components R-Values Loss Gain Loss Gain Loss Loss Gain Loss Loss Loss Loss Loss Loss Loss Loss North Shaded 3.15 23.56 11.31 East/West 3.15 23.56 27.75 212 250 128 South 3.15 23.56 21.28 141 **WOB Windows** 3.15 23.56 28.32 36.55 Skylight 2.03 88.23 21 518 77 3.01 24.65 3.65 Doors Net exposed walls A 8.50 8.73 1.29 326 422 Net exposed walls B 14.49 5.12 0.76 Exposed Ceilings A 1.48 0.76 1.66 Exposed Ceilings B 22.86 3.25 3.37 Exposed Floors 22.05 0.23 Foundation Conductive Heatloss On Grade () or Above 9719 Heat Loss 10590 **Total Conductive Heat Gain** Air Leakage Heat Loss/Gain 0.8015 0.0456 8488 40 Case 1 0.12 0.07 Ventilation Case 2 25.64 11.88 633 62 Case 3 0.06 0.07 **Heat Gain People** 239 **Appliances Loads** 1 =.25 percent 5725 **Duct and Pipe loss** 10% Total HL for per room Level 1 HL Total 1271 Level 1 HG Total 1.271 Total HG per room x 1.3 Level 2 LAUND PWD DEN FAM KIT DIN FOY Run ft. exposed wall A 24 A 21 A 23 A 34 A 26 A 31 A 15 A Run ft. exposed wall B В В В В В В В В В В Ceiling height 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 Floor area 110 Area 61 Area 113 Area 287 Area 264 Area 273 Area 168 Area 78 Area Area Area **Exposed Ceilings A** Α Exposed Ceilings B В В В В В В В В В В В Fir Exposed Floors Flr Flr Flr Flr Flr Flr Flr Fir Flr Flr 231 253 374 286 165 Gross Exp Wall A 264 66 341 Gross Exp Wall B Components R-Values Loss Gain 3.15 10 North Shaded 23.56 11.31 236 113 East/West 3.15 23.56 27.75 30 707 832 40 1110 47 1107 1304 48 1131 1332 36 3.15 23.56 21.28 10 236 213 20 471 426 **Existing Windows** 1.99 37.29 22.15 Skylight 2 03 36 55 88 23 Doors 3.01 24.65 3.65 42 1035 153 26 641 95 5.12 0.76 222 1137 169 56 287 43 201 1029 153 213 1091 162 317 1623 241 266 1362 202 293 1500 222 103 527 Net exposed walls A Net exposed walls B 8.50 8.73 1.29 50.00 Exposed Ceilings A 1.48 0.76 Exposed Ceilings B 22.86 3.25 1.66 Exposed Floors 22.05 3.37 0.23 Foundation Conductive Heatloss On Grade () or Above 2172 522 1736 1833 2631 2016 2033 2966 **Heat Loss Total Conductive** 1272 1758 1554 1172 Heat Gain 322 156 985 628 Air Leakage Heat Loss/Gain 0.3201 0.0456 695 15 167 556 45 651 58 949 80 587 29 842 645 53 Case 1 0.07 Ventilation Case 2 25.64 11.88 130 23 104 69 122 177 124 110 157 110 121 31 Case 3 0.06 0.07 Heat Gain People 239 Appliances Loads 5725 1431 1431 1.0 1431 1.0 1431 **Duct and Pipe loss** 10%

> I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under 32964

1845

4093

4411

2805

Division C subsection 3.2.5. of the Building Code. Individual BCIN:

1429

2395

Mana Paltota

2771

3631

4116

2530

David DaCosta

2782

1701

SB-12 Package Package J

Total HL for per room

Total HG per room x 1.3

2997

2328

721

226

Level 2 HL Total

Level 2 HG Total

21,954

18.826

60,814

32,902

btu/h

Total Heat Loss

Total Heat Gain

Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

																				- uave	-	-						_					
		Builder:	Hig	ghcastle Ho	omes	-	Date:			May 9,				-	_				Weathe	er Data		Bramp	ton	44	-3	2.2	86 2	:0	48.2		Proje	ct#	Page 5 PJ-00067
2012 OBC		Project:	Riv	verwalk Ph	ase 2		/lodel: _			50-3				-	S	ystem	1 1		Heat L	oss ^T	74.2 de	g. F	H	lt gain ^	Т	11	deg. F		GTA:	3454	Layo		JB-02086
	Level 3				MAS	т		ENS		BEI	D 2		ENS 28	& 3	-	BED 3			СОМР			BED 4		s	.ENS			BED 5	5				
	ft. exposed wall A				30 A		21	A		11 A		6	Α		28	Α		14			18 A			22 A			32 A	١.		Α		Α	
Run	ft. exposed wall B Ceiling height				B 8.0		8.0	3	8	B 3.0		8.0	В		8.0	В		8.0	В		8.0			8.0			8.0	3		B 8.0		B 8.0	
	Floor area				478 Area		140		1	33 Area		75	Area		166			171			210 Ar	ea		84 Are	ea		250 A			Area		Are	a
	Exposed Ceilings A Exposed Ceilings B				478 A B		140 <i>i</i>		1	33 A B		75	A B		166	A B		171	A B		210 A B			84 A B			250 A			A B		A B	
	Exposed Floors				Flr		- 1	Flr		Flr			Flr			Fir			Fir		210 Fl	•		84 Flr			F	lr		Fir		Fir	
	Gross Exp Wall A Gross Exp Wall B				240		168			88		48			224			112			144			176			256						
	Components				Loss	Gain		oss (Gain	Loss	Gain	<u> </u>	Loss	Gain	, ,	Loss	Gain	ا	Loss	Gain	Lo	ss G	ain	Lo	ss C	Gain	L	.oss	Gain	Loss	Gain	Los	s Gain
	North Shaded East/West	3.15 3.15	23.56 23.56	11.31 27.75	26 61	2 721	14	330	388						46	1084	1276	20	471	555	38	895	1054	8	188	222	14	330	388				
	South	3.15	23.56	21.28	20 01	721	14	330		14 3	30 2	298 6	141	128		1004	1270	20	4/1	333	30	033	1034	0	100	222	14	330	300				
	Existing Windows Skylight	1.99 2.03	37.29 36.55	22.15 88.23																													
	Doors	3.01	24.65	3.65																													
Ne Ne	et exposed walls A et exposed walls B	14.49 8.50	5.12 8.73	0.76 1.29	214 109	6 162	154	789	117	74 3	79	56 42	215	32	178	911	135	92	471	70	106	543	80	168	860	128	242	1239	184				
E	xposed Ceilings A	50.00	1.48	0.76	478 70	363	140	208	106 1	33 1	97 1	101 75	111	57	166	246	126	171	254	130	210	312	160	84	125	64	250	371	190				
E	Exposed Ceilings B Exposed Floors	22.86 22.05	3.25 3.37	1.66 0.23																	210	707	48	84	283	19							
Foundation Cond		22.03	3.37	0.23																	210	707	40	04	203	19							
Total Conductive	Heat Loss Heat Gain				241	1247		1326	612	9	06	155	468	217		2241	1538		1196	755		2456	1342		1456	432		1940	762				
Air Leakage	Heat Loss/Gain		0.2357	0.0456	57			313	28	2		21	110			528	70		282	34		579	61		343	20		457					
Ventilation	Case 1 Case 2		0.03 25.64	0.07 11.88																													
Vendiduon	Case 3	x	0.06	0.07	14	5 88		79	43		54	32	28	15		134	108		72	53		147	95		87	30		116					
	Heat Gain People Appliances Loads	1 =.25 p	oroont	239 5725	2	478				1	2	239			1		239				1		239				1		239				
	Duct and Pipe loss	1 =.25 p	ercent	10%																	1	304	158	1	180	43							
Level 3 HL Total Level 3 HG Total	19,148		otal HL for		313	2431		1718	888	11		971	606			2904	2542		1549	1005		3485	2464		2066	684		2513	1417				
Level 3 HG Total	12,805	Iota	I HG per ro	om x 1.3		2431	J L		888		9	9/1		314	l L		2542	L		1095			2464			684	L		1417	l	1 1		
-																																	
	Level 4																																
	ft. exposed wall A ft. exposed wall B				A B			A 3		A B			A B			A B		,	A B		A B			A B			Æ			A B		A B	
	Ceiling height																																
E	Floor area exposed Ceilings A				Area A			Area A		Area A			Area A			Area A			Area A		Ar A	ea		Are A	ea		,	\rea \		Area A		Are:	a
	xposed Ceilings B				В		1	3		В			В			В			В		В			В			E	3		В		В	
	Exposed Floors Gross Exp Wall A				Flr		-	Flr		Fir			Flr			Flr		1	Flr		Fli	•		Fir			F	ir .		Fir		Fir	
	Gross Exp Wall B																																
	Components North Shaded	R-Values 3.15	23.56	Gain 11.31	Loss	Gain	l [oss (Gain	Loss	Gain	<u> </u>	Loss	Gain	т г	Loss	Gain	ľ	Loss	Gain	Lo	ss G	ain	Lo	ss C	Gain	L	.oss	Gain	Loss	Gain	Los	s Gain
	East/West	3.15	23.56	27.75																													
	South Existing Windows	3.15 1.99	23.56 37.29	21.28 22.15																													
	Skylight	2.03	36.55	88.23																													
Na	Doors et exposed walls A	3.01 14.49	24.65 5.12	3.65 0.76																													
Ne	et exposed walls B	8.50	8.73	1.29																													
	xposed Ceilings A xposed Ceilings B	50.00 22.86	1.48 3.25	0.76 1.66																													
	Exposed Floors	22.05	3.37	0.23																													
Foundation Cond	luctive Heatloss Heat Loss																																
Total Conductive	Heat Gain																																
Air Leakage	Heat Loss/Gain Case 1		0.000	0.0456 0.07																													
Ventilation	Case 2		25.64	11.88																													
	Case 3 Heat Gain People	х	0.06	0.07 239																													
	Appliances Loads	1 =.25 p	ercent	5725																													
	Duct and Pipe loss		otal HL for	10%																													
Level 4 HG Total	0	Tota	I HG per ro	om x 1.3																													
	'				•				,		•							<u> </u>									<u></u>					40 B	

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under

Division C subsection 3.2.5. of the Building Code. Individual BCIN:

Name Holita

David DaCosta

SB-12 Package Package J

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643

Page 6 PJ-00067

Project # e-mail dave@gtadesigns.ca Layout # JB-02086 I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under Division C subsection 3.2.5. of the Building Code. Individual BCIN: 32964 David DaCosta Mare Alet Package: Package J Project: Model: 50-3 **Brampton** RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY For systems serving one dwelling unit & conforming to the Ontario Building Code, O.geg 159/93

	Location of Installation	
Lot #	Plan #	
Township	Brampton	
Roll #	Permit #	
Address		
	Builder	
Name	Ballaci	
	Highcastle Homes	

	Builder	
Name		
	Highcastle Homes	
Address	•	
City		
Tel	Fax	

Installing Contractor									
Name									
Address									
City									
Tel	Fax								

Combustion Appliances 9.32.3.1(1)								
a) x	Direct vent (sealed combustion) only							
b)	Positive venting induced draft (except fireplaces)							
c)	Natural draft, B-vent or induced draft fireplaces							
d)	Solid fuel (including fireplaces)							
e)	No combustion Appliances							
c)	Natural draft, B-vent or induced draft fireplaces Solid fuel (including fireplaces)							

Heating System									
Х	Forced air								
Non forced air									
Electric space heat (if over 10% of heat load)									

	House Type 9.32.3.1(2)								
I	Х	Type a) or b) appliances only, no solid fuel							
II		Type I except with solid fuel (including fireplace)							
III	III Any type c) appliance								
IV		Type I or II either electric space heat							
Other	Other Type I, II or IV no forced air								

		System Design Option
1		Exhaust only / forced air system
2		HRV WITH DUCTING / forced air system
3	Х	HRV simplified connection to forced air system
4		HRV full ducting/not coupled to forced air system
		Part 6 design

Total Ventila	Total Ventilation Capacity 9.32.3.3(1)												
Domt 9 Montor Darm	2	@	24.2	ofm	40.4	of							
Bsmt & Master Bdrm	2	ω	21.2		42.4	cfm							
Other Bedrooms	4	@	10.6	cfm	42.4	cfm							
Bathrooms & Kitchen	5	@	10.6	cfm	53	cfm							
Other rooms	6	@	10.6	cfm	63.6	cfm							
			Total		201.4								

Principal Ventilation Capacity 9.32.3.4(1)							
Master bedroom Other bedrooms	1 4	_	31.8 15.9 Total		31.8 63.6 95.4		

Principal Exhaust Fan Capacity						
Make	Model	Location				
VanEE	60H	Base				
107 cfm		Sones				

Heat Recovery Ventilator					
Make	VanEE				
Model 60H					
	107 cfm high	53 cfm low			
Sensible efficiency @ -25 deg C 55%					
Sensible effic	ciency @ 0 deg C	<u>65%</u>			

Supplemental Ventilation Capacity					
Total ventilation capacity Less principal exhaust capacity REQUIRED supplemental vent. Capacity	201.4 95.4 106.0 cfm				

Supplemental Fans 9.32.3.5.						
Location	cfm	Model	Sones			
S.Ens	50	AER50C	0.5			
Pwd.	50	AER50C	0.5			
Ens 2	50	AER50C	0.5			
all fans HVI listed	Make	Broan	or Equiv.			

Designer Certification						
I hereby certify that this ventilation system has been designed						
in accordance w	in accordance with the Ontario Building Code.					
Name	David D	aCosta				
	41	1460	-			
Signature	- Cane	4000				
		50000				
HRAI#	5190	BCIN #	32964			
Date	May 9,	2016				
Date	iviay 9,	2010				

Energy Efficiency Design Summary

(Building Code Part 9 Residential)

Page 7

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

PJ-00067 Project # JB-02086

Layout #

For use by Principal Authority											
Application	n No:					Model/Certification Number					
Α.	Project Informatio	n									
Building no	umber, street name			Op	t. 5 Bed			Unit number		Lot/Con	
					50-3						
Municipality Brampton			Postal code)	Reg. Plan n	umber / oth	er description	1	•		
B. Compliance Option											
✓ SB-12 Prescriptive [SB-12 - 2.1.1.] A B C D								.10 (<i>Ad</i> a	litions)	Package J	
1 1	prescriptive tra			2.1.1.2. or							
П	SB-12 Performanc		1.2.]							an appr	oved software
П	Energy Star®* [SE	3-12 - 2.1.3.]						kage [BOP			
11	EnerGuide 80® *				* House	must be e	valuated l	by NRCan	advisor	and meet	t a rating of 80
C.	.,										
	Climatic Zone (SB	-		ing Equip				Space I	leating F	uel Sourc	
[7]	Zone 1 (< 5000 degree		V	≥ 90% AF		7	Gas		Propane	П	Solid Fuel
	Zone 2 (≥ 5000 degree	e days)	11	≥ 78% < 9	0% AFUE	П	Oil		Electric	П	Earth Energy
	Windows-	+Skylights+Gl	ass Doors	3				Other E	Building (Condition	s
Area of Walls = 353 m ²			S &G % =	120/	ICF Ba	sement		Walkout B	asement	I Log/Post&Beam	
Area of W,S&G = 41 m ²			3 &G % =	<u>12%</u>	☐ ICF Ab	ove Grade	П	Slab-on-gr	ound		
	D. Building Spe	cifications [pr	ovide value	es and ratin	gs of the en	ergy efficier	icy compon	ents propos	ed, or atta	ch <i>Energy</i>	Star BOP form]
	Building Con	nponent		RSI/R	values		Buildi	ing Comp	onent		Efficiency Ratings
Therma	l Insulation					Windows & Doors ¹					
	with Attic Space			5	50	Windows/Sliding Glass Doors			1.8		
	without Attic Space			3	31	Skylights 2.8				2.8	
Exposed				3	31	Mechanicals					_
	bove Grade			2	22			UE or con		type)	94%
	ent Walls			1	2			RE% at 0°	C)		60%
	>600mm below gra				Х	DHW He					0.67
	lge only ≤600mm be			1	0	DWHR (CSA B55.	1 Efficiend	cy)		
Slab (all	≤600mm below gra			l .	0						
	E. Performance	Design Verif	cation [c	omplete ap	plicable sec	tions if SB-1	12 Performa	ance, Energ	y Star or E	nerGuide8	30 options used]
	erformance:										
The annu	ual energy consumption	n using Subse	ction 2.1.1	. SB-12 Pa	ackage	is		Gj (1 Gj	=1000Mj)	
	ual energy consumption		_		Gj						
	The software used to simulate the annual energy use of the building is:										
	ding is being designed					er hour @5	0Pa.				
	Star: Submit the BOP		gy Adviso	r's certifica	ation on co	mpletion.					
	Star and <i>EnerGuide&</i> Advisor/Rater Name:	SU:				Evaluator/A	dvicor/Pato	r Liconco #:			
Evaluator	Auvisoi/Rater Name.					Evaluat01/A	uvisui/Ratei	i Licerice #.			
	F. Harris D. 1		011.17								
Name	F. House Desig	Jrier [name & B	∪IN, it appi	cable, of pe	erson provid	ing intormat	ion herein t Signature		ite that des	sign meets	building code]
Name	David DaCa	oto				064	Jigi lature		1	146	2
	David DaCo	รเล			32	964			Cane	PACI	~~~

This form is used by a designer to demonstrate that the energy efficiency design of a house complies with the building code

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

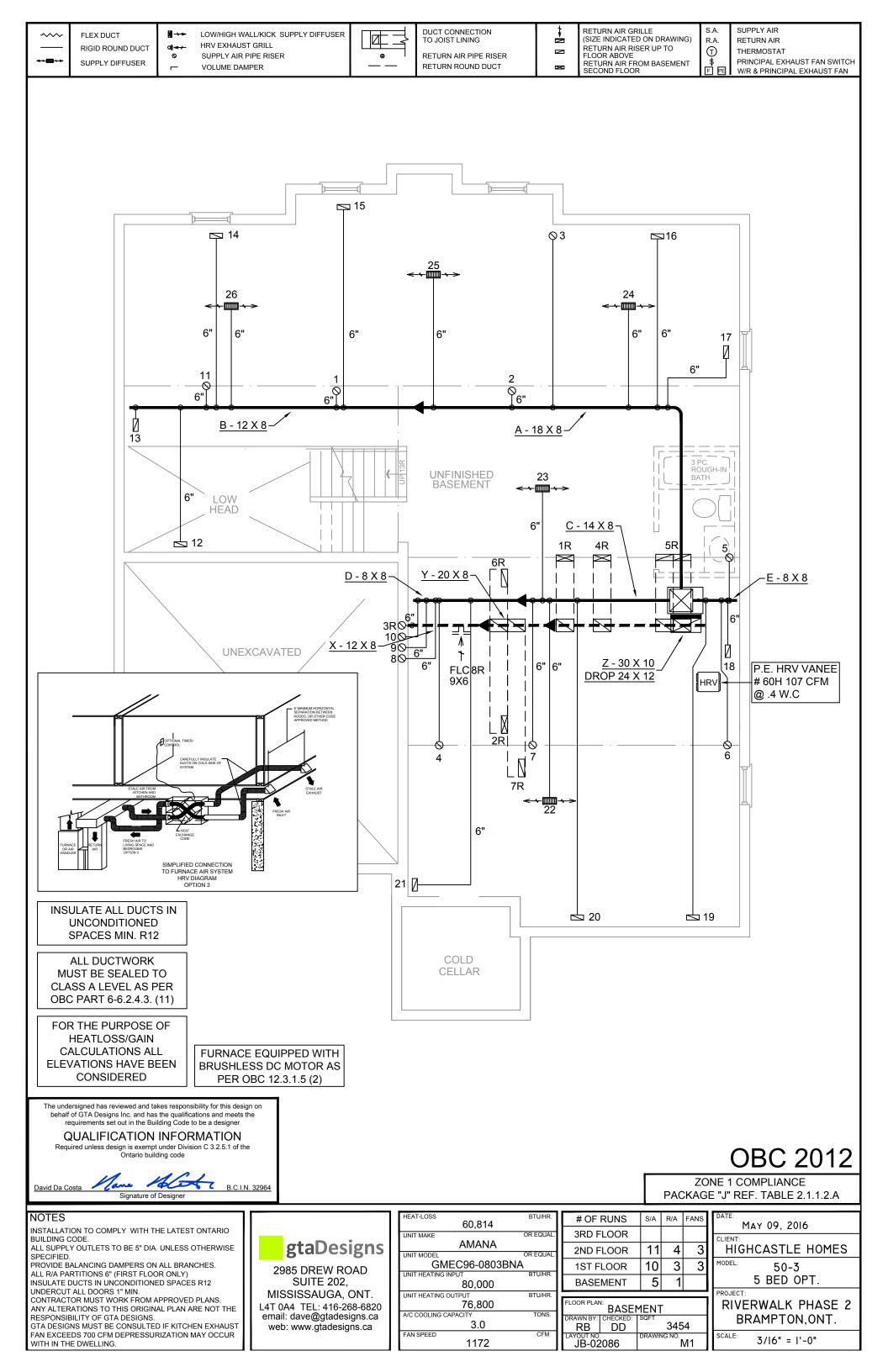
Project # PJ-00067 Layout # JB-02086

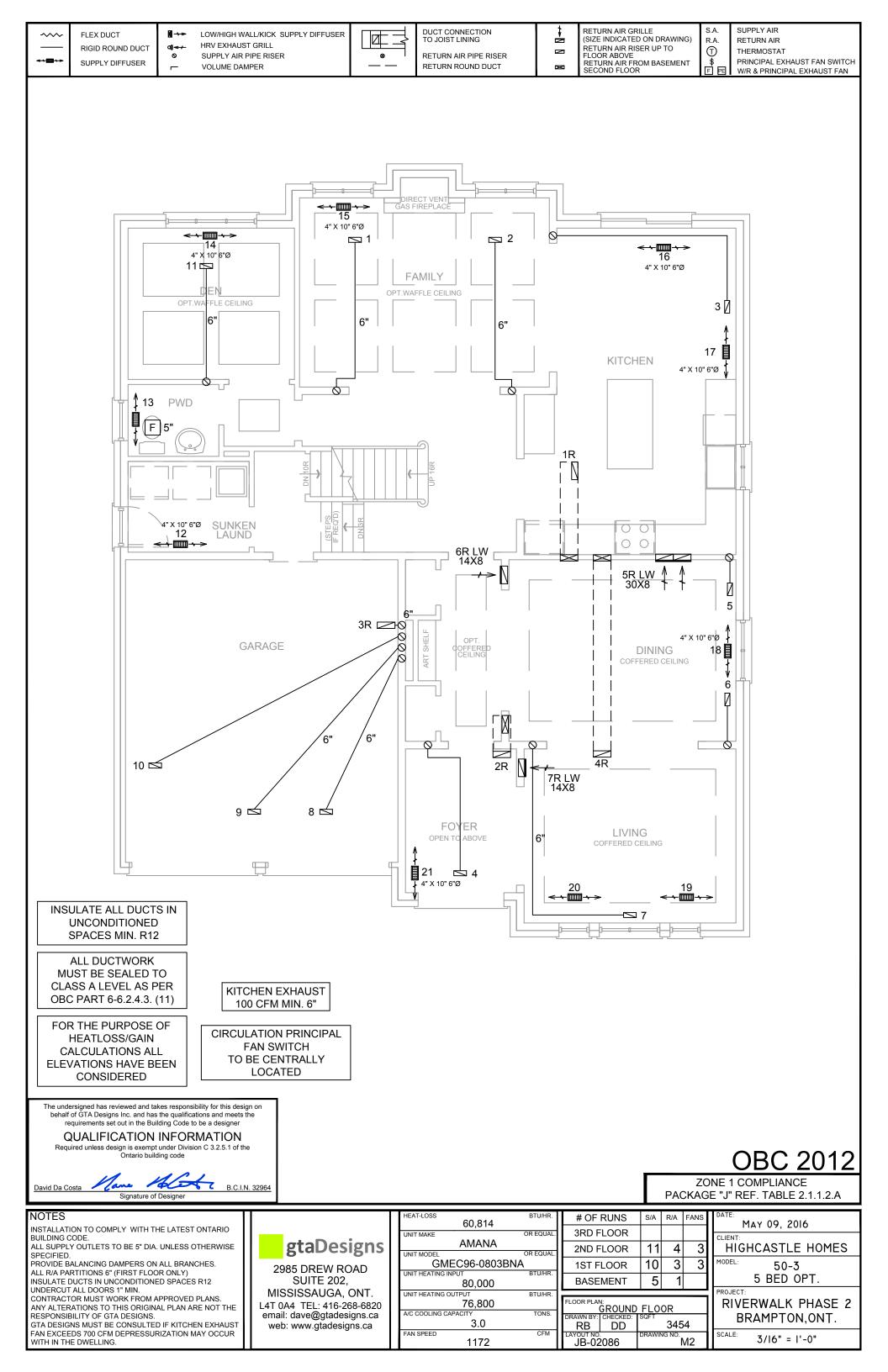
Page 8

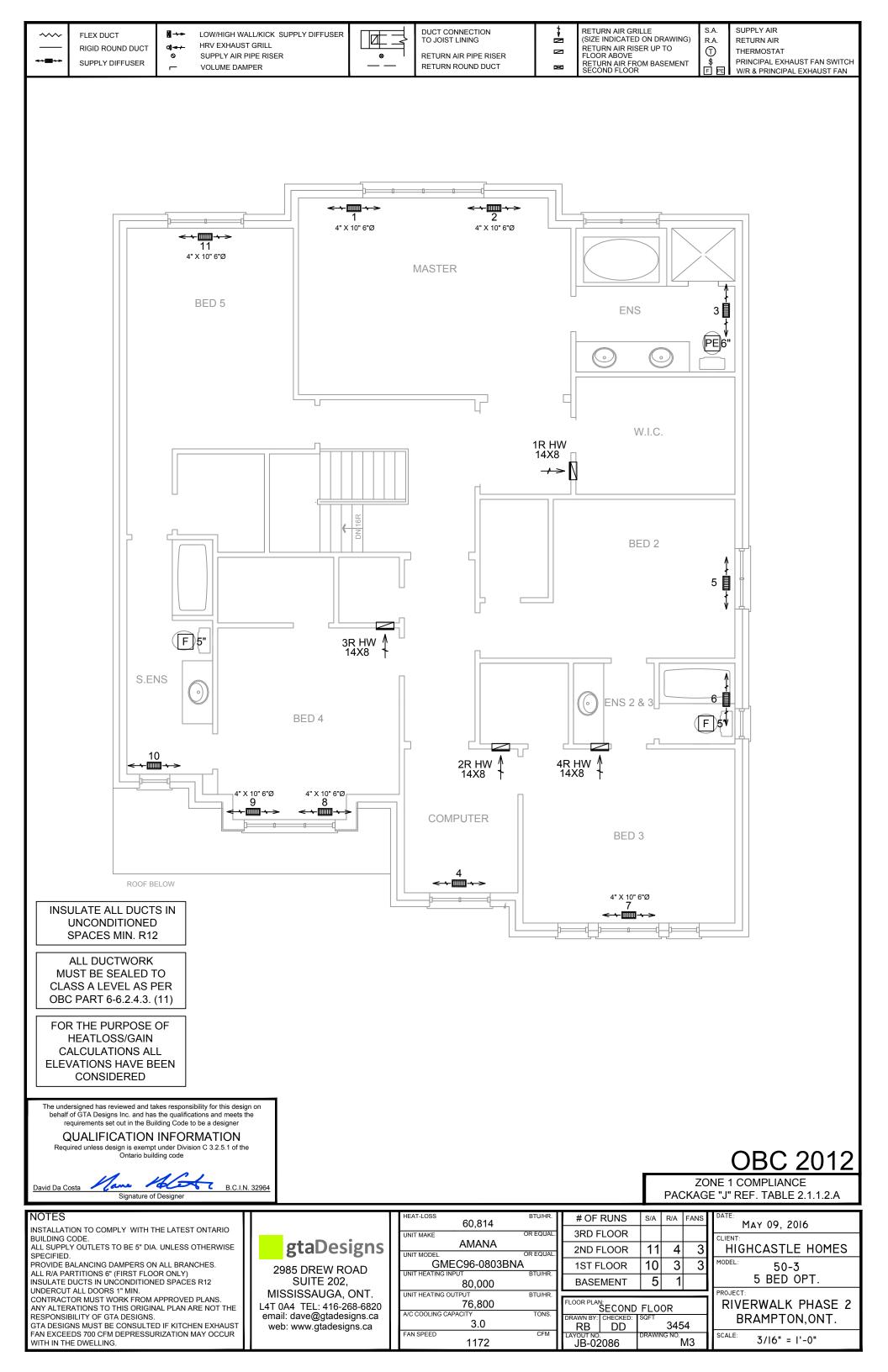
Package: Package J System: System 1 Project: **Brampton** Model: 50-3

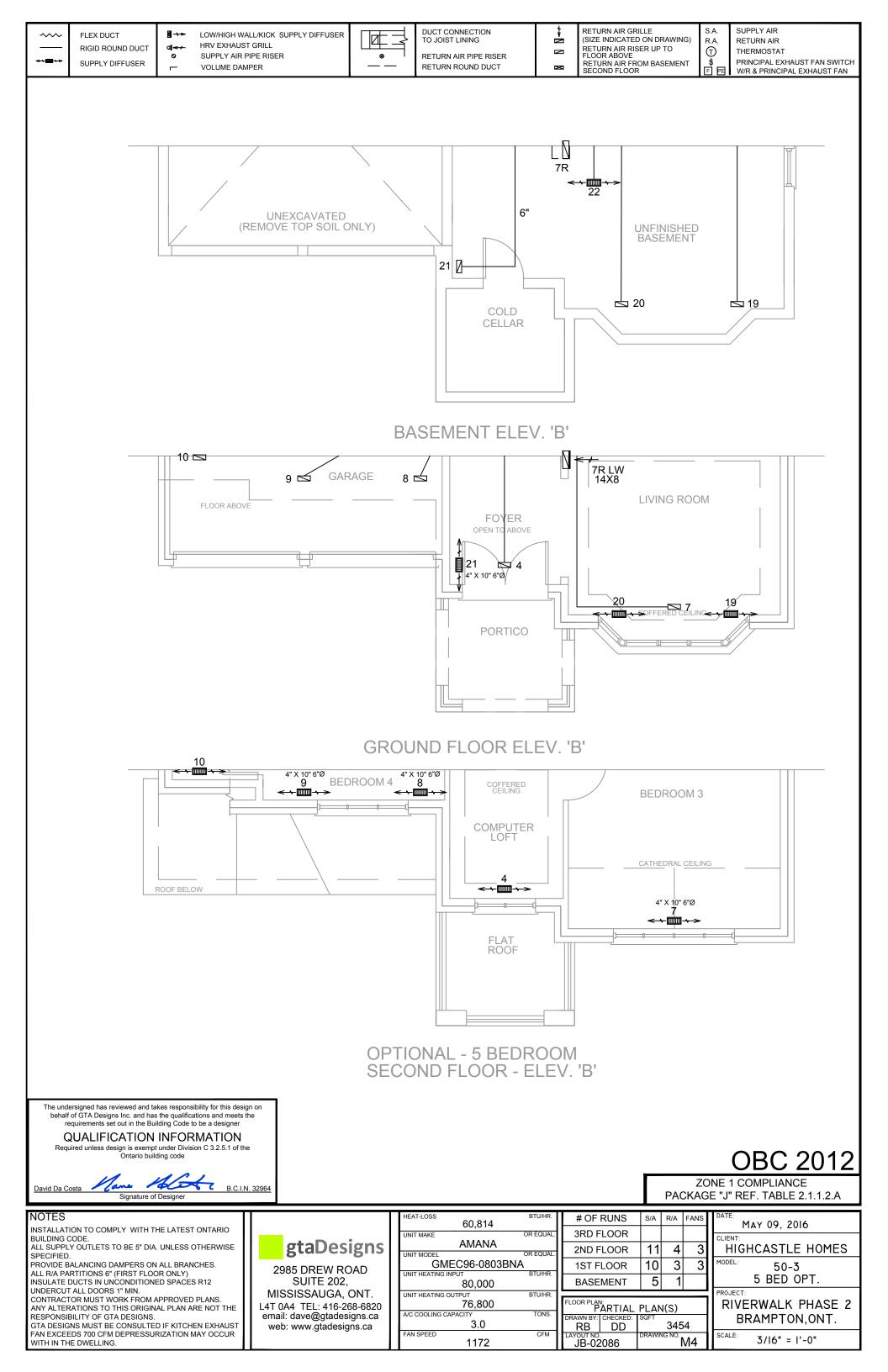
	ect:		Brampton		Model:			50-	- ა		
			Ai	r Leakage C	alculation	ons					
		Building	Air Leakage Heat Los	s			Building A	Air Leakag	e Heat Gai	in	
		B LRairh 0.018 0.306	Vb HL^T 41573 74.2	HLleak 16977		B 0.018	LRairh 0.089	Vb 41573	HG^T 11	HG Leak 734	
					<u> </u>			Lev	vels		-
		Air Leakage Hea	t Loss/Gain Multiplier	Table (Section 11)			1	2	3	4	
	Level	Level Building		Air Leakage I			(LF)	(LF)	(LF)	(LF)	
	Level 1	0.5	10590	0.801			1.0	0.6	0.5	0.4	
	Level 2 Level 3	0.3 0.2	15910 14407	0.320 0.235				0.4	0.3	0.3 0.2	
	Level 4	0	0	0.000					0.2	0.1	
				Air Leakage I	leat Gain	1 1		Levels this	s Dwelling	1	
	BUILD	HG LEAK	734 AT GAIN 16081	0.045					3		
			V	entilation C	alculatio	ns					
		Ventil	ation Heat Loss	orialization of			Ventila	ation Heat G	ain		
Vent		Ventilation	on Heat Loss			V	entilation F	leat Gain		1	Vent
$ \tilde{r} $	С	PVC HL^T	(1-E) HRV HI	Lbvent	С	PVC	HG^T	HGb	vent	+	$ \tilde{r} $
	1.08	95.4 74.2	0.32	2446	1.1	95.4	11	11	133]	
Case 1								Case 1			
	Ventilation Heat Loss (Exhaust only Systems)										
H		Ventilation Heat L	oss (Exhaust only System	s)		Ventila	ation Heat G	ain (Exhaust	t Only Syste	ms)	
1 = 1		Case 1 -	Exhaust Only			se 1 - Exh	aust Only		i Only Syste	ms)	1 0
ase 1	Level	Case 1 -	Exhaust Only	Multiplier	Н	se 1 - Exh	aust Only	Multi		ms)	
Case 1	Level 1 Level 2	Case 1 - LF HLbven 0.5 0.3	Exhaust Only t LVL Cond. HL 10590 15910	Multiplier 0.12 0.05	Н	se 1 - Exh	aust Only	Multi	iplier	ms)	Case 1
Case 1	Level 1 Level 2 Level 3	Case 1 - LF HLbven 0.5 0.3 0.2 2446	Exhaust Only t LVL Cond. HL 10590 15910 14407	Multiplier 0.12 0.05 0.03	Н	se 1 - Exh	aust Only	Multi	iplier	ms)	ase
Case 1	Level 1 Level 2	Case 1 - LF HLbven 0.5 0.3 0.2 0	Exhaust Only t LVL Cond. HL 10590 15910 14407 0	Multiplier 0.12 0.05	Н	se 1 - Exh	aust Only	Multi 0.	iplier	ms)	ase
0	Level 1 Level 2 Level 3	Case 1 - LF HLbven 0.5 0.3 0.2 0 Case 1 -	Exhaust Only t LVL Cond. HL 10590 15910 14407	Multiplier 0.12 0.05 0.03 0.00	Н	se 1 - Exhi Gbvent uilding	aust Only	Multi 0. Case 2	iplier 07		Case
2 C	Level 1 Level 2 Level 3	Case 1 - LF HLbven 0.5 0.3 0.2 0 Case 1 -	Exhaust Only t LVL Cond. HL 10590 15910 14407 0 ase 2 ass (Direct Ducted System	Multiplier 0.12 0.05 0.03 0.00	Н	se 1 - Exhi Gbvent uilding	1133 16081	Multi 0. Case 2	iplier 07 ucted Syste		2 Case
2 C	Level 1 Level 2 Level 3 Level 4	Case 1 - LF HLbven 0.5 0.3 0.2 0 Ca Ventilation Heat Lo	Exhaust Only t LVL Cond. HL 10590 15910 14407 0 use 2 Multiplier	Multiplier 0.12 0.05 0.03 0.00	HO	se 1 - Exh	aust Only 1133 16081 ation Heat Ga	Multi Case 2 ain (Direct D	iplier 07		2 Case
0	Level 1 Level 2 Level 3 Level 4	Case 1 - LF HLbven 0.5 0.3 0.2 0 Ca Ventilation Heat Lo HL^T (1-E) HR 74.2 0.32	Exhaust Only t LVL Cond. HL	Multiplier 0.12 0.05 0.03 0.00	HO	se 1 - Exh Gbvent uilding Ventila	aust Only 1133 16081 ation Heat Ga	Multi 0. Case 2 ain (Direct D Multi	iplier 07 oucted Syste		Case
Case 2 C	Level 1 Level 2 Level 3 Level 4	Case 1 - LF HLbven 0.5 0.3 0.2 0 Ca Ventilation Heat Lo HL^T (1-E) HR 74.2 0.32	Exhaust Only t LVL Cond. HL 10590 15910 14407 0 ase 2 ass (Direct Ducted System Multiplier	Multiplier 0.12 0.05 0.03 0.00	HO	Ventila C 1.08	aust Only 1133 16081 ation Heat Ga	Multi Case 2 Multi 11 Case 3	iplier 07 oucted Syste iplier .88	ems)	Case 2 Case
3 Case 2 C	Level 1 Level 2 Level 3 Level 4	Case 1 - LF HLbven 0.5 0.3 0.2 0 Ca Ventilation Heat Lo HL^T (1-E) HR 74.2 0.32	Exhaust Only t LVL Cond. HL 10590 15910 14407 0 ase 2 ass (Direct Ducted System Multiplier V 25.64	Multiplier 0.12 0.05 0.03 0.00	HO	Ventila C 1.08	aust Only 1133 16081 ation Heat Ga HG^T 11	Multi Case 2 Multi 11 Case 3	iplier 07 oucted Syste iplier .88	ems)	3 Case 2 Case
3 Case 2 C	Level 1 Level 2 Level 3 Level 4 C 1.08	Case 1 - LF HLbven 0.5 0.3 0.2 0 Ventilation Heat Lo Ventilation Heat Ventilation Heat HL^T (1-E) HR 74.2 0.32 Ventilation Heat	Exhaust Only t LVL Cond. HL 10590 15910 14407 0 ase 2 ass (Direct Ducted System Multiplier V 25.64 Loss (Forced Air Systems)	Multiplier	HCBI	Ventila C 1.08	aust Only 1133 16081 ation Heat Ga HG^T 11	Case 2 ain (Direct D Multi 11 Case 3 Gain (Forcec	iplier 07 ucted Syste iplier .88 d Air Systemeat Gain	ems)	3 Case 2 Case
Case 2 C	Level 1 Level 2 Level 3 Level 4 C 1.08	Case 1 - LF HLbven 0.5 0.3 0.2 0 Ventilation Heat Lo Ventilation Heat Ventilation Heat HL^T (1-E) HR 74.2 0.32 Ventilation Heat	Exhaust Only t LVL Cond. HL 10590 15910 14407 0 ase 2 ass (Direct Ducted System Multiplier V 25.64 Loss (Forced Air Systems)	Multiplier 0.12 0.05 0.03 0.00	HOBI	Ventila C 1.08	aust Only 1133 16081 ation Heat Ga HG^T 11	Case 2 ain (Direct D Multi 11 Case 3 Gain (Forcec	iplier 07 ucted Syste iplier .88	ems)	Case 2 Case
3 Case 2 C	Level 1 Level 2 Level 3 Level 4 C 1.08	Case 1 - LF	Exhaust Only t LVL Cond. HL 10590 15910 14407 0 ase 2 ass (Direct Ducted System Multiplier V 25.64 Loss (Forced Air Systems)	Multiplier	HOBI	Ventila C 1.08 Vent Gbvent 1133	aust Only 1133 16081 ation Heat Ga HG^T 11 illation Heat	Case 2 ain (Direct D Multi 11 Case 3 Gain (Forcec	iplier 07 ucted Syste iplier .88 d Air Systemeat Gain	ems)	3 Case 2 Case
3 Case 2 C	Level 1 Level 2 Level 3 Level 4 C 1.08	Case 1 - LF HLbven 0.5 0.3 0.2 0 Ca Ventilation Heat Lo Ventilation Heat Ventilation Heat Ventilation Heat Oundation Conduct Case 1 - Ventilation Heat HI Tal.2 Case 1 - Cas 1 -	Exhaust Only t LVL Cond. HL 10590 15910 14407 0 ase 2 ass (Direct Ducted System Multiplier V 25.64 Loss (Forced Air Systems) Lovent Mu 2446	Multiplier	H	Ventila C 1.08 Vent Gbvent 1133	HG^T 11 HG*1.3	Case 2 ain (Direct D Multi 11 Case 3 Gain (Forcec	iplier 07 ucted Syste iplier .88 d Air System eat Gain	ems) ss) Multiplier 0.07	3 Case 2 Case

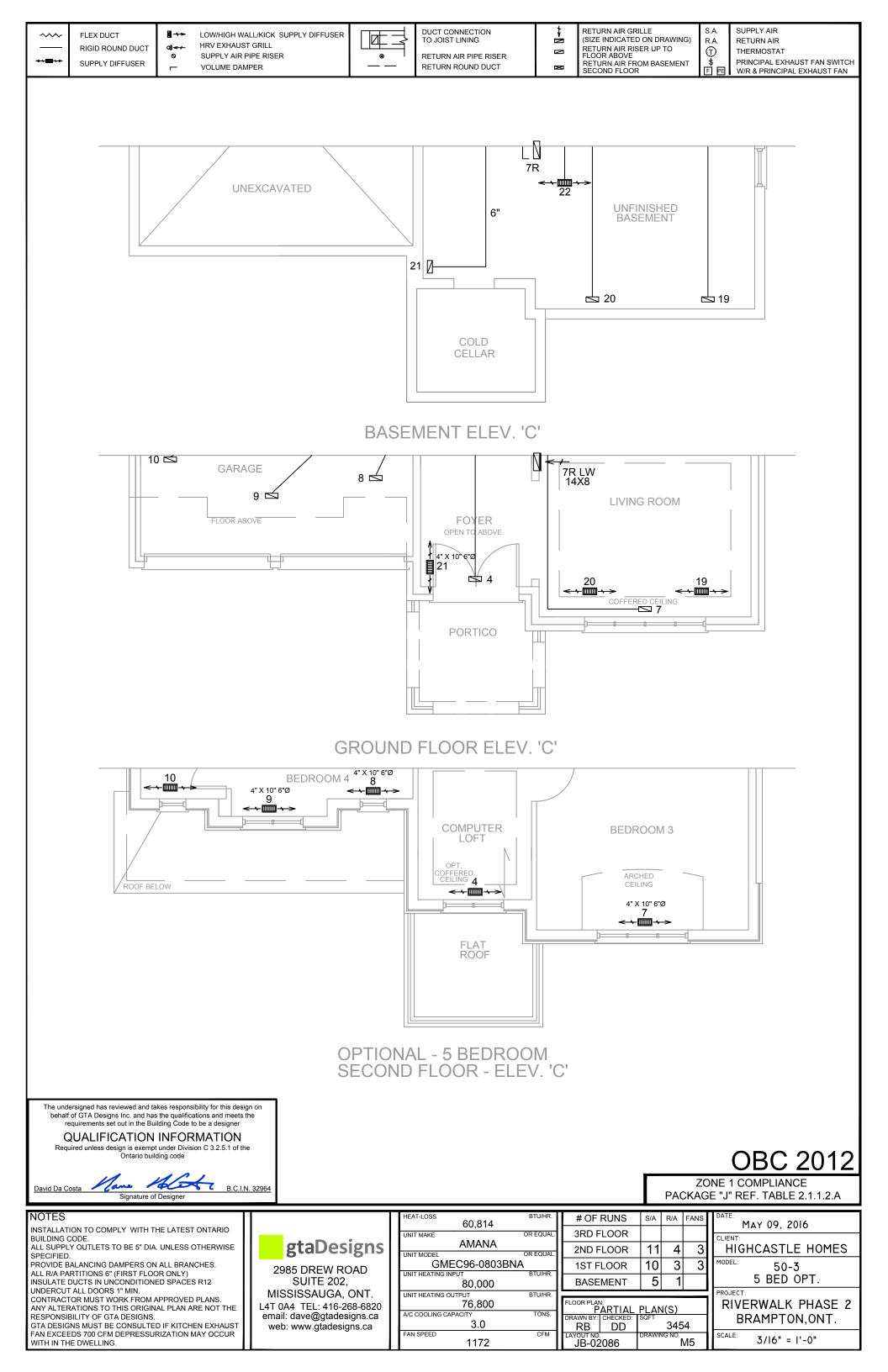
Envelope Air Leakage Calculator


Supplemental tool for CAN/CSA-F280


Weather Station	Description
Province:	Ontario
Region:	Brampton
Weather Station Location:	Open flat terrain, grass
Anemometer height (m):	10
Local Shie	lding
Building Site:	Suburban, forest ▼
Walls:	Heavy ▼
Flue:	Heavy ▼
Highest Ceiling Height (m):	6.40
Building Confi	guration
Type:	Detached
Number of Stories:	Two
Foundation:	Full
House Volume (m³):	1177.35
Air Leakage/Ve	entilation
Air Tightness Type:	Present (1961-) (ACH=3.57)
Custom BDT Data:	ELA @ 10 Pa. 322.44 cm ²
	3.57 ACH @ 50 Pa
Mechanical Ventilation (L/s):	Total Supply: Total Exhaust:
	47.7 47.7
Flue #:	#1 #2 #3 #4
Diameter (mm):	0 0 0 0
Heating Air Leakage Rate (ACH/H):	0.306
Cooling Air Leakage Rate (ACH/H):	0.089


Residential Foundation Thermal Load Calculator


Supplemental tool for CAN/CSA-F280


Weather Station Description							
Province:		Ontario					
Region:		Brampton					
Site Description							
Soil Conductivity:		High conductivity: moist soil ▼					
Water Table:		Normal (7-10 m, 23-33 Ft)					
Foundation Dimensions							
Floor Length (m):	21.26						
Floor Width (m):	6.32						
Exposed Perimeter (m):	55.17						
Wall Height (m):	2.74						
Depth Below Grade (m):	2.13	Insulation Configuration					
Window Area (m²):	1.39						
Door Area (m²):	1.95						
	Radi	ant Slab					
Heated Fraction of the Slab:	0						
Fluid Temperature (°C):	33						
	Desig	n Months					
Heating Month	1						
	Founda	ation Loads					
Heating Load (Watts):		2849					

