

9/12 ROOF PITCH UNLESS OTHERWISE NOTED

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012(2019 AMENDMENT) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 31.3 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 25.6 psf TCDL = 6.0 psf BCLL = 0.0 psf BCDL = 7.4 psf

HARDWARE:

LJS26DS - (V) HGUS26-2 - (XX) LUS24- (O) LUS26-2- (VV)

Layout ID: 436988

Dob Track: 53256

Plan Log: 207891

Builder / Location: VILLA 9 / 1

Project: TRINIGROUP DEVELOPMENTS

Date: 1/2/2024 Sales: Rick DiCiano Designer: YPG

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER PURPOSE. Mitek ver 8.6.3.353

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

TRINIGROUP DEVELOPMENTS

Location:

RICHMOND HILL

Model:

VILLA 9

1

Lot #:

Elevation:

Job Track:

PlanLog:

53256 207891

Layout ID:

436988

Ref#

Page: 1 of 4

Date:

03/04/2024

Designer:


Sales Rep:

Rick DiCiano

Roof Trusses

KOOI II	·										
PROFILE	QTY PLY	MARK TYPE	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT RIGHT	HEEL HEIGHT LEFT RIGHT	LBS. BFT.	BUNDLE#	LOAD BY REMARKS
	1 2-ply	T1 Hip Girder	6 /12	34-02-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	301.35 190.00		
	1	T2 Hip	6 /12	34-02-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	136.06 85.67		
	1	T3 Hip	6 /12	34-02-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	135.64 85.00		
	1	T4 Hip	6 /12	34-02-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	141.75 88.50		
	1	T5 Hip	6 /12	34-02-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	137.41 86.33		
	1	T6 Hip	6 /12	34-02-00	9-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	154.3 97.83		
	4	T7 Common	6 /12	34-02-00	9-08-08	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	590.47 364.00		
	1 2-ply	T8 Roof Special Girder	9 /12	34-02-00	9-03-10	2 x 4 2 x 6	1-03-08 1-03-08	1-06-04 1-06-04	390.29 244.33		
	2	T9 Hip	9 /12	34-02-00	7-05-02	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	308.79 195.33		
	1	T10 Hip	9 /12	34-02-00	8-09-13	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	160.95 99.83		
	1 2-ply	T11 Hip Girder	9 /12	31-02-00	5-11-02	2 x 4 2 x 6	1-03-08 1-03-08	1-06-04 1-06-04	310.54 195.33		
	1	T12 Hip	9 /12	31-02-00	7-05-02	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	142.94 89.83		
	1	T13 Hip	9 /12	31-02-00	8-06-10	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	143.84 90.3	Y OF RICH	HMOND H
	1	T14 Hip Girder	6 /12	16-08-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	77 19)5/01	

RECEIVED
Per: joshua.nabua

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

TRINIGROUP DEVELOPMENTS

Location:

RICHMOND HILL

Model:

VILLA 9

1

Lot #:

Elevation:

Job Track: PlanLog:

53256 207891

Layout ID:

436988

Ref#

Page:

2 of 4

Date:

03/04/2024

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY [†]	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T15 Hip	6 /12	16-08-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	68.06 43.00		
	2	T16 Common	6 /12	16-08-00	5-04-00	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.74 84.67		
	4	T17 Common	9 /12	13-06-00	6-07-00	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	245.21 158.67		
	1	T17G GABLE	9 /12	13-06-00	6-07-00	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	62.72 42.67		
	. 1	T18 Hip Girder	9 /12	12-04-00	4-05-02	2 x 4 2 x 6	1-03-08	1-06-04 3-00-04	66.73 43.83		
	1	T19 Hip	9 /12	12-04-00	5-11-02	2 x 4	1-03-08	1-06-04 3-00-04	59.06 39.17		
	1	T20 Common	9 /12	12-04-00	6-10-12	2 x 4		1-06-04 3-00-04	53.83 34.83		
	1 2-ply	T21 Half Hip Girder	9 /12	5-10-08	3-07-00	2 x 4 2 x 6		1-06-04 3-07-00	65.23 42.67		
	1 2-ply	T22 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		
	1 2-ply	T23 Jack-Closed Girder	9 /12	5-10-08	5-11-02	2 x 4 2 x 6		1-06-04 5-11-02	69.13 44.67		
	1 2-ply	T23Z Jack-Closed Girder	9 /12	5-10-08	5-11-02	2 x 4 2 x 6		1-06-04 5-11-02	69.13 44.67		
	1	T24 Hip Girder	9 /12	8-06-00	2-11-02	2 x 4 2 x 6	1-03-08 1-03-08	1-06-04 1-06-04	45.32 33.00		
	1	T25 Hip	9 /12	8-06-00	5-11-02	2 x 6 2 x 4	1-03-08 1-03-08	3-00-04 3-00-04	52.29 34.00 T	Y OF RICH	IMOND HIL
	1 2-ply	T26 Half Hip Girder	9 /12	3-10-08	4-02-08	2 x 4 2 x 6		1-06-04 4-02-08	42.45 28.00)5/01/	

RECEIVED Per: joshua.nabua

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

TRINIGROUP DEVELOPMENTS

Location:

RICHMOND HILL

Model:

VILLA 9

1

Lot #:

Elevation:

Job Track:

53256 207891

PlanLog: Layout ID:

436988

Ref#

Page:

3 of 4

Date:

03/04/2024

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK				I	OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	10	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	167.94 106.67	-	
	3	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	42.4 26.00		
	3	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	34.75 22.00		
	3	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	28.71 18.00		
	3	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	21.06 14.00		
	2	J6 Jack-Open	9 /12	5-10-08	5-11-02	2 x 4	1-03-08	1-06-04 5-11-02	40.36 27.00		
	4	J7 Jack-Open	9 /12	1-10-08	2-11-02	2 x 4	1-03-08	1-06-04 2-11-02	37.99 28.00		
	1	J8 Jack-Open	9 /12	3-07-00	4-02-08	2 x 4	1-03-08	1-06-04 4-02-08	14.3 10.17		
	1	J9 Jack-Open	9 /12	1-09-07	2-10-05	2 x 4	1-03-08 1-09-09	1-06-04 2-10-05	11.26 8.33		
	2	J10 Jack-Open	9 /12	1-09-07	2-10-05	2 x 4	1-03-08 1-01	1-06-04 2-10-05	18.46 14.00		
	2	J11 Jack-Open	9 /12	2-09-00	3-07-00	2 x 4	1-03-08	1-06-04 3-07-00	24.05 17.67		
	1	J12 Jack-Open	9 /12	1-09-07	2-10-05	2 x 4	1-03-08 11-09	1-06-04 2-10-05	10.31 7.67		
	3	J13 Jack-Open	6 /12	5-02-08	3-06-15	2 x 4	1-03-08	4-03 2-11-07	43.18 28.00	Y OF RICH	IMOND H

TOTAL #TRUSS= 82

TOTAL BFT OF ALL TRUSSES= 3000.67

BFT.

TOTAL WEIGHT OF ALL TRSSES 4717.58 LBS

Lumber Yard: TAMARACK LUMBER

Builder: GREEN PARK HOMES

Project: TRINIGROUP DEVELOPMENTS

Location: RICHMOND HILL Model: VILLA 9

Model: Lot #:

Elevation:

Job Track: PlanLog: 53256 207891

Layout ID:

436988

Ref#

Page:

4 of 4

Date:

03/04/2024

Designer:

Sales Rep:

Rick DiCiano

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	HGUS26-2	
8	Hardware	LJS26DS	
3	Hardware	LUS24	
2	Hardware	LUS26-2	

TOTAL NUMBER OF ITEMS= 17

CITY OF RICHMOND HILL BUILDING DIVISION

05/01/2024

RECEIVED
Per: joshua.nabua

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **GREEN PARK HOMES** DRWG NO 436988 2 TRUSS DESC Famarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:28 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-FF7OL5usCpqYyst2oh?oiWyw7d5fA78rONZB7vzeNPT 5-10-8 1-3-8 22-5-0 1-3-8 6x10 = 4x6 = 2x4 || 3x8 = 6x10 = D E E 6.00 12 4x10 =Q 0 М Р NY Z AΑ AB AC 4x6 II 5x6 = 5x6 = 6x10 = 5x6 = 5x6 = 4x6 || 6x7 = 6x7 = 16-9-8 11-5-4 2-0-0 2-0-0 , 1-11-4 0-0 5-10-8 11-6-6 16-9-8 17-1-0 22-7-10 28-2-12 28-3-8 30-2-12 32-2-12 34-2-0 TOTAL WEIGHT = 2 X 151 = 301 lb

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - F	2x4	DRY	2100F 1.8E	SPF
F - H	2x4	DRY	2100F 1.8E	SPF
H - J	2x4	DRY	No.2	SPF
S - B	2x6	DRY	No.2	SPF
K - I	2x6	DRY ·	No.2	SPF
S - P	2x6	DRY	No.2	SPF
P - N	2x6	DRY	No.2	SPF
N - K	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	HORDS: (0.1	22"X3") SPIRAL N	IAILS
A-C	. 1	12	TOP
C-F	1	12	SIDE(0.0)
F- H	1	12	SIDE(65.9)
H-J	1	12	SIDE(61.0)
S-B	2	12	TOP ` ´
K-I	2	12	TOP
вотто	M CHORDS	: (0.122"X3") SPIF	AL NAILS
S-P	2	. 12 ´	TOP
P-N	2	12	SIDE(183.1)
N-K	2	12	SIDE(183.1)
WEBS	(0.122"X3")	SPIRAL NAILS	, ,
2x3	1 1	6	
E-O	1	5	SIDE(313.2)

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

Structural component only DWG# T-2406568

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED	BY FARRICATOR TO	BE VERIFIED BY
			DE 12.11.1.12.D.D.1
BUILDING DESIGNER			
BEARINGS			
DEATHINGS			

EA	<u>MINGS</u>						
	FACTOR GROSS RE		MAXIMU GROSS	M FACTO	INPUT BRG	REQRD BRG	
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	3261	0	3261	0	0	5-8	1-12
	3787	0	3787	0	0	5-8	2-1

UNFACTORED REACTIONS
1ST LCASE MA MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMITURE JT COMBINED WIND DEAD 903 / 0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.58 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

C H O R D S MAX. FACTORED MEMB. FORCE (LBS) FR-TO (LBS) FR-TO 0 / 28 B- C - 4985 / 0 C- D - 7797 / 0 D- E - 10050 / 0 E- T - 10050 / 0 F- U - 10050 / 0 G- V - 8535 / 0 V- W - 8535 / 0 V- H - 8535 / 0 H- I - 5876 / 0 I- J 0 / 28 S- B - 3206 / 0	FROM TO 91.8 -91.8 0.07 (1 -91.8 -91.8 0.26 (1 -91.8 -91.8 0.34 (1 -91.8 -91.8 0.34 (1 -91.8 -91.8 0.45 (1 -91.8 -91.8 0.45 (1 -91.8 -91.8 0.45 (1 -91.8 -91.8 0.45 (1 -91.8 -91.8 0.45 (1 -91.8 -91.8 0.40 (1 -91.8 -91.8 0.40 (1 -91.8 -91.8 0.40 (1 -91.8 -91.8 0.40 (1 -91.8 -91.8 0.40 (1 -91.8 -91.8 0.07 (1 -91.8 -91.8 0.07 (1 -91.8 -91.8 0.07 (1 -91.8 -91.8 0.07 (1 -91.8 -91.8 0.07 (1 -91.8 -91.8 0.07 (1	MAX. MEMB UNBRAC LENGTH FR-TC 10.00 R-C 3.90 C-Q 4.19 Q-D 3.71 D-O 3.59 O-E 3.59 M-G 3.59 M-G 3.90 L-H 3.90 L-H 3.90 B-R 3.50 L-1 3.50 L-1 7.73	(LBS)	ORED MAX CSI (LC) 0.06 (1) 0.50 (1) 0.26 (1) 0.34 (1) 0.07 (1) 0.25 (1) 0.25 (1) 0.49 (1) 0.56 (1) 0.66 (1)
K-I -3708 / 0 S-R 0 / 0 R-O 0 / 4443 C-P 0 / 7797 P-O 0 / 7797 O-X 0 / 8535 X-N 0 / 8535 N-Y 0 / 8535 M-Z 0 / 5239 Z-AA 0 / 5239 AA-L 0 / 5239 L-AB 0 / 0 AB-AC 0 / 0 AC-K 0 / 0	0.0 0.0 0.13 (1 -18.5 -18.5 0.04 (4 -18.5 -18.5 0.32 (1 -18.5 -18.5 0.58 (1 -18.5 -18.5 0.65 (1 -18.5 -18.5 0.65 (1 -18.5 -18.5 0.65 (1 -18.5 -18.5 0.65 (1 -18.5 -18.5 0.38 (1 -18.5 -18.5 0.38 (1 -18.5 -18.5 0.06 (4 -18.5 -18.5 0.06 (4 -18.5 -18.5 0.06 (4 -18.5 -18.5 0.06 (4	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00		
SPECIFIED CONCENTI JT LOC. LC1 G 22-8-12 -76 H 28-3-8 -254 L 28-2-12 -21 M 22-8-12 -21 O 16-98 -1338 T 18-8-12 -76 U 20-8-12 -76 W 24-8-12 -76	MAX- MÂX+ F -76 FR -254 FR -21 FR -21 FR -1338 FR -76 FR -76 FR -76 FR	ACE DIR. ONT VERT	TYPE FOOTAL TOTAL	HEEL CONN C1

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = TOP CH. 25.6 PSF

6.0 0.0 7.4 TOTAL LOAD 39.0

SPACING = IN. C/C 24.0

- TPIC 2014

SOIL

0/0

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.14")
CALCULATED VERT. DEFL.(LL)= L/999 (0.26")
ALLOWABLE DEFL.(TL)= L/360 (1.14")
CALCULATED VERT. DEFL.(TL)= L/854 (0.48")

CSI: TC=0.59/1.00 (H-I:1) , BC=0.65/1.00 (M-O:1) , WB=0.66/1.00 (I-L:1) , SSI=0.19/1.00 (G-H:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (H) (INPUT = 0.90) JSI METAL= 0.67 (P) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

CONTINUED ON PAGE 2 Per: joshua.nabua

OB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC.	GREEN PARK	HOMES	DRWG NO.	* ***
36988	T1	1 2	TRUSS DESC.	GIVE ZIVI / WIVE	. 1011120		
marack Roof Truss, Burlin				1D.4D. 57.00l. I	Version 8.630 S Aug 30 20	23 MiTek Industries, Inc. Mon Mar 4 08	3:03:28 2024 Page
				ID:1PtzEZc03lbzł	kDC64XoV?RygPuj-FF7	OL5usCpqYyst2oh?oiWyw7d5fA7	78rONZB7vzeN
PLATES (table is in inche IT TYPE PLATES 3 TMVW-p MT20 C TTWW-m MT20 D TMW+t MT20 E TMV+w MT20 E TS+t MT20 G TMW+t MT20	W LEN Y X 4.0 10.0 1.00 5.00 6.0 10.0 2.00 4.75 4.0 6.0 2.0 4.0 3.0 8.0 4.0 6.0	JT LOC. LC X 18-8-12 -2 Y 20-8-12 -2 Z 24-8-12 -2 AA 26-8-12 -2 AB 30-2-12 -2 AC 32-2-12 -2	21 -21 FF 21 -21 FF 21 -21 FF 21 -21 FF 21 -21 FF 20 -20 FF	FACE DIR. TYPE RONT VERT TOTAL	G1 G1		
TTWW-m MT20 TMVW-p MT20	6.0 10.0 2.00 4.75 4.0 10.0 1.00 5.00	CONNECTION REQUI					
C BMV1+p MT20 BMWW-t MT20	4.0 6.0 5.0 6.0 2.50 2.00	1) C1: A SUITABLE	HANGER/MECHANICAL CO	ONNECTION IS REQUIRED).		
M BMWW-t MT20 N BS-t MT20 D BMWWW-t MT20	5.0 6.0 2.50 2.50 6.0 7.0 6.0 10.0 3.50 5.00					·	
BS-t MT20 BMWW-t MT20	6.0 7.0 5.0 6.0 2.50 2.50				•		
R BMWW-t MT20 BMV1+p MT20	5.0 6.0 2.50 2.00 4.0 6.0						
·							
(1)) Lateral braces to be a m	inimum of 2X4 SPF #2.						
						* .	

Structural component only DWG# T-2406568

CITY OF RICHMOND HILL BUILDING DIVISION

05/01/2024

RECEIVED


JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO. TRUSS DESC. 436988 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:28 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPui-FF7OL5usCpqYyst2oh?oiWyttd6HA5trONZB7vzeNPT 7-10-8 7-10-8 , 1-3-8 18-5-0 1-3-8 Scale = 1:57.6 5x8 = 4x6 = 3x8 = 2x4 || 5x8 = D Ε G 6.00 12 5x6 = 5x6 ≥ C 3x4 II 3x4 || O Ν R Р 0 М 3x8 = 3x8 = 5x6 = 4x6 = 4x6 = 4x10 = 4x6 = 5x6 = 34-2-0 0-0 7-10-8 14-0-9 20-1-7 26-3-8

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2×4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - K	2x4	DRY	No.2	SPF
S - B	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
S - Q	2x4	DRY	No.2	SPF
Q - N	2x4	DRY	No.2	SPF
N - L	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
S - C	2x4	DRY	No.2	SPF
1 - L	2x4	DRY	No.2	SPF

DBY: SEASONED LUMBER.

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	X					
В	TMV+p	MT20	3.0	4.0							
С	TMWW-t	MT20	5.0	6.0	2.50	2.75					
D	TTWW-m	MT20	5.0	8.0	2.25	2.75					
Е	TMWW-t	MT20	4.0	6.0							
F	TS-t	MT20	3.0	8.0							
G	TMW+w	MT20	2.0	4.0							
н	TTWW-m	MT20	5.0	8.0	2.25	2.75					
1	TMWW-t	MT20	5.0	6.0	2.50	2.75					
J	TMV+p	MT20	3.0	4.0							
L	BMVW1-t	MT20	5.0	6.0	2.50	2.25					
М,	P, R										
M	BMWW-t	MT20	4.0	6.0							
N	BS-t	MT20	3.0	8.0							
0	BMWWW-t	MT20	4.0	10.0							
Q	BS-t	MT20	3.0	8.0							
S	BMVW1-t	MT20	5.0	6.0	2.50	2.25					

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2406569

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	AND ECABINGO OF EON LED BY FABRIDATOR TO BE TERM RED BY
BUILDING DESIGNER	
BEARINGS	
DEARINGS	

<u>CA</u>	navas						
	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2008	0	2008	0	0	5-8	2-3
	2008	0	2008	0	0	5-8	2-3

UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./N	IIN, COMPO	NENT REACTION	NS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOI				
S	1418	944 / 0	0/0	0/0	0/0	474 / 0	0/0				
1	1/19	044/0	0.10	0.70	0.70	474 / 0	0//				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.16 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4) 0110000

MAX. FACTORED FACTORED MEMB. FORCE (LBS) VERT. LOAD LC1 MAX MAX. MEMB. FORCE FORCE FORCE MAX (LBS) CSI (LC) FR-TO FROM TO CSI (LC) UNBRAC (LBS) FORCE MAX (LBS) CSI (LC) A-B 0 / 28 -91.8 -91.8 0.12 (1) 10.00 C-R 0 / 87 0.03 (4) 0.00 (4) C-D -2697 / 0 -91.8 -91.8 0.20 (1) 10.00 R-D 0 / 122 0.04 (4) 0.00 (1) 0.00 R-D 0 / 122 0.04 (4) 0.00 (1) D-E -3313 / 0 -91.8 -91.8 0.79 (1) 3.16 B-D 0 / 10 0.02 (1) 0.00 (1) 0.		CH	ORDS					W E	BS	
(LBS)		MAX	C. FACTORED	FACTOR	RED				MAX. FACTO	RED
FR-TO A-B O / 28 B-C O / 16 B-C O / 16 B-C O / 16 B-C O / 16 B-C D - 2687/O D-E D - 3311/O B-C B-C D - 2689/O D-E D - 3311/O D-E D - 261/O D - 26(1) D-E D - 3311/O D-E D - 270/O D - 311/O D-E D - 270/O D - 311/O D-E D - 270/O D - 311/O D - 318 D - P D - 1159 D - 1159 D - D - 1159		MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
A-B			(LBS)	(PL	F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
B-C 0/16 -91.8 -91.8 0.20 (1) 10.00 R-D 0/122 0.04 (4) D-E -3313/0 -91.8 -91.8 0.79 (1) 3.16 P-E -610/0 0.23 (1) E-F -3311/0 -91.8 -91.8 0.78 (1) 3.16 P-E -610/0 0.23 (1) E-F -3311/0 -91.8 -91.8 0.78 (1) 3.16 P-E -610/0 0.23 (1) G-H -3311/0 -91.8 -91.8 0.79 (1) 3.16 P-E -610/0 0.23 (1) G-H -3311/0 -91.8 -91.8 0.79 (1) 3.16 P-E -610/0 0.23 (1) G-H -3311/0 -91.8 -91.8 0.79 (1) 3.17 O-H 0/1157 0.26 (1) G-H -3311/0 -91.8 -91.8 0.79 (1) 3.17 O-H 0/1157 0.26 (1) G-H -301/0 -91.8 -91.8 0.79 (1) 3.17 O-H 0/1157 0.26 (1) G-H -301/0 -91.8 -91.8 0.20 (1) 10.00 M-I 0/87 0.03 (4) J-K 0/28 -91.8 -91.8 0.12 (1) 10.00 S-C -2879/0 0.80 (1) S-B -270/0 0.0 0.0 0.03 (1) 7.81 S-B -270/0 0.0 0.0 0.03 (1) 7.81 S-R 0/2340 -18.5 -18.5 0.52 (1) 10.00 S-C -2879/0 0.80 (1) G-P 0/2398 -18.5 -18.5 0.52 (1) 10.00		FR-TO		FROM	TO		LENGTH	FR-TO		
C-D -2687/0 -91.8 -91.8 0.31 (1) 3.96 D-P 0/1159 0.26 (1) D-E -3313/0 -91.8 -91.8 0.79 (1) 3.16 P-E -610/0 0.23 (1) E-F -3311/0 -91.8 -91.8 0.78 (1) 3.16 P-C -2/0 0.00 (1) G-H -3311/0 -91.8 -91.8 0.78 (1) 3.16 D-G 609/0 0.23 (1) G-H -3311/0 -91.8 -91.8 0.79 (1) 3.17 O-H 0/1157 0.26 (1) H-I -2698/0 -91.8 -91.8 0.79 (1) 3.96 M-H 0/1127 0.26 (1) J-K 0/28 -91.8 -91.8 0.20 (1) 10.00 M-H 0/127 0.03 (4) J-K 0/28 -91.8 -91.8 0.12 (1) 10.00 M-H 0/87 0.03 (4) S-B -270/0 0.0 0.0 0.03 (1) 7.81 I-L -2879/0 0.80 (1) L-J -270/0 0.0 0.03 (1) 7.81 I-L <t< th=""><th></th><th>A-B</th><th>0 / 28</th><th>-91.8</th><th>-91.8</th><th>0.12(1)</th><th>10.00</th><th>C-R</th><th>0/87</th><th>0.03 (4)</th></t<>		A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	C-R	0/87	0.03 (4)
D-E -3313/0 -91.8 -91.8 0.79 (1) 3.16 P-E -610/0 0.23 (1) E-F -3311/0 -91.8 -91.8 0.78 (1) 3.16 E-O -2/0 0.00 (1) F-G -3311/0 -91.8 -91.8 0.78 (1) 3.16 O-G -609/0 0.23 (1) G-H -3311/0 -91.8 -91.8 0.79 (1) 3.17 O-H 0/1157 0.26 (1) H-I -2698/0 -91.8 -91.8 0.79 (1) 3.17 O-H 0/1157 0.26 (1) H-J -2698/0 -91.8 -91.8 0.20 (1) 10.00 M-H 0/87 0.03 (4) J-K 0/28 -91.8 -91.8 0.12 (1) 10.00 S-C -2879/0 0.80 (1) S-B -270/0 0.0 0.0 0.03 (1) 7.81 S-R 0/2340 -18.5 -18.5 0.52 (1) 10.00 R-Q 0/2398 -18.5 -18.5 0.52 (1) 10.00 O-P 0/2398 -18.5 -18.5 0.52 (1) 10.00 O-P 0/2398 -18.5 -18.5 0.52 (1) 10.00 O-P 0/2398 -18.5 -18.5 0.52 (1) 10.00		B- C	0/16	-91.8				R- D	0 / 122	0.04 (4)
E-F 3311/0 -91.8 -91.8 0.78 (1) 3.16 E-O -2/0 0.00 (1) F-G -3311/0 -91.8 -91.8 0.78 (1) 3.16 O-G -609/0 0.23 (1) G-H -3311/0 -91.8 -91.8 0.78 (1) 3.16 O-G -609/0 0.23 (1) G-H -3311/0 -91.8 -91.8 0.79 (1) 3.17 O-H 0/1157 0.26 (1) H-I -2698/0 -91.8 -91.8 0.31 (1) 3.96 M-H 0/122 0.04 (4) I-J 0/16 -91.8 -91.8 0.20 (1) 10.00 M-I 0/87 0.03 (4) I-J 0/16 -91.8 -91.8 0.20 (1) 10.00 M-I 0/87 0.03 (4) I-J 0/28 -91.8 -91.8 0.12 (1) 10.00 S-C -2879/0 0.80 (1) S-B -270/0 0.0 0.0 0.03 (1) 7.81 I-L -2879/0 0.80 (1) L-J -270/0 0.0 0.0 0.03 (1) 7.81		C-D	-2697 / 0	-91.8	-91.8	0.31 (1)	3.96	D-P	0/1159	0.26 (1)
F-G -3311/0 -91.8 -91.8 0.78 (1) 3.16 O-G -609/0 0.23 (1) G-H -3311/0 -91.8 -91.8 0.79 (1) 3.17 O-H 0/1157 0.26 (1) H-I -26598/0 -91.8 -91.8 0.31 (1) 3.96 M-H 0/122 0.04 (4) I-J 0/16 -91.8 -91.8 0.20 (1) 10.00 M-I 0/87 0.03 (4) I-J 0/16 -91.8 -91.8 0.20 (1) 10.00 M-I 0/87 0.03 (4) S-B -270/0 0.0 0.0 0.03 (1) 7.81 I-L -2879/0 0.80 (1) S-B -270/0 0.0 0.0 0.03 (1) 7.81 I-L -2879/0 0.80 (1) S-R 0/2340 -18.5 -18.5 0.51 (1) 10.00 R-Q 0/2398 -18.5 -18.5 0.52 (1) 10.00 0.00 I-D 0/2398 -18.5 -18.5 0.52 (1) 10.00 I-D 0/2398 -18.5 -18.5 0.52 (1) 10.00 I-D 0/2398 I-B.5 -18.5 0.52 (1) 10.00 I-D 0/2398 I-B.5 -18.5 0.52 (1) 10.00 I-D 0/2398 I-D		D- E	-3313 / 0	-91.8	-91.8	0.79 (1)	3.16	P-E	-610/0	0.23(1)
G-H -3311 O -91.8 -91.8 0.79 (1) 3.17 O-H O 1157 0.26 (1) O.26 (E-F	-3311 / 0	-91.8				E-O	-2/0	0.00 (1)
H-I -2698/0 -91.8 -91.8 0.31 (1) 3.96 M-H 0/122 0.04 (4) I-J 0/16 -91.8 -91.8 0.20 (1) 10.00 M-I 0/87 0.03 (4) J-K 0/28 91.8 -91.8 0.20 (1) 10.00 M-I 0/87 0.03 (4) S-B -270/0 0.0 0.0 0.03 (1) 7.81 I-L -2879/0 0.80 (1) L-J -270/0 0.0 0.0 0.03 (1) 7.81 I-L -2879/0 0.80 (1) S-R 0/2340 -18.5 -18.5 0.51 (1) 10.00 R-Q 0/2398 -18.5 -18.5 0.52 (1) 10.00 Q-P 0/2398 -18.5 -18.5 0.52 (1) 10.00		F- G	-3311 / 0	-91.8	-91.8	0.78 (1)	3.16	0- G	-609 / 0	0.23 (1)
I-J										
J-K 0/28 -91.8 -91.8 0.12 (1) 10.00 S-C -2879/0 0.80 (1) S-B -270/0 0.0 0.0 0.03 (1) 7.81 I-L -2879/0 0.80 (1) L-J -270/0 0.0 0.0 0.03 (1) 7.81 I-L -2879/0 0.80 (1) S-R 0/2340 -18.5 -18.5 0.51 (1) 10.00 R-Q 0/2398 -18.5 -18.5 0.52 (1) 10.00 Q-P 0/2398 -18.5 -18.5 0.52 (1) 10.00			-2698 / 0	-91.8				M- H	0 / 122	0.04 (4)
S-B -270/0 0.0 0.0 0.03 (1) 7.81 I-L -2879/0 0.80 (1) L-J -270/0 0.0 0.0 0.03 (1) 7.81 S-R 0/2340 -18.5 -18.5 0.51 (1) 10.00 R-Q 0/2398 -18.5 -18.5 0.52 (1) 10.00 Q-P 0/2398 -18.5 -18.5 0.52 (1) 10.00			0/16	-91.8				M- I	0/87	0.03 (4)
L-J -270/0 0.0 0.0 0.03 (1) 7.81 S-R 0/2340 -18.5 -18.5 0.51 (1) 10.00 R-Q 0/2398 -18.5 -18.5 0.52 (1) 10.00 Q-P 0/2398 -18.5 -18.5 0.52 (1) 10.00	ı		0 / 28					S-C	-2879 / 0	0.80 (1)
S-R 0/2340 -18.5 -18.5 0.51 (1) 10.00 R-Q 0/2398 -18.5 -18.5 0.52 (1) 10.00 Q-P 0/2398 -18.5 -18.5 0.52 (1) 10.00	ĺ							I- L	-2879 / 0	0.80 (1)
R-Q 0/2398 -18.5 -18.5 0.52 (1) 10.00 Q-P 0/2398 -18.5 -18.5 0.52 (1) 10.00	į	L-J	-270 / 0	0.0	0.0	0.03 (1)	7.81			
R-Q 0/2398 -18.5 -18.5 0.52 (1) 10.00 Q-P 0/2398 -18.5 -18.5 0.52 (1) 10.00										
Q-P 0 / 2398 -18.5 -18.5 0.52 (1) 10.00										
		P- O	0 / 3313	-18.5	-18.5	0.61 (1)	10.00			
O-N 0/2398 -18.5 -18.5 0.52 (1) 10.00			0 / 2398	-18.5						
N-M 0/2398 -18.5 -18.5 0.52 (1) 10.00										
M-L 0 / 2340 -18.5 -18.5 0.51 (1) 10.00		M-L	0 / 2340	-18.5	-18.5	0.51 (1)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 PSF 6.0 0.0 7.4 PSF PSF PSF TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 136 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018, NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.14")
CALCULATED VERT. DEFL.(LL)= L/999 (0.19")
ALLOWABLE DEFL.(TL)= L/360 (1.14")
CALCULATED VERT. DEFL.(TL)= L/999 (0.37")

CSI: TC=0.79/1.00 (D-E:1) , BC=0.61/1.00 (O-P:1) , WB=0.80/1.00 (I-L:1) , SSI=0.26/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION

(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (I) (INPUT = 0.90) JSI METAL= 0.73 (N) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO. 436988 TRUSS DESC. ΙТЗ Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MITek Industries, Inc. Mon Mar 4 08:03:29 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-jRhmZRvUz7yPa0SFLPW1FjV2O1UQvco_d1JlgLzeNPS 9-10-8 1-3-8 14-5-0 9-10-8 Scale = 1:57.6 5x8 = 5x8 = D F 6.00 12 4x6 / 4x6 ≥ G С 5x8 = 5x8 = Н \mathbb{R} 0 Q М Ν 1 3x8 = 3x8 = 3x4 II 5x6 =4x6 = 5x6 = 4x6 = 5x6 = 3x4 || 34-2-0 0-0 5-0-8 9-10-8 17-1-0 24-3-8 29-1-8 34-2-0 TOTAL WEIGHT = 136 lb

N.L. G. A. RULES CHORDS SIZE A - D 2x4 D - F 2x4 F - I 2x4 J - H 2x4 J - H 2x4 O - M 2x4 M - J 2x4 LUMBER DESCR No.2 No.2 SPF DRY SPF SPF SPF SPF DRY No 2 DRY No.2 No.2 DRY No.2 No.2 No.2 SPF DRY ALL WEBS 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER

PL/	ATES (table	is in inches)								
JT	TYPE	PLATES	W	LEN	Y X					
В	TMVW-p	MT20	5.0	8.0	Edge 3.50					
C	TMWW-t	MT20	4.0	6.0	-					
D	TTWW-m	MT20	5.0	8.0	2.25 3.75					
E	TMW+w	MT20	2.0	4.0						
F	TTWW-m	MT20	5.0	8.0	2.25 3.75					
G	TMWW-t	MT20	4.0	6.0						
Н	TMVW-p	MT20	5.0	8.0	Edge 3.50					
J	BMV1+p	MT20	3.0	4.0	•					
K	BMWW-t	MT20	5.0	6.0	2.50 2.00					
L	BMWW-t	MT20	4.0	6.0						
M	BS-t	MT20	3.0	8.0						
N	BMWWW-t	MT20	5.0	6.0						
0	BS-t	MT20	3.0	8.0						
Р	BMWW-t	MT20	4.0	6.0						
Q	BMWW-t	MT20	5.0	6.0	2.50 2.00					
R	RMV1+n	MT20	3.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2406570

DIME	NSIONS, SUPPORTS	AND LOADINGS SPECIFIED I	RY FARRICA	TOR TO BE VERIFIED BY
		THE LONDINGS OF LOWIED	- 1 ADIIIOA	CONTRODE VENIENCED DI
	DING DESIGNER			
BEAF	RINGS			
		MANUALINA ENGTORED	INIDIAT	DECED
	FACTORED	MAXIMUM FACTORED	INPUT	REQRD
	GROSS REACTION	GROSS REACTION	BRG	BRG
IT.				

JT R J	2008 2008	HORZ 0 0	2008 2008	HORZ 0 0	UPLIFT 0 0	IN-SX 5-8 5-8	IN-SX 3-0 3-0			
LIMEA	INFACTORED DEACTIONS									

1ST LCASE MAX,/MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE LIVE 0/0 COMBINED PERM.LIVE SOIL 0/0 944 / 0 0/0 0/0 474 / 0 474 / 0 1418 944 / 0 0/0 0/0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.19 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

		ORDS CFACTORED	FACTO	RED			W E	B S MAX. FACTO	RED
	MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.		MAX
		(LBS)	(Pl	_F)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
	FR-TO		FROM			LENGTH		` -,	
	A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	Q-C	-337 / 0	0.07(1)
	B- C	-2743 / 0	-91.8	-91.8	0.39 (1)	3.87	C-P	-227 / 0	0.14 (1)
	C-D	-2581 / 0	-91.8	-91.8	0.36(1)	3.99	P- D	0 / 249	0.06 (4)
	D- E	-2879 / 0	-91.8		0.81 (1)		D- N	0 / 755	0.17 (1)
ı	E-F	-2879 / 0	-91.8	-91.8	0.81(1)	3.19	N-E	-814/0	0.48 (1)
1	F-G	-2581 / 0	-91.8	-91.8	0.36(1)	3.99	N- F	0 / 755	0.17 (1)
	G-H	-2743 / 0	-91.8	-91.8	0.39(1)	3.87	L-F	0 / 249	0.06 (4)
	H- I	0 / 28	-91.8		0.12 (1)		L- G	-227 / 0	0.14 (1)
	R-B	-1964 / 0	0.0	0.0	0.20(1)	6.01	K- G	-337 / 0	0.07(1)
	J- H	-1964 / 0	0.0	0.0	0.20 (1)	6.01	B-Q	0 / 2509	0.56 (1)
							K- H	0 / 2509	0.56 (1)
	R-Q	0/0			0.10 (4)				
	Q-P	0 / 2473	-18.5	-18.5	0.48 (1)	10.00			
	P- O	0 / 2290	-18.5		0.46 (1)				
	O- N	0 / 2290	-18.5		0.46 (1)				
	N- M	0 / 2290	-18.5		0.46 (1)				
_	M- L	0 / 2290			0.46 (1)				
	L- K	0 / 2473	-18.5		0.48 (1)				
	K-J	0/0	-18.5	-18.5	0.10(4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: DL = DL = DL = DL = AD = 25.6 6.0 0.0 7.4 PSF PSF PSF CH.

TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

[M][F]

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.14")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.16")
ALLOWABLE DEFL.(TL)= L/360 (1.14") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.30")

CSI: TC=0.81/1.00 (E-F:1) , BC=0.48/1.00 (K-L:1) , WB=0.56/1.00 (B-Q:1) , SSI=0.32/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

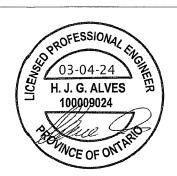
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (J) (INPUT = 0.90) JSI METAL= 0.77 (O) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO. TRUSS DESC. 436988 Τ4 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:30 2024 Page ID:1PtzEZc03lbzkDC64XoV?RygPuj-BeE8mnw6kQ4GB91Rv61Gnx2HuRqse2v7rh2lCozeNPR 1-3-8 11-10-8 10-5-0 11-10-8 Scale = 1:57.6 5x6 = 2x4 | 5x6 = D 6.00 12 4x6 ⋍ 4x6 ≥ G 5x8 = 5x8 = Н ጅ 0 M Q Ν 3x8 = 3x8 = 3x4 || 3x4 || 5x6 = 4x6 = 4x6 = 4x6 = 5x6 = 34-2-0 6-0-8 11-10-8 17-1-0 22-3-8 28-1-8 34-2-0 TOTAL WEIGHT = 142


LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
R - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
R - 0	2x4	DRY	No.2	SPF
O - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Y X					
В	TMVW-p	MT20	5.0	8.0	Edge 3.50					
С	TMWW-t	MT20	4.0	6.0						
D	TTWW-m	MT20	5.0	6.0	2.50 2.25					
E	TMW+w	MT20	2.0	4.0						
F	TTWW-m	MT20	5.0	6.0	2.50 2.25					
G	TMWW-t	MT20	4.0	6.0						
Н	TMVW-p	MT20	5.0	8.0	Edge 3.50					
J	BMV1+p	MT20	3.0	4.0						
K	BMWW-t	MT20	5.0	6.0	2.50 2.00					
L	BMWW-t	MT20	4.0	6.0						
M	BS-t	MT20	3.0	8.0						
N	BMWWW-t	MT20	4.0	6.0						
0	BS-t	MT20	3.0	8.0						
P	BMWW-t	MT20	4.0	6.0						
Q	BMWW-t	MT20	5.0	6.0	2.50 2.00					
R	BMV1+p	MT20	3.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2406571

DIMENSIONS, SUPPORTS	AND LOADINGS	SPECIFIED BY	FABRICATOR T	O BE VERIFIED BY
BUILDING DÉSIGNER				
BEARINGS				
BEARINGS				

	FACTOR GROSS RE		MAXIMUM GROSS F			INPUT BRG	REQRD BRG
Ţ.	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2008	0	2008	0	0	5-8	3-0
	2008	0	2008	0	0	5-8	3-0

UNF	ACTORED REA	ACTIONS		
	1ST LCASE	MAX./MI	N. COMPO	NENT
1T	COMPINED	CNIOW	I IV/E	חר

	1ST LCASE	MAX./N	JIN. COMPO	VENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
R	1418	944 / 0	0/0	0/0	0/0	474 / 0	0/0
J	1418	944 / 0	0/0	0/0	0/0	474 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.64 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE	D.C.		
						VV E			
	X. FACTORED						MAX. FACTO		
MEMB.		VERT. LC						MAX	
	(LBS)	(PI	_F) '	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	Q-C	-241 / 18	0.06(1)	
B-C	-2793 / 0	-91.8	-91.8	0.57 (1)	3.64	C-P	-449 / 0	0.43 (1)	
C-D	-2431 / 0	-91.8	-91.8	0.51 (1)	3.92	P- D	0 / 353	0.08 (1)	
D-E	-2409 / 0	-91.8	-91.8	0.39 (1)	4.06	D- N	0 / 421	0.09 (1)	
E-F	-2409 / 0	-91.8	-91.8	0.39(1)	4.06	N-E	-583 / 0	0.51(1)	
F-G	-2431 / 0	-91.8	-91.8	0.51 (1)	3.92	N-F	0 / 421	0.09 (1)	
G-H	-2793 / 0	-91.8	-91.8	0.57(1)	3.64	L-F	0 / 353	0.08(1)	
H-I	0 / 28	-91.8	-91.8	0.12 (1)	10.00	L- G	-449 / 0	0.43(1)	
R-B	-1959 / 0	0.0	0.0	0.20(1)	6.02	K-G	-241 / 18	0.06(1)	
J- H	-1959 / 0	0.0	0.0	0.20 (1)	6.02	B- Q	0 / 2549	0.57(1)	
i	•			, ,		K- H	0 / 2549	0.57 (1)	
R-Q	0/0	-18.5	-18.5	0.15 (4)	10.00				
Q-P	0 / 2523			0.47 (1)					
P-0	0 / 2153	-18.5		0.41 (1)					
0- N	0 / 2153			0.41 (1)					
N- M	0 / 2153			0.41 (1)					
M- L	0 / 2153			0.41 (1)					
L-K	0 / 2523			0.47 (1)					
K-J	0/2020	-18.5		0.15 (4)					

DESIGN CRITERIA

SPECIFIED LOADS: LL DL LL PSF PSF PSF CH. 25.6

6.0 0.0 7.4 CH. DΙ TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

[M][F

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.14") CALCULATED VERT. DEFL.(LL)= L/999 (0.14") ALLOWABLE DEFL.(TL)= L/360 (1.14") CALCULATED VERT. DEFL.(TL)= L/999 (0.26")

CSI: TC=0.57/1.00 (B-C:1) , BC=0.47/1.00 (P-Q:1) , WB=0.57/1.00 (B-Q:1) , SSI=0.24/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

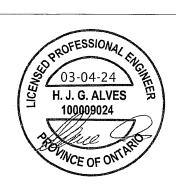
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (J) (INPUT = 0.90) JSI METAL= 0.65 (O) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO. 436988 TRUSS DESC. T5 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:31 2024 Page ID:1PtzEZc03lbzkDC64XoV?RygPuj-fqoWz7xlVkC7pJbdTqZVK8aOqrAYNU6H4LorkEzeNPQ 1-3-8 13-10-8 6-5-0 13-10-8 1-3-8 Scale = 1:58.4 4x6 =6.00 12 4x6 = Е F 3x8 = 3x8 ≈ G 4x6 / 4x6 ≥ 5x8 = 5x8 = Ŕ Q М 0 Ν 3x8 = 3x8 = 3x4 II 5x6 = 4x6 = 4x6 = 5x6 = 3x4 || 34-2-0 0-0 7-0-8 13-10-8 20-3-8 27-1-8 34-2-0 TOTAL WEIGHT = 137 lb


LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
E - F	2x4	DRY	No.2	SPF
F - G	2×4	DRY	No.2	SPF
G - J	2x4	DRY	No.2	SPF
R - B	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
R - P	2x4	DRY	No.2	SPF
P - M	2x4	DRY	No.2	SPF
M - K	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PLA	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Χ			
В	TMVW-p	MT20	5.0	8.0	Edge	3.50			
С	TMWW-t	MT20	4.0	6.0	-				
D	TS-t	MT20	3.0	8.0					
Е	TTW-m	MT20	4.0	6.0					
F	TTWW-m	MT20	4.0	6.0	1.75	2.25			
G	TS-t	MT20	3.0	8.0					
Н	TMWW-t	MT20	4.0	6.0					
ı	TMVW-p	MT20	5.0	8.0	Edge	3.50			
K	BMV1+p	MT20	3.0	4.0	-				
L	BMWW-t	MT20	5.0	6.0	2.50	2.00			
M	BS-t	MT20	3.0	8.0					
N	BMWW-t	MT20	4.0	6.0					
0	BMWWW-t	MT20	4.0	6.0					
Р	BS-t	MT20	3.0	8.0					
Q	BMWW-t	MT20	5.0	6.0	2.50	2.00			
R	BMV1+p	MT20	3.0	4.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2406572

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FAB	RICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

BEA	RINGS						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
R	2008	0	2008	0	0	5-8	3-0
K	2008	0	2008	0	0	5-8	3-0

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
R	1418	944 / 0	0/0	0/0	0/0	474 / 0	0/0
K	1418	944 / 0	0/0	0/0	0/0	474 / 0	0.70

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, K

BRACING TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.31 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-O, H-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	RDS					WE		
	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	`	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	, ,	` '
A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	Q-C	-169 / 58	0.06(1)
B-C -	2808 / 0	-91.8	-91.8	0.81 (1)	3.31	C- O	-651 / 0	0.30 (1)
C-D -	2262 / 0	-91.8	-91.8	0.71 (1)	3.75	O-E	0 / 468	0.11(1)
D-E -	2262 / 0	-91.8	-91.8	0.71 (1)	3.75	O- F	0/0	0.00 (1)
E-F -	1998 / 0	-91.8	-91.8	0.56(1)	4.14	N-F	0 / 467	0.11 (1)
F-G -	2262 / 0	-91.8	-91.8	0.71(1)	3.75	N- H	-652 / 0	0.30 (1)
	2262 / 0	-91.8	-91.8	0.71 (1)	3.75	L- H	-169 / 59	0.05(1)
H-1 -	2809 / 0	-91.8	-91.8	0.81 (1)	3.31	B-Q	0 / 2561	0.58 (1)
1- J	0 / 28	-91.8		0.12(1)		L-T	0 / 2561	0.58 (1)
R-B -	1953 / 0	0.0	0.0	0.20(1)	6.03			
K-I -	1953 / 0	0.0	0.0	0.20(1)	6.03			
R-Q	0/0	-18.5	-18.5	0.21 (4)	10.00			
Q-P	0 / 2542	-18.5	-18.5	0.50(1)	10.00			
P-O	0 / 2542	-18.5	-18.5	0.50(1)	10.00			
O- N	0 / 1997	-18.5	-18.5	0.41(1)	10.00			
N-M	0 / 2542	-18.5	-18.5	0.51(1)	10.00			
M-L	0 / 2542	-18.5	-18.5	0.51(1)	10.00			
L-K	0/0	-18.5	-18.5	0.21 (4)	10.00			

DESIGN CRITERIA

- TPIC 2014

SPECIFIED LOADS:								
TOP	CH.	LL	=	25.6	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LL	=	0.0	PSF			
		DL		7.4	PSF			
		• •		00.0	DOF			

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

[M][F

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.14")
CALCULATED VERT. DEFL.(LL) = L/999 (0.13")
ALLOWABLE DEFL.(TL)= L/360 (1.14")
CALCULATED VERT. DEFL.(TL) = L/999 (0.26")

 $\begin{array}{l} \text{CSI: TC=}0.81/1.00 \; (\text{H-I:1}) \; , \; \text{BC=}0.51/1.00 \; (\text{L-N:1}) \; , \\ \text{WB=}0.58/1.00 \; (\text{I-L:1}) \; , \; \text{SSI=}0.28/1.00 \; (\text{B-C:1}) \\ \end{array}$

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

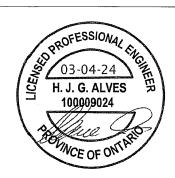
JSI GRIP= 0.78 (K) (INPUT = 0:90) JSI METAL= 0.79 (M) (INPUT = 0.95)

> CITY OF RICHMOND HILL BUILDING DIVISION

> > 05/01/2024

RECEIVED
Per: joshua.nabua

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY GREEN PARK HOMES DRWG NO 436988 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:33 2024 Page 1 ID: 1PtzEZc03lbzkDC64XoV?RygPuj-bDwHOpy? 1LSq2dl0aEbzPZgo0ersrPnaYfHyp7zeNPOdelschilder (Control of the Control of the Contr1-3-8 15-10-8 2-5-0 15-10-8 Scale = 1:61. 5x6 = 4x6 = F G 6.00 12 4x6 = 4x6 ≥ Н 3x8 = 3x8 ≈ 4x6 = 4x6 ≥ С 5x8 = 5x8 = × S U Q 0 Ν 4x6 = 3x8 = 3x4 II 3x8 = 5x6 = 4x6 =4x6 = 4x6 = 5x6 = 3x4 II 34-2-0 0-0 5-5-3 10-7-13 15-10-8 23-6-3 28-8-13 34-2-0


LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - G	2x4	DRY	No.2	SPF
G - 1	2x4	DRY	No.2	SPF
1 - L	2x4	DRY	No.2	SPF
V - B ·	2x4	DRY	No.2	SPF
M - K	2x4	DRY	No.2	SPF
V - S	2x4	DRY	No.2	SPF
S - P	2x4	DRY	No.2	SPF
P - M	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)								
JΤ	TYPE	PLATES	W	LEN	Y X				
В	q-WVMT	MT20	5.0	8.0	Edge 3.50				
C, I	E, H, J				ŭ				
C	TMWW-t	MT20	4.0	6.0					
D	TS-t	MT20	3.0	8.0					
F	TTWW-m	MT20	5.0	6.0	2.50 2.00				
G	TTW-m	MT20	4.0	6.0					
1	TS-t	MT20	3.0	8.0					
K	q-WVMT	MT20	5.0	8.0	Edge 3.50				
М	BMV1+p	MT20	3.0	4.0	•				
N	BMWW-t	MT20	5.0	6.0	2.50 2.00				
0, 1	R, T								
0	BMWW-t	MT20	4.0	6.0					
Р	BS-t	MT20	3.0	8.0					
Q	BMWWW-t	MT20	4.0	6.0					
S	BS-t	MT20	3.0	8.0					
U	BMWW-t	MT20	5.0	6.0	2.50 2.00				
٧	BMV1+p	MT20	3.0	4.0					

Edge - INDICATES REFERENCE CORNER OF PLATE

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2406573

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	
DEADINGS	

BEAL	<u>rings</u>						
	FACTOR	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
V	2008	0	2008	0	0	5-8	3-0
М	2008	0	2008	0	0	5-8	3-0

UNFACTORED REACTIONS | MAX./MIN. COMPONENT REACTIONS | SNOW | LIVE | PERM.LIVE | V | 944 / 0 | 0 / 0 | 0 / 0 | 1ST LCASE SOIL COMBINED WIND V M 0/0 0/0 474 / 0 944 / 0 1418 0/0 0/0 0/0 474 / 0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) V, M

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.81 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-R, H-Q.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					W E	BS	
	K. FACTORED	FACTO	RED	MAX. FACTORED				DRED
мемв.	FORCE	VERT. LC		I MAX	MAX.	MEMB.		MAX
	(LBS)	(PI	LF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	0 / 28	-91.8	-91.8	0.12 (1)	10.00	U-C	-291 / 0	0.07(1)
B-C	-2755 / 0	-91.8		0.45 (1)		C-T	-247 / 0	0.18 (1)
C-D	-2547 / 0	-91.8	-91.8	0.37 (1)		T-E	0 / 243	0.06 (4)
D-E	-2547 / 0	-91.8	-91.8	0.37 (1)	4.03	E-R	-712 / 0	0.32(1)
E-F	-2049 / 0	-91.8	-91.8	0.35 (1)		R-F	0/594	0.13(1)
F-G	-1823 / 0	-91.8		0.10(1)		F-Q	0/11	0.00(1)
G-H	-2053 / 0	-91.8		0.35 (1)			0/607	0.14(1)
H-1	-2546 / 0	-91.8		0.37 (1)		Q-H	-706 / 0	0.32(1)
I-J	-2546 / 0	-91.8		0.37 (1)		O- H	0 / 237	0.05 (4)
J-K	-2756 / 0	-91.8		0.45 (1)		O- J	-249 / 0	0.18 (1)
K-L	0 / 28	-91.8		0.12 (1)		N-J	-289 / 0	0.07 (1)
V-B	-1963 / 0	0.0		\cdot 0.20 (1)		B- U	0/2513	0.57 (1)
M-K	-1963 / 0	0.0	0.0	0.20 (1)	6.01	N-K	0 / 2513	0.57 (1)
V- U	. 0 / 0			0.11 (4)				
U-T	0 / 2482	-18.5		0.45 (1)				
T-S	0 / 2278	-18.5		0.42 (1)				
S-R	0 / 2278	-18.5		0.42 (1)				
R-Q	0 / 1821	-18.5	-18.5	0.35 (1)				
Q-P	0 / 2277	-18.5		0.42 (1)				
P-0	0 / 2277			0.42 (1)				
O- N	0 / 2482			0.44 (1)				
N-M	0/0	-18.5	-18.5	0.11 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL DL LL DL PSF PSF PSF 25.6 6.0 0.0 7.4 TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 154

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.14")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.13")
ALLOWABLE DEFL.(TL)= L/360 (1.14")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.26")

CSI: TC=0.45/1.00 (J-K:1) , BC=0.45/1.00 (T-U:1) , WB=0.57/1.00 (K-N:1) , SSI=0.20/1.00 (J-K:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

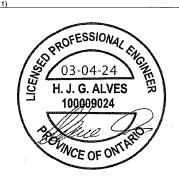
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (M) (INPUT = 0.90) JSI METAL= 0.68 (S) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. GREEN PARK HOMES DRWG NO. TRUSS DESC. 436988 T7 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:34 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-3PUfc9zdofahgnKC8y6CynCzh2BBaqZjmJ0VLZzeNPN 1-3-8 17-1-0 Scale = 1:57.4 4x6 [] 6.00 12 4x6 ≥ G 3x8 / Е 3x8 ≈ 5x6 / 5x6 < С 3x4 II 3x4 II \$ 5x6 = Ω Р 0 Ν 4x6 = 3x8 = 4x6 || 4x6 || 3x8 = 4x6 =5x6 = 34-2-0 6-11-8 20-5-8 27-2-8 34-2-0 TOTAL WEIGHT = 4 X 148 = 590 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER [M][F DESIGN CRITERIA SPECIFIED LOADS: = 25.6 = 6.0 = 0.0 = 7.4 = 39.0 PSF PSF PSF 6.0 0.0 7.4 S CH. LL DΙ


LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - K	2x4	DRY	No.2	SPF
\$ - B	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
S - Q	2x4	DRY	No.2	SPF
Q - N	2x4	DRY	No.2	SPF
N - L	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
S - C	2x4	DRY	No.2	SPF
1 - L	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMV+p	MT20	3.0	4.0							
C	TMWW-t	MT20	5.0	6.0	2.50	1.50					
D	TS-t	MT20	3.0	8.0							
E	TMWW-t	MT20	4.0	6.0							
F	TTWW+p	MT20	4.0	6.0	Edge	:					
G	TMWW-t	MT20	4.0	6.0							
н	TS-t	MT20	3.0	8.0							
	TMWW-t	MT20	5.0	6.0	2.50	1.50					
J	TMV+p	MT20	3.0	4.0							
L	BMVW1-t	MT20	5.0	6.0	2.50	2.00					
M	BMWW-t	MT20	4.0	6.0							
N	BS-t	MT20	3.0	8.0							
0	BMWW+t	MT20	4.0	6.0							
P	BMWW+t	MT20	4.0	6.0							
Q	BS-t	MT20	3.0	8.0							
R	BMWW-t	MT20	4.0	6.0							
S	BMVW1-t	MT20	5.0	6.0	2.50	2.00					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)

Structural component only DWG# T-2406574

	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
S	2008	0	2008	0	0	5-8	2-3
-	2008	0	2008	0	0	5-8	2-3

UNF	UNFACTORED REACTIONS									
	1ST LCASE	MAX./	MIN, COMPO	NENT REACTION	NS					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
S	1418	944 / 0	0/0	0/0	0/0	474 / 0	0/0			
L	1418	944 / 0	0/0	0/0	0/0	474 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, L

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 3.85 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-S, I-L.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	СН	ORDS					W E	BS	
	MAX	C. FACTORED	FACTO	RED				MAX. FACTO	RED
	MEMB.	FORCE	VERT. LC						MAX
		(LBS)	(PL			UNBRAC	;	(LBS)	CSI (LC)
ı	FR-TO		FROM	TO		LENGTH	FR-TO		
	A- B	0 / 28			0.12(1)		F-O	0 / 838	0.19 (1)
	B- C	0/22			0.38 (1)			-701 / 0	0.65 (1)
		-2712 / 0	-91.8	-91.8	0.45 (1)	3.85	G- M	0/371	0.08(1)
	D- E	-2712 / 0	-91.8			3.85		-179 / 20	0.05 (1)
ı	E-F	-2249 / 0	-91.8		0.43 (1)		P-F	0 / 838	0.19 (1)
	F-G	-2249 / 0	-91.8		0.43 (1)		E- P	-701 / 0	0.65 (1)
	G-H	-2712 / 0	-91.8	-91.8	0.45 (1)	3.85	R-E	0/371	0.08(1)
	H- I	-2712 / 0	-91.8		0.45 (1)			-179 / 20	0.05 (1)
	I- J	0 / 22	-91.8		0.38 (1)		S-C	-2962 / 0	0.66 (1)
	J- K	0 / 28	-91.8		0.12 (1)		I- L	-2962 / 0	0.66 (1)
	S-B	-338 / 0	0.0	0.0	0.03(1)	7.81			
	L- J	-338 / 0	0.0	0.0	0.03 (1)	7.81			
ı									
	S-R	0 / 2484			0.51 (1)				
	R-Q	0 / 2217	-18.5		0.45 (1)				
	Q-P	0 / 2217	-18.5		0.45 (1)				
	P- O	0 / 1707	-18.5		0.36 (1)				
	O- N	0 / 2217			0.45 (1)				
	N- M	0 / 2217			0.45 (1)				
	M- L	0 / 2484	-18.5	-18.5	0.51 (1)	10.00			

TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED

ALLOWABLE DEFL.(LL)= L/360 (1.14")
CALCULATED VERT. DEFL.(LL) = L/999 (0.13")
ALLOWABLE DEFL.(TL)= L/360 (1.14")
CALCULATED VERT. DEFL.(TL) = L/999 (0.26")

CSI: TC=0.45/1.00 (C-E:1) , BC=0.51/1.00 (L-M:1) , WB=0.66/1.00 (I-L:1) , SSI=0.22/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (C) (INPUT = 0.90) JSI METAL= 0.67 (C) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO. 436988 T8 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:35 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-Yb21pV_FZziYlxvPifdRU_IB7SYoJHJs?zm3t?zeNPM ر 8-3-1ي 10-4-8 10-5-0 3-0-0 5-10-8 Scale = 1:62.7 5x6 \\ 4x6 = 4x6 ≥ D 9.00 12 4x6 // 5x6 // 5x6 // G Ċ 4x6 ◇ 5x6 = W2 ₩ s Ρ U R Ω 0 Ν М 5x6 = 5x6 = 4x6 || 5x6 = 5x6 = 4x6 || 4x6 || 4x6 || 4x6 II 6x10 || 4x6 || 31-3-8 2-10-8 0-0 5-3-8 10-4-8 15-7-0 20-9-8 31-1-8 31-3-8 34-2-0 TOTAL WEIGHT = 2 X 195 = 390 lb

LUMBER N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - G	2x4	DRY	No.2	SPF
G - H	2x4	DRY	No.2	SPF
н - к	2x4	DRY	No.2	SPF
V - B	2x6	DRY	No.2	SPF
L - J	2x6	DRY	No.2	SPF
V - S	2x6	DRY	No.2	SPF
S - P	2x6	DRY	No.2	SPF
P - L	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
Q - G	2x4	DRY	No.2	SPF
M - I	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
1				

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	IORDS: (0.1	22"X3") SPIRAL NAILS	3
A-D	1	12	TOP
D-F	1	12	TOP
F- G	1	12	TOP
G-H	1	12	TOP
H-K	1	12	TOP
V-B	2	12	TOP
L- J	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL N	JAILS
V-S	2	12	TOP
S-P	2	12	TOP
P-L	2	12	SIDE(183.1)
WEBS:	(0.122"X3")	SPIRAL NAILS	
2x3	1	6	
1- M	2	3	SIDE(816.1)
2x4	1	6	
NAHET	O DE DOIVE	EN FROM ONE SIDE C	NII V
INVIED	O DE DHIVE	IN LUCINI ONE SIDE C	MLT.

Structural component only DWG# T-2406575

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

DEAL	TINGS						
	FACTOR	ED	MAXIMUN	A FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT .	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
V	2335	0	2335	0	0	5-8	1-8
L	5516	0	5516	0	0	5-8	3-7

UNFACTORED REACTIONS

1ST LCASE MAX/MIN. COMPONENT REACTIONS

	IOI LOAGE	1947-195.7	IVIII V. OCIVII CIV	LIVI ILLAGIIO	10		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
V	1648	1100 / 0	0/0	0/0	0/0	548 / 0	0/0
L	3889	2616 / 0	0/0	0/0	0/0	1273 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) V, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.98 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-R.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

<u>LOADING</u> TOTAL LOAD CASES: (4)

	ORDS X. FACTO	DED	FACTO	3CD			W E	BS FACE	ODED	
MEMB.			VERT. LO		MAN	MAX.	MEMB	MAX. FACT FORCE		,
IVICIVID.	(LE		(PL		CSI (LC)			. FORCE		
FR-TO	(LL	10)	FROM		J31 (LU)	LENGTH			CSI	(LU)
A- B	0/3	8	-91.8		0.07 (1)			-350 / 0	0.08	(1)
	-2531 / 0		-91.8		0.28 (1)		C-T		0.10	
	-2425 / 0		-91.8	-91.8	0.27 (1)	5.49				
D- E	-2390 / 0		-91.8		0.26 (1)		D-R		0.12	
E-F	-2477 / 0		-91.8		0.26 (1)				0.20	
F- G	-3076 / 0		-91.8		0.23 (1)		E-Q			
G-H	-3700 / 0		-91.8		0.12(1)		Q-F		0.18	
H-1	-4147 / 0		-91.8		0.13 (1)			-1958 / 0	0.69	
I- J	-5643 / 0		-91.8		0.17(1)		Õ- Ğ		0.18	
J- K	0/3		-91.8		0.07 (1)		0- H			
V-B	-2282 / 0		0.0		0.08(1)		N- H		0.19	
L- J	-5369 / 0		0.0	0.0	0.19(1)	6.32	N- I	-1777 / 0	0.30	
					(-/		M- I	0 / 1895	0.17	
V- U	0/0		-18.5	-18.5	0.03(4)	10.00	B- U	0 / 2096		
U- T	0/2	051	-18.5		0.15 (1)		M- J		0.43	
T-S	0/1	912	-18.5		0.14(1)					. ,
S-R	0/1	912	-18.5	-18.5	0.14(1)	10.00				
R-Q	0/2	391	-18.5		0.17 (1)					
Q-P	0/3	713	-18.5	-18.5	0.27(1)	10.00				
P-O	0/3	713	-18.5		0.27(1)					
O- N	0/3	332	-18.5	-18.5	0.25(1)	10.00				
N- M	0/4	520	-18.5	-18.5	0.42(1)	10.00				
M- L	0/0		-18.5	-18.5	0.13 (1)	10.00				
SPECII	FIED CON	CENTR	ATED LO	ADS (LE	3S)					
JT	LOC.	LC1	MAX-	MAX-		ACE (DIR.	TYPE	HEEL	CONN
М	31-3-8	-2699	-2699		- BA	CK V	RT	TOTAL		C1

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:							
TOP	CH.	LL	=	25.6	PSF		
		DL	=	6.0	PSF		
BOT	CH.	LL	=	0.0	PSF		
		DL	=	7.4	PSF		
TOTA	L LO	AD	=	39.0	PSF		

SPACING = 24.0 IN. C/C

LOADING IN ALL FLAT SECTIONS BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.14")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.07")
ALLOWABLE DEFL.(TL) = L/360 (1.14")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.12")

CSI: TC=0.28/1.00 (B-C:1) , BC=0.42/1.00 (M-N:1) , WB=0.69/1.00 (G-Q:1) , SSI=0.13/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL, = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.77 (M) (INPUT = 0.90) JSI METAL= 0.68 (M) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

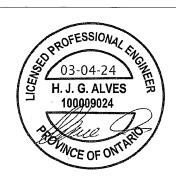
JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK HOMES		DRWG NO.	
436988	Т8	1	2	TRUSS DESC.				
Tamarack Roof Truss, Burlingto	on				Version 8.6 ID:1PtzEZc03lbzkDC64Xd	30 S Aug 30 2023 MiT V?RygPuj-Yb21pV	ek Industries, Inc. Mon Mar FZziYlxvPifdRU_IB7S	4 08:03:35 2024 Page YoJHJs?zm3t?zeNF
OIDDED NAILING AGGURGO	NAMED HANGEDO ADE							
GIRDER NAILING ASSUMES FASTENED WITH MIN. 3-0 II	NAILED HANGERS ARE NCH NAILS.							
PLATES (table is in inches)	W LEN Y X 5.0 6.0 1.25 3.00 4.0 6.0 5.0 6.0 2.25 1.75 4.0 6.0 4.0 6.0 Ecge 5.0 6.0 Ecge 2.00 4.0 6.0 2.00 2.75 6.0 7.0 Ecge 3.25 4.0 6.0							
M BMWW+t MT20 N, O, R, T N BMWW+t MT20	6.0 10.0 5.00 2.50 4.0 6.0 5.0 6.0							
Q BMWWW-t MT20 S BS-1 MT20 U BMWW-t MT20 V BMV1+p MT20	5.0 6.0 2.50 1.50 5.0 6.0 5.0 6.0 4.0 6.0							
Edge - INDICATES REFEREN TOUCHES EDGE OF CHORD	CE CORNER OF PLATE).							
NOTES- (1) 1) Lateral braces to be a minim	num of 2X4 SPF #2.		·					•
9ROFESSI 03-04 H. J. G. A 100009	ONAL ENGINEE				·			
	ONTARIO							CHMOND HI G DIVISION

Structural component only DWG# T-2406575

05/01/2024

RECEIVED
Per: joshua.nabua

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **GREEN PARK HOMES** DRWG NO. TRUSS DESC. 436988 Т9 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:36 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-0ocP1q_tKGqPv4UbGN8g1ClHHru?2hW0EdVcPRzeŇPl 1-3-8 7-10-8 18-5-0 7-10-8 Scale = 1:58. 4x6 = 3x8 = 2x4 || 6x7 ≈ D Ε G 9.00 12 5x6 🗸 5x6 ◇ 3x4 || 3x4 II Q Ν R 0 3x8 3x8 = 5x6 = 4×6 = 4x6 = 5x6 = 5x6 = 4x6 =34-2-0 0-0 7-10-8 14-0-9 20-1-7 26-3-8 34-2-0 TOTAL WEIGHT = 2 X 154 = 309 lb


LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - K	2x4	DRY	No.2	SPF
S - B	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
S - Q	2x4	DRY	No.2	SPF
Q - N	2x4	DRY	No.2	SPF
N - L	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
S - C I - L	2x4 2x4	DRY DRY	No.2 No.2	SPF SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Х			
В	TMV+p	MT20	3.0	4.0					
С	TMWW-t	MT20	5.0	6.0	2.50	2.50			
D	TTWW-m	MT20	6.0	7.0	Edge				
E	TMWW-t	MT20	4.0	6.0	-				
F	TS-t	MT20	3.0	8.0					
G	TMW+w	MT20	2.0	4.0					
H	TTWW-m	MT20	6.0	7.0	Edge				
1	TMWW-t	MT20	5.0	6.0	2.50	2.50			
J	TMV+p	MT20	3.0	4.0					
L	BMVW1-t	MT20	5.0	6.0					
M,	P, R								
M	BMWW-t	MT20	4.0	6.0					
N	BS-t	MT20	3.0	8.0					
0	BMWWW-t	MT20	5.0	6.0	2.50	1.50			
Q	BS-t	MT20	3.0	8.0					
s	BMVW1-t	MT20	5.0	6.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2406576

DIMENCIONE CURRORY	AND LOADINGS SPECIFIED	07.54001	ATOR TO BE	VENIER BY
	AND LOADINGS SPECIFIED	BYFABRIC	SATOR TO BE	AFKILIED RA
BUILDING DESIGNER				
BEARINGS				
FACTORED	MAXIMUM FACTORED	INPUT	REORD	

FACTOR GROSS RE		MAXIMUM GROSS F		INPUT BRG	REQRD BRG	
VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
2010	0	2010	0	0	5-8	2-3
2010	0	2010	0	0	5-8	2-3

UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS

LIVE PERM LIVE WIND SOIL 0/0 0/0 945 / 0 0/0 0/0 474 / 0 1419 945 / 0 0/0 0/0 474 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.88 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-O.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					W E	BS	
MA)	K. FACTORED	FACTO	RED				MAX. FACTO	DRED
MÉMB.		VERT. LC	DAD LC	1 MAX	MAX.	MEMB	. FORCE	MAX
	(LBS)	(PI	LF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	I FR-TO		
A-B	0/38	-91.8	-91.8	0.12(1)	10.00	C-R	0/62	0.02(4)
B-C	0 / 24	-91.8	-91.8	0.22(1)	10.00	R- D	0 / 132	0.04 (4)
C-D	-2050 / 0	-91.8	-91.8	0.29 (1)	4.46	D- P	0/942	0.21 (1)
D-E	-2236 / 0	-91.8	-91.8	0.64(1)	3.88	P-E	-609 / 0	0.60 (1)
E-F	-2235 / 0	-91.8	-91.8	0.63(1)	3.88	E-O	-2/0	0.00(1)
F-G	-2235 / 0	-91.8	-91.8	0.63(1)	3.88	0- G	-608 / 0	0.60(1)
G-H	-2235 / 0	-91.8	-91.8	0.63 (1)	3.89	O- H	0 / 939	0.21 (1)
H-I	-2050 / 0	-91.8	-91.8	0.29 (1)	4.46	M- H	0 / 133	0.04 (4)
I- J	0 / 24	-91.8	-91.8	0.22 (1)	10.00	M- I	0 / 62	0.02 (4)
J-K	0 / 38	-91.8	-91.8	0.12 (1)	10.00	S-C	-2320 / 0	0.89(1)
S-B	-266 / 0	0.0	0.0	0.03(1)	7.81	I- L	-2320 / 0	0.89(1)
L-J	-266 / 0	0.0	0.0	0.03(1)	7.81			
S-R	0 / 1596	-18.5	-18.5	0.40 (1)	10.00			
R-Q	0/1619	-18.5	-18.5	0.40(1)	10.00			
· Q- P	0/1619	-18.5	-18.5	0.40 (1)	10.00			
P- O	0 / 2236	-18.5	-18.5	0.42 (1)	10.00			
O- N	0 / 1620	-18.5	-18.5	0.40 (1)	10.00			
N-M	0 / 1620	-18.5	-18.5	0.40 (1)	10.00			
M-L	0 / 1596	-18.5	-18.5	0.40 (1)	10.00			
				. ,				

DESIGN CRITERIA

SPECIFIED LOADS: 25.6

PSF PSF PSF 6.0 0.0 7.4 CH. LL DΙ TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.14") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.10") ALLOWABLE DEFL.(TL) = L/360 (1.14") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.21")

CSI: TC=0.64/1.00 (D-E:1) , BC=0.42/1.00 (O-P:1) , WB=0.89/1.00 (I-L:1) , SSI=0.26/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

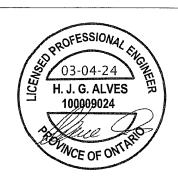
PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (L) (INPUT = 0.90) JSI METAL= 0.52 (I) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO 436988 TRUSS DESC. T10 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:37 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-U_AnEA?V5ayGXE3np4fvZPqQTFFAnF69SHFAyuzeNPK 9-8-12 1-3-8 14-8-8 9-8-12 Scale = 1:57.9 5x6 = 2x4 || 5x6 > D F 9.00 12 4x6 🗸 4x6 🛇 G 5x6 / 5x6 💉 W2 W2 R × 0 Q K 3x4 || 3x8 = 3x8 =5x6 = 4x6 = 3x4 II 4x10 =4x6 = 5x6 = 34-2-0 0-0 4-11-10 9-8-12 17-1-0 24-5-4 29-2-6 34-2-0 TOTAL WEIGHT = 161 [M][F

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
R - B	2x4	DRY.	No.2	SPF
J - H	2x4	DRY	No.2	SPF
R - O	2x4	DRY	No.2	SPF
O - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
D - N	2x4	DRY	No.2	SPF
N - F	2x4	DRY	No.2	SPF


DRY: SEASONED LUMBER.

PLATES (table is in inches)

JI	IYPE	PLATES	w	LEN	Υ	Х
В	TMVW-t	MT20	5.0	6.0	2.25	2.50
С	TMWW-t	MT20	4.0	6.0		
D	TTWW-m	MT20	5.0	6.0	Edge	4.25
Ε	TMW+w	MT20	2.0	4.0	-	
F	TTWW-m	MT20	5.0	6.0	Edge	4.25
G	TMWW-t	MT20	4.0	6.0	-	
н	TMVW-t	MT20	5.0	6.0	2.25	2.50
J	BMV1+p	MT20	3.0	4.0		
ĸ	BMWW-t	MT20	5.0	6.0	2.50	2.75
L	BMWW-t	MT20	4.0	6.0		
М	BS-t	MT20	3.0	8.0		
N	BMWWW-t	MT20	4.0	10.0		
0	BS-t	MT20	3.0	8.0		
Р	BMWW-t	MT20	4.0	6.0		
Q	BMWW-t	MT20	5.0	6.0	2.50	2.75
R	BMV1+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2406577

DIMENSIONS SUDDODTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
DIMENSIONS, SUFFORIS	AND LUADINGS SPECIFIED BY FABRICATUR TO BE VERIFIED BY
BUILDING DESIGNER	
DUILDING DESIGNER	
DEADINGS	

BEA	HINGS						
	FACTORED		MAXIMUI	M FACTO	INPUT	REQRD	
	GROSS RE	EACTION	GROSS I	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
R	2010	0	2010	0	0	5-8	3-1
J	2010	0	2010	0	0	5-8	3-1

UNFACTORED REACTIONS

	1ST LCASE	MAX./	<u>MIN. COMPO</u>	VENT REACTION	<u> </u>		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
R	1419	945 / 0	0/0	0/0	0/0	474 / 0	0/0
J	1419	945 / 0	0/0	0/0	0/0	474 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.83 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING
TOTAL LOAD CASES: (4)

СН	ORDS					WE	BS	
MAX	K. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(Pl	_F)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM			LENGTH	FR-TO		
A-B	0 / 38	-91.8	-91.8	0.12(1)	10.00	Q-C	-316 / 0	0.13(1)
B- C	-2073 / 0			0.35 (1)		C-P	-196 / 0	0.18 (1)
C-D	-1968 / 0	-91.8	-91.8	0.34 (1)	4.50	P- D	0 / 255	0.06(4)
D- E	-1968 / 0	-91.8	-91.8	0.74 (1)	3.83	D- N	0/642	0.10(1)
E-F	-1968 / 0	-91.8	-91.8	0.74 (1)	3.83	N-E	-830 / 0	0.42(1)
F-G	-1968 / 0	-91.8	-91.8	0.34(1)	4.50	N-F	0/642	0.10(1)
G-H	-2073 / 0	-91.8		0.35 (1)		L- F	0 / 255	0.06 (4)
H-I	0 / 38	-91.8		0.12 (1)		L- G	-196 / 0	0.18 (1)
R-B	-1969 / 0	0.0		0.21 (1)		K- G	-316 / 0	0.13(1)
J- H	-1969 / 0	0.0	0.0	0.21(1)	6.00	B-Q	0 / 1731	0.39(1)
						K- H	0 / 1731	0.39 (1)
R-Q	0/0			0.09 (4)				
Q-P	0 / 1683	-18.5		0.35 (1)				
P- O	0 / 1548	-18.5	-18.5	0.36 (1)	10.00			
O- N	0 / 1548	-18.5	-18.5	0.36(1)	10.00			
N-M	0 / 1548	-18.5	-18.5	0.36(1)	10.00			
M-L	0 / 1548	-18.5	-18.5	0.36(1)	10.00			
L-K	0 / 1683	-18.5	-18.5	0.35 (1)	10.00			
K- J	0/0	-18.5	-18.5	0.09 (4)	10.00			

DESIGN CRITERIA

SPECI	FIED I	LOAI	os:		
TOP	CH.	LL	=	25.6	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	P\$F
TOTAL	. LO	٩D	=	39.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.14")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (1.14")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.18")

CSI: TC=0.74/1.00 (E-F:1) , BC=0.36/1.00 (L-N:1) , WB=0.42/1.00 (E-N:1) , SSI=0.33/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

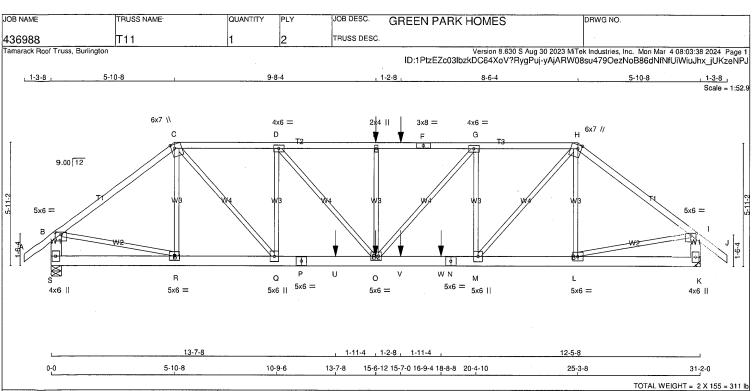

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (B) (INPUT = 0.90) JSI METAL= 0.52 (O) (INPUT = 0.95)

CITY OF RICHMOND HILL **BUILDING DIVISION**

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - J	2×4	DRY	No.2	SPF
S - B	2×6	DRY	No.2	SPF
K - I	2x6	DRY	No.2	SPF
S - P	2x6	DRY	No.2	SPF
P - N	2x6	DRY	No.2	SPF
N - K	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	, ,
TOP CH	ORDS: (0.1	22"X3") SPIRAĹ (NAILS
A-C	1	12	TOP
C-F	1	12	SIDE(61.0)
F- H	1	12	TOP
H-J	1	12	TOP
S-B	2	12	TOP
K- I	2	12	TOP
BOTTON	/I CHORDS	(0.122"X3") SPIF	RAL NAILS
S-P	2	12	TOP
P-N	2	12	SIDE(183.1)
N-K	2	12	TOP ` ´
WEBS:	(0.122"X3")	SPIRAL NAILS	
2x3	1 1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENIED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

Structural component only DWG# T-2406578

DIMENSIONS, SUPPORTS AND	LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	

BEARINGS									
	FACTO	RED	MAXIMU	VI FACTO	ORED	INPUT	REQRD		
	GROSS RE	EACTION	GROSS F	REACTIO	N	BRG	BRG		
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX		
S	3321	0	3321	0	0	5-8	1-13		
K	3334	0	3334	0	0	MECHANIC	CAL		

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K. MINIMUM BEARING LENGTH AT JOINT K = 1-13.

UNF	ACTORED REAC	CTIONS
	1ST LCASE	MAX

	1ST LCASE	. <u>MAX./N</u>	MIN. COMPO	NENT REACTION	٧S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
S	2341	1582 / 0	0/0	0/0	0/0	759 / 0	0/0
K	2350	1586 / 0	0/0	0/0	0/0	763 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.65 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

ı											
l	C F	ORDS						W E	BS		
ı	MA	X. FACTO	ORED	FACTO	RED				MAX. FACT	ORED	
ı	MEMB.	FC	ORCE	VERT. LO		MAX	MAX.	MEMB			
ı			BS)				UNBRA		(LBS)		
l	FR-TO		/	FROM		()		FR-TO		,	,
ı	A-B	0/	38	-91.8	-91.8	0.07 (1	10.00	R- C	-570 / 0	0.15	(1)
ı	B- C	-3818 /	0	-91.8		0.47 (1		C-Q	0/3199	0.40	
l	C-D	-5161/	Ō	-91.8		0.28 (1			-1640 / 0	0.43	
ı	D-E	-6172/	0	-91.8		0.33 (1		D-O	0 / 1546	0.19	
l	E-T	-6172/	0	-91.8		0.38 (1		0- E	-732 / 0	0.19	
l	T-F	-6172/	0	-91.8	-91.8	0.38 (1	3.65	0- G	0 / 1551	0.19	
ı	F-G	-6172 /	0	-91.8		0.38 (1		M- G	-1709 / 0	0.45	
١	G-H	-5158 /	0	-91.8		0.33 (1		M- H	0/3160	0.39	
ı	H- I	-3844/	0	-91.8	-91.8	0.47 (1	4.41	L- H	-516 / 0	0.13	
ı	I- J	0 /	38	-91.8	-91.8	0.07 (1	10.00	B-R	0/3102	0.38	
ı	S-B	-3259 /	0	0.0	0.0	0.12 (1	7.68	L-I	0/3123	0.39	(1)
l	K-I	-3279 /	0	0.0	0.0	0.12 (1	7.66				
l											
l	S-R	0 /		-18.5		0.04 (4					
ĺ	R-Q		3039	-18.5		0.35 (1					
l	Q-P		5161	-18.5		0.79 (1					
l	P- U		5161	-18.5		0.79 (1					
l	U- O		5161			0.79 (1					
l	O- V		5158			0.62 (1					
l	V-W		5158			0.62 (1					
l	W-N		5158			0.62 (1					
l	N- M		5158			0.62 (1					
١	M-L		3061			0.28 (1					
	L-K	0 /	0	-18.5	-18.5	0.04 (4) 10.00				
l											
l				ATED LO							
١	ĴΤ	LOC.	LC1	MAX-	MAX			DIR.	TYPE	HEEL	COV
l		15-6-12	-122	-122				ERT	TOTAL		C1
l		15-6-12	-29	-29				ERT	TOTAL		C1
l	T	16-9-4	-122	-122				ERT	TOTAL		C1
ĺ	U	13-7-8	-1104	-1104	-			ERT	TOTAL		C1

BACK

VERT

TOTAL

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: 25.6 6.0 0.0 7.4 PSF PSF PSF CH. LL

DΙ TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.04")
CALCULATED VERT. DEFL.(LL)= L/999 (0.14")
ALLOWABLE DEFL.(TL)= L/360 (1.04")
CALCULATED VERT. DEFL.(TL)= L/999 (0.26")

CSI: TC=0.47/1.00 (H-I:1) , BC=0.79/1.00 (O-Q:1) , WB=0.45/1.00 (G-M:1) , SSI=0.35/1.00 (O-Q:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

C1 C1 C1 C1 C1

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.76 (I) (INPUT = 0.90) JSI METAL= 0.65 (P) (INPUT = 0.95)

CITY OF RICHMOND HILL **BUILDING DIVISION**

JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC. GREEN PARK HOMES	DRWG NO.
436988	T11	1 2	TRUSS DESC.	
Tamarack Roof Truss, But	lington		Version 8.630 S Aug 30 2023 ID;1PtzEZc03lbzkDC64XoV?RygPuj-yAjAf	MiTek Industries, Inc. Mon Mar 4 08:03:38 2024 Page 2 W08su479OezNoB86dNfNfUiWiuJhx jUKzeNPJ
PLATES (table is in incl JT TYPE	S W LEN Y X 5 50 60 1.25 3.00 6 4.0 6.0 2.0 4.0 6 4.0 6.0 6 4.0 6.0 6 4.0 6.0 6 6.0 7.0 Edge 2.00 4.0 6.0 6 6.0 7.0 Edge 2.00 5 6.0 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0 5 5 6.0	CONNECTION REQUIREMENTS 1) C1: A SUITABLE HANGER		
Edge - INDICATES REFE TOUCHES EDGE OF CI	ERENCE CORNER OF PLATE HORD.			
NOTES- (1) 1) Lateral braces to be a	minimum of 2X4 SPF #2.			
				· · ·
act.	SSIONA			
03- H. J. 0 100	04-24 G. ALVES \$20,09024			
	Tra (12)			CITY OF RICHMOND HIL
Sonwo.	FOF ONTARIO			BUILDING DIVISION
				05/01/2024

Structural component only DWG# T-2406578

RECEIVED
Per: joshua.nabua

JOB NAME TRUSS NAME JOB DESC. QUANTITY DRWG NO. PLY **GREEN PARK HOMES** 436988 T12 TRUSS DESC Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:39 2024 Page 1 Tamarack Roof Truss, Burlington ID:1PtzEZc03lbzkDC64XoV?RygPuj-QMHYfs1mdBD_mYDAxViNfqwlg3vyF2eSwbkG0mzeNPl 1-3-8 7-10-8 15-5-0 1-3-8 5x6 = 2x4 || 5x6 ≥ D F 9.00 12 4x6 🗸 4x6 ❖ G 3x4 II 3x4 || Ν L 0 3x8 = 3x8 = 5x6 = 4x6 = 5x6 == 4x10 = 4x6 = 31-2-0 0-0 7-10-8 15-7-0 23-3-8 31-2-0 TOTAL WEIGHT = 143 lb

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - 1	2x4	DRY	No.2	SPF
P - B	2x4	DRY	No.2	SPF
j - H	2x4	DRY	No.2	SPF
P - N	2x4	DRY	No.2	SPF
N - L	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
L . U	4.4	Ditti	140.2	31 1
ALL WEBS	2x4	DRY	No.2	SPF
EXCEPT	2.84	DNI	140.2	355
C - O	00	DDV	No 0	CDE
	2x3	DRY	No.2	SPF
O - D	2x3	DRY	No.2	SPF
M - E	2x3	DRY	No.2	SPF
K - F	2x3	DRY	No.2	SPF
K - G	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMV+p	MT20	3.0	4.0						
С	TMWW-t	MT20	4.0	6.0	2.00	1.50				
D	TTWW-m	MT20	5.0	6.0	2.00	2.00				
E	TMW+w	MT20	2.0	4.0						
F	TTWW-m	MT20	5.0	6.0	2.00	2.00				
G	TMWW-t	MT20	4.0	6.0	2.00	1.50				
Н	TMV+p	MT20	3.0	4.0						
J	BMVW1-t	MT20	5.0	6.0						
K	BMWW-t	MT20	4.0	6.0						
L	BS-I	MT20	3.0	8.0						
M	BMWWW-t	MT20	4.0	10.0						
N	BS-t	MT20	3.0	8.0						
0	BMWW-t	MT20	4.0	6.0						
Р	BMVW1-t	MT20	5.0	6.0						
ı										

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2406579

DIMENSIONS, SUPPORTS AND LOADINGS SPI	CIEIED DV EADDICATOD TO DE VEDICIED DV
DIMENSIONS, SUFFORTS AND ECADINGS SFI	CIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DOILDING DESIGNER	*
REARINGS	

REAL	<u>RINGS</u>						
	FACTOR	MAXIMUM FACTORED			INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Ρ	1845	0	1845	0	0	5-8	2-0
J	1845	0	1845	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J. MINIMUM BEARING LENGTH AT JOINT J = 2-0.

ı	UNFACTORED REACTIONS										
l		1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS.					
l	JT	COMBINED	SNOW	LIVE	PERM LIVE	WIND	DEAD	SOIL			
l	Ρ	1302	868 / 0	0/0	0/0	0/0	434 / 0	0/0			
ı	J	1302	868 / 0	0/0	0/0	0/0	434 / N	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.63 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS K. FACTORED	FACTO	3FD			W E	BS MAX. FACTO	IRED
MEMB.		VERT. LO		MAY	MAX.	MEMB		MAX
IVICIVIO.	(LBS)				UNBRAC			
FR-TO	(LDO)	FROM			LENGTH			COI (EC)
	0 / 00							0.00 (4)
A-B	0 / 38			0.12 (1)		C-O		0.02 (4)
B-C	0 / 24		-91.8	0.22(1)	10.00	O- D	0 / 171	0.05 (4)
C-D	-1823 / 0	-91.8	-91.8	0.21(1)	4.78	D- M	0 / 736	0.12(1)
D-E	-1979 / 0	-91.8	-91.8	0.82 (1)	3.63	M- E	-871 / 0	0.86 (1)
E-F	-1979 / 0	-91.8	-91.8	0.82 (1)	3.63	M-F	0 / 736	0.12 (1)
F-G	-1823 / 0	-91.8	-91.8	0.21 (1)	4.78	K-F	0 / 171	0.05 (4)
G-H	0 / 24	-91.8		0.22 (1)		K-G	-8 / 49	0.02 (4)
H-1	0/38	-91.8		0.12 (1)		P-C	-2095 / 0	0.80 (1)
P-B	-266 / 0	0.0	0.0	0.03 (1)	7.81		-2095 / 0	0.80 (1)
J- H	-266 / 0	0.0	0.0	0.03 (1)	7.81			` '
}								
P- 0	0 / 1441	-18.5	-18.5	0.40 (4)	10.00			
O- N	0 / 1438	-18.5	-18.5	0.41 (4)	10.00			
N-M	0 / 1438	-18.5	-18.5	0.41 (4)	10.00			
M-L	0 / 1438	-18.5	-18.5	0.41 (4)	10.00			
L-K	0 / 1438	-18.5	-18.5	0.41 (4)	10.00			
K-J	0 / 1441	-18.5	-18.5	0.40 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = TOP CH. 25.6 PSF 6.0 0.0 7.4 TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

39.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= 1/360 (1.04")
CALCULATED VERT. DEFL.(LL)= 1/999 (0.07")
ALLOWABLE DEFL.(TL)= 1/360 (1.04")
CALCULATED VERT. DEFL.(TL)= 1/999 (0.15")

CSI: TC=0.82/1.00 (E-F:1) , BC=0.41/1.00 (K-M:4) , WB=0.86/1.00 (E-M:1) , SSI=0.34/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

- TPIC 2014

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (C) (INPUT = 0.90) JSI METAL= 0.47 (C) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

05/01/2024

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO. 436988 T13 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08.03:40 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-uZrwsC2OOVLrOinMVDDcB2S?STHn_dtc9FTqZDzeNPH _1-3-8 9-4-8 12-5-0 1-3-8 Scale = 1:54.2 5x6 \\ 2x4 || 5x6 // D 9.00 12 4x6 // 4x6 ❖ G 5x6 // 5x6 📏 W2 0 М O Р Ν 3x8 = 3x8 = 3×4 II 3x4 || 5x6 = 4x6 = 4x6 = 4x6 =5x6 = 31-2-0 0-0 4-9-8 9-4-8 15-7-0 21-9-8 26-4-8 31-2-0

LUMBER									
N. L. G. A. RULES									
CHORDS	SIZE		LUMBER	DESCR.					
A - D	2x4	DRY	No.2	SPF					
D - F	2x4	DRY	No.2	SPF					
F - I	2x4	DRY	No.2	SPF					
R - B	2x4	DRY	No.2	SPF					
J - H	2x4	DRY	No.2	SPF					
R - O	2x4	DRY	No.2	SPF					
O - M	2x4	DRY	No.2	SPF					
M - J	2x4	DRY	No.2	SPF					
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF					

DRY: SEASONED LUMBER

DI ATEO (Astri to to to to at a s											
	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMVW-t	MT20	5.0	6.0	2.50	2.50					
С	TMWW-t	MT20	4.0	6.0							
D	TTWW+m	MT20	5.0	6.0	2.25	1.75					
Ε	TMW+w	MT20	2.0	4.0							
F	TTWW+m	MT20	5.0	6.0	2.25	1.75					
G	TMWW-t	MT20	4.0	6.0							
Н	TMVW-t	MT20	5.0	6.0	2.50	2.50					
J	BMV1+p	MT20	3.0	4.0							
K	BMWW-t	MT20	5.0	6.0							
L	BMWW-t	MT20	4.0	6.0							
М	BS-t	MT20	3.0	8.0							
N	BMWWW-t	MT20	4.0	6.0							
0	BS-t	MT20	3.0	8.0							
P	BMWW-t	MT20	4.0	6.0							
Q	BMWW-t	MT20	5.0	6.0							
R	RMV1+n	MT20	3.0	4.0							

1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2406580

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	<u>rings</u>						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS RE	EACTION	GROSS	REACTIC	N	BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
R	1845	0	1845	0	0	5-8	2-8
J	1845	0	1845	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J. MINIMUM BEARING LENGTH AT JOINT J = 2-8.

UNFACT	ORED	REAC	TIONS
10	TICA	CE	- NAA V

	ISI LUASE	NAX./I	VIIN. COMPO	NENT REACTION	V5		
JT	COMBINED	SNOW	Live	PERM.LIVE	WIND	DEAD	SOIL
R	1302	868 / 0	0/0	0/0	0/0	434 / 0	0/0
J	1302	868 / 0	0/0	0/0	0/0	434 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.54 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING
TOTAL LOAD CASES: (4)

	ORDS X. FACTORED	FACTO	RED			WE	BS MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1			MEMB.		MAX
	(LBS)			CSI (LC)			(LBS)	CSI (LC)
FR-TO					LENGTH			
A- B	0/38			0.12 (1)		Q-C	-288 / 0	0.11 (1)
B- C	-1858 / 0			0.31 (1)		C-P	-201 / 0	0.17 (1)
C-D	-1747 / 0	-91.8		0.30(1)			0 / 247	0.06 (1)
D- E	-1679 / 0	-91.8		0.50 (1)		D- N	0 / 509	0.11 (1)
E-F	-1679 / 0	-91.8		0.50 (1)		N- E	-698 / 0	0.33 (1)
F-G	-1747 / 0	-91.8		0.30 (1)			0 / 509	0.11 (1)
G-H	-1858 / 0	-91.8		0.31 (1)		L-F	0 / 247	0.06 (1)
H- I	0/38	-91.8		0.12 (1)		L- G	-201 / 0	0.17 (1)
R-B	-1806 / 0			0.19 (1)		K- G	-288 / 0	0.11 (1)
J- H	-1806 / 0	0.0	0.0	0.19 (1)	6.23	B-Q	0 / 1557	0.35 (1)
						K- H	0 / 1557	0.35 (1)
R-Q	0/0	-18.5	-18.5	0.09 (4)	10.00			
Q-P	0 / 1510	-18.5	-18.5	0.31(1)	10.00			
P- O	0 / 1373	-18.5		0.30(1)				
O- N	0 / 1373	-18.5		0.30(1)				
N- M	0 / 1373	-18.5	-18.5	0.30(1)	10.00			
M-L	0 / 1373	-18.5	-18.5	0.30(1)	10.00			
L-K	0 / 1510			0.31 (1)				
K-J	0/0	-18.5	-18.5	0.09 (4)	10.00			

DESIGN CRITERIA

TOTAL LOAD

SPECIFIED LOADS: LL = DL = LL = DL = AD = TOP CH. 25.6 PSE 6.0 0.0 7.4 PSF PSF PSF

SPACING = 24.0 IN. C/C

THIS DESIGN COMPLIES WITH:

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

39.0 PSF

TOTAL WEIGHT =

[M][F)

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

 PART 9 OF BCBC 2018, NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.04")
CALCULATEO VERT. DEFL.(LL) = L/999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (1.04")
CALCULATED VERT. DEFL.(TL) = L/999 (0.13")

CSI: TC=0.50/1.00 (E-F:1) , BC=0.31/1.00 (K-L:1) , WB=0.35/1.00 (B-Q:1) , SSI=0.28/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

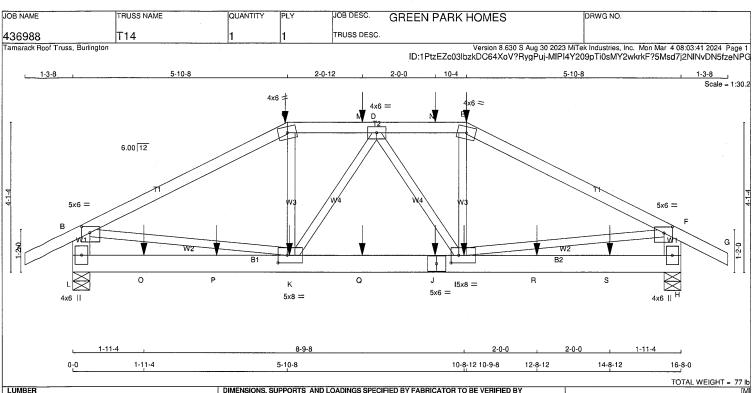

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (H) (INPUT = 0.90) JSI METAL= 0.47 (O) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

05/01/2024

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
L - B	2x6	DRY	No.2	SPF
H - F	2x6	DRY	No.2	SPF
L - J	2x6	DRY	No.2	SPF
J - H	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PLA	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Χ				
В	TMVW-p	MT20	5.0	6.0	2.00	2.75				
С	TTW-m	MT20	4.0	6.0						
D	TMWW-t	MT20	4.0	6.0						
Ε	TTW-m	MT20	4.0	6.0						
F	TMVW-p	MT20	5.0	6.0	2.00	2.75				
Н	BMV1+p	MT20	4.0	6.0						
1	BMWww-t	MT20	5.0	8.0	2.50	2.50				
J	BS-t	MT20	5.0	6.0						
K	BMWww-t	MT20	5.0	8.0	2.50	3.00				
L	BMV1+p	MT20	4.0	6.0						

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

PROFESSIONAL FIGURES H. J. G. ALVES 100009024 WCE OF ONTARIO

Structural component only DWG# T-2406581

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED	BY FABRICATOR T	O BE VERIFIED BY
BUILDING DÉSIGNER			
BEARINGS			

	niivas						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
L	1618	0	1618	0	0	5-8	1-12
Н	1639	0	1639	0	0	5-8	1-12

UNFACTORED REACTIONS

	ISILUASE	· IVIAA./1	VIIIN, COIVIFUI	NENT MEACHOL	VO		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
L	1144	752 / 0	0/0	0/0	0/0	392 / 0	0/0
Н	1159	761 / 0	0/0	0/0	0/0	398 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L, H

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING}} = 3.66 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.}$

WEBS

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4) CHORDS

	MAX	. FACTORED	FACTORED				MAX. FACTO	RED
	MEMB.	FORCE	VERT. LOAD L	.C1 MAX	MAX.	MEMB.	FORCE	MAX
		(LBS)	(PLF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
	FR-TO	, ,	FROM TO					, ,
	A-B	0 / 28	-91.8 -91	.8 0.13 (1)	10.00	K-C	0 / 177	0.06 (4)
	B- C	-2037 / 0	-91.8 -91	.8 0.80 (1)	3.69	K-D	-277 / 0	0.09(1)
	C- M	-1828 / 0	-91.8 -91	.8 0.18 (1)	4.74	D- I	-217 / 0	0.07(1)
	M- D	-1828 / 0	-91.8 -91	.8 0.18 (1)	4.74	I- E	0 / 164	0.06 (4)
	D- N	-1860 / 0	-91.8 -91	.8 0.19(1)	4.70	B-K	0 / 1836	0.45 (1)
	N- E	-1860 / 0	-91.8 -91	.8 0.19(1)	4.70	I- F	0 / 1869	0.46 (1)
	E-F	-2074 / 0	-91.8 -91	.8 0.81 (1)	3.66			
Ì	F- G	0 / 28	-91.8 -91	.8 0.13 (1)	10.00			
į	L-B	-1540 / 0	0.0	.0 0.11 (1)	7.81			
ł	H-F	-1561 / 0	0.0	.0 0.11 (1)	7.80			
ı	L-O		-18.5 -18					
ı	0- P	0/0	-18.5 -18	.5 0.14 (4)	10.00			
ı	P-K	0/0	-18.5 -18					
	K-Q	0 / 1974						
ı	Q-J	0 / 1974		.5 0.30 (1)				
	J- I	0 / 1974						
	I-R	0/0	-18.5 -18					
	R-S		-18.5 -18					
	S- H	0/0	-18.5 -18	.5 0.14 (4)	10.00			

SPE	CIFIED CON	ICENTRA	TED LOA	NDS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
С	5-10-8	-254	-254		FRONT	VERT	TOTAL		C1
E	10-9-8	-254	-254		FRONT	VERT	TOTAL		C1
1	10-8-12	-21	-21		FRONT	VERT	TOTAL		C1
J	9-11-4	-21	-21		FRONT	VERT	TOTAL		C1
K	5-11-4	-21	-21		FRONT	VERT	TOTAL		C1
M	7-11-4	-76	-76		FRONT	VERT	TOTAL		C1
N	9-11-4	-81	-81		FRONT	VERT	TOTAL		C1
0	1-11-4	-20	-20		FRONT	VERT	TOTAL		C1
Ρ	3-11-4	-21	-21		FRONT	VERT	TOTAL		C1
Q	7-11-4	-21	-21		FRONT	VERT	TOTAL		C1
R	12-8-12	-21	-21		FRONT	VERT	TOTAL		C1
S	14-8-12	-20	-20		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: LL =
DL =
DL =
DL =
AD = PSF PSF PSF CH. 25.6 6.0 0.0 7.4 CH.

TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.56°) CALCULATED VERT. DEFL.(LL) = L/ 999 (0.05°) ALLOWABLE DEFL.(TL) = L/360 (0.56°) CALCULATED VERT. DEFL.(TL) = L/ 999 (0.10°)

CSI: TC=0.81/1.00 (E-F:1) , BC=0.30/1.00 (I-K:1) , WB=0.46/1.00 (F-I:1) , SSI=0.21/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (I) (INPUT = 0.90) JSI METAL= 0.42 (F) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **GREEN PARK HOMES** DRWG NO 436988 T15 TRUSS DESC Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:42 2024 Page 1 Tamarack Roof Truss, Burlington ID:1PtzEZc03lbzkDC64XoV?RygPuj-qxzgHu3ev6bZd?xlcdF4GTYPLGx3SVRucZyxd5zeNPF 1-3-8 7-10-8 7-10-8 1-3-8 4x6 =D 6.00 12 4x6 = 4x6 <> С 3x4 || 3x4 || G K 4x10 = 3x8 = 4x6 = 1 16-8-0 0-0 7-10-8 8-4-0 8-9-8 16-8-0 TOTAL WEIGHT = 68 II

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
E - H	2x4	DRY	No.2	SPF
L - B	2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
J - I	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PI A	PLATES (table is in inches)										
JT		PLATES	W	LEN	Υ	Х					
В	TMV+p	MT20	3.0 -	4.0							
С	TMWW-t	MT20	4.0	6.0							
D	TTW-m	MT20	4.0	6.0							
E	TTW-m	MT20	4.0	6.0							
F	TMWW-t	MT20	4.0	6.0							
G	TMV+p	MT20	3.0	4.0							
1	BMVW1-t	MT20	4.0	6.0							
J	BS-t	MT20	3.0	8.0							
K	BMWwww*-	MT20	4.0	10.0							
L	BMVW1-t	MT20	4.0	6.0							

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

REAL	HINGS						
	FACTOR	ED	MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
L	1043	0	1043	0	0	5-8	1-8
l	1043	0	1043	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 1-8

UNFACTORED REACTIONS

	131 LUASE	IVIAX./I	VIIIN. COMPON	NENT REACTION	12		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL
L	735	496 / 0	0/0	0/0	0/0	240 / 0	0/0
l	735	496 / 0	0/0	0/0	0/0	240 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.24 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS	WEBS							
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB	. FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	C-K	-235 / 0	0.11 (1)	
B- C	0/18	-91.8	-91.8	0.22(1)	10.00	K-F	-235 / 0	0.11(1)	
C-D	-919/0	-91.8	-91.8	0.18(1)	6.24	L- C	-1233 / 0	0.47(1)	
D-E	-826 / 0	-91.8	-91.8	0.02(1)	6.25	F-1	-1233 / 0	0.47(1)	
E-F	-919/0	-91.8	-91.8	0.18(1)	6.24	D-K	0 / 224	0.05(1)	
F- G	0/18	-91.8	-91.8	0.22 (1)	10.00	K-E	0 / 224	0.05(1)	
G-H	0 / 28	-91.8	-91.8	0.12(1)	10.00				
L-B	-266 / 0	0.0	0.0	0.03(1)	7.81				
I- G	-266 / 0	0.0	0.0	0.03(1)	7.81			•	
L-K	0 / 1002	-18.5	-18.5	0.45(4)	10.00				
K- J	0 / 1002	-18.5	-18.5	0.45 (4)	10.00				
J- I	0 / 1002	-18.5	-18.5	0.45 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = DL = DL = DL = TOTAL LOAD = PSF PSF PSF 25.6 6.0 0.0 7.4

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

39.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.56") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03") ALLOWABLE DEFL.(TL)= L/360 (0.56") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.12")

CSI: TC=0.22/1.00 (F-G:1) , BC=0.45/1.00 (I-K:4) , WB=0.47/1.00 (F-I:1) , SSI=0.15/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.61 (L) (INPUT = 0.90) JSI METAL= 0.33 (J) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

05/01/2024

Per: joshua.nabua

Structural component only DWG# T-2406582

JOB NAME TRUSS NAME QUANTITY JOB DESC. **GREEN PARK HOMES** DRWG NO. 436988 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:43 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-J8X3VE4GgQjQF9WxALmJpg4aegKaBxx2rCiU9XzeNPE 1-3-8 8-4-0 1-3-8 Scale = 1:33.7 4x6 || D 6.00 12 4x6 🗲 4x6 ≥ Е С 3x4 || 3x4 II J K 4x6 =3x8 = 4x6 =4x6 — H 4x6 = 16-8-0 5-7-8 16-8-0 TOTAL WEIGHT = 2 X 67 = 134 lb

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2×4	DRY	No.2	SPF
L - B	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EVACENT				

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)										
JΤ	TYPE	PLATES	W	LEN	Υ	Х					
В	TMV+p	MT20	3.0	4.0							
C	TMWW-t	MT20	4.0	6.0							
D	q+WWTT	MT20	4.0	6.0	Edge						
Ε	TMWW-t	MT20	4.0	6.0							
F	TMV+p	MT20	3.0	4.0							
Н	BMVW1-t	MT20	4.0	6.0							
1	BMWW-t	MT20	4.0	6.0							
J	BS-t	MT20	3.0	8.0							
K	BMWW-t	MT20	4.0	6.0							
1	RM//M/1-t	MT20	4.0	6.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DÉSIGNER

DEA	RINGS						
	FACTOR	ED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
L	1043	0	1043	0	0	5-8	1-8
H	1043	0	1043	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 1-8.

UNFACTORED REACTIONS

l	1ST LCASE	MAX./N	<u>/IIN. COMPOR</u>	vs S			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
L	735	496 / 0	0/0	0/0	0/0	240 / 0	0/0
Н	735	496 / 0	0/0	0/0	0/0	240 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.90 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS		WEBS						
MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB	FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	2	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	D- I	0 / 359	0.08 (1)	
B- C	0/19	-91.8	-91.8	0.25 (1)	10.00	I-E	-229 / 0	0.05 (1)	
C-D	-1057 / 0		-91.8	0.20 (1)		K- D	0 / 359	0.08(1)	
D- E	-1057 / 0	-91.8	-91.8	0.20(1)		C-K	-229 / 0	0.05(1)	
E-F	0 / 19	-91.8	-91.8	0.25 (1)	10.00	L- C	-1260 / 0	0.52 (1)	
F- G	0 / 28	-91.8	-91.8	0.12 (1)	10.00	E- H	-1260 / 0	0.52 (1)	
L- B	-273 / 0	0.0	0.0	0.03 (1)	7.81				
H-F	-273 / 0	0.0	0.0	0.03 (1)	7.81				
	0 / 4000				40.00				
L-K	0 / 1030	-18.5		0.24 (1)					
K- J	0 / 758	-18.5		0.19 (4)					
J- I	0 / 758	-18.5	-18.5	0.19 (4)	10.00				
I- H	0 / 1030	-18.5	-18.5	0.24(1)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: 25.6

LL =
DL =
LL =
DL =
AD = PSF PSF 6.0 0.0 7.4 TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

[M][F]

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.56") CALCULATED VERT. DEFL.(LL)= L/999 (0.03") ALLOWABLE DEFL.(TL)= L/360 (0.56") CALCULATED VERT. DEFL.(TL)= L/999 (0.06")

CSI: TC=0.25/1.00 (E-F:1) , BC=0.24/1.00 (H-I:1) , WB=0.52/1.00 (E-H:1) , SSI=0.16/1.00 (E-F:1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

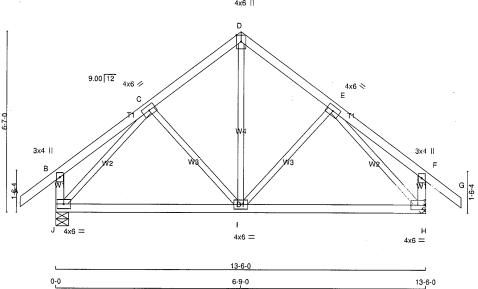
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION. (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.73 (E) (INPUT = 0.90) JSI METAL= 0.28 (E) (INPUT = 0.95)

PROFESSIONAL ENGINE 100009024 NO OF ONTARIO

Structural component only DWG# T-2406583

CITY OF RICHMOND HIL **BUILDING DIVISION**

TRUSS NAME JOB NAME JOB DESC. QUANTITY PLY **GREEN PARK HOMES** DRWG NO. 436988 TRUSS DESC. T17 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:44 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-nK5Ria5uRkrHtJ57k2HYMudmh4f5wSUB3sR1i_zeNPD 1-3-8 6-9-0 1-3-8 6-9-0 Scale = 1:40.1 4x6 ||

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR A - D D - G J - B DRY DRY DRY 2x4 2x4 SPF No.2 2×4 No 2 SPF 2x4 2x4 DRY DRY SPF No.2 No.2 ALL WEBS 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES w LEN Y TMV+p TMWW-t 3.0 4.0 4.0 4.0 6.0 6.0 MT20 MT20 TTW+p MT20 Edge 4.0 3.0 4.0 6.0 4.0 6.0 6.0 6.0 TMWW-t MT20 TMV+p BMVW1-t MT20 MT20 н RMWWW-t MT20 40

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DÉSIGNER

BEAF	BEARINGS										
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD				
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG				
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX				
J	871	0	871	0	0	5-8	1-8				
H	871	0	871	0	0	MECHANIC	AL				

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	-			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
J	613	416 / 0	0/0	0/0	0/0	197 / 0	0/0
Н	613	416 / 0	0/0	0/0	0/0	197 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS				WEBS						
MAX.	FACTORED	FACTO					MAX. FACTO	RED		
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO				
A- B	0/38	-91.8	-91.8	0.12(1)	10.00	I- D	0/387	0.09(1)		
B- C	0/21	-91.8	-91.8	0.16(1)	10.00	1- E	-157 / 0	0.07(1)		
C-D	-543 / 0	-91.8	-91.8	0.13(1)	6.25	C- I	-157 / 0	0.07 (1)		
D-E	-543 / 0	-91.8	-91.8	0.13(1)	6.25	J- C	-778 / 0	0.31(1)		
E-F	0/21	-91.8	-91.8	0.16(1)	10.00	E- H	-778 / 0	0.31(1)		
F- G	0/38	-91.8	-91.8	0.12(1)	10.00					
J- B	-247 / 0	0.0	0.0	0.03(1)	7.81					
H- F	-247 / 0	0.0	0.0	0.03 (1)	7.81					
J- I	0 / 522	-18.5		0.28 (4)	10.00					
I- H	0 / 522	-18.5	-18.5	0.28 (4)	10.00					

DESIGN CRITERIA

TOTAL LOAD

SPECIFIED LOADS: 25.6 6.0 0.0 7.4 PSF PSF PSF CH. LL DL

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

39.0

TOTAL WEIGHT = 4 X 61 = 245 I

[M][F

- THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.45")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.45")
CALCULATED VERT. DEFL.(TL)= L/999 (0.05")

CSI: TC=0.16/1.00 (E-F:1) , BC=0.28/1.00 (I-J:4) , WB=0.31/1.00 (E-H:1) , SSI=0.12/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

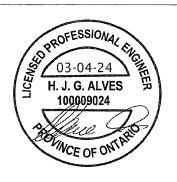
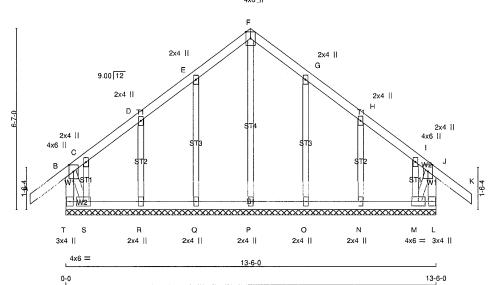

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.52 (E) (INPUT = 0.90) JSI METAL= 0.17 (E) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

Per: joshua.nabua


Structural component only DWG# T-2406584

JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO. TRUSS DESC 436988 T17G

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:45 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-FWfpwv5XC1z7UTgKHmpnu59y3U2UfywLIWBbEQzeNPC

LUMBER
N. L. G. A. RULES
CHORDS SIZE
T - B 2x4
A - F 2x4 SIZE 2x4 LUMBER DESCR No.2 No.2 No.2 SPF SPF SPF SPF DRY 2x4 2x4 DRY DRY 2x4 DRY No.2 2x4 DRY No.2 SPF ALL WEBS 2x3 DRY No.2 SPF ALL GABLE WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

GABLE STUDS SPACED AT 2-0-0 OC.

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Y X						
В	TMVW+p	MT20	4.0	6.0	Edge						
C,	D, E, G, H, I										
С	TMW+w	MT20	2.0	4.0							
F	TTW+p	MT20	4.0	6.0	Edge						
J	TMVW+p	MT20	4.0	6.0	Edge						
L	BMV1+p	MT20	3.0	4.0							
М	BMWW1-t	MT20	4.0	6.0							
Ν,	O, P, Q, R										
N	BMW1+w	MT20	2.0	4.0							
S	BMWW1-t	MT20	4.0	6.0							
Т	BMV1+p	MT20	3.0	4.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED	BY FABRICATOR TO B	E VERIFIED BY
BUILDING DESIGNER			
REVDINGS			

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

WEDG

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHODDS

CHC	RUS					W E	BS	
MAX.	FACTORED	FACTOR	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
T-B	-282 / 0			0.03(1)		P- F	-154 / 0	0.11(1)
A-B	0/38	-91.8	-91.8	0.12(1)	10.00	Q-E	-208 / 0	0.08 (1)
B-C	-74 / 0	-91.8	-91.8	0.12(1)	6.25	R- D	-182 / 0	0.04(1)
C-D	-7 / 0	-91.8		0.04(1)		S-C	-12/0	0.00(1)
	-2/0	-91.8		0.05 (1)		0- G	-208 / 0	0.08 (1)
E-F	-11/0	-91.8	-91.8	0.05 (1)	6.25	N- H	-182 / 0	0.04(1)
F-G	-11 / 0	-91.8	-91.8	0.05 (1)	6.25	M- I	-12/0	0.00(1)
G-H	-2/0	-91.8		0.05 (1)			0/17	0.00(1)
H-1	-7 / 0	-91.8		0.04 (1)		M- J	0/17	0.00(1)
I- J	-74 / 0	-91.8	-91.8	0.12(1)	6.25			
J-K	0/38	-91.8	-91.8	0.12(1)	10.00			
L-J	-282 / 0	0.0	0.0	0.03 (1)	7.81			
T-S	0/0			0.01 (4)				
S-R	0/9	-18.5		0.02 (4)				
R-Q	0/4	-18.5		0.02 (4)				
Q-P	0/0	-18.5		0.01 (4)				
P-0	0/0	-18.5		0.01 (4)				
O- N	0/4	-18.5		0.02 (4)				
N-M	0/9	-18.5		0.02 (4)				
M-I	0/0	-195	-185	0.01 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 6.0 0.0 7.4 PSF PSF PSF PSF CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

Scale = 1:40.1

TOTAL WEIGHT = 63 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014 DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.12/1.00 (J-K:1), BC=0.02/1.00 (M-N:4), WB=0.11/1.00 (F-P:1), SSI=0.08/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT .

NAIL VALUES | PLATE | GRIP(DRY) | SHEAR | SECTION | (PSI) | (PLI) | (PLI) | (PLI) | MAX | MIN | MAX | MIN | MAX | MIN | MT20 | 650 | 371 | 1747 | 788 | 1987 | 1873 |

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.16 (J) (INPUT = 0.90) JSI METAL= 0.11 (E) (INPUT = 0.95)

Structural component only DWG# T-2406585

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **GREEN PARK HOMES** DRWG NO TRUSS DESC. 436988 T18 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:46 2024 Page ID:1PtzEZc03lbzkDC64XoV?RygPuj-jjCB7F69zL5_6dFWrTK0RJi49tMSON1UXAw8mszeNPB 1-3-8 3-10-8 1-10-8 Scale = 1:26.7 5x6 // 5x6 \\ D Е 4x6 || 9.00 12 F 5x6 🥢 B1 J 4x6 || त 5x6 = 4x6 || 4x6 || 4x6 || 3-8-8 8-7-8 0-0 3-8-8 3-10-8 10-5-8 12-4-0 TOTAL WEIGHT = 67 lb

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
E-F	2x4	DRY	No.2	SPF
K - B	2x6	DRY	No.2	SPF
G - F	2x4	DRY	No.2	SPF
K - G	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Y X						
В	TMVW-t	MT20	5.0	6.0	2.25 1.50						
С	TTWW+m	MT20	5.0	6.0	2.25 1.75						
D	TMW+w	MT20	2.0	4.0							
E	TTWW+m	MT20	5.0	6.0	2.25 1.75						
F	TMVW+p	MT20	4.0	6.0	Edge						
G	BMV1+p	MT20	4.0	6.0	3.00 Edge						
Н	BMWW+t	MT20	4.0	6.0							
1	BMWWW-t	MT20	5.0	6.0							
J	BMWW+t	MT20	4.0	6.0							
K	BMV1+p	MT20	4.0	6.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER**

DEAD	<u>BEARINGS</u>									
	FACTORED		MAXIMU	M FACTO	INPUT	REQRD				
	GROSS R	GROSS REACTION			BRG	BRG				
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX			
K	1329	0	1329	0	0	5-8	1-8			
G	929	0	929	0	0	5-8	1-8			

UNFACTORED	REACTIONS

	151 LCASE	MAX	MAX./MIN. COMPONENT REACTIONS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
K	933	649 / 0	0/0	0/0	0/0	285 / 0	0/0		
G	655	441/0	0/0	0/0	0/0	214/0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K, G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.47 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					WE	BS		
MAX	C. FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO					FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0/38	-91.8	-91.8	0.14(1)	10.00	J- C	0 / 556	0.14 (1)	
B-C	-1186 / 0	-91.8	-91.8	0.29 (1)	5.47	C-1	-182 / 0	0.08 (1)	
	-846 / 0	-91.8	-91.8	0.18(1)	6.25	I- D	-360 / 0	0.10(1)	
	-846 / 0	-91.8	-91.8	0.18 (1)	6.25	I- E	0/719	0.18 (1)	
E-F	-507 / 0	-91.8	-91.8	0.06(1)	6.25	H- E	-459 / 0	0.13(1)	
K-B	-1283 / 0	0.0	0.0	0.09(1)			0/983	0.24 (1)	
G-F	-924 / 0	0.0	0.0	0.15(1)	7.81	H- F	0 / 667	0.17(1)	
K-J	0/0			0.04 (1)					
J-I	0/961			0.16 (1)					
I- H	0/392			0.07 (1)					
H-G	0/0	-18.5	-18.5	0.02 (1)	10.00				
205015									
SPECIF	TED CONCENTI	RATED LO.	AUS (LE	35)					

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

LOC. 3-8-8 MAX+ MAX-FACE HEEL CONN -540 -540 FRONT VERT TOTAL C1

CONNECTION REQUIREMENTS

Structural component only DWG# T-2406586

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

- PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

THIS DESIGN COMPLIES WITH:

DESIGN CRITERIA SPECIFIED LOADS: LL DL LL DL

TOTAL LOAD

SPACING =

OF 6.00/12

- TPIC 2014

ALLOWABLE DEFL.(LL)= L/360 (0.41")
CALCULATED VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.41")
CALCULATED VERT. DEFL.(TL)= L/999 (0.03")

25.6 6.0 0.0 7.4 PSF PSF PSF PSF

39.0

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

24.0 IN. C/C

CSI: TC=0.29/1.00 (B-C:1) , BC=0.16/1.00 (I-J:1) , WB=0.24/1.00 (B-J:1) , SSI=0.16/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PI I) (PI I) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

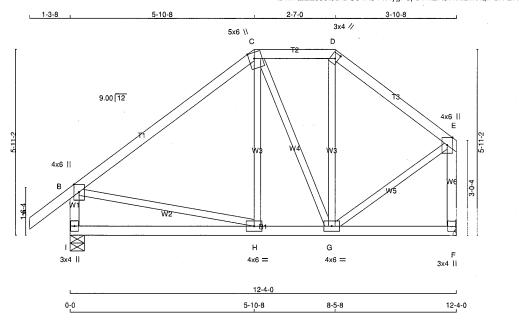
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (E) (INPUT = 0.90) JSI METAL= 0.43 (J) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY JOB DESC. **GREEN PARK HOMES** DRWG NO. TRUSS DESC. 436988 T19


Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:47 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-BvmZKb7nkfDrknqiPBrFzWFD5HiY7sgemqgilJzeNPA

Scale = 1:35.1

TOTAL WEIGHT = 59 II

[M][F

LUMBER								
N. L. G. A. RULES								
CHORDS	SIZE		LUMBER	DESCR.				
A - C	2x4	DRY	No.2	SPF				
C - D	2x4	DRY	No.2	SPF				
D - E	2x4	DRY	No.2	SPF				
I - B	2x4	DRY	No.2	SPF				
F - E	2x4	DRY	No.2	SPF				
1 - F	2x4	DRY	No.2	SPF				
ALL WEBS	2x3	DRY	No.2	SPF				
EXCEPT								

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Y X					
В	TMVW+p	MT20	4.0	6.0	Edge					
С	TTWW+m	MT20	5.0	6.0	Edge 2.00					
D	TTW+h	MT20	3.0	4.0	2.00 1.25					
Ε	TMVW+p	MT20	4.0	6.0	Edge					
F	BMV1+p	MT20	3.0	4.0						
G	RMWWW.t	MT20	4.0	6.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

MT20

4.0 6.0 3.0 4.0

NOTES- (1)

BMWW-t

BMV1+p

1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

BEA	RINGS						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	806	0	806	0	0	5-8	1-8
F	680	0	680	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./	MAX./MIN. COMPONENT REACTIONS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL		
	568	386 / 0	0/0	0/0	0/0	182 / 0	0/0		
F	481	316/0	0/0	0/0	0/0	165 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS

CHC	RDS				M F B 2				
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0/38	-91.8	-91.8	0.12(1)	10.00	H- C	0/89	0.03 (4)	
B- C	-479 / 0	-91.8	-91.8	0.41 (1)	6.25	C-G	-139 / 0	0.09(1)	
C-D	-327 / 0	-91.8	-91.8	0.08 (1)	6.25	G- D	-49 / 31	0.03(1)	
D- E	-410 / 0	-91.8	-91.8	0.18(1)	6.25	B- H	0/390	0.09(1)	
I- B	-760 / 0	0.0	0.0	0.08(1)	7.81	G-E	0 / 396	0.09(1)	
F-E	-647 / 0	0.0	0.0	0.11 (1)	7.81				
I- H	0/0	-18.5	-18.5	0.14 (4)	10.00				
H- G	0 / 383	-18.5	-18.5	0.17 (4)	10.00				
G-F	0/0	-18.5	-18.5	0.07 (4)	10.00				

SPECIFIED LOADS: LL = DL = LL = 25.6 6.0 0.0 7.4 CH. PSF PSF PSF

DL TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.41")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.41")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04")

CSI: TC=0.41/1.00 (B-C:1) , BC=0.17/1.00 (G-H:4) , WB=0.09/1.00 (C-G:1) , SSI=0.17/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

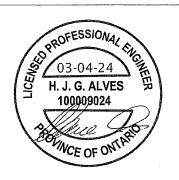
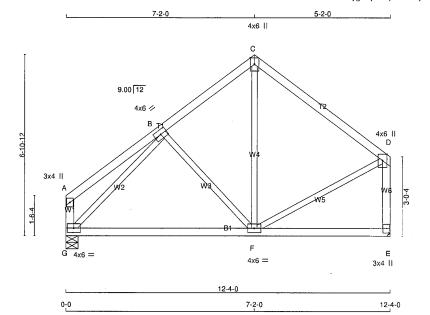

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.47 (G) (INPUT = 0.90) JSI METAL= 0.32 (B) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

Per: joshua.nabua



Structural component only DWG# T-2406587

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO. TRUSS DESC 436988 T20

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:48 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-f5KyYx8PVyLiMwPuzuMUWknPJh1VsFan_UPFrlzeNP9

LUMBER N. L. G. A. RULES N. L. G. A. CHORDS A - C C - D G - A E - D G - E SIZE 2x4 LUMBER DESCR SPF No.2 DRY DRY DRY DRY 2x4 2x4 No.2 No 2 SPF SPF 2x4 No.2 ALL WEBS EXCEPT 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Y X						
Α	TMV+p	MT20	3.0	4.0							
В	TMWW-t	MT20	4.0	6.0							
С	TTW+p	MT20	4.0	6.0	Edge.						
D	TMVW+p	MT20	4.0	6.0	Edge						
Е	BMV1+p	MT20	3.0	4.0							
F	BMWWW-t	MT20	4.0	6.0							
G	BMVW1-t	MT20	4.0	6.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

DEAF	NUO						
	FACTOR	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	680	0	680	0	0	MECHANIC	AL
G	680	0	680	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS								
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
Е	481	316/0	0/0	0/0	0/0	165 / 0	0/0				
G	481	316 / 0	0/0	0/0	0/0	165 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

RDS				WEBS				
FACTORED	FACTO	RED				MAX. FACTO	RED	
FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
	FROM	TO		LENGTH	FR-TO			
0 / 23	-91.8	-91.8	0.19 (1)	10.00	B-F	-202 / 0	0.09(1)	
-428 / 0	-91.8	-91.8	0.15 (1)	6.25	F-Ç	0 / 122	0.04 (4)	
-405 / 0	-91.8	-91.8	0.32(1)	6.25	G-B	-682 / 0	0.30(1)	
-125 / 0	0.0	0.0	0.01(1)	7.81	F- D	0/366	0.08(1)	
-649 / 0	0.0	0.0	0.11 (1)	7.81				
0 / 400	40.5	10.5	0.05 (4)	10.00				
0/0	-18.5	-18.5	0.22 (4)	10.00				
	(LBS) 0 / 23 -428 / 0 -405 / 0 -125 / 0	FACTORED FACTOR (LBS) VERT. LO (LBS) (FOM A 1.0	FACTORED FACTORED FORCE (LBS) (PLF)	FACTORED FAC	FACTORED FACTORED CLOSE FORCE (LBS) FACTORED CLOSE (LC) MAX MAX. (LBS) FACTORED CLOSE (LC) UNBRACE (LBS) FACTORED CLOSE (LC) UNBRACE (LBGT) CLOSE (LC) CLO	FACTORED FACTORED (LBS) FACTORED (LB	FACTORED FORCE (LBS) FORCE (LB	FACTORED FACTORED

DESIGN CRITERIA

SPECIFIED LOADS:

LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 AD = 39.0 TOP CH. PSF PSF PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9 NBCC 2015

TOTAL WEIGHT = 54 lb [M][F]

Scale = 1:41.9

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED BOOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.41")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.41")
CALCULATED VERT. DEFL.(TL)= L/999 (0.07")

CSI: TC=0.32/1.00 (C-D:1) , BC=0.25/1.00 (F-G:4) , WB=0.30/1.00 (B-G:1) , SSI=0.15/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.45 (F) (INPUT = 0.90) JSI METAL= 0.24 (D) (INPUT = 0.95)

PROFESSIONAL ENGINEER OF LONG PROFESSIONAL ENGINEER ENGIN 100009024 NCE OF ONT ARIO

Structural component only DWG# T-2406588

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB DESC. JOB NAME TRUSS NAME QUANTITY PL Y **GREEN PARK HOMES** DRWG NO 436988 T21 TRUSS DESC

Tamarack Roof Truss, Burlington

LUMBER
N. L. G. A.
CHORDS
A - B
B - C
D - C
F - A

ALL WEBS

FOLLOWS:

A- B B- C C- D F- A

CHORDS #ROWS

SIDE OR ON THE TOP

SIZE

DRY

DRY DRY

DRY

DRY

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS

TOP CHORDS : (0.122"X3") SPIRAL NAILS

SURFACE

12

12

BOTTOM CHORDS : (0.122"X3") SPIRAL NAILS F-D 2 12 WEBS: (0.122"X3") SPIRAL NAILS 2x3 1 6

NAILS TO BE DRIVEN FROM ONE SIDE ONLY. GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLE SHOWN IS THE EQUIVALENT LIDEAPPLIED. TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.

REMAINING PLF MUST BE APPLIED ON THE OPPOSITE

SPACING (IN)

2x4 2x4

2x6

2x3

DRY: SEASONED LUMBER.

LUMBER

No.2 No.2

No.2

No.2

DESCR

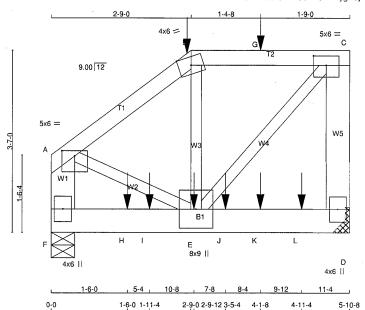
SPF

SPE

SPE

SPF

LOAD(PLF)


SIDE(61.0)

SIDE(61.0)

SIDE(183.1)

TOP

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:49 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-7luKlH81GGTZz4_5Wctj3xKcR5H6bguwD89oNBzeNP8

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADINGS SPECIFIED	BY FABRIC	CATOR TO BE	VERIFIED BY
BEARINGS				
FACTORED	MAXIMUM FACTORED	INPUT	REQRD	
GROSS REACTION	GROSS REACTION	BRG	BRG	

VERT HOR7 DOWN HORZ LIPLIFT IN-SX IN-SX 3849 3907 3849 3907 MECHANICAL 5-8 2-2

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 2-1.

UNFACTORED REACTIONS
1ST LCASE ____MA MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND SOIL 0/0 0/0 COMBINED DEAD 887 / 0 895 / 0 1859 / 0 0/0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.31 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

СН	ORDS		WEBS							
MAX	. FACTORED	FACTOR	RED		MAX. FACTORED					
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PL	F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO				
A-B	-2911/0			0.10(1)		E-B	0 / 1370	0.17(1)		
B-G	-2366 / 0				5.71	E-C	0 / 3452	0.43 (1)		
G-C	-2366 / 0	-91.8	-91.8	0.12(1)	5.71	A-E	0 / 2491	0.31 (1)		
D-C	-2658 / 0	0.0	0.0	0.16(1)	7.81					
F-A	-2785 / 0	0.0	0.0	0.10(1)	7.81					
F-H	0/0			0.61 (1)						
H-1	0/0	-18.5	-18.5	0.61 (1)	10.00					
I-E	0/0	-18.5	-18.5	0.61 (1)	10.00					
E-J	0/0	-18.5	-18.5	0.50(1)	10.00					
J- K	0/0	-18.5	-18.5	0.50(1)	10.00					
K-L	0/0	-18.5	-18.5	0.50(1)	10.00					
L- D	0/0	-18.5	-18.5	0.50(1)	10.00					

SPEC	ECIFIED CONCENTRATED LOADS (LBS)										
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.		
В	2-9-0	-59	-59	99	BACK	VERT	TOTAL		C1		
Ε	2-9-12	-6	-6		BACK	VERT	TOTAL		C1		
G	4-1-8	-24	-24		BACK	VERT	TOTAL		C1		
Н	1-6-0	-2335	-2335		FRONT	VERT	TOTAL		C1		
1	1-11-4	-6	-6		BACK	VERT	TOTAL		C1		
J	3-5-4	-1287	-1287		FRONT	VERT	TOTAL		C1		
K	4-1-8	-6	-6		BACK	VERT	TOTAL		C1		
L	4-11-4	-1288	-1288		FRONT	VERT	TOTAL		C1		

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 33 = 65 II

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 TOP CH. 6.0 PSF TOTAL LOAD 39.0

DESIGN CRITERIA

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSI: TC=0.16/1.00 (C-D:1) , BC=0.61/1.00 (E-F:1) , WB=0.43/1.00 (C-E:1) , SSI=0.84/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

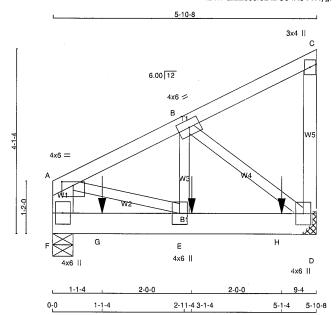
JSI GRIP= 0.80 (E) (INPUT = 0.90) JSI METAL= 0.33 (C) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

CONTINUED ON PAGE 2 RECEIV Per: joshua.nabua

Structural component only DWG# T-2406589

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK HOMES	DRWG NO.
436988	T21	1	2	TRUSS DESC.		
Tamarack Roof Truss, Burlington					Version 8.630 S Aug 30 2023 N ID:1PtzEZc03lbzkDC64XoV?RygPuj-7luKIH81	iTek Industries, Inc. Mon Mar 4 08:03:49 2024 Page 2 GGTZz4 5Wctj3xKcR5H6bguwD89oNBzeNP8
B TTW-m MT20 4. C TMVW-t MT20 5. D BMV1+p MT20 4. E BMWWW+t MT20 8.	0 6.0 1.25 3.00 0 6.0 Edge 0 6.0 2.25 3.00 0 6.0 0 9.0 0 6.0					
NOTES- (1) 1) Lateral braces to be a minimum	n of 2X4 SPF #2.					
				,		
	,					
CEESSIO	Ala					
03-04-2 H. J. G. AL 10000902	VES REED					
Solve OF	WARIO .					CITY OF RICHMOND HILL BUILDING DIVISION
"VCE OF	ON.					05/01/2024


Per: joshua.nabua

Structural component only DWG# T-2406589

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **GREEN PARK HOMES** DRWG NO. TRUSS DESC. 436988 T22

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:50 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-bUSizd9f1abQbEYH4JOyb9tpnViLKAQ4SouMvezeŇP7

TOTAL WEIGHT = 2 X 29 = 58 lb

Scale = 1:24.5

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
F - A	2x6	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - D	2×6	DRY	No.2	SPF
ALL WEBS	2x3 ONED II	DRY JMBER	No.2	SPF

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHOR	DS #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP C	HORDS : (0.1:	22"X3") SPIRAL NAILS	
F-A	2	12	TOP
A- C	1	12	TOP
C-D	1	12	TOP
BOTT	OM CHORDS :	(0.122"X3") SPIRAL NAILS	
F- D	2	12	SIDE(183.1)
WEBS	5 : (0.122"X3")	SPIRAL NAILS	
B-E	1	6	SIDE(84.3)
Δ			

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	X					
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00					
В	TMWW-t	MT20	4.0	6.0							
С	TMV+p	MT20	3.0	4.0							

Structural component only DWG# T-2406590

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

BEA	rings						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
	GROSS RE	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	1803	0	1803	0	0	5-8	1-8
D	1921	0	1921	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./	MIN. COMPO	VENT REACTION							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
F	1269	866 / 0	0/0	0/0	0/0	403 / 0	0/0				
D	1352	922 / 0	0/0	0/0	0/0	430 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS (. FACTORED	FACTO		W E B S MAX. FACTORED				
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB	. FORCE	MAX
	(LBS)	(PI	_F) :	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	ΤΌ		LENGTH	FR-TO	` '	. ,
F-A	-1217/0	0.0	0.0	0.04(1)	7.81	A-E	0/1496	0.19(1)
A-B	-1607 / 0	-91.8	-91.8	0.06(1)	6.25	E-B	0/1514	0.19(1)
B- C	-10 / 0	-91.8	-91.8	0.05 (1)	10.00	B- D	-1820 / 0	0.22 (1)
D- C	-113/0	0.0	0.0	0.01 (1)	7.81			
F- G	0/0	-18.5	-18.5	0.23 (1)	10.00			
G-E	0/0	-18.5	-18.5	0.23 (1)	10.00			
E- H	0 / 1446	-18.5	-18.5	0.29 (1)	10.00			
H- D	0 / 1446	-18.5	-18.5	0.29 (1)	10.00			

SPEC	IFIED CON	CENTRA	TED LOA	ADS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN
E	3-1-4	-721	-721		BACK	VERT	TOTAL		C1
G	1-1-4	-721	-721		BACK	VERT	TOTAL		C1
Н	5-1-4	-722	-722		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

TOTAL LOAD

- TPIC 2014

SPECIFIED LOADS: DL = DL = DL = DL = DL = PSF PSF PSF CH. 25.6 6.0 0.0 7.4

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.29/1.00 (D-E:1) , WB=0.22/1.00 (B-D:1) , SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(22) (21) (21) (21) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

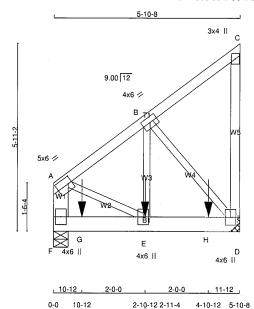
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.69 (D) (INPUT = 0.90) JSI METAL= 0.33 (D) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK HOMES	DRWG NO.
136988	T22	1	2	TRUSS DESC.	The second secon	
amarack Roof Truss, Burling	non				Version 8.630 S Aug 30 2023 I ID:1PtzEZc03lbzkDC64XoV?RygPuj-bUSizd	vliTek Industries, Inc. Mon Mar 4 08:03:50 2024 Page 2 911abQbEYH4JOyb9tpnViLKAQ4SouMvezeNP
PLATES (table is in inches) JT TYPE PLATES D BMVW1+p MT20 E BMWW+t MT20	W LEN Y X 4.0 6.0 4.0 6.0			,		
F BMV1+p MT20 NOTES- (1)	4.0 6.0					
1) Lateral braces to be a min	nimum of 2X4 SPF #2.					
					,	
	•					
			• • • • • • • • • • • • • • • • • • • •			
- CESS	SIOALA					
PROFESSION ON THE PROPERTY OF	4-24 ENG					
03-04 H. J. G. 100000	ALVES ED					
						CITY OF RICHMOND HIL BUILDING DIVISION
MNCE	OF ONTARIO					05/01/2024
						ロー しんかし ロノムロム4


Per: joshua.nabua

Structural component only DWG# T-2406590

JOB NAME TRUSS NAME QUANTITY JOB DESC. **GREEN PARK HOMES** DRWG NO. 436988 T23 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:51 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-4g04AzAHotjHDO7Te0vB8MPzRu3P3dvDgSevR4zeNP6

TOTAL WEIGHT = 2 X 35 = 69 lb

Scale = 1:34.7

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
F - A	2x6	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEAS	ONEDLI	IMBER.		

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHOR	OS #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP C	HORDS: (0.1	22"X3") SPIRAL NAILS	
F-A	2	12	TOP
A-C	1	12	TOP
C-D	1	12	TOP
BOTTO	M CHORDS	(0.122"X3") SPIRAL NAILS	
F- D	2	12	SIDE(183.1
WEBS	: (0.122"X3")	SPIRAL NAILS	•
B-E	1	6	SIDE(39.2)

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PL/	ATES (table	is in inches)				
JΤ	TYPE	PLATES	W	LEN	Υ	Х
Α	TMVW-t	MT20	5.0	6.0	2.50	1.50
В	TMWW-t	MT20	4.0	6.0		
С	TMV+p	MT20	3.0	4.0		

Structural component only DWG# T-2406591

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

4-10-12 5-10-8

BEARINGS	
FACTORED MAXIMUM FACTORED IN	PUT REQRD
GROSS REACTION GROSS REACTION BF	RG BRG
JT VERT HORZ DOWN HORZ UPLIFT IN-	SX IN-SX
F 1615 0 1615 0 0 5-8	3 1-8
D 1591 0 1591 0 0 ME	CHANICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS

0-0

10-12

	ISILUASE	IVIAX./IV	AIN, COMPO	NENT REACTION	<u> </u>		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
=	1136	780 / 0	0/0	0/0	0/0	356 / 0	0/0
)	1119	768 / 0	0/0	0/0	0/0	350 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING

TOTAL LOAD CASES: (4)	
CHORDS	
LANY CACTORED	

	ORDS X. FACTOR	ED FACTO	RED			W	BS MAX. FACT	ORED	
MEMB.	FOR	CE VERT. LO	DAD LC1	MAX	MAX.	MEMB	. FORCE	MAX	
	(LBS)) (P	LF) (CSI (LC)	UNBRAG	0	(LBS)	CSI ((LC)
FR-TO	•	FROM	ΤΌ	, ,	LENGTH	FR-TC	ı ' '		/
F- A	-1074 / 0	0.0	0.0	0.04(1)	7.81	A-E	0/917	0.11	(1)
A-B	-1055 / 0	-91.8	-91.8	0.07(1)	6.25	E-B	0 / 1284	0.16	(1)
B- C	-17/0	-91.8	-91.8	0.06 (1)	6.25	B- D	-1293 / 0	0.20	
D- C	-106 / 0	0.0	0.0	0.03(1)	7.81				` '
F-G	0/0	-18.5	-18.5	0.18(1)	10.00				
G-E	0/0	-18.5	-18.5	0.18(1)	10.00				
E- H	0 / 858	-18.5	-18.5	0.24(1)	10.00				
H- D	0 / 858	3 -18.5	-18.5	0.24(1)	10.00				
SPECI	FIED CONCE	ENTRATED LC	DADS (LE	IS)					
JΤ	LOC.	LC1 MAX-	MAX-	⊦ F/	ACE I	DIR.	TYPE	HEEL	CONN.
	2-10-12	-599 -599		- FR	IV TNC	ERT	TOTAL		C1
G		-599 -599		- FR	IV TNC	ERT	TOTAL		C1
	10-12	-599 -599		- FR	IV TNC	ERT	TOTAL		C1

4-10-12 CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	25.6	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	==	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	39.0	PSF

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8 4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.24/1.00 (D-E:1) , WB=0.20/1.00 (B-D:1) , SSI=0.18/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

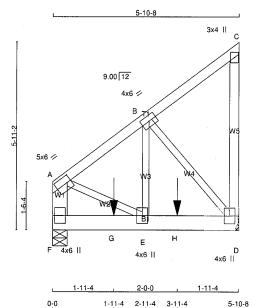
NAIL VALUES

PLATE	GRIP	(DRY)	SHE	AR	SECT	ΓΙΟΝ
	(PS	1)	(PL	I)	(PLI)
	MAX	MIN	MAX	MIN	MAX	MIN
MT20	650	371	1747	788	1987	1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.56 (B) (INPUT = 0.90) JSI METAL= 0.19 (D) (INPUT = 0.95)


CITY OF RICHMOND HIL **BUILDING DIVISION**

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK I	HOMES	DRWG NO.
	T23	1	2	TRUSS DESC.			
amarack Roof Truss, Burlington					ID:1PtzEZc03lbzkD0	Version 8.630 S Aug 30 2023 Mi C64XoV?RygPuj-4g04AzAHo	Tek Industries, Inc. Mon Mar 4 08:03:51 2024 Page htjHDO7Te0vB8MPzRu3P3dvDgSevR4zeNF
PLATES (table is in inches)							
JT TYPE PLATES W	LEN Y X 6.0						
E BMWW+t MT20 4.0	6.0 6.0						
NOTES- (1) 1) Lateral braces to be a minimum of	of 2X4 SPF #2.						
	,						
0							
						į	
	•						
							•
							•
						•	
ROFESSION	4(2)						
No.	THE !						
03-04-24							
03-04-24 US H. J. G. ALV 100009024	ES 🛪						
100009024						-	
\ Mue	16						CITY OF RICHMOND HI
PONNOE OF O	MAR					·	BUILDING DIVISION
SEOPO						ll l	05/01/2024
Ctricational assesses	ant only					ll l	05/01/2024
Structural compon DWG# T-240659	1		•	-		· ·	
	:						

JOB NAME TRUSS NAME QUANTITY JOB DESC. **GREEN PARK HOMES** DRWG NO. 436988 T23Z TRUSS DESC

Tamarack Roof Truss, Burlingtor

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:52 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-YtaSOJBwZBr8qYigCkRQgay8AIP8o5zNv6NS_WzeNP5

TOTAL WEIGHT = 2 X 35 = 69 lb

Scale = 1:34.7

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
F - A	2x6	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEAS	ONED LI	JMBER.		

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE SPACING (II	LOAD(PLF)
TOP CH	ORDS: (0.1	22"X3") SPIRA	
F-A	2	12	TOP
A- C	1	12	TOP
C- D	1	12	TOP
BOTTO	M CHORDS	: (0.122"X3") S	PIRAL NAILS
F- D	2	12	SIDE(0.0)
WEBS:	(0.122"X3")	SPIRAL NAILS	3
2x3	1 .	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLA	TES	(table	is in	inches
	m 10 F			

1 6.7	TILD TRADIC	is in interies,					
JT	TYPE	PLATES	W	LEN	Υ	Х	
Α	TMVW-t	MT20	5.0	6.0	2.50	1.50	
В	TMWW-t	MT20	4.0	6.0			
С	TMV+p	MT20	3.0	4.0			
D	BMVW1+p	MT20	4.0	6.0			

Structural component only DWG# T-2406592

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DÉSIGNER

	DINGO						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
ΙŦ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
=	985	0	985	0	0	5-8	1-8
)	985	0	985	0	0	MECHAN	ICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS								
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
F	695	466 / 0	0/0	0/0	0/0	229 / 0	0/0				
D	695	466 / 0	0/0	0/0	0/0	229 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u> TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS					WE	BS	
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
F- A	-826 / 0	0.0	0.0	0.03 (1)	7.81	A-E	0 / 684	0.08 (1)
A-B	-782 / 0	-91.8	-91.8	0.07 (1)	6.25	E-B	0 / 872	0.11(1)
B- C	-18/0	-91.8	-91.8	0.07 (1)	6.25	B- D	-964 / 0	0.15(1)
D- C	-105 / 0	0.0	0.0	0.03 (1)	7.81			
- 0	0.40	40.5	40.5	0.40(4)	40.00			
F- G	0/0	-18.5		0.10(1)	10.00			
G-E	0/0	-18.5		0.10 (1)				
E-H	0 / 640	-18.5		0.14 (1)				
H- D	0 / 640	-18.5	-18.5	0.14 (1)	10.00			

SPECIFIED CONCENTRATED LOADS (LBS)									
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
G	1-11-4	-466	-466		BACK	VERT	TOTAL		C1
H	3-11-4	-466	-466		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: _OADS: LL = DL = LL = DL = PSF PSF PSF 25.6

6.0 0.0 7.4 CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

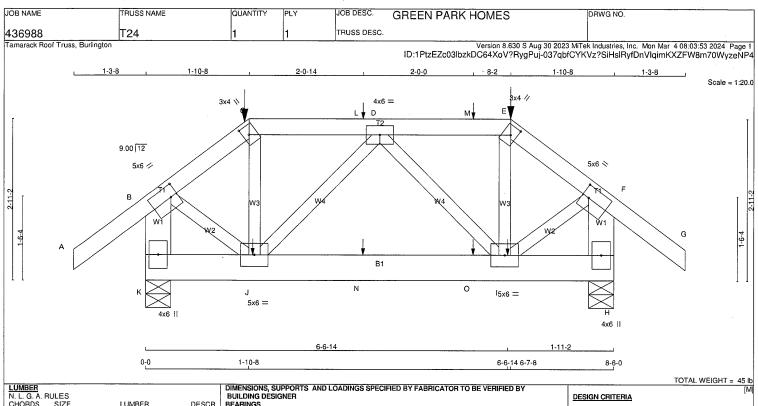
CSI: TC=0.07/1.00 (A-B:1) , BC=0.14/1.00 (D-E:1) , WB=0.15/1.00 (B-D:1) , SSI=0.18/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.40 (E) (INPUT = 0.90) JSI METAL= 0.14 (D) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK HOMES	DRWG NO.
36988	T23Z	1	2	TRUSS DESC.		
amarack Roof Truss, Burlington					Version 8.630 S Aug 30 2023 M ID:1PtzEZc03lbzkDC64XoV?RygPuj-YtaSOJBv	Tek Industries, Inc. Mon Mar 4 08:03:52 2024 Page 2 vZBr8qYigCkRQqay8AIP8o5zNv6NS WzeNP5
E BMWW+t MT20 4	W LEN Y X I.O 6.0 I.O 6.0					
NOTES- (1) 1) Lateral braces to be a minimu	m of 2X4 SPF #2.					
					*	
-50010						
PROFESSIO	NALENCE					
03-04-2 91 H. J. G. AL 10000900	VES E					
				-		CITY OF RICHMOND HIL
ROUNCE OF	ONTARIO					BUILDING DIVISION
25					·	05/01/2024

Per: joshua.nabua

LUMBER N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
K - B	2x6	DRY	No.2	SPF
H - F	2x6	DRY	No.2	SPF
К - Н	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)							
JT	TYPE	PLATES	W	LEN	Υ	Х		
В	TMVW-t	MT20	5.0	6.0	2.50	1.50		
С	TTW+h	MT20	3.0	4.0	2.00	1.25		
D	TMWW-t	MT20	4.0	6.0				
Е	TTW+h	MT20	3.0	4.0	2.00	1.25		
F	TMVW-t	MT20	5.0	6.0	2.50	1.50		
Н	BMV1+p	MT20	4.0	6.0				
1	BMWWW-t	MT20	5.0	6.0				
J	BMWWW-t	MT20	5.0	6.0				
K	BMV1+p	MT20	4.0	6.0				

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	665	0	665	0	0	5-8	1-8
ł	665	0	665	0	0	5-8	1-8

UNFACTORED REACTIONS

1ST LCASE MAX./MIN. COMPONENT REACTIONS

	IOI LUMUL	197/7///	VIII V. OCIVII CI	ALIAI HEAGIIGI	10		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
K	467	327 / 0	0/0	0/0	0/0	140 / 0	0/0
H	467	327 / 0	0/0	0/0	0/0	140 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K, H

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

CHO	ORDS					W E	BS		
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PI	_F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO		, ,	
A-B	0/38	-91.8	-91.8	0.14(1)	10.00	J- C	0 / 58	0.02 (4)	
B- C	-402 / 0	-91.8	-91.8	0.13(1)	6.25	J- D	-175 / 0	0.04(1)	
C-L	-299 / 0	-91.8	-91.8	0.09(1)	6.25	D- 1	-175 / 0	0.04(1)	
L- D	-299 / 0	-91.8	-91.8	0.09(1)	6.25	J- E	0 / 99	0.02 (5)	
D- M	-299 / 0	-91.8		0.09(1)		B- J	0/341	0.08 (1)	
M- E	-299 / 0	-91.8	-91.8	0.09(1)	6.25	I- F	0 / 341	0.08(1)	
E-F	-402 / 0	-91.8	-91.8	0.13(1)	6.25				
F-G	0/38	-91.8		0.14(1)					
K-B	-652 / 0	0.0		0.05 (1)					
H-F	-652 / 0	0.0	0.0	0.05 (1)	7.81				
K- J	0/0	-18.5		0.03 (4)					
J- N	0/416	-18.5		0.08 (1)					
N-O	0/416			0.08 (1)					
O-1	0 / 416			0.08 (1)					
I- H	0/0	-18.5	-18.5	0.03(4)	10.00				

PECIFIED	CONCENTRATED LOADS (LBS)

JT	LOC.	LC1	MAX-	MÀX+	FACE	DIR.	TYPE	HEEL	CONN.	
С	1-10-8	-48	-48	77	BACK	VERT	TOTAL		C1	
E	6-7-8	-48	-48	77	BACK	VERT	TOTAL		C1	
l	6-6-14	1	1		BACK	VERT	TOTAL		C1	
J	1-11-6	1	1		BACK	VERT	TOTAL		C1	
L	3-11-6	1	1	. 77	BACK	VERT	TOTAL		C1	
M	5-11-6	1	1	69	BACK	VERT	TOTAL		C1	
N	3-11-6	1	1		BACK	VERT	TOTAL		C1	
0	5-11-6	1	1		BACK	VERT	TOTAL		C1	

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

SPECIFIED LOADS: 25.6 6.0 0.0 7.4 PSF PSF PSF

SPACING = 24.0 IN. C/C

TOTAL LOAD

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

CSI: TC=0.14/1.00 (A-B:1) , BC=0.08/1.00 (I-J:1) , WB=0.08/1.00 (B-J:1) , SSI=0.11/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

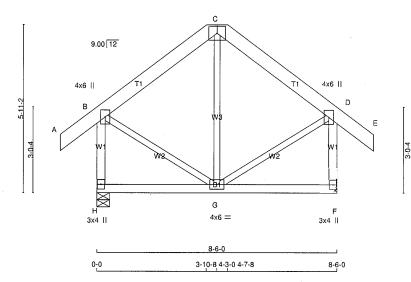
PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.49 (C) (INPUT = 0.90) JSI METAL= 0.12 (F) (INPUT = 0.95) // OND HIL **BUILDING DIVISION**

Per: joshua.nabua

JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO. TRUSS DESC 436988 T25

Tamarack Roof Truss, Burlington


Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:54 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-ŬFhDo_CA5o5s4rs2J9Tum?1U566MG0mfNQsZ2PzeŇP3

1-3-8 3-10-8 4-7-8 1-3-8 6x7 =

Scale = 1:38.9

TOTAL WEIGHT = 52 lb

[M][F]

LUMBER N. L. G. A. RULES N. L. G. A. CHORDS A - C C - E H - B F - D H - F LUMBER DESCR DRY 2x6 No.2 No.2 SPF SPF 2x6 DRY SPF SPF SPF 2x4 2x4 DRY DRY 2x4 DRY No.2 DRY ALL WEBS 2x3 No.2 SPF **EXCEPT**

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES LEN Y 6.0 7.0 W TMVW+p BCDFGH MT20 4.0 6.0 TTW-p TMVW+p MT20 4.0 3.0 4.0 6.0 4.0 6.0 MT20 BMV1+p BMWWW-t MT20 MT20 BMV1+p MT20

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

DEA	niivaa						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
GROSS REACTION			GROSS	REACTIO	BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Н	600	0	600	0	0	5-8	1-8
F	600	0	600	0	0	MECHAI	NICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS								
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
Н	422	291 / 0	0/0	0/0	0/0	131 / 0	0/0				
F	422	291 / 0	0/0	0/0	0/0	131 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
OR BIGID OF MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	CHORDS					WEBS				
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED		
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO				
A-B	0/39	-91.8	-91.8	0.07(1)	10.00	B- G	0/210	0.05(1)		
B- C	-224 / 0	-91.8	-91.8	0.10(1)	6.25	G-D	0/210	0.05(1)		
C-D	-224 / 0	-91.8	-91.8	0.10(1)	6.25	G-C	-121 / 28	0.07(1)		
D-E	0/39	-91.8	-91.8	0.07(1)	10.00					
H-B	-569 / 0	0.0	0.0	0.09(1)	7.81					
F- D	-569 / 0	0.0	0.0	0.09 (1)	7.81					
H- G	0/0	-18.5	-18.5	0.09 (4)	10.00					
G-F	0/0			0.09 (4)	10.00					

DESIGN CRITERIA

:IED LOADS: CH. LL = 2! DL = CH. LL = DL = SPECIFIED LOADS: PSF PSF PSF 25.6

6.0 0.0 7.4 TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

CSI: TC=0.10/1.00 (B-C:1) , BC=0.09/1.00 (G-H:4) , WB=0.07/1.00 (C-G:1) , SSI=0.09/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

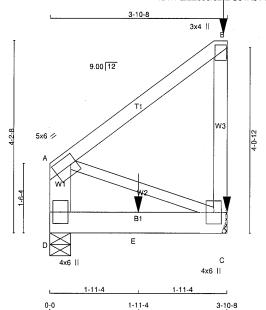
MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.35 (B) (INPUT = 0.90) JSI METAL= 0.19 (D) (INPUT = 0.95)

PROFESSIONAL FINGE W H. J. G. ALVES 100009024 NCE OF ONTAR


Structural component only DWG# T-2406594

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. GREEN PARK HOMES DRWG NO. TRUSS DESC 436988 T26

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:55 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-yRFb0KDos6Ejh?RFts_7lCaeTWQY?U2pb4c7arzeNP2

Scale: 1/2"=1

S		
ZE	LUMBER	DESCR.
4 DRY	No.2	SPF
4 DRY	No.2	SPF
6 DRY	No.2	SPF
6 DRY	No.2	SPF
3 DRY	No.2	SPF
D LUMBER.		
	4 DRY 6 DRY 6 DRY 3 DRY	ZE LUMBER 4 DRY No.2 4 DRY No.2 6 DRY No.2 6 DRY No.2

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	IORDS: (0.1	22"X3") SPIRAL NAILS	
A-B	1	12	SIDE(61.0)
B-C	1	12	SIDE(5.9)
D- A	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAIL	S
D-C	2	12	SIDE(0.0)
WEBS:	(0.122"X3")	SPIRAL NAILS	
2 v 3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLA	TES	(table	is in	inches)	
1797	TYP	-	-	ATEO	

Į	JT	TYPE	PLATES	W	LEN	Υ	Х	
	Α	TMVW-t	MT20	5.0	6.0	2.50	1.50	
	В	TMV+p	MT20	3.0	4.0			
	С	BMVW1+p	MT20	4.0	6.0			
	D	TYPE TMVW-t TMV+p BMVW1+p BMV1+p	MT20	4.0	6.0			

Structural component only DWG# T-2406595

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

3EA	RINGS						
	FACTOR	RED	MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS REACTION			BRG	BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
)	790	0	790	0	0	MECHANIC	CAL
)	511	0	511	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	JIN. COMPO	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
0	554	388 / 0	0/0	0/0	0/0	167 / 0	0/0
D	360	244 / 0	0/0	0/0	0/0	116 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS MAX. FACTORED FACTOR				W E B S TORED MAX. FACTORED						
MEMB.	FORCE	VERT. LO		1 MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO	, ,	` '		
A-B	0/0	-91.8	-91.8	0.13(1)	10.00	A-C	0/0	0.00(1)		
C-B	-434 / 0	0.0	0.0	0.06(1)	7.81					
D- A	-178 / 0	0.0	0.0	0.01 (1)	7.81					
D- E E- C	0/0	-18.5 -18.5		0.23 (1) 0.23 (1)						

SPECIFIED CONCENTRATED LOADS (LBS)

0	CI EGII IED GONGENTIMIED EGADG (EBG)											
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN			
В	3-10-8	-177	-177		BACK	VERT	TOTAL		C1			
С	3-10-8	-17	-17		BACK	VERT	TOTAL		C1			
E	1-11-4	-12	-12		BACK	VERT	TOTAL	***	C1			
E	1-11-4	-407	-407		FRONT	VERT	TOTAL		C1			

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:

CH. LL = 25 DL = CH. LL = DL = AD = PSF PSF PSF 25.6 6.0 0.0 7.4 TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 21 = 42 ib

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G:S.L. PLUS 8.4 P.S.F RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.13/1.00 (A-B:1) , BC=0.23/1.00 (C-D:1) , WB=0.00/1.00 (A-C:1) , SSI=0.11/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

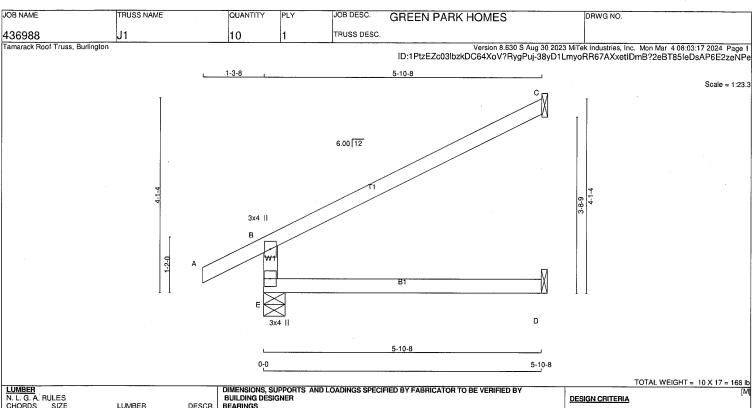

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.09 (B) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK HOMES	DRWG NO.
36988	T26	1	2	TRUSS DESC.		
amarack Roof Truss, Bu	rlington				Version 8.630 S Aug 30 ID:1PtzEZc03lbzkDC64XoV?RygPuj-yF	2023 MiTek Industries, Inc. Mon Mar 4 08:03:55 2024 Page 2 RFb0KDos6Ejh?RFts 7ICaeTWQY?U2pb4c7arzeNP
NOTES- (1)						
1) Lateral braces to be a	minimum of 2X4 SPF #2.					
				•		
						·
					,	
	10122					
PROFE	23310NALEN					
03-	-04-24 G. ALVES 909924					
일 H. J.	G. ALVES					
100	909024					
\ <u>~</u> \//	re IS					CITY OF RICHMOND HIL
CONNE	E OF ONT ARIO					BUILDING DIVISION
100	COFO					05/01/2024
Structural co	omponent only					1 00/01/2024
DWG# T-24	omponent only 406595					DECEIVED
				.		RECEIVED Per: joshua.nabua
						i or. journamanda

CHORDS E - B A - C E - D DESCR. SPF SPF SIZE 2x4 LUMBER No.2 2x4 DRY No.2 DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 E
 BMV1+p
 MT20
 LEN Y 3.0 4.0

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

RFVI	RINGS						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
	GROSS R	EACTION	GROSS	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	525	0	525	0	0	5-8	1-8
С	202	0	202	0	0	1-8	1-8
D	45	0	50	0	0	1-8	1-8

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS
1ST LCASE MA MAX SNOW 257 / 0 113 / 0 COMBINED SOIL 0/0 ECD 111/0 26 / 0 0/0 0/0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED MEMB. VERT. LOAD LC1 MAX MAX. MEMB. FORCE FORCE MAX PERI LOAD LCT MAX TO (PLF) CSI (LC) LC (PLF) CSI (LC) LC (PLF) CSI (LC) LC (PLF) CSI (LC) LC (PLF) CSI (PL CSI (LC) UNBRAC LENGTH FR-TO 0 0.13 (4) 7.81 (LBS) (LBS) CSI (LC) FR-TO -461 / 0 E- B A- B 0 / 28 B- C -30 / 0 -18.5 -18.5 0.13 (4) 10.00 E-D 0/0

SPECIFIED LOADS: PSF PSF PSF TOP CH. 25.6 6.0 0.0 7.4 CH. LL TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.03")

CSI: TC=0.54/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.24/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

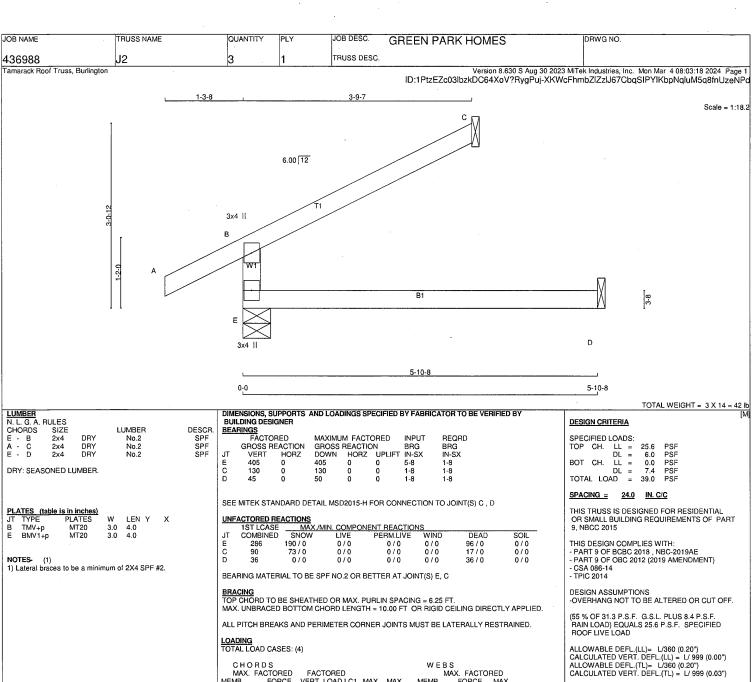
COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.18 (E) (INPUT = 0.90) JSI METAL= 0.13 (B) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

Per: joshua.nabua

CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED MEMB. FORCE VERT. LOAD LC1 MAX MAX. MEMB. FORCE MAX VERT. LOAD LC1 MAX (PLF) CSI (LC)
FROM TO 0.0 0.13 (4)
-91.8 -91.8 0.12 (1)
-91.8 -91.8 0.22 (1) CSI (LC) UNBRAC LENGTH FR-TO 0 0.13 (4) 7.81 (LBS) (LBS) CSI (LC) -342 / 0 E-B A- B B- C 0 / 28 -19 / 0 E- D 0/0 -18.5 -18.5 0.13 (4) 10.00

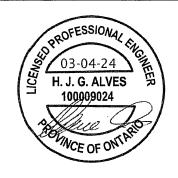
COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE RIGHT HEEL ONLY TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

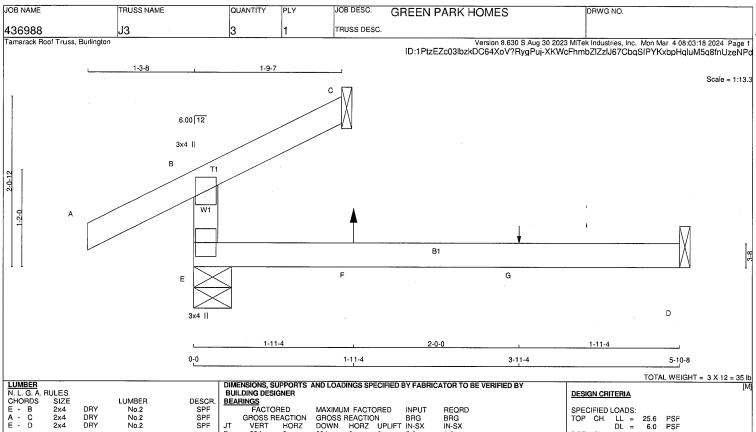
CSI: TC=0.22/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.15/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL 1) (PL 1) (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN


MT20 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.14 (E) (INPUT = 0.90) JSI METAL= 0.09 (B) (INPUT = 0.95)

> CITY OF RICHMOND HIL **BUILDING DIVISION**

Per: joshua.nabua

DRY DRY SPF DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20
F PLATES
MT20 I FN Y w BMV1+p

1) Lateral braces to be a minimum of 2X4 SPF #2.

BEAF	<u>RINGS</u>						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
	GROSS R	EACTION	GROSS	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	284	0	284	0	0	5-8	1-8
С	63	0	63	0	0	1-8	1-8
D	44	0	52	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS
1ST LCASE MA
JT COMBINED SNOW ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND MAX SNOW DEAD SOIL 0/0 0/0 62 / 0 25 / 0 0/0 200 137/0 0/0 21/0 0/0 0/0 37 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

СН	ORDS						W E	ВЅ		
MAX	(. FACTOR	RED	FACTO	RED				MAX. FACT	rored	
MEMB.	FOR	CE V	ERT. LC	AD LC1	MAX	MAX.	MEMB.			
	(LBS	3)	(PL	.F) (CSI (LC)	UNBR/	/C	(LBS)	CSI (LC)
FR-TO	•	•	FROM		. ,		H FR-TO			
E-B	-227 / 0		0.0	0.0	0.11(4)	7.81				
A-B	0 / 28	1	-91.8	-91.8	0.12(1)	10.00)			
B- C	-9/9		-91.8	-91.8	0.08 (4)	10.00)			
					. ,					
E-F	0/0		-18.5	-18.5	0.14 (4)	10.00)			
F- G	0/0		-18.5	-18.5	0.14 (4)	10.00)			
G-D	0/0		-18.5	-18.5	0.14 (4)	10.00)			
SPECIF	IED CONC	ENTRA	TED LO	ADS (LE	3S)					
JT	LOC.	LC1	MAX-	MAX	+ F	ACE	DIR.	TYPE	HEEL	CONN.
F	1-11-4	5	1		8 BA	CK \	/ERT	TOTAL		C1
G	3-11-4	1	1	-	BA	CK \	/ERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

SPECIFIED LOADS: LOADS: LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 AD = 39.0 CH. PSF PSF PSF PSF PSF CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSI: TC=0.12/1.00 (A-B:1) , BC=0.14/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.09/1.00 (A-B:1)

DOL LUMBER=0.99 NAIL=0.99 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

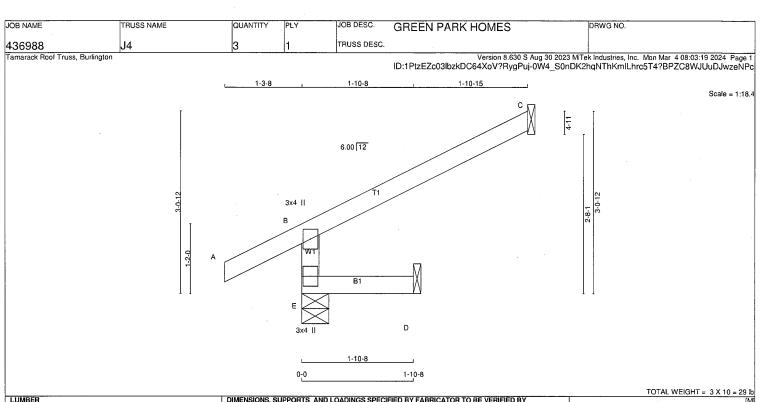
AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.09 (F) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 0.95)

> CITY OF RICHMOND HIL **BUILDING DIVISION**

Per: joshua.nabua

LUMBER N. L. G. A. RULES CHORDS SIZE DESCR. SPF SPF LUMBER E - B A - C E - D 2x4 No.2 No.2 2×4 DRY DRY DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES LEN Y TMV+p BMV1+p MT20 3.0 40

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
	GROSS R	EACTION	GROSS	REACTIO	BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Ξ	361	0	361	0	0	5-8	1-8
2	130	0	130	0	0	1-8	1-8
)	16	0	17	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

MIN. COMPONENT REACTIONS

LIVE PERM.LIVE WIND

0/0 0/0 0/0

0/0 0/0 0/0 UNFACTORED REACTIONS

1ST LCASE MA MAX SNOW 190 / 0 COMBINED SOIL 0/0 0/0 250 60 / 0 17 / 0 73 / 0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS WEBS MAX. FACTORED FORCE MA FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED MEMB. MEMB. FORCE MAX CSI (LC) UNBRAC LENGTH FR-TO 0 0.01 (4) 7.81 (LBS) (LBS) CSI (LC) FR-TO -342 / 0 E-B A-B 0/28B- C E-D 0/0 -18.5 -18.5 0.02 (4) 10.00

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 6.0 0.0 7.4 PSF PSF CH. CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , NBC-2019AE
PART 9 OF OBC 2012 (2019 AMENDMENT)
CSA 086-14 **TPIC 2014**

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALGUIATED VERT. DEFL. (LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.00")

CSI: TC=0.22/1.00 (B-C:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.15/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.14 (E) (INPUT = 0.90) JSI METAL= 0.09 (B) (INPUT = 0.95)

CITY OF RICHMOND HIL

BUILDING DIVISION

Per: joshua.nabua

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **GREEN PARK HOMES** DRWG NO. TRUSS DESC. 436988 3 Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:20 2024 Page 1 Tamarack Roof Truss, Burlington ID:1PtzEZc03lbzkDC64XoV?RygPuj-UjeMgMor5Mpg?dGWK0swNqdgRPWJlfOfY7dmrNzeNPb 1-3-8 С 6.00 12 3x4 II T1 В1 Е D 3x4 || 1-10-8

LUMBER SIZE DESCR SPF SPF SPF DRY No.2 No.2 DRY DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES LEN Y X 4.0 4.0 W TMV+p BMV1+p

1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

0-0

BEA	RINGS						
	FACTORED		MAXIMU	M FACTO	INPUT	REQRD	
	GROSS R	EACTION	GROSS	REACTIC	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX ⁻
Ε	271	0	271	0	0	5-8	1-8
С	45	0	45	0	-23	1-8	1-8
D	8	0	17	0	-2	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT D FOR 150 LBS FACTORED UPLIFT

UNFACTORED REACTIONS

1ST LCASE MAX./MIN. COMPONENT REACTIONS

COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
188	141/0	0/0	0/0	0/0	47 / 0	0/0
31	24 / -18	0/0	0/0	0/0	7/0	0/0
7	0 / -8	0/0	0/0	0/0	12/0	0/0
	COMBINED 188	COMBINED SNOW 188 141 / 0 31 24 / -18	COMBINED SNOW LIVE 188 141 / 0 0 / 0 31 24 / -18 0 / 0	COMBINED SNOW LIVE PERM.LIVE 188 141/0 0/0 0/0 31 24/-18 0/0 0/0	COMBINED SNOW LIVE PERM.LIVE WIND 188 141 / 0 0 / 0 0 / 0 0 / 0 31 24 / -18 0 / 0 0 / 0 0 / 0	COMBINED SNOW LIVE PERM.LIVE WIND DEAD 188 141/0 0/0 0/0 0/0 47/0 31 24/-18 0/0 0/0 0/0 7/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E. C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

СНО	CHORDS				WEBS						
MAX.	FACTORED	FACTOR	RED				MAX. FACTO	RED			
MEMB.	FORCE	VERT. LO	AD LC1	I MAX	MAX.	MEMB.	FORCE	MAX			
	(LBS)	(PL	F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)			
FR-TO		FROM	TO		LENGTH	FR-TO					
E-B	-244 / 0	0.0	0.0	0.04 (5)	7.81						
A-B	0 / 28	-91.8	-91.8	0.12 (1)	10.00						
B- C	-17 / 0	-91.8	-91.8	0.09 (1)	6.25						
E- D	0/0	-18.5	-18.5	0.04 (5)	10.00						

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2406559

DESIGN CRITERIA

TOTAL LOAD

1-10-8

SPECIFIED LOADS: LOADS: LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 AD = 39.0 PSF PSF CH. BOT CH.

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 3 X 7 = 21 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

CSI: TC=0.12/1.00 (A-B:1) , BC=0.04/1.00 (D-E:5) , WB=0.00/1.00 (n/a:0) , SSI=0.09/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

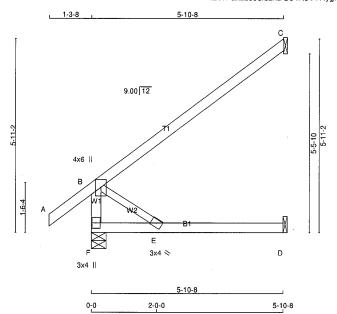
AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.10 (E) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY JOB DESC. **GREEN PARK HOMES** DRWG NO. TRUSS DESC. 436988

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:21 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-yvCktipTsgxXcnritjN9w1AkepqB16epnnNJOpzeŇPa

TOTAL WEIGHT = 2 X 20 = 40 lb

Scale = 1:33.7

LUMBER										
N. L. G. A. RULES										
CHORDS	SIZE		LUMBER	DESCR.						
F - B	2x4	DRY	No.2	SPF						
A - C	2x4	DRY	No.2	SPF						
F - D	2x4	DRY	No.2	SPF						
ALL WEBS	2x3	DRY	No.2	SPF						
DRY: SEASO	ONED LI	JMBER.								

PLATES (table is in inches) LEN Y 4.0 6.0 3.0 4.0 3.0 4.0 TMVW+p BMW+w MT20 MT20 Edge

BMV1+p

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

BEA	<u> IRINGS</u>						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	450	0	450	0	0	5-8	1-8
С	270	0	270	0	0 .	1-8	1-8
D	54	0	61	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNI	UNFACTORED REACTIONS											
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS .							
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
F	316	221 / 0	0/0	0/0	0/0	95 / 0	0/0					
С	186	150 / 0	0/0	0/0	0/0	35 / 0	0/0					
D	43	0/0	0/0	0/0	0/0	43 / 0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СНС	RDS					WE	BS		
MAX.	FACTORED	FACTOR	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLI	F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM .	ΤΌ		LENGTH	FR-TO			
F-B	-396 / 0	0.0	0.0	0.04(1)	7.81	B-E	0/0	0.00(1)	
A-B	0 / 38	-91.8	-91.8	0.12(1)	10.00				
B- C	0/0	-91.8	-91.8	0.54 (1)	10.00				
F-E	0/0	-18.5	-18.5	0.17 (4)	10.00				
E-D	0/0			0.19 (4)					

DESIGN CRITERIA

SPECIFIED LOADS: LOADS: LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 AD = 39.0 25.6 PSF 6.0 PSF 0.0 PSF 7.4 PSF CH. CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.05")

CSI: TC=0.54/1.00 (B-C:1) , BC=0.19/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.17/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION

(PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN

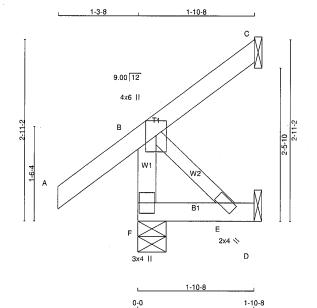
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.22 (B) (INPUT = 0.90) JSI METAL= 0.10 (B) (INPUT = 0.95)

PROFESSIONAL ENGINEER OF THE PROPERTY OF THE P 100009024 NOE OF ONTARIO


Structural component only DWG# T-2406560

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **GREEN PARK HOMES** DRWG NO. TRUSS DESC. 436988

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:21 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-yvCktipTsgxXcnritjN9w1Ar6psp16epnnNJOpzeNPa

TOTAL WEIGHT = 4 X 9 = 38 lb

Scale = 1:17.8

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
F - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
ALL WEBS DRY: SEAS	2x3 ONED LI	DRY JMBER.	No.2	SPF

PLATES (table is in inches) LEN Y TMVW+p

MT20 MT20 MT20 MT20 4.0 6.0 2.0 4.0 3.0 4.0 Edge BMW+w BMV1+p

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED	BY
BUILDING DESIGNER		
BEARINGS		

BEA	RINGS						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	276	0	276	0	0	5-8	1-8
С	39	0	39	0	-36	1-8	1-8
D	17	0	19	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS_FACTORED_UPLIFT

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
F	192	144 / 0	0/0	0/0	0/0	48 / 0	0/0			
С	27	22 / -26	0/0	0/0	0/0	5/0	0/0			
D	14	0/0	0/0	0/0	0/0	14/0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	CHORDS MAX. FACTORED FACTORED				WEBS					
WAX.	PACTORED				MAX. FACTORED					
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO				
F-B	-259 / 0	0.0	0.0	0.03(1)	7.81	B- E	0/0	0.00(1)		
A- B	0 / 38	-91.8	-91.8	0.12(1)	10.00					
B- C	-28 / 0	-91.8	-91.8	0.12 (1)	6.25					
F-E E-D	0/0 0/0			0.02 (4) 0.01 (4)	10.00 10.00					

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

TOTAL LOAD

DESIGN CRITERIA SPECIFIED LOADS:

LL =
DL =
LL =
DL =
AD = 25.6 6.0 0.0 7.4 PSF PSF TOP CH.

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = 1/360 (0.19")
CALCULATED VERT. DEFL.(LL) = 1/ 999 (0.00")
ALLOWABLE DEFL.(TL) = 1/360 (0.19")
CALCULATED VERT. DEFL.(TL) = 1/ 999 (0.00")

CSI: TC=0.12/1.00 (A-B:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.08/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

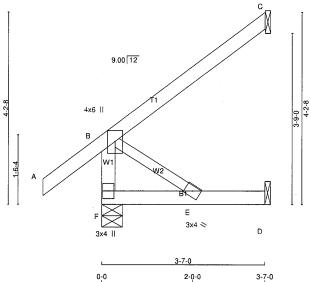
JSI GRIP= 0.15 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 0.95)

PROFESSIONAL ENGINEERS OF THE PROPERTY OF THE 100009024 VCE OF ONT ARE

Structural component only DWG# T-2406561

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO. TRUSS DESC. 436988 J8


Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:22 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-Q5m652q5dz3OExPvRRuOTFj_gCBGmZty0R6twFzeNPZ

Scale: 1/2"=1

TOTAL WEIGHT = 14 lb

LUMBER									
N. L. G. A. RULES									
CHORDS	SIZE		LUMBER	DESCR.					
F - B	2x4	DRY	No.2	SPF					
A - C	2x4	DRY	No.2	SPF					
F - D	2x4	DRY	No.2	SPF					
ALL WEBS	2x3	DRY	No.2	SPF					
DRY: SEAS	ONED L	UMBER.							

PL	ATES (table	is in inches)				
JΤ	TYPE	PLATES	W	LEN	Υ	Х
В	TMVW+p	MT20	4.0	6.0	Edge	
Ε	BMW+w	MT20	3.0	4.0	-	
=	DMMI	MTOO	2.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

BEAL	RINGS						
	FACTOR	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	324	0	324	0	0	5-8	1-8
С	164	0	164	0	0	1-8	1-8
D	33	0	37	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

JNFACTORED REACTIONS										
1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	4S						
COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
227	162/0	0/0	0/0	0/0	65 / 0	0/0				
113	92/0	0/0	0/0	0/0	21 / 0	0/0				
27	0/0	0/0	0/0	0/0	27 / 0	0/0				
	1ST LCASE COMBINED 227 113	1ST LCASE MAX./N COMBINED SNOW 227 162 / 0 113 92 / 0	1ST LCASE MAX./MIN. COMPOI COMBINED SNOW LIVE 227 162 / 0 0 / 0 113 92 / 0 0 / 0	1ST L CASE	STLCASE	STLCASE				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

ERACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHC	RDS	WEBS						
MAX.	FACTORED	FACTOR	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	ΤΌ	• •	LENGTH	FR-TO		• •
F-B	-291 / 0	0.0	0.0	0.03 (1)	7.81	B-E	0/0	0.00(1)
A-B	0/38	-91.8	-91.8	0.14 (5)	10.00			
B- C	0/0	-91.8	-91.8	0.20 (1)	10.00			
F- E E- D	0 / 0 0 / 0	-18.5 -18.5		0.07 (4) 0.07 (4)	10.00 10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA

SPECIFIED LOADS:								
TOP	CH.	LL	=	25.6	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LL	=	0.0	PSF			
		DL	=	7.4	PSF			
TOTA	L LO	AD	=	39.0	PSF			

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.20/1.00 (B-C:1) , BC=0.07/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.17 (B) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 0.95)

PROFESSIONAL FINGER OF THE PROFESSIONAL FINGER O 100009024 WCE OF ONT AR

Structural component only DWG# T-2406562

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB DESC. JOB NAME TRUSS NAME CHANTITY PLY GREEN PARK HOMES DRWG NO. 436988 J9 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:23 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-uHJVIOqjOHBFs5_5?8Pd?SFAMcXVV075E5sQSizeNPY 1-9-7 1-3-8 Scale = 1:17.4 С 9.00.12 4x6 || W1 B1 3-8 Е G D

LUMBER N. L. G. A. I				
CHORDS	SIZE		LUMBER	DESCR.
F - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
ALL WEBS DRY: SEAS		DRY UMBER.	No.2	SPF

PLATES (table is in inches) LEN Y 6.0 Edge 4.0 4.0 В TMVW+p MT20 4.0 2.0 BMW+v MT20 BMV1+p

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

1-11-4

1-11-4

3-7-0

DESIGN CRITERIA SPECIFIED LOADS:

CH.

TOTAL LOAD

9 NBCC 2015

- TPIC 2014

LL = DL = LL = DL = AD =

SPACING = 24.0 IN. C/C

25.6 PSF 6.0 0.0 7.4 PSF PSF

39.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")

ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01") CSI: TC=0.14/1.00 (A-B:5) , BC=0.07/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.09/1.00 (A-B:5) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE RIGHT HEEL ONLY TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.15 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 0.95)

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

RFW	RINGS						
	FACTORED		MAXIMU	M FACTO	INPUT	REORD	
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	290	0	290	0	0	5-8	1-8
С	33	0	33	0	-39	1-8	1-8
D	33	0	37	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS_FACTORED_UPLIFT

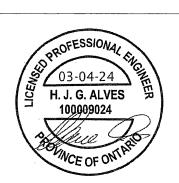
UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	٧S						
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	_					
F	204	144 / 0	0/0	0/0	0/0						
^	00	40 / 07	0.10	0.10	0 1 0						

DEAD SOIL 0/0 60/0 4/0 0/0 27 0/0 0/0 0/0 Ď 0/0 27/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.


LOADING TOTAL LOAD CASES: (5)

	ORDS					WE			
MA)	K. FACTORED	FACTO	RED				MAX. FACT	ORED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	F) (CSI (LC)	UNBRAG)	(LBS)	CSI (LC)
FR-TO		FROM	ΤΌ	. ,	LENGTH	FR-TO	, ,	,	•
F- B	-257 / 0	0.0	0.0	0.03(1)	7.81	B- E	0/0	0.00	(1)
A-B	0 / 38	-91.8	-91.8	0.14 (5)	10.00				• •
B- C	-29 / 0	-91.8	-91.8	0.13 (5)	6.25				
F- E	0/0	-18.5	-18.5	0.06 (4)	10.00				
E-G	0/0			0.07 (4)					
G-D	0/0			0.07 (4)					
SPECIF	SPECIFIED CONCENTRATED LOADS (LBS)								
JT	LOC. LC		MAX		ACE I	DIR.	TYPE	HEEL	CONN.
	1-11-4	1 1				ERT	TOTAL		C1

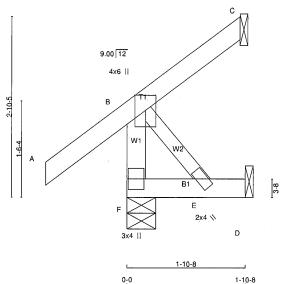
CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2406563

CITY OF RICHMOND HIL **BUILDING DIVISION**


TOTAL WEIGHT = 11 lb

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO. TRUSS DESC. 436988 J10

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MITek Industries, Inc. Mon Mar 4 08:03:24 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-MUttVkrM9bK6TEZHZrwsYgoMM0uVETNFTlb__8zeNP)

LUMBER N. L. G. A. RULES DESCR. SPF SPF CHORDS F - B SIZE 2x4 LUMBER F - B A - C F - D No.2 2x4 DRY DRY No.2 No.2 SPF ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF No.2

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 LEN Y 4.0 6.0 Edge 2.0 4.0 3.0 4.0 MT20 MT20 BMW+w BMV1+p MT20

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

0-0

RINGS						
FACTORED		MAXIMU	M FACTO	INPUT	REQRD	
GROSS R	EACTION	N	BRG	BRG		
VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
275	0	275	0	0	5-8	1-8
33	0	33	0	-39	1-8	1-8
17	0	19	0	0	1-8	1-8
	FACTO GROSS R VERT 275 33	FACTORED GROSS REACTION VERT HORZ 275 0 33 0	FACTORED MAXIMU GROSS REACTION GROSS VERT HORZ DOWN 275 0 275 33 0 33	FACTORED	FACTORED MAXIMUM FACTORED GROSS REACTION CROSS REACTION DOWN HORZ UPLIFT 275 0 275 0 0 0 33 0 -39	FACTORED MAXIMUM FACTORED INPUT GROSS REACTION GROSS REACTION BRG DOWN HORZ UPIFT IN-SX 275 0 0 5-8 33 0 33 0 -39 1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	<u>иін. COMPO</u>	NENT REACTION	٧S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	191	144/0	0/0	0/0	0/0	48 / 0	0/0
С	23	18 / -27	0/0	0/0	0/0	4/0	0/0
D	14	0/0	0/0	0/0	0/0	14/0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	RDS			WEBS				
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
F-B	-257 / 0	0.0	0.0	0.03(1)	7.81	B-E	0/0	0.00(1)
A- B	0 / 38	-91.8	-91.8	0.12 (1)	10.00			• •
B- C	-29 / 0	-91.8	-91.8	0.12 (1)	6.25			
F-E E-D	0/0 0/0	-18.5 -18.5		0.02 (4) 0.02 (4)	10.00 10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2406564

DESIGN CRITERIA

SPECIFIED LOADS: LL =
DL =
DL =
AD = 25.6 6.0 0.0 7.4 CH. PSF PSF PSF

TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 2 X 9 = 18 lb

Scale = 1:17.

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.19") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00") ALLOWABLE DEFL.(TL) = L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.12/1.00 (A-B:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.08/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.15 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 0.95)

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO. TRUSS DESC 436988

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:25 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-qgRFj4s_wuSz5O8U6ZS54tKW?QEPzwdOiPLXXazeNPW

Scale = 1:21.0

TOTAL WEIGHT = 2 X 12 = 24 lb

PSF PSF PSF

25.6 6.0 0.0 7.4

OR SMALL BUILDING REQUIREMENTS OF PART

- PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F.

RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.13/1.00 (A-B:5) , BC=0.04/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.08/1.00 (A-B:5) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

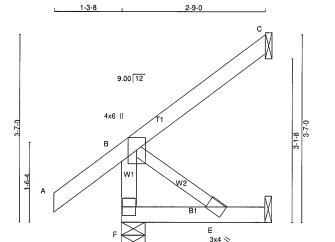
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

DESIGN CRITERIA

SPECIFIED LOADS:

TOTAL LOAD


9, NBCC 2015

- TPIC 2014

NAIL VALUES

CH. LL = DL = CH. LL = DL = L LOAD =

THIS DESIGN COMPLIES WITH:

2-9-0 2-9-0 2-0-0

LUMBER N. L. G. A. RULES CHORDS F - B A - C F - D DESCR. SPF SPF LUMBER 2x4 No.2 No.2 2×4 DRY DRY SPF ALL WEBS 2x3 DRY SPF No.2 DRY: SEASONED LUMBER.

PLATES (table is in inches) LEN Y Х 4.0 3.0 3.0 TMVW+p BMW+w MT20 MT20 Edge

MT20

BMV1+p

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

4.0

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DÉSIGNER

BEA	RINGS						
	FACTORED		MAXIMU	M FACTO	INPUT	REQRD	
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	278	0	278	0	0	5-8	1-8
С	126	0	126	0	0	1-8	1-8
D	25	0	28	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS COMPONENT REACTIONS
LIVE PERM.LIVE V
0 / 0 0 / 0 ______MAX SNOW 141 / 0 ./MIN. PERM.LIVE 0/0 0/0 COMBINED 194 WIND 53 / 0 0/0 70 / 0 0/0 0/0 17/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	RDS			WEBS				
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	. ,	` '
F-B	-253 / 0	0.0	0.0	0.03(1)	7.81	B- E	0/0	0.00(1)
A- B	0 / 38	-91.8	-91.8	0.13 (5)	10.00			
B- C	0/0	-91.8	-91.8	0.12 (1)	10.00			
F-E	0/0	-18.5	-18.5	0.04 (4)	10.00			
E- D	0/0	-18.5	-18.5	0.04 (4)	10.00			

BEA	RINGS						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	278	0	278	0	0	5-8	1-8
С	126	0	126	0	0	1-8	1-8
D	25	0	28	0	0	1-8	1-8

SPACING = 24.0 IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL

D

SOIL 0/0 0/0 0/0

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2406565

PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.14 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 0.95)

> CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO. 436988 J12 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:26 2024 Page 1 ID:1PtzEZc03lbzkDC64XoV?RygPuj-ls?dwQtchCaqjYjggGzkd5thfqZdiNtYx34431zeNPV

DESIGN CRITERIA

SPECIFIED LOADS:

TOTAL LOAD

9. NBCC 2015

- TPIC 2014

ROOF LIVE LOAD

LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 AD = 39.0

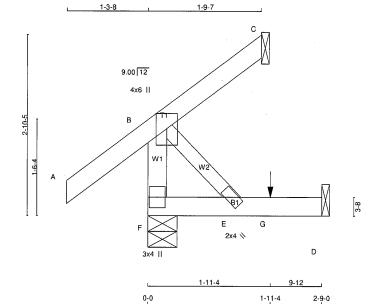
THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED

ALLOWABLE DEFL.(LL) = L/360 (0.19") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00") ALLOWABLE DEFL.(TL) = L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.14/1.00 (A-B:5) , BC=0.04/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.09/1.00 (A-B:5) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE RIGHT HEEL ONLY TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.


PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.15 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 0.95)

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

SPACING = 24.0 IN. C/C

PSF PSF PSF Scale = 1:17.4

TOTAL WEIGHT = 10 lb

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR - B - C SPF SPF SPF 2x4 DRY DRY No.2 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF

PLATES (table is in inches) W 4.0 PLATES MT20 TYPE TMVW+p

LEN Y 6.0 Edge 4.0 RMW+W MT20 BMV1+p

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	<u>rings</u>						
	FACTO		MAXIMUM FACTORED GROSS REACTION			INPUT	REQRD
	GROSS R	EACTION				BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	283	0	283	0	0	5-8	1-8
С	33	0	33	0	-39	1-8	1-8
D	26	0	29	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNFACTORED REACTIONS MAX SNOW 144 / 0 L/MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND
0/0 0/0 0/0 COMBINED DEAD SOIL 0/0 54/0 18 / -27 0/0 0/0 4/0 0/0 ñ 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHO	RDS					WE	BS		
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
мемв.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
	-257 / 0	0.0	0.0	0.03 (1)	7.81	B-E	0/0	0.00(1)	
A- B	0 / 38	-91.8	-91.8	0.14 (5)	10.00				
B- C	-29 / 0	-91.8	-91.8	0.13 (5)	6.25				
F- E	0/0	-18.5	-18.5	0.04 (4)	10.00				
E-G	0/0	-18.5	-18.5	0.04(4)	10.00				
G-D	0/0	-18.5	-18.5	0.04 (4)	10.00				
SPECIFIE	D CONCENT	RATEDIO	ADS /I F	35)					

LOC. 1-11-4 LC1 -0 MAX-CONN. FRONT VERT TOTAL C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2406566

CITY OF RICHMOND HIL **BUILDING DIVISION**

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **GREEN PARK HOMES** DRWG NO. TRUSS DESC. 436988 J13 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Mon Mar 4 08:03:26 2024 Page ID:1PtzEZc03lbzkDC64XoV?RygPuj-ls?dwQtchCaqjYjggGzKd5tekqWmiNtYx34431zeNPV 1-3-8 Scale = 1:18.1 6.00 12 4-3 B1 5-2-8 TOTAL WEIGHT = 3 X 14 = 43 lb

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR SPF A - C B - D DRY DRY No.2 2x4 DRY: SEASONED LUMBER.

3.0

PLATES (table is in inches)
JT TYPE PLATES w LEN Y 4.0

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
С	209	0	209	0	0	1-8	1-8
В	412	0	412	0	0	5-8	1-8
D	78	0	78	0	0	5-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C

UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
NOW LIVE PERM.LIVE SNOW SOIL 0/0 0/0 COMBINED LIVE 0/0 WIND 0/0 DEAD 32 / 0 86 / 0 0/0 СВО 0/0 203 / 0 0/0 0/0 20 / 0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) C, B, D

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED FORCE MAX. FACTORED FORCE . MAX MEMB (PLF) CSI (LC) UNBRAC FROM TO LENGTH FR-TO -91.8 -91.8 0.12 (1) 10.00 E-F -91.8 -91.8 0.32 (1) 10.00 (LBS) (LBS) CSI (LC) FR-TO A-B B-F F-C 0.00 (1) -384/9 -25/68-5/2 -18.5 -18.5 0.22 (1) -18.5 -18.5 0.22 (1) B- E E- D 10.00 10.00

DESIGN CRITERIA

SPECIFIED LOADS: DL = DL = DL = DL = AD = 25.6 6.0 0.0 7.4 CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/705 (0.09")

CSI: TC=0.32/1.00 (C-F:1) , BC=0.22/1.00 (D-E:1) , WB=0.00/1.00 (E-F:1) , SSI=0.31/1.00 (B-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.33 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 0.95)

PROFESSIONAL FINGER ON THE PROPERTY OF THE PRO 100009024 NOVINCE OF ONTARIO

Structural component only DWG# T-2406567

CITY OF RICHMOND HIL **BUILDING DIVISION**

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components

- 2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.
- 3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.
- 4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.
- 5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.

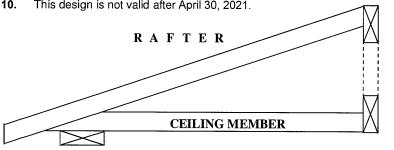
- 2- Lumber is to be the sizes and grade specified on the truss drawing.
- 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6- The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)
- 7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals.

8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols, numbering system and General Safety notes. T-1800213

Feb 09, 2018

CITY OF RICHMOND HILL **BUILDING DIVISION**

BEARING ANCHORAGE BY TOE-NAILS FOR LATERAL CAPACITY


B97791H1

NAIL TYPE	LENGTH	DIAMETER	NAIL LATERAL CAPACITY (LB)		
NAILTIFE	(IN)	(IN)	S-P-F	D. FIR	
COMMON	3.00	0.144	132	147	
WIRE	3.25	0.144	132	147	
VVINL	3.50	0.160	159	177	
COMMON	3.00	0.122	97	108	
SPIRAL	3.25	0.122	97	108	
SPINAL	3.50	0.152	145	162	

NOTES:

- 1. Rafter and ceiling members may be anchored to top and bottom chords of girder truss by toe-nailing rafter and ceiling members to girder chords provided the reaction does not exceed the lateral capacities in the table. Hangers (specified by others) are required for reactions higher than the maximum toe-nail capacity. Reactions are based on factored loads.
- 2. Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA O86-14, section 12.9.4.1.
- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- 4. Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in tables below.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42 (SPF), G = 0.49 (D. Fir).
- 6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See next page for nailing on bearing plate).
- 7. For loads due to wind the nail lateral capacity in this table may be multiplied by 1.15 (Kp factor).
- 8. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 9. Nail values in this table comply with CSA O86-14, section 12.9.4

This design is not valid after April 30, 2021.

(IND IACIOI).	1	.5"	
	 	7	
			30 deg.
•	L		.∕ □ 1/3 L
		/	
TO	E-NAIL	INS	TALLATION

Nail type	Common wire	Common spiral	Common wire	Common spiral			
Nail dia. (in)	0.160	0.152	0.144	0.122			
	(3.5'	(3.5" nail) (3" and 3.25" nail					
LUMBER SIZE	, .	MAXIMUM NUMBER OF TOE-NAILS					
2X4 SPF	2	2	3	3			
2X4 D. Fir	2	2	2	2			
r							
2X6 SPF	4	4	4	5			
OVE DEI	2	•	0	4			

PFO Certificate No. 10889485

CHMOND HILL

05/01/2024

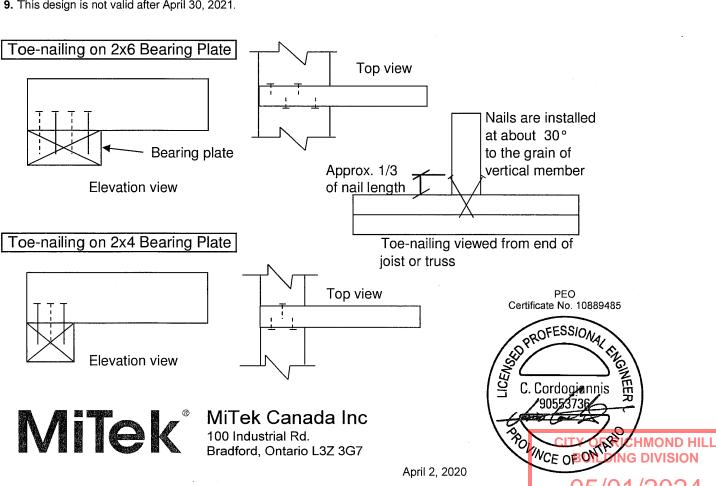
Per: joshua.nabua

April 2, 2020

R

D E

BEARING ANCHORAGE BY TOE-NAILS FOR WIND LOADING


B97791H2

NAIL TYPE	LENGTH	DIAMETER	NAIL WITHDRAW	AL CAPACITY (LB)]
NAIL ITPE	(IN)	(IN)	S-P-F	D. FIR	Note:
COMMON	3.00	0.144	30	42	D. Fir I
WIRE	3.25	0.144	32	45	bearing
WINE	3.50	0.160	38	52	in table
COMMON	3.00	0.122	26	36	
SPIRAL	3.25	0.122	28	40	
SPINAL	3.50	0.152	36	50]

If using truss with lumber and S-P-F g plate, use values e for S-P-F.

NOTES:

- 1. Truss chord, rafter, or ceiling members may be anchored to bearing plate by toe-nails, provided that the actual factored uplift force due to wind or earthquake load does not exceed the withdrawal capacities in the table. Hangers (specified by others) are required for uplift forces that are higher than the maximum toe-nail withdrawal capacity.
- 2. Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA O86-14, section 12.9.5.2.
- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- 4. Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in table above.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42(SPF), G = 0.49(D. Fir).
- 6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See drawing on detail B37579H1).
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA O86-14, section 12.9.5
- 9. This design is not valid after April 30, 2021.

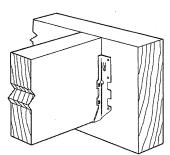
TECHNICAL BULLETIN

LUS — Double-Shear Joist Hangers

All LUS hangers have double-shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

Design:


- Factored resistances are in accordance with CSA O86-14 and CSA O86:19.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire
- Double-shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Options:

• These hangers cannot be modified

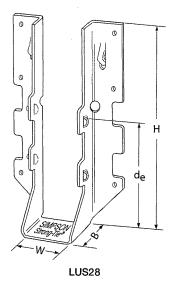
Typical LUS Installation


		Dimensions (in.)				Fasteners		Factored Resistance (lb.)			
Model								D.Fir-L		S-P-F	
No.	Ga.	Ga. W	Н	_ n	d _e ¹	Face	Joist	Uplift	Normal	Uplift	Normal
			п	В				(K _D =1.15)	(K _D =1.00)	(K _D =1.15)	(K _D =1.00)
LUS24	18	19/16	31/8	13/4	1 ¹⁵ / ₁₆	(4) 10d	(2) 10d	710	1630	645	1155
LUS24-2	18	31/8	31/8	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435
LUS26	18	19/16	43/4	13/4	3%	(4) 10d	(4) 10d	1420	2170	1290	1630
LUS26-2	18	31/8	47/8	2	4	(4) 16d	(4) 16d	1720	2595	1545	1920
LUS26-3	18	45/8	43/16	2	31/4	(4) 16d	(4) 16d	1720	2595	1545	2340
LUS28	18	19/16	6%	13⁄4	3¾	(6) 10d	(6) 10d	1420	2520	1290	1790
LUS28-2	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575
LUS28-3	18	45/8	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375
LUS210	18	19/16	7 13/16	13⁄4	37/8	(8) 10d	(4) 10d	1420	2785	1290	2210
LUS210-2	18	31/8	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195
LUS210-3	18	45/8	83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375

^{1.} d_e is the distance from the seat of the hanger to the highest joist nail.

Dome doubleshear nailing prevents tabs breaking off (available on some models).

US Patent


Doubleshear nailing top view.

This technical bulletin is effective until December 31, 2024, and reflects information available as of July 1, 2022. This information is updated periodically and should not be relied upon after December 31, 2024. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2022 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

T-SPECLUS22 7/22 exp. 12/24

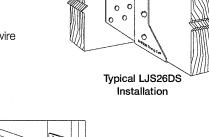
HILL (800) 999-5099 strongtie.com

TECHNICAL BULLETIN

HUS/LJS — Double-Shear Joist Hangers

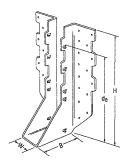
SIMPSON
Strong:Tie

All hangers have double-shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

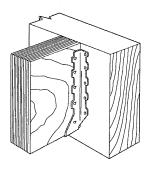

Material: See table Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA O86-14 and CSA O86:19.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

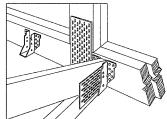

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- Double-shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications



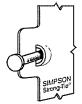
0 0

LJS26DS


HUS210 (HUS26, HUS28, similar)

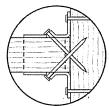
Typical HUS Installation

Options:


· See current catalogue for options

Typical HUS Installation (Truss designer to provide fastener quantity for connecting multiple members together)

	Ga.	Dimensions (in.)				Fasteners		Factored Resistance (lb.)				
Model		Ga. W			d _e ¹	Face	Joist	D.Fi	r–L	S-P-F		
No.			Н	В				Uplift (K _D =1.15)	Normal (K _D =1.00)	Uplift (K _D =1.15)	Normal (K _D =1.00)	
		<u> </u>						lb.	lb.	lb.	lb.	
LJS26DS	18	19⁄16	5	3½.	45/8	(16) 16d	(6) 16d	2055	4265	1460	4115	
HUS26	16	15/8	53/8	3	315/16	(14) 16d	(6) 16d	2705	4940	2065	3875	
HUS28	16	15/8	73/32	3	63/32	(22) 16d	(8) 16d	3605	5365	2675	4345	
HUS210	16	15/8	93/32	3	731/32	(30) 16d	(10) 16d	4505	5795	4010	4740	
HUS1.81/10	16	1 13/16	9	3	8	(30) 16d	(10) 16d	4505	6450	4010	5200	


 $1.\,d_{\text{e}}$ is the distance from the seat of the hanger to the highest joist nail.

Dome doubleshear nailing prevents tabs breaking off (available on some models). US Patent

5,603,580

SIMPSON Streeg-Tite* Doubleshear nailing side view. Do not bend tab back.

Doubleshear nailing top view.

This technical bulletin is effective until December 31, 2024, and reflects information available as of July 1, 2022. This information is updated periodically and should not be relied upon after December 31, 2024. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2022 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

T-SPECHUS22 7/22 exp. 12/24

HGUS — Double-Shear Joist Hangers

SIMPSON
StrongTie

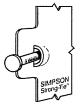
All HGUS hangers have double-shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

Design:

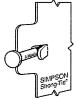
- Factored resistances are in accordance with CSA O86-14 and CSA O86:19.
- Uplift resistances have been increased 15%.
 No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

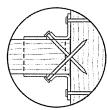

- Use all specified fasteners
- Nails: 16d = 0.162" dia x 31/2" long common wire
- Double-shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Options:

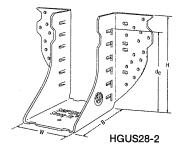
• See current catalogue for options

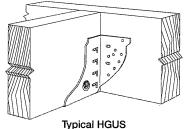

		Dimensions (in.)				Fasteners		Factored Resistance (lb.)				
Model								D.Fir-L		S-P-F		
No.	Ga.	1,47	н	В		Голо	laiat	Uplift	Normal	Uplift	Normal	
		W	П	Б	d _e ¹	Face	Joist	(K _D =1.15)	(K _D =1.00)	(K _D =1.15)	$(K_D=1.00)$	
HGUS26	12	15⁄8	5%	5	4 5/32	(20) 16d	(8) 16d	2685	6625	2685	5700	
HGUS26-2	12	35/16	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355	
HGUS26-3	12	4 15/16	5½	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355	
HGUS26-4	12	6%16	5 1/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355	
HGUS28	12	15/8	71/8	5	61/8	(36) 16d	(12) 16d	3310	7675	3100	6900	
HGUS28-2	12	35/16	73/16	4	61/8	(36) 16d	(12) 16d	6070	12980	4310	9215	
HGUS28-3	12	4 15/16	71/4	4	6%	(36) 16d	(12) 16d	6070	12980	4310	9215	
HGUS28-4	12	6%16	73/16	4	61/8	(36) 16d	(12) 16d	6070	12980	4310	9215	
HGUS210-2	12	35/16	93/16	4	81/8	(46) 16d	(16) 16d	6840	14015	4855	10270	
HGUS210-3	12	4 15/16	91/4	4	8%	(46) 16d	(16) 16d	6840	14645	4855	10400	
HGUS210-4	12	6%16	93/16	4	81/8	(46) 16d	(16) 16d	6840	14645	4855	10400	
HGUS212-4	12	6%16	10%	4	101/8	(56) 16d	(20) 16d	7640	14995	5425	10645	
HGUS214-4	12	6%16	12%	4	111/8	(66) 16d	(22) 16d	10130	16400	7195	11645	

1. $\ensuremath{d_{\text{e}}}$ is the distance from the seat of the hanger to the highest joist nail.

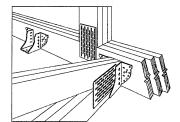


Dome doubleshear nailing prevents tabs breaking off (available on some models).


US Patent 5,603,580



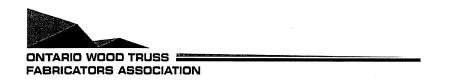
Doubleshear nailing side view. Do not bend tab back.



Doubleshear nailing top view.

Installation

Typical HGUS Installation (Truss designer to provide fastener quantity for connecting multiple members together)



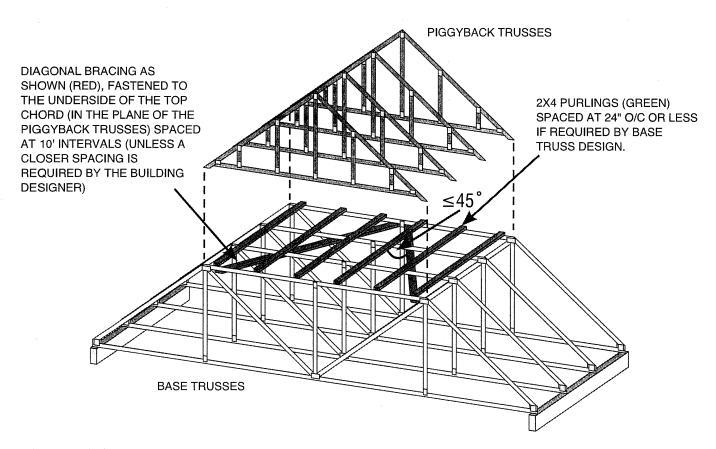
CITY OF RICHMOND HILL
(800) 999-5099
strongtie.com | /2 0 2 4

This technical bulletin is effective until December 31, 2024, and reflects information available as of July 1, 2022. This information is updated periodically and should not be relied upon after December 31, 2024. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2022 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

T-SPECHGUS22 7/22 exp. 12/24

TECH-NOTES


TN 15-001 **Piggyback Bracing**

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

Disclaimer:

OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technote are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to tr information provided but has developed this tech-note to offer guidance where it is not currently readily available.

CITY OF RICHMOND HILL **BUILDING DIVISION**

STANDARD DETAIL MSD2015-P

Issued: APRIL 27, 2022 Expiry: **APRIL 30, 2024**

> qoT Chord

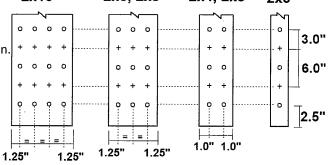
PEO

Certificate No. 10889485

PROFESSIONAL

POVINCE OF ONTE

ALTERNATIVE WEB BRACING SOLUTIONS


The scab brace detail shown on this page provides an alternative method of bracing compression webs of single ply trusses. Where the original design calls for web bracing, the scab-brace is an acceptable alternative provided that the factored axial force in the web member does not exceed the tabulated values shown below. This detail applies to web lengths of 4.0 ft. to 10.0 ft. only. For intermediate web lengths, do not interpolate, use the tabulated value of the longer length. (ex. For a 6.25 ft. web, use the tabulated values for a 6.5 ft. web)

			Maxin	num factored	web force, lbs	(1-Ply Tru	ss)
		Web size	2x3	2x4	2x5	2x6	2x8+
	4.0		4331	6064	7796	9529	12561
_	4.5		3794	5312	6829	8347	11003
E.	5.0		3285	4599	5913	7227	9527
Ξ	5.5		2823	3952	5081	6210	8186
Ξ	6.0		2415	3381	4347	5313	7003
ENGTH	6.5		2063	2888	3713	4538	5982
可	7.0		1763	2468	3174	3879	5113
B	7.5		1510	2114	2718	3322	4379
WEB	8.0		1297	1816	2335	2854	3762
	8.5		1117	1564	2011	2458	3240
	9.0		966	1353	1740	2126	2803
	9.5		840	1176	1512	1848	2436
1]0.0		733	1027	1320	1614	2127

SCAB BRACE DETAIL 1-PLY TRUSS Scab 90% Web Length **Bottom** Chord **SCAB CONNECTION: 1-PLY TRUSS** 2x10 2x6, 2x8 2x4, 2x5

NOTES:

- 1. This detail CANNOT be used to repair damaged webs.
- Scab and web sizes must be equal (i.e. use a 2x6 scab on a 2x6 web, etc.).
- 3. Scab & web lumber must be DRY (≤ 19% moisture content) at time of installation
- Scab must cover minimum 90% of the entire length of web.
- 5. For 2x12 webs use 2x10 nail pattern, but with 5 rows of nails instead of 4 rows.
- 6. This detail is for webs loaded axially only (not for axial/bending members).
- 7 Web and scab lumber shall be SPF No. 2 (or better) grade.
- 8 Tabulated resistances are for standard load duration only (KD=1.0) and DRY service conditions ($K_s = 1.0$). Do not use detail for WET service applications.
- This detail shall be used only in conjunction with sealed MiTek truss drawings.

+ 0.122" dia. x 3.0" nail driven from front face o 0.122" dia. x 3.0" nail driven from back face

Note: Connect scabs to truss along their entire length.

2021 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, www.mitek.ca

Issued: **APRIL 27, 2022** Expiry: **APRIL 30, 2024**

qoT

Scab Brace

PEO

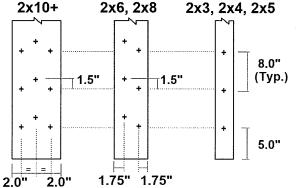
Certificate No. 10889485

PROFESSIONA

POVINCE OF ONTE

Chord

ALTERNATIVE WEB BRACING SOLUTIONS


The scab brace detail shown on this page provides an alternative method of bracing compression webs of 2-PLY trusses. Where the original design calls for web bracing, the scab-brace is an acceptable alternative provided that the maximum factored axial force in the web member does not exceed the tabulated values shown below. This detail applies to web lengths of 4.0 Ft. to 10.0 Ft. only. For intermediate web lengths, do not interpolate, use the tabulated value of the longer length. (ex. For a 6.25 ft. web, use the tabulated values for a 6.5 ft. web)

			Maxin	num factored	web force, lbs	(2-Ply Tru	ss)
		Web size	2x3	2x4	2x5	2x6	2x8+
	4.0		8663	12128	15593	19058	25122
	4.5		7588	10623	13659	16694	22006
Ŧ.	5.0		6570	9198	11826	14455	19054
Ξ	5.5		5645	7903	10162	12420	16371
I	6.0		4830	6762	8694	10626	14007
LENGTH	6.5		4126	5776	7426	9077	11965
N N	7.0		3526	4937	6347	7758	10226
	7.5		3020	4228	5436	6644	8758
WEB	8.0		2594	3632	4670	5708	7524
3	8.5		2235	3128	4022	4916	6480
	9.0		1933	2706	3479	4253	5606
	9.5		1680	2352	3024	3696	4872
	10.0		1467	2054	2640	3227	4254

SCAB BRACE DETAIL 2-PLY TRUSS Scab Brace (Front) 90% Web Length Bottom Chord SCAB CONNECTION: 2-PLY TRUSS

NOTES:

- 1. This detail CANNOT be used to repair damaged webs.
- 2. Scab sizes must be equal to web size (i.e. use a 2x6 scab on a 2x6 web, etc.).
- 3. Scabs &web lumber must be DRY (≤ 19% moisture content) at time of installation.
- **4.** Scabs must cover 90% of the entire length of web and installed on both faces.
- 5. This detail shall NOT apply to vertical webs used for girder load transfer.
- 6. Web & scab lumber to be SPF No. 2 (or better) grade.
- 7—This detail is for webs loaded axially only (not for axial/bending members).
- 8 Ensure scabs will not interfere with incoming trusses, prior to using this detail.
- 9. Tabulated resistances are for standard load duration only ($K_D=1.0$) and DRY service conditions ($K_S=1.0$). Do not use detail for WET service applications.
- 10. This detail shall be used only in conjunction with sealed MiTek truss drawings.

+ MITEK MIFLK006 Screw @ 8 in. cc Note: Connect scabs to truss along their entire length.

9. Tabu servir 10. This


©2021 Mirek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, <u>www.mitek.ca</u>

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated. Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0-1/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

 4×4

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

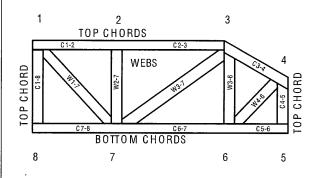
Indicated by symbol shown and/or by text in the bracing section of the output. Use T. I or Eliminator bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

Industry Standards:

TPIC:


Truss Design Procedures and Specifications For Light Metal Plate Connected Wood Trusses DSB-89: Design Standard for Bracing.

NBCSI: W Building Component Safety Information, uide to Good Practice for Handling, Anstalling & Bracing of Metal Plate

Connected Wood Trusses.

Numbering System

6-4-8 dimensions shown in ft-in-sixteenths or mm (Drawings not to scale)

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

CCMC Reports:

11996-L. 10319-L. 13270-L. 12691-R

© 2007 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473C rev. 10-'08

⚠ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative T, I, or Eliminator bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by TPIC.
- 7. Design assumes trusses will be suitably protected from the environment in accord with TPIC.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabric ator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with TPIC Quality Criteria.