

NOT THE GRANTING OF A PERMIT NOR REVIEWING OF SPECS & DRAWINGS NOR INSPECTIONS MADE DURING INSTALLATION BY THE OFFICIAL HAVING JURISDICTION SHALL RELIEVE THE OWNER FROM REQUIREMENTS OF THE ONTARIO BUILDING CODE AND ANY OTHER REFERENCED REQUIREMENTS.

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2
Tel: 905.619.2300 Fax: 905.619.2375
Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

#### Block 121 Units 1 to 6

|                                                                                                                                                                                                                                                                                                                    |                                                         |                                                  |         |          |          |         |      |        | Offic                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |         |           |      |       |          |                                                                                |                                               |                                                                                        |                                                                 |           |                      |             |                                                               |                                                                                           |                                                   |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|---------|----------|----------|---------|------|--------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------|-----------|------|-------|----------|--------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------|----------------------|-------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|
| SITE NAME:                                                                                                                                                                                                                                                                                                         |                                                         |                                                  |         |          |          |         |      |        | WOB                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |         |           |      |       |          | DATE: Dec-22                                                                   |                                               |                                                                                        |                                                                 |           | AIR CHANGE RATE 0.3  |             |                                                               |                                                                                           |                                                   | CSA-F280-12                                    |
| BUILDER:                                                                                                                                                                                                                                                                                                           | GREEN                                                   | IPARK                                            | HOMES   |          |          |         |      | /PE: ( | CHERRY                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |         |           | 2030 |       |          | LO# 99793                                                                      |                                               |                                                                                        | UMMER                                                           |           | AIR CHANGE RATE 0.10 | 0 HEAT GAIN | ΔT °F.                                                        | 9                                                                                         | SB-12 F                                           | ACKAGE A1                                      |
| ROOM USE                                                                                                                                                                                                                                                                                                           |                                                         |                                                  |         | MBR      |          |         | ENS  |        | ,                                                            | WIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | BED-2   | !         |      | BED-3 |          |                                                                                |                                               | BATH                                                                                   |                                                                 | FLEX      |                      |             |                                                               |                                                                                           |                                                   |                                                |
| EXP. WALL                                                                                                                                                                                                                                                                                                          | 1                                                       |                                                  |         | 13       |          |         | 7    |        |                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | 11      |           |      | 13    |          |                                                                                |                                               | 0                                                                                      |                                                                 | 0         |                      |             |                                                               |                                                                                           |                                                   |                                                |
| CLG. HT.                                                                                                                                                                                                                                                                                                           |                                                         |                                                  |         | 9        |          |         | 9    |        |                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | 9       |           |      | 9     |          |                                                                                |                                               | 9                                                                                      |                                                                 | 9         |                      |             |                                                               |                                                                                           |                                                   |                                                |
| 000 WALL ADDA                                                                                                                                                                                                                                                                                                      | FACTO                                                   |                                                  |         |          |          |         |      |        |                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |         |           |      |       |          |                                                                                |                                               |                                                                                        |                                                                 |           |                      |             |                                                               |                                                                                           |                                                   |                                                |
|                                                                                                                                                                                                                                                                                                                    | LOSS                                                    | GAIN                                             |         | 117      |          |         | 63   |        |                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | 99      |           |      | 117   |          |                                                                                |                                               | 0                                                                                      |                                                                 | 0         |                      |             |                                                               |                                                                                           |                                                   |                                                |
| GLAZING                                                                                                                                                                                                                                                                                                            | l                                                       |                                                  |         | LOSS     |          |         |      | AIN    |                                                              | OSS GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | LOSS    |           |      | LOSS  |          |                                                                                |                                               | LOSS                                                                                   |                                                                 |           | GAIN                 |             |                                                               |                                                                                           |                                                   |                                                |
| NORTH                                                                                                                                                                                                                                                                                                              | 20.3                                                    | 15.0                                             | 0       | 0        | 0        | 0       |      | 0      |                                                              | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |         | 0         | 0    | 0     | 0        |                                                                                | 0                                             | 0                                                                                      | 0                                                               | 0 0       | 0                    |             |                                                               |                                                                                           |                                                   |                                                |
| EAST<br>SOUTH                                                                                                                                                                                                                                                                                                      | 20.3                                                    | 40.5<br>23.9                                     | 18<br>0 | 365<br>0 | 730<br>0 | 16<br>0 |      | 0      | 0                                                            | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |         | 0         | 0    | 0     | 0        |                                                                                | 0                                             | 0                                                                                      | 0                                                               | 0 0       | 0                    |             |                                                               |                                                                                           |                                                   |                                                |
|                                                                                                                                                                                                                                                                                                                    |                                                         |                                                  | 0       | 0        | 0        | 0       | -    | 0      | 0                                                            | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |         | -         | _    |       | -        |                                                                                | 0                                             | -                                                                                      | 0                                                               | 0 0       | 0                    |             |                                                               |                                                                                           |                                                   |                                                |
| WEST<br>SKYLT.                                                                                                                                                                                                                                                                                                     | 20.3                                                    | 40.5                                             | 0       | 0        | 0        | 0       |      | 0      | 0                                                            | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |         | 1095<br>0 | 24   | 487   | 973<br>0 |                                                                                | 0                                             | 0                                                                                      | 0                                                               | 0 0       | 0                    |             |                                                               |                                                                                           |                                                   |                                                |
| DOORS                                                                                                                                                                                                                                                                                                              | 35.5<br>19.1                                            | 99.8<br>2.4                                      | 0       | 0        | 0        | 0       |      | 0      | 0                                                            | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |         | 0         | 0    | 0     | 0        |                                                                                | 0                                             | 0                                                                                      | 0                                                               | 0 0       | 0                    |             |                                                               |                                                                                           |                                                   |                                                |
| NET EXPOSED WALL                                                                                                                                                                                                                                                                                                   | 4.3                                                     | 0.5                                              | 99      | 421      | -        | 47      | -    | 25     | 0                                                            | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |         | 39        | 93   | 395   | 50       |                                                                                | 0                                             | 0                                                                                      | 0                                                               | 0 0       | 0                    |             |                                                               |                                                                                           |                                                   |                                                |
| NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR                                                                                                                                                                                                                                                                    | 3.4                                                     | 0.5                                              | 0       | 0        | 0        | 0       |      | 0      | 0                                                            | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |         | 0         | 0    | 0     | 0        |                                                                                | 0                                             | 0                                                                                      | 0                                                               | 0 0       | 0                    |             |                                                               |                                                                                           |                                                   |                                                |
| EXPOSED CLG                                                                                                                                                                                                                                                                                                        |                                                         | 0.5                                              | 286     | 350      |          |         |      | 76     |                                                              | 98 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |         | 93        | 155  | 189   | 82       |                                                                                | 63                                            | 77                                                                                     | 33                                                              | 381 466   | 201                  |             |                                                               |                                                                                           |                                                   |                                                |
| NO ATTIC EXPOSED CLG                                                                                                                                                                                                                                                                                               |                                                         | 1.1                                              | 0       | 0        | 0        | 0       |      | 0      | 0                                                            | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |         | 0         | 15   | 39    | 17       |                                                                                | 0                                             | 0                                                                                      | 0                                                               | 0 0       | 0                    |             |                                                               |                                                                                           |                                                   |                                                |
| EXPOSED FLOOR                                                                                                                                                                                                                                                                                                      |                                                         | 0.3                                              | 42      | 102      |          | 79      | -    | 24     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 17                                             |         | 54        | 13   | 32    | 4        |                                                                                | 63                                            | 153                                                                                    | 19                                                              | 55 134    | 17                   |             | 1                                                             |                                                                                           |                                                   |                                                |
| BASEMENT/CRAWL HEAT LOSS                                                                                                                                                                                                                                                                                           |                                                         | 0.5                                              | 72      | 0        |          |         | 0    |        | •••                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~   ''                                           | 0 420   | 34        | "    | 0     | -        |                                                                                | 33                                            | 0                                                                                      |                                                                 | 0 134     |                      |             | 1                                                             |                                                                                           |                                                   |                                                |
| SLAB ON GRADE HEAT LOSS                                                                                                                                                                                                                                                                                            |                                                         |                                                  |         | 0        |          |         | 0    |        |                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | 0       |           |      | 0     |          |                                                                                |                                               | 0                                                                                      |                                                                 | 0         |                      |             |                                                               |                                                                                           |                                                   |                                                |
| SUBTOTAL HT LOSS                                                                                                                                                                                                                                                                                                   |                                                         |                                                  |         | 1237     |          |         | 892  |        |                                                              | 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | 1496    |           |      | 1142  |          |                                                                                |                                               | 230                                                                                    |                                                                 | 599       |                      |             | 1                                                             |                                                                                           |                                                   |                                                |
| SUB TOTAL HT GAIN                                                                                                                                                                                                                                                                                                  |                                                         |                                                  |         | 1201     | 947      |         |      | 774    |                                                              | <del>244</del><br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                | 1400    | 1281      |      | . 142 | 1126     |                                                                                |                                               | 200                                                                                    | 53                                                              | 333       | 218                  |             | 1                                                             |                                                                                           |                                                   |                                                |
| LEVEL FACTOR / MULTIPLIER                                                                                                                                                                                                                                                                                          |                                                         |                                                  | 0.20    | 0.44     |          | 0.20    |      |        | 0.20                                                         | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                              | 20 0.44 | 1201      | 0.20 | 0.44  | 1120     |                                                                                | 0.20                                          | 0.44                                                                                   | 00                                                              | 0.20 0.44 | 210                  |             |                                                               |                                                                                           |                                                   |                                                |
| AIR CHANGE HEAT LOSS                                                                                                                                                                                                                                                                                               |                                                         |                                                  | 0.20    | 545      |          |         | 393  |        |                                                              | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2                                              | 659     |           | 0.20 | 503   |          |                                                                                | 0.20                                          | 101                                                                                    |                                                                 | 264       |                      |             |                                                               |                                                                                           |                                                   |                                                |
| AIR CHANGE HEAT GAIN                                                                                                                                                                                                                                                                                               |                                                         |                                                  |         | 040      | 63       |         |      | 52     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ı                                                | 000     | 86        |      | 000   | 75       |                                                                                |                                               |                                                                                        | 4                                                               | 204       | 15                   |             |                                                               |                                                                                           |                                                   |                                                |
| DUCT LOSS                                                                                                                                                                                                                                                                                                          |                                                         |                                                  |         | 178      | 00       |         | 129  | -      |                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | 216     | 00        |      | 165   | ,,,      |                                                                                |                                               | 33                                                                                     | 7                                                               | 86        |                      |             |                                                               |                                                                                           |                                                   |                                                |
| DUCT GAIN                                                                                                                                                                                                                                                                                                          |                                                         |                                                  |         |          | 221      |         |      | 83     |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                | 2.0     | 233       |      | 100   | 216      |                                                                                |                                               | 00                                                                                     | 6                                                               | 00        | 23                   |             |                                                               |                                                                                           |                                                   |                                                |
| HEAT GAIN PEOPLE                                                                                                                                                                                                                                                                                                   | 240                                                     |                                                  | 2       |          | 480      | 0       |      | 0      | 0                                                            | ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |         | 240       | 1    |       | 240      |                                                                                | 0                                             |                                                                                        | 0                                                               | 0         | 0                    |             |                                                               |                                                                                           |                                                   |                                                |
| HEAT GAIN APPLIANCES/LIGHTS                                                                                                                                                                                                                                                                                        |                                                         |                                                  | _       |          | 722      | •       |      | 0      | •                                                            | ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |         | 722       | '    |       | 722      |                                                                                | "                                             |                                                                                        | 0                                                               | •         | 0                    |             |                                                               |                                                                                           |                                                   |                                                |
| TOTAL HT LOSS BTU/H                                                                                                                                                                                                                                                                                                |                                                         |                                                  |         | 1961     |          |         | 1414 | •      |                                                              | 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | 2371    |           |      | 1810  |          |                                                                                |                                               | 365                                                                                    | ·                                                               | 950       |                      |             |                                                               |                                                                                           |                                                   |                                                |
| TOTAL HT GAIN x 1.3 BTU/H                                                                                                                                                                                                                                                                                          |                                                         |                                                  |         |          | 3163     |         |      | 182    |                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                | 20      | 3330      |      |       | 3093     |                                                                                |                                               | 000                                                                                    | 80                                                              | -         | 332                  |             |                                                               |                                                                                           |                                                   |                                                |
|                                                                                                                                                                                                                                                                                                                    |                                                         |                                                  |         |          |          |         |      |        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |         |           |      |       |          | ı                                                                              | 1                                             |                                                                                        |                                                                 |           |                      | 1           |                                                               |                                                                                           |                                                   |                                                |
| ROOM USE                                                                                                                                                                                                                                                                                                           |                                                         |                                                  |         |          |          |         |      |        | K                                                            | /L/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |         |           |      |       |          | W/R                                                                            |                                               | FOY                                                                                    |                                                                 |           |                      |             | W                                                             | /ОВ                                                                                       |                                                   | BAS                                            |
| EXP. WALL                                                                                                                                                                                                                                                                                                          |                                                         |                                                  |         |          |          |         |      |        |                                                              | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |         |           |      |       |          | 13                                                                             |                                               | 25                                                                                     |                                                                 |           |                      |             | :                                                             | 27                                                                                        |                                                   | 100                                            |
| CLG. HT.                                                                                                                                                                                                                                                                                                           |                                                         |                                                  |         |          |          |         |      |        |                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |         |           |      |       |          | 10                                                                             |                                               | 10                                                                                     |                                                                 |           |                      |             |                                                               | 9                                                                                         |                                                   | 9                                              |
|                                                                                                                                                                                                                                                                                                                    | FACTO                                                   | DRS                                              |         |          |          |         |      |        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |         |           |      |       |          |                                                                                |                                               |                                                                                        |                                                                 |           |                      |             |                                                               |                                                                                           |                                                   |                                                |
| GRS.WALL AREA                                                                                                                                                                                                                                                                                                      | LOSS                                                    | GAIN                                             |         |          |          |         |      |        |                                                              | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |         |           |      |       |          | 130                                                                            |                                               | 250                                                                                    |                                                                 |           |                      |             | 2                                                             | 243                                                                                       |                                                   | 600                                            |
| GLAZING                                                                                                                                                                                                                                                                                                            |                                                         |                                                  |         |          |          |         |      |        | 1                                                            | OSS GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JN                                               |         |           |      |       |          | 1 000 0411                                                                     |                                               |                                                                                        |                                                                 |           |                      |             |                                                               | OSS GAIN                                                                                  | i                                                 | LOSS GAIN                                      |
| NORTH                                                                                                                                                                                                                                                                                                              | 20.3                                                    | 15.0                                             |         |          |          |         |      |        | _                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |         |           |      |       |          | LOSS GAIN                                                                      | ı                                             | LOSS                                                                                   | GAIN                                                            |           |                      |             | LC                                                            |                                                                                           |                                                   | 0 0                                            |
| EAST                                                                                                                                                                                                                                                                                                               | 20.3                                                    | 40.5                                             |         |          |          |         |      |        |                                                              | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )                                                |         |           |      |       |          | 0 0 0                                                                          | 0                                             | LOSS<br>0                                                                              | GAIN<br>0                                                       |           |                      |             |                                                               | 0 0                                                                                       | 0                                                 | 0 0                                            |
| SOUTH                                                                                                                                                                                                                                                                                                              | 20.2                                                    |                                                  |         |          |          |         |      |        | 0                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |         |           |      |       |          |                                                                                |                                               |                                                                                        |                                                                 |           |                      |             | 0                                                             | 0 0<br>912 1824                                                                           | _                                                 | 0 0                                            |
| WEST                                                                                                                                                                                                                                                                                                               | 20.3                                                    | 23.9                                             |         |          |          |         |      |        | 0<br>24                                                      | 0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | '3                                               |         |           |      |       |          | 0 0 0                                                                          | 0                                             | 0                                                                                      | 0                                                               |           |                      |             | 0<br>45 9                                                     |                                                                                           | _                                                 |                                                |
|                                                                                                                                                                                                                                                                                                                    | 20.3                                                    | 23.9<br>40.5                                     |         |          |          |         |      |        | 0<br>24<br>0<br>0                                            | 0 (<br>487 97<br>0 (<br>0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73<br>)<br>)                                     |         |           |      |       |          | 0 0 0<br>0 0 0<br>0 0 0<br>0 0 0                                               | 0<br>0<br>0<br>15                             | 0<br>0<br>0<br>304                                                                     | 0<br>0<br>0<br>608                                              |           |                      |             | 0<br>45 9<br>0<br>0                                           | 012 1824<br>0 0<br>0 0                                                                    | 0 0                                               | 0 0<br>0 0<br>0 0                              |
| SKYLT.                                                                                                                                                                                                                                                                                                             |                                                         | 23.9                                             |         |          |          |         |      |        | 0<br>24<br>0<br>0                                            | 0 (<br>487 97<br>0 (<br>0 (<br>0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73<br>)<br>)                                     |         |           |      |       |          | 0 0 0<br>0 0 0<br>0 0 0                                                        | 0<br>0<br>0                                   | 0<br>0<br>0                                                                            | 0<br>0<br>0<br>608<br>0                                         |           |                      |             | 0<br>45 9<br>0<br>0                                           | 012 1824<br>0 0                                                                           | 0                                                 | 0 0<br>0 0<br>0 0<br>0 0                       |
| SKYLT.<br>DOORS                                                                                                                                                                                                                                                                                                    | 20.3<br>35.5<br>19.1                                    | 23.9<br>40.5<br>99.8<br>2.4                      |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>20                                 | 0 (<br>487 97<br>0 (<br>0 (<br>0 (<br>382 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73<br>)<br>)<br>)<br>9                           |         |           |      |       |          | 0 0 0<br>0 0 0<br>0 0 0<br>0 0 0<br>0 0 0                                      | 0<br>0<br>0<br>15<br>0<br>40                  | 0<br>0<br>0<br>304<br>0<br>764                                                         | 0<br>0<br>0<br>608<br>0<br>97                                   |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3                              | 012 1824<br>0 0<br>0 0<br>0 0<br>0 0                                                      | 0<br>0<br>0<br>0<br>0                             | 0 0 0 0 0 0 0 0 0 0 382 49                     |
| SKYLT.<br>DOORS<br>NET EXPOSED WALL                                                                                                                                                                                                                                                                                | 20.3<br>35.5<br>19.1<br>4.3                             | 23.9<br>40.5<br>99.8<br>2.4<br>0.5               |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>0<br>20<br>566                     | 0 (487 97<br>0 (<br>0 (<br>0 (<br>382 4<br>2406 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73<br>)<br>)<br>)<br>9                           |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>0<br>15<br>0<br>40<br>195           | 0<br>0<br>0<br>304<br>0<br>764<br>829                                                  | 0<br>0<br>0<br>608<br>0<br>97<br>105                            |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7                     | 012 1824<br>0 0<br>0 0<br>0 0<br>0 0<br>882 49<br>757 96                                  | 0<br>0<br>0<br>0<br>0<br>20                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR                                                                                                                                                                                                                                                       | 20.3<br>35.5<br>19.1<br>4.3<br>3.4                      | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4        |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>20<br>566 2                        | 0 (487 97 0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73<br>)<br>)<br>)<br>9<br>96                     |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195                | 0<br>0<br>0<br>304<br>0<br>764<br>829                                                  | 0<br>0<br>0<br>608<br>0<br>97<br>105                            |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7                     | 012 1824<br>0 0<br>0 0<br>0 0<br>0 0<br>882 49<br>757 96<br>0 0                           | 0<br>0<br>0<br>0<br>20<br>0<br>300                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG                                                                                                                                                                                                                                           | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2               | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>20<br>566<br>2                     | 0 (0<br>487 97<br>0 (0<br>0 (0<br>382 4<br>2406 30<br>0 (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73<br>)<br>)<br>)<br>9<br>)6<br>)                |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 130 553 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>15<br>0<br>40<br>195<br>0           | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0                                             | 0<br>0<br>0<br>608<br>0<br>97<br>105<br>0                       |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0                | 912 1824<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0                                     | 0<br>0<br>0<br>0<br>20<br>0<br>300                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG                                                                                                                                                                                                                      | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6        | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>20<br>566<br>2<br>0                | 0 (0<br>487 97<br>0 (0<br>0 (0<br>382 4<br>2406 30<br>0 (0<br>0 (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73                                               |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0           | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0                                        | 0<br>0<br>608<br>0<br>97<br>105<br>0                            |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0           | 912 1824<br>0 0 0<br>0 0<br>0 0<br>882 49<br>757 96<br>0 0<br>0 0                         | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1028 131 0 0 0 0 |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR                                                                                                                                                                                                        | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2               | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>20<br>566<br>2                     | 0 (487 97 0 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73                                               |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 130 553 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0<br>0<br>15<br>0<br>40<br>195<br>0           | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0                                        | 0<br>0<br>0<br>608<br>0<br>97<br>105<br>0                       |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0           | 912 1824<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0                                     | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BIMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS                                                                                                                                                                               | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6        | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>20<br>566<br>2<br>0                | 0 (487 97<br>0 (60 00<br>0 | 73                                               |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0           | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0                                   | 0<br>0<br>608<br>0<br>97<br>105<br>0                            |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0<br>0      | 912 1824<br>0 0 0<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0<br>0 0                     | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1028 131 0 0 0 0 |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BIMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS                                                                                                                                                       | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6        | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>0<br>20<br>566<br>2<br>0<br>0      | 0 (487 97 0 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73                                               |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0           | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0                                   | 0<br>0<br>608<br>0<br>97<br>105<br>0                            |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0<br>0      | 912 1824<br>0 0 0<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0<br>0 0<br>0 0              | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS                                                                                                                                      | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6        | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>0<br>20<br>566<br>2<br>0<br>0      | 0 (487 97 0 (6 1487 97 14 14 14 14 14 14 14 14 14 14 14 14 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73                                               |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0           | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0                                   | 0<br>0<br>608<br>0<br>97<br>105<br>0<br>0                       |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0<br>0      | 012 1824<br>0 0 0<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0<br>0 0<br>0 0              | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN                                                                                                                     | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6        | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>20<br>566<br>2<br>0<br>0<br>0      | 0 (487 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73                                               |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0<br>0      | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0<br>0<br>0                         | 0<br>0<br>608<br>0<br>97<br>105<br>0                            |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0<br>0      | 912 1824<br>0 0 0<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0<br>0 0<br>0 0              | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER                                                                                                            | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6<br>2.4 | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0 24 0 0 0 20 566 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      | 0 (487 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73                                               |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0           | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0<br>0<br>0<br>1897                 | 0<br>0<br>608<br>0<br>97<br>105<br>0<br>0                       |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0<br>0      | 012 1824<br>0 0 0<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0<br>0 0<br>0 0              | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS                                                                     | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6<br>2.4 | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0 24 0 0 0 20 566 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      | 0 (487 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73<br>)<br>)<br>)<br>9<br>9<br>96<br>)<br>)<br>) |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0<br>0      | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>608<br>0<br>97<br>105<br>0<br>0<br>0             |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0<br>0      | 012 1824<br>0 0 0<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0<br>0 0<br>0 0              | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN                                                                  | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6<br>2.4 | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0 24 0 0 0 20 566 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      | 0 (487 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73<br>)<br>)<br>)<br>9<br>9<br>96<br>)<br>)<br>) |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0<br>0      | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0<br>0<br>0<br>1897                 | 0<br>0<br>608<br>0<br>97<br>105<br>0<br>0                       |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0<br>0      | 012 1824<br>0 0 0<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0<br>0 0<br>0 0              | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMIT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS                                                                 | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6<br>2.4 | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0 24 0 0 0 20 566 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      | 0 (487 97<br>0 (0 0 0<br>0 (0 382 4 2406 30<br>0 (0 0 0<br>0 0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 0 0 0<br>0 0 0 0 0 0 0 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9906                                             |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0<br>0      | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0<br>0<br>0<br>1897                 | 0<br>0<br>0<br>608<br>0<br>97<br>105<br>0<br>0<br>0             |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0<br>0      | 012 1824<br>0 0 0<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0<br>0 0<br>0 0              | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT GAIN                                                        | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6<br>2.4 | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0 24 0 0 0 20 566 2 0 0 0 0 0 3                              | 0 (487 97<br>0 (0 0 0<br>3882 4 2406 30<br>0 (0 0 0<br>0 0 0<br>0 0 0<br>3275 13<br>2207 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99 966 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9           |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0<br>0<br>0 | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0<br>0<br>0<br>1897                 | 0<br>0<br>0<br>608<br>0<br>97<br>105<br>0<br>0<br>0             |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0<br>0<br>0 | 912 1824<br>0 0 0<br>0 0 0<br>0 882 49<br>757 96<br>0 0 0<br>0 0 0<br>0 0 0<br>247<br>298 | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE           | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6<br>2.4 | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0 24 0 0 0 20 566 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      | 0 (487 97<br>0 (0 0 0<br>0 (0 0 0<br>0 (0 0 0<br>0 0 0 0<br>0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0 0 0 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 999999999999999999999999999999999999999          |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0<br>0      | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0<br>0<br>0<br>1897                 | 0<br>0<br>0<br>608<br>0<br>97<br>105<br>0<br>0<br>0<br>0<br>811 |           |                      |             | 0<br>45 9<br>0<br>0<br>0<br>20 3<br>178 7<br>0<br>0<br>0      | 012 1824<br>0 0 0<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0<br>0 0<br>0 0              | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6<br>2.4 | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>20<br>566<br>2<br>0<br>0<br>0<br>0 | 0 (487 97<br>0 (0 0 0 0<br>0 0 0 0<br>382 44406 30<br>0 0 0<br>0 0 0<br>3275 13<br>0.67<br>2207 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 999999999999999999999999999999999999999          |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0<br>0<br>0 | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0<br>0<br>0<br>1897<br>0.67<br>1279 | 0<br>0<br>0<br>608<br>0<br>97<br>105<br>0<br>0<br>0             |           |                      |             | 0 45 9 0 0 0 0 20 3 178 7 0 0 0 0 2 2:                        | 912 1824<br>0 0 0<br>0 0 0<br>882 49<br>757 96<br>0 0 0<br>0 0 0<br>247<br>298            | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0<br>0      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |
| SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE           | 20.3<br>35.5<br>19.1<br>4.3<br>3.4<br>1.2<br>2.6<br>2.4 | 23.9<br>40.5<br>99.8<br>2.4<br>0.5<br>0.4<br>0.5 |         |          |          |         |      |        | 0<br>24<br>0<br>0<br>0<br>20<br>566<br>2<br>0<br>0<br>0<br>0 | 0 (487 97<br>0 (0 0 0<br>0 (0 0 0<br>0 (0 0 0<br>0 0 0 0<br>0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0 0 0 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 999660000000000000000000000000000000000          |         |           |      |       |          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | 0<br>0<br>15<br>0<br>40<br>195<br>0<br>0<br>0 | 0<br>0<br>0<br>304<br>0<br>764<br>829<br>0<br>0<br>0<br>0<br>0<br>1897<br>0.67<br>1279 | 0<br>0<br>0<br>608<br>0<br>97<br>105<br>0<br>0<br>0<br>0<br>811 |           |                      |             | 0 45 9 0 0 0 0 20 3 178 7 0 0 0 0 2 2:                        | 912 1824<br>0 0 0<br>0 0 0<br>0 882 49<br>757 96<br>0 0 0<br>0 0 0<br>0 0 0<br>247<br>298 | 0<br>0<br>0<br>0<br>20<br>0<br>300<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |

TOTAL HEAT GAIN BTU/H:

19351

TONS: 1.61

LOSS DUE TO VENTILATION LOAD BTU/H: 1243

STRUCTURAL HEAT LOSS: 30253

TOTAL COMBINED HEAT LOSS BTU/H: 31496

Mehad Oxombe.



| SITE NAME: BARLASSINA<br>BUILDER: GREENPARK HOMES                                                                                                                                                                                                                        |                                                                   |                                                                       |                                                                 |                                                                       |                                                                          |                                                       |                                                       |                                                       | WOB<br>CHERRY                                                  |                                                       |                                                       |                                                       | DATE:                                                 | Dec-22                                                |                                                       |                                                                | GFA: 2030                                                          | LO#                                                                          | 99793             |                                                 |                                             |                                             |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|-------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|
|                                                                                                                                                                                                                                                                          | 22.97                                                             |                                                                       | TOTAL F                                                         |                                                                       | 19,193<br>36.21                                                          | _                                                     | а                                                     | furı<br>a/c coil<br>ıvailable                         | pressure<br>nace filter<br>pressure<br>pressure<br>s/a & r/a   | 0.6<br>0.05<br>0.2<br>0.35                            |                                                       |                                                       |                                                       |                                                       |                                                       | (                                                              | GMEC960402BN<br>FAN SPEE<br>LOV                                    | D<br>V                                                                       | MAN               | OUTPUT                                          | AFUE =<br>(BTU/H) =<br>(BTU/H) =            | 40,000<br><b>38,400</b>                     |                                            |
| RUN COUNT<br>S/A                                                                                                                                                                                                                                                         | 4th                                                               | 3rd<br>0                                                              | 2nd<br>10                                                       | 1st<br>5                                                              | Bas<br>4                                                                 |                                                       | nle                                                   | anum nre                                              | ssure s/a                                                      | 0.18                                                  |                                                       | r/a                                                   | pressure                                              | 0.17                                                  |                                                       |                                                                | MEDLOW<br>MEDIUI                                                   |                                                                              |                   | DESI                                            | GN CFM =                                    | <b>695</b><br>6 " E.S.P.                    | _                                          |
| R/A                                                                                                                                                                                                                                                                      | 0                                                                 | 0                                                                     | 4                                                               | 1                                                                     | 1                                                                        |                                                       |                                                       |                                                       | ress. loss                                                     | 0.18                                                  | r/a                                                   |                                                       | ess. Loss                                             |                                                       |                                                       |                                                                | MEDIUM HIG                                                         |                                                                              |                   |                                                 | CINIW.                                      | U L.G.I .                                   |                                            |
| All S/A diffusers 4"x10" unle                                                                                                                                                                                                                                            |                                                                   |                                                                       |                                                                 | out.                                                                  |                                                                          | -                                                     | min adjı                                              | usted pre                                             | ssure s/a                                                      | 0.17                                                  | adj                                                   | usted pre                                             | ssure r/a                                             | 0.15                                                  |                                                       |                                                                | HIGH                                                               | l 890                                                                        |                   | TEMPERAT                                        | URE RISE                                    | 51                                          | _ °F                                       |
| All S/A runs 5"Ø unless not                                                                                                                                                                                                                                              | ted other                                                         | wise on la                                                            | ayout.<br>3                                                     | 4                                                                     | 5                                                                        | 6                                                     | 7                                                     | 8                                                     | 9                                                              | 10                                                    |                                                       |                                                       |                                                       | 14                                                    | 15                                                    | 16                                                             | 18                                                                 | 19                                                                           |                   | 21                                              | 22                                          | 23                                          | 24                                         |
| ROOM NAME<br>RM LOSS MBH.<br>CFM PER RUN HEAT<br>RM GAIN MBH.<br>CFM PER RUN COOLING<br>ADJUSTED PRESSURE                                                                                                                                                                | MBR<br>0.98<br>23<br>1.58<br>57<br>0.17                           | ENS<br>1.41<br>32<br>1.18<br>43<br>0.17                               | WIC<br>0.39<br>9<br>0.09<br>3<br>0.17                           | BED-3<br>0.90<br>21<br>1.55<br>56<br>0.17                             | BED-2<br>1.19<br>27<br>1.66<br>60<br>0.17                                | BED-2<br>1.19<br>27<br>1.66<br>60<br>0.17             | BATH<br>0.36<br>8<br>0.08<br>3<br>0.17                | FLEX<br>0.95<br>22<br>0.33<br>12<br>0.17              | BED-3<br>0.90<br>21<br>1.55<br>56<br>0.17                      | MBR<br>0.98<br>23<br>1.58<br>57<br>0.17               |                                                       |                                                       |                                                       | K/L/B<br>1.83<br>42<br>0.93<br>34<br>0.17             | K/L/B<br>1.83<br>42<br>0.93<br>34<br>0.17             | K/L/B<br>1.83<br>42<br>0.93<br>34<br>0.17                      | W/R<br>0.93<br>21<br>0.10<br>4<br>0.17                             | FOY<br>3.18<br>73<br>1.12<br>41<br>0.17                                      |                   | BAS<br>2.85<br>66<br>0.98<br>35<br>0.17         | BAS<br>2.85<br>66<br>0.98<br>35<br>0.17     | BAS<br>2.85<br>66<br>0.98<br>35<br>0.17     | BAS<br>2.85<br>66<br>0.98<br>35<br>0.17    |
| ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ff/min) COOLING VELOCITY (ff/min)                                                                                                                          | 46<br>180<br>226<br>0.08<br>5<br>169<br>419                       | 45<br>150<br>195<br>0.09<br>4<br>367<br>493                           | 36<br>160<br>196<br>0.09<br>4<br>103<br>34                      | 65<br>180<br>245<br>0.07<br>5<br>154<br>411                           | 62<br>160<br>222<br>0.08<br>5<br>198<br>441                              | 69<br>180<br>249<br>0.07<br>5<br>198<br>441           | 69<br>190<br>259<br>0.07<br>4<br>92<br>34             | 41<br>170<br>211<br>0.08<br>4<br>252<br>138           | 51<br>140<br>191<br>0.09<br>5<br>154<br>411                    | 39<br>140<br>179<br>0.1<br>5<br>169<br>419            |                                                       |                                                       |                                                       | 17<br>120<br>137<br>0.13<br>4<br>482<br>390           | 32<br>90<br>122<br>0.14<br>4<br>482<br>390            | 24<br>80<br>104<br>0.17<br>4<br>482<br>390                     | 34<br>140<br>174<br>0.1<br>4<br>241<br>46                          | 47<br>110<br>157<br>0.11<br>5<br>536<br>301                                  |                   | 43<br>100<br>143<br>0.12<br>5<br>485<br>257     | 25<br>110<br>135<br>0.13<br>5<br>485<br>257 | 13<br>110<br>123<br>0.14<br>5<br>485<br>257 | 34<br>130<br>164<br>0.1<br>5<br>485<br>257 |
| OUTLET GRILL SIZE<br>TRUNK                                                                                                                                                                                                                                               | 3X10<br>A                                                         | 3X10<br>A                                                             | 3X10<br>B                                                       | 3X10<br>C                                                             | 3X10<br>C                                                                | 3X10<br>C                                             | 3X10<br>C                                             | 3X10<br>C                                             | 3X10<br>C                                                      | 3X10<br>A                                             |                                                       |                                                       |                                                       | 3X10<br>B                                             | 3X10<br>B                                             | 3X10<br>B                                                      | 3X10<br>C                                                          | 3X10<br>C                                                                    |                   | 3X10<br>A                                       | 3X10<br>B                                   | 3X10<br>C                                   | 3X10<br>A                                  |
| RUN # ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK |                                                                   |                                                                       |                                                                 |                                                                       |                                                                          |                                                       |                                                       |                                                       |                                                                |                                                       |                                                       |                                                       |                                                       |                                                       |                                                       |                                                                |                                                                    |                                                                              |                   |                                                 |                                             |                                             |                                            |
| SUPPLY AIR TRUNK SIZE  TRUNK A TRUNK B TRUNK C TRUNK D TRUNK E TRUNK F                                                                                                                                                                                                   | TRUNK CFM 210 411 286 0 0                                         | STATIC PRESS. 0.08 0.08 0.07 0.00 0.00 0.00                           | 7.8<br>10.1<br>9.1<br>0<br>0                                    | RECT<br>DUCT<br>8<br>12<br>12<br>0<br>0                               | x<br>x<br>x<br>x<br>x                                                    | 8<br>8<br>8<br>8<br>8                                 | VELOCITY<br>(ft/min)<br>473<br>617<br>429<br>0<br>0   |                                                       | TRUNK G<br>TRUNK H<br>TRUNK I<br>TRUNK J<br>TRUNK K<br>TRUNK L | TRUNK CFM 0 0 0 0 0 0                                 | STATIC PRESS. 0.00 0.00 0.00 0.00 0.00 0.00 0.00      | ROUND DUCT 0 0 0 0 0 0 0                              | RECT DUCT 0 0 0 0 0 0 0 0 0 0                         | x<br>x<br>x<br>x<br>x                                 | 8<br>8<br>8<br>8<br>8                                 | VELOCITY (ft/min) 0 0 0 0 0 0 0 0                              | RETURN AIR TRUNK                                                   | NK SIZE  STATIC  PRESS  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05 |                   | RECT DUCT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | x<br>x<br>x<br>x<br>x<br>x<br>x             | 8<br>8<br>8<br>8<br>8                       | VELOCITY (ft/min) 0 0 0 0 0 0 0 0 0 0      |
| RETURN AIR #  AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE ROUND DUCT SIZE INLET GRILL SIZE  INLET GRILL SIZE                                                                                                      | 1<br>0<br>95<br>0.15<br>44<br>100<br>144<br>0.10<br>5.5<br>8<br>X | 2<br>0<br>75<br>0.15<br>41<br>270<br>311<br>0.05<br>6<br>8<br>X<br>14 | 3<br>0<br>75<br>0.15<br>26<br>265<br>291<br>0.05<br>6<br>8<br>X | 4<br>0<br>85<br>0.15<br>27<br>225<br>252<br>0.06<br>6<br>8<br>X<br>14 | 5<br>0<br>233<br>0.15<br>36<br>185<br>221<br>0.07<br>8.4<br>8<br>X<br>24 | 0<br>0<br>0.15<br>1<br>0<br>1<br>14.80<br>0<br>0<br>X | 0<br>0<br>0.15<br>1<br>0<br>1<br>14.80<br>0<br>0<br>X | 0<br>0<br>0.15<br>1<br>0<br>1<br>14.80<br>0<br>0<br>X | 0<br>0<br>0.15<br>1<br>0<br>1<br>14.80<br>0<br>0<br>X          | 0<br>0<br>0.15<br>1<br>0<br>1<br>14.80<br>0<br>0<br>X | 0<br>0<br>0.15<br>1<br>0<br>1<br>14.80<br>0<br>0<br>X | 0<br>0<br>0.15<br>1<br>0<br>1<br>14.80<br>0<br>0<br>X | 0<br>0<br>0.15<br>1<br>0<br>1<br>14.80<br>0<br>0<br>X | 0<br>0<br>0.15<br>1<br>0<br>1<br>14.80<br>0<br>0<br>X | 0<br>0<br>0.15<br>1<br>0<br>1<br>14.80<br>0<br>0<br>X | 132<br>0.15<br>14<br>135<br>149<br>0.10<br>6.2<br>8<br>X<br>14 | TRUNK W 0<br>TRUNK X 695<br>TRUNK Y 468<br>TRUNK Z 235<br>DROP 695 | 0.05<br>0.05<br>0.05<br>0.05<br>0.05                                         | 0<br>13.8<br>11.9 | 0<br>22<br>16<br>10<br>24                       | x<br>x<br>x<br>x<br>x                       | 8<br>8<br>8<br>8<br>10                      | 0<br>569<br>527<br>423<br>417              |



NOT THE GRANTING OF A PERMIT NOR REVIEWING OF SPECS & DRAWINGS NOR INSPECTIONS MADE DURING INSTALLATION BY THE OFFICIAL HAVING JURISDICTION SHALL RELIEVE THE OWNER FROM REQUIREMENTS OF THE ONTARIO BUILDING CODE AND ANY OTHER REFERENCED REQUIREMENTS.

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2
Tel: 905.619.2300 Fax: 905.619.2375
Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

TYPE: CHERRY 2 LO #
SITE NAME: BARLASSINA

### WOB RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

99793

| COMBUSTION APPLIANCES                                   | 9.32.3.1(1)     | SUPPLEMENTAL V                        | ENTILATION CAPACITY                            |                |              | 9.32.3.5.    |
|---------------------------------------------------------|-----------------|---------------------------------------|------------------------------------------------|----------------|--------------|--------------|
| a)                                                      |                 | Total Ventilation Ca                  | pacity                                         | 127.2          | _            | cfm          |
| b) Positive venting induced draft (except fireplaces)   |                 | Less Principal Venti                  | I. Capacity                                    | 63.6           | _            | cfm          |
| c) Natural draft, B-vent or induced draft gas fireplace |                 | Required Suppleme                     | ntal Capacity                                  | 63.6           | _            | cfm          |
| d) Solid Fuel (including fireplaces)                    |                 | DRINGIDAL EVHAL                       | IST FAN CAPACITY                               |                |              |              |
| e) No Combustion Appliances                             |                 | Model:                                | VANEE V150H                                    | Location:      | RS           | SMT          |
| HEATING SYSTEM                                          |                 | 63.6                                  |                                                | Eddation       |              | VI Approved  |
|                                                         |                 |                                       | cfm                                            | TION           | <u> </u>     | vi Appioved  |
| Forced Air Non Forced Air                               |                 | CFM                                   | DST HEAT LOSS CALCULA<br>ΔT °F                 | FACTOR         |              | % LOSS       |
| Electric Space Heat                                     |                 | 63.6 CFM                              | X 72 F                                         | X 1.08         | X            | 0.25         |
|                                                         |                 | SUPPLEMENTAL F                        |                                                | INSTALLING CON |              |              |
| HOUSE TYPE                                              | 9.32.1(2)       | Location<br>ENS                       | Model BY INSTALLING CONTRACT                   | cfm<br>OR 50   | HVI          | Sones<br>3.5 |
|                                                         | 0.02.1(2)       | BATH                                  | BY INSTALLING CONTRACT                         |                | <b>√</b>     | 3.5          |
| ✓ I Type a) or b) appliance only, no solid fuel         |                 | W/R                                   | BY INSTALLING CONTRACT                         | OR 50          | <b>✓</b>     | 3.5          |
| II Type I except with solid fuel (including fireplaces  | 5)              | HEAT RECOVERY                         | VENTILATOR                                     |                |              | 9.32.3.11.   |
| III Any Type c) appliance                               |                 | Model:                                | VANEE V150H                                    |                |              |              |
| IV Type I, or II with electric space heat               |                 | 150                                   | cfm high                                       | 35             | _            | cfm low      |
| Other: Type I, II or IV no forced air                   |                 | 75                                    | % Sensible Efficiency<br>@ 32 deg F ( 0 deg C  |                | ✓ H          | VI Approved  |
|                                                         |                 | LOCATION OF INC                       | TALL ATION                                     |                |              |              |
| SYSTEM DESIGN OPTIONS                                   | O.N.H.W.P.      | LOCATION OF INS                       | TALLATION                                      |                |              |              |
| A Estavolante/Farrad Air Custom                         |                 | Lot:                                  |                                                | Concession     |              |              |
| 1 Exhaust only/Forced Air System                        |                 | Township                              |                                                | Plan:          |              |              |
| 2 HRV with Ducting/Forced Air System                    |                 | Address                               |                                                |                |              |              |
| HRV Simplified/connected to forced air system           |                 | Roll #                                |                                                | Building Perr  | nit#         |              |
| 4 HRV with Ducting/non forced air system                |                 | BUILDER:                              | GREENPARK HOME                                 | :S             |              |              |
| Part 6 Design                                           |                 | Name:                                 |                                                |                |              |              |
| TOTAL VENTILATION CAPACITY                              | 9.32.3.3(1)     | Address:                              |                                                |                |              |              |
| Basement + Master Bedroom 2 @ 21.2 cfm 42.4             | cfm             | City:                                 |                                                |                |              |              |
| Other Bedrooms <u>2</u> @ 10.6 cfm <u>21.2</u>          | cfm             | Telephone #:                          |                                                | Fax#:          |              |              |
| Kitchen & Bathrooms <u>4</u> @ 10.6 cfm <u>42.4</u>     | cfm             | INSTALLING CONT                       | RACTOR                                         |                |              |              |
| Other Rooms 2 @ 10.6 cfm 21.2                           | cfm             | Name:                                 |                                                |                |              |              |
| Table 9.32.3.A. TOTAL 127.2                             | cfm             | Address:                              |                                                |                |              |              |
|                                                         |                 | City:                                 |                                                |                |              |              |
| PRINCIPAL VENTILATION CAPACITY REQUIRED                 | 9.32.3.4.(1)    |                                       |                                                |                |              |              |
| 1 Bedroom 31.8                                          | cfm             | Telephone #:                          |                                                | Fax#:          |              |              |
| 2 Bedroom 47.7                                          | cfm             | DESIGNER CERTIF I hereby certify that | FICATION<br>this ventilation system has be     | een designed   |              |              |
| 3 Bedroom 63.6                                          | cfm             |                                       | he Ontario Building Code.<br>HVAC Designs Ltd. |                |              |              |
| 4 Bedroom 79.5                                          | cfm             | Signature:                            |                                                | Sehar Ofounte  |              |              |
| 5 Bedroom 95.4                                          | cfm             | HRAI#                                 | 7/4/                                           | 001820         |              |              |
| TOTAL 62.6 -f                                           |                 |                                       |                                                | December-22    |              |              |
| TOTAL 63.6 cfm                                          | IEIED IN THE AR | Date:                                 | "OTHER RESIGNED" LINDER DIVIS                  |                | III DING COL | )C           |



|              |                  |                                             | CSA F28                  | 80-12 Residential Hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t Loss and Heat Gain                                       | Calculations                   |                                |                  |              |              |  |  |  |  |
|--------------|------------------|---------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|--------------------------------|------------------|--------------|--------------|--|--|--|--|
|              |                  |                                             | Form                     | ula Sheet (For Air Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kage / Ventiliation C                                      | alculation)                    |                                |                  |              |              |  |  |  |  |
| LO#: 9       | 9793             | Model: CHERRY 2                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r: GREENPARK HOMES                                         | •                              |                                |                  | Date:        | 12/21/2022   |  |  |  |  |
|              |                  | Volume Calculatio                           | n                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                | Air Change & Delt              | a T Data         |              |              |  |  |  |  |
|              |                  |                                             |                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |                                |                                |                  |              |              |  |  |  |  |
| House Volume |                  |                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | WINTER NA                      | TURAL AIR CHANG                | E RATE           | 0.376        |              |  |  |  |  |
| Level        | Floor Area (ft²) | Floor Height (ft)                           | Volume (ft³)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | SUMMER NA                      | TURAL AIR CHANG                | SE RATE          | 0.100        |              |  |  |  |  |
| Bsmt         | 812              | 9                                           | 7308                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                |                                |                  |              |              |  |  |  |  |
| First        | 812              | 10                                          | 8120                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                |                                |                  |              |              |  |  |  |  |
| Second       | 1218             | 9                                           | 10962                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                |                                | mperature Diff   |              |              |  |  |  |  |
| Third        | 0                | 9                                           | 0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                | Tin °C                         | Tout °C          | ΔT °C        | ΔT °F        |  |  |  |  |
| Fourth       | 0                | 9                                           | 0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | Winter DTDh                    | 22                             | -18              | 40           | 72           |  |  |  |  |
|              |                  | Total:                                      | 26,390.0 ft <sup>3</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | Summer DTDc                    | 24                             | 29               | 5            | 9            |  |  |  |  |
|              |                  | Total:                                      | 747.3 m³                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                |                                |                  |              |              |  |  |  |  |
|              | 523              | 1 Heat Loss due to Ai                       | r Leakage                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.2.6 Sensible Gain due to Air Leakage                     |                                |                                |                  |              |              |  |  |  |  |
|              |                  |                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                                                          | 0.2.0                          |                                | to /canage       |              |              |  |  |  |  |
|              | ***              | $V_b$                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                | $V_h$                          |                  |              |              |  |  |  |  |
|              | $HL_{airb} =$    | $LR_{airh} \times \frac{V_b}{3.6} \times L$ | $TD_h \times 1.2$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                          | $IG_{salb} = LR_{airc} \times$ | $(\frac{5}{3.6} \times DTD_c)$ | × 1.2            |              |              |  |  |  |  |
| 0.376        | x 207.58         | x 40 °C                                     | x 1.2                    | = 3770 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 0.100                                                    | x 207.58                       | 0.0                            |                  | =            | 127 W        |  |  |  |  |
| 0.070        | x <u>207130</u>  |                                             | ~ <u>-1.2</u>            | 077011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            | x <u>207.55</u>                | - ^                            | ^                | -            | 227 **       |  |  |  |  |
|              |                  |                                             |                          | = 12862 Btu/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>†</b>                                                   |                                |                                |                  | =            | 433 Btu/h    |  |  |  |  |
|              |                  |                                             |                          | 22002 2107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                          |                                |                                |                  |              |              |  |  |  |  |
|              | 5.2.3.2 Hea      | t Loss due to Mechan                        | ical Ventilation         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | 6.2.7 Ser                      | sible heat Gain d              | ue to Ventilatio | n            |              |  |  |  |  |
|              |                  |                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                |                                |                  |              |              |  |  |  |  |
|              | $HL_{nairh} = 1$ | $PVC \times DTD_h \times 1$                 | $.08 \times (1 - E)$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $HL_{vairh} = PVC \times DTD_h \times 1.08 \times (1 - E)$ |                                |                                |                  |              |              |  |  |  |  |
|              | valib            | n                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | vati b                         | 7.                             | ` ,              |              |              |  |  |  |  |
| 64 CFM       | x 72 °F          | x 1.08                                      | x 0.25                   | = 1243 Btu/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64 CFM                                                     | y 9°F                          | x 1.08                         | x 0.25           | =            | 158 Btu/h    |  |  |  |  |
| 04 61 141    | × <u>/2 !</u>    | X                                           | X <u>0.23</u>            | 1245 Btu/ II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                   |                                | x <u>1.00</u>                  | x <u>0.23</u>    | -            | 130 5 (4) 11 |  |  |  |  |
|              |                  |                                             | 5 2 2 2 Calculat         | tion of Air Change Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oss for Each Room (Flor                                    | or Multiplier Section)         |                                |                  |              |              |  |  |  |  |
|              |                  |                                             | 3.2.3.3 Calcula          | tion of All Change Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOSS TOT LACTI NOOTH (TTO                                  | or waitiplier section,         |                                |                  |              |              |  |  |  |  |
|              |                  | $HL_{\infty}$                               | = Level Facto            | $or \times HL_{airbv} \times \{(Hairbv) $ | (La a au + HLa a au ) ÷                                    | $(HL_{aaalana} + HL_{b})$      | h = = ( = = = 1 )}             |                  |              |              |  |  |  |  |
|              |                  | u                                           | 77 =                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -ugcr ·bycr)                                               | (uycievei ·                    | ogcievei ) i                   |                  |              |              |  |  |  |  |
|              |                  |                                             |                          | HLairve Air Leakage +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Level Conductive Heat                                      | Air Leakage Heat Lo            | s Multiplier (LF x             |                  |              |              |  |  |  |  |
|              |                  | Level                                       | Level Factor (LF)        | Ventilation Heat Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Loss: (HL <sub>clevel</sub> )                              | HLairby / H                    |                                |                  |              |              |  |  |  |  |
|              |                  |                                             |                          | (Btu/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOSS. (IILclevel)                                          | IILaii DV / I                  | ilicveij                       |                  |              |              |  |  |  |  |
|              |                  | 1                                           | 0.5                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,983                                                      | 1.29                           |                                |                  |              |              |  |  |  |  |
|              |                  | 2                                           | 0.3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,725                                                      | 0.67                           |                                |                  |              |              |  |  |  |  |
|              |                  | 3                                           | 0.2                      | 12,862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,841                                                      | 0.44                           | 0                              |                  |              |              |  |  |  |  |
|              |                  | 4                                           | 0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                          | 0.00                           |                                |                  | Michael O'Ro |              |  |  |  |  |
|              |                  | 5                                           | 0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                          | 0.00                           | 0                              |                  | BCIN# 19669  | )            |  |  |  |  |
|              |                  | *HLairbv = A                                | r leakage heat loss +    | ventilation heat loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                |                                |                  |              | 10001        |  |  |  |  |
|              |                  |                                             | J                        | entilation system HLairve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0                                                        |                                |                                |                  | Mucha        | of Ofounde.  |  |  |  |  |



Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

#### **HEAT LOSS AND GAIN SUMMARY SHEET**

| MODEL:    | CHERRY 2                                 | ,       | WOB           | BUILDER: GREENPARK HOMES                                                         | ;                      |
|-----------|------------------------------------------|---------|---------------|----------------------------------------------------------------------------------|------------------------|
| SFQT:     | 2030                                     | LO#     | 99793         | SITE: BARLASSINA                                                                 |                        |
| DESIGN A  | SSUMPTIONS                               |         |               |                                                                                  |                        |
|           | R DESIGN TEMP.<br>DESIGN TEMP.<br>G DATA |         | °F<br>0<br>72 | COOLING<br>OUTDOOR DESIGN TEMP.<br>INDOOR DESIGN TEMP. (MAX 75°F)<br>WINDOW SHGC | °F<br>84<br>75<br>0.50 |
| ATTACHM   | 1ENT:                                    | A       | ATTACHED      | # OF STORIES (+BASEMENT):                                                        | 3                      |
| FRONT FA  | ACES:                                    |         | EAST          | ASSUMED (Y/N):                                                                   | Υ                      |
| AIR CHAN  | IGES PER HOUR:                           |         | 3.57          | ASSUMED (Y/N):                                                                   | Υ                      |
| AIR TIGHT | TNESS CATEGORY:                          |         | AVERAGE       | ASSUMED (Y/N):                                                                   | Υ                      |
| WIND EX   | POSURE:                                  | S       | HELTERED      | ASSUMED (Y/N):                                                                   | Υ                      |
| HOUSE V   | OLUME (ft³):                             |         | 26390.0       | ASSUMED (Y/N):                                                                   | Υ                      |
| INTERNAL  | L SHADING:                               | BLINDS/ | CURTAINS      | ASSUMED OCCUPANTS:                                                               | 4                      |
| INTERIOR  | LIGHTING LOAD (Btu/h                     | /ft²):  | 1.27          | DC BRUSHLESS MOTOR (Y/N):                                                        | Υ                      |
| FOUNDAT   | TION CONFIGURATION                       |         | BCIN_1        | DEPTH BELOW GRADE:                                                               | 6.0 ft                 |
| LENGTH:   | 62.0 ft                                  | WIDTH:  | 17.0 ft       | EXPOSED PERIMETER:                                                               | 100.0 ft               |
| WOB INS   | ULATION CONFIGURATION                    | ON      | SCB_9         | WOB EXPOSED PERIMETER                                                            | 27.0 ft                |

| Component                                                                  |         | ce Package<br>A1 |
|----------------------------------------------------------------------------|---------|------------------|
| ·                                                                          | Nominal | Min. Eff.        |
| Ceiling with Attic Space Minimum RSI (R)-Value                             | 60      | 59.22            |
| Ceiling Without Attic Space Minimum RSI (R)-Value                          | 31      | 27.65            |
| Exposed Floor Minimum RSI (R)-Value                                        | 31      | 29.80            |
| Walls Above Grade Minimum RSI (R)-Value                                    | 22      | 17.03            |
| Basement Walls Minimum RSI (R)-Value                                       | 20 ci   | 21.12            |
| Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value | -       | -                |
| Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value        | 10      | 10               |
| Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value             | 10      | 11.13            |
| Windows and Sliding Glass Doors Maximum U-Value                            | 0.28    | -                |
| Skylights Maximum U-Value                                                  | 0.49    | -                |
| Space Heating Equipment Minimum AFUE                                       | 96%     | -                |
| HRV/ERV Minimum Efficiency                                                 | 75%     | -                |
| Domestic Hot Water Heater Minimum EF                                       | 0.8     | -                |

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Mehad Offmhe.



## **Residential Foundation Thermal Load Calculator**

Supplemental tool for CAN/CSA-F280

| We                           | eather Sta | tion Description                   |  |  |  |  |  |  |  |  |  |
|------------------------------|------------|------------------------------------|--|--|--|--|--|--|--|--|--|
| Province:                    | Ontario    | ·                                  |  |  |  |  |  |  |  |  |  |
| Region:                      | Cambrid    | ridge                              |  |  |  |  |  |  |  |  |  |
|                              | Site D     | escription                         |  |  |  |  |  |  |  |  |  |
| Soil Conductivity:           | Normal o   | conductivity: dry sand, loam, clay |  |  |  |  |  |  |  |  |  |
| Water Table:                 | Normal (   | 7-10 m, 23-33 ft)                  |  |  |  |  |  |  |  |  |  |
| Foundation Dimensions        |            |                                    |  |  |  |  |  |  |  |  |  |
| Floor Length (m):            | 4.6        |                                    |  |  |  |  |  |  |  |  |  |
| Floor Width (m):             | 5.2        |                                    |  |  |  |  |  |  |  |  |  |
| Exposed Perimeter (m):       | 30.5       |                                    |  |  |  |  |  |  |  |  |  |
| Wall Height (m):             | 2.7        |                                    |  |  |  |  |  |  |  |  |  |
| Depth Below Grade (m):       | 1.44       | Insulation Configuration           |  |  |  |  |  |  |  |  |  |
| Window Area (m²):            | 0.0        |                                    |  |  |  |  |  |  |  |  |  |
| Door Area (m²):              | 1.9        |                                    |  |  |  |  |  |  |  |  |  |
|                              | Radi       | ant Slab                           |  |  |  |  |  |  |  |  |  |
| Heated Fraction of the Slab: | 0          |                                    |  |  |  |  |  |  |  |  |  |
| Fluid Temperature (°C):      | 33         |                                    |  |  |  |  |  |  |  |  |  |
|                              | Desig      | n Months                           |  |  |  |  |  |  |  |  |  |
| Heating Month                | 1          |                                    |  |  |  |  |  |  |  |  |  |
|                              | Founda     | ation Loads                        |  |  |  |  |  |  |  |  |  |
| Heating Load (Watts):        |            | 374                                |  |  |  |  |  |  |  |  |  |

**TYPE:** CHERRY 2 **LO#** 99793

**WOB** 





#### **Residential Slab on Grade Thermal Load Calculator**

Supplemental tool for CAN/CSA-F280

| Wea                                    | ther Sta  | tion Description                  |  |  |  |  |  |  |  |
|----------------------------------------|-----------|-----------------------------------|--|--|--|--|--|--|--|
| Province:                              | Ontario   |                                   |  |  |  |  |  |  |  |
| Region:                                | Cambridg  | e                                 |  |  |  |  |  |  |  |
|                                        | Site D    | escription                        |  |  |  |  |  |  |  |
| Soil Conductivity:                     | Normal co | onductivity: dry sand, loam, clay |  |  |  |  |  |  |  |
| Vater Table: Normal (7-10 m, 23-33 ft) |           |                                   |  |  |  |  |  |  |  |
| Foundation Dimensions                  |           |                                   |  |  |  |  |  |  |  |
| Length (m):                            | 1.5       |                                   |  |  |  |  |  |  |  |
| Width (m):                             | 5.2       | -+ 0.6m +                         |  |  |  |  |  |  |  |
| Exposed Perimeter (m):                 | 8.2       | Insulation Configuration          |  |  |  |  |  |  |  |
|                                        | Radia     | ant Slab                          |  |  |  |  |  |  |  |
| Heated Fraction of the Slab:           | 0         |                                   |  |  |  |  |  |  |  |
| Fluid Temperature (°C):                | 33        |                                   |  |  |  |  |  |  |  |
|                                        | Desigr    | n Months                          |  |  |  |  |  |  |  |
| Heating Month                          | 1         |                                   |  |  |  |  |  |  |  |
|                                        | Re        | esults                            |  |  |  |  |  |  |  |
| Heating Load (Watts):                  |           | 72                                |  |  |  |  |  |  |  |

TYPE: CHERRY 2 WOB





## **Air Infiltration Residential Load Calculator**

Supplemental tool for CAN/CSA-F280

| Weather Statio                    | n Des                    | cript   | ion     |         |                       |  |  |  |
|-----------------------------------|--------------------------|---------|---------|---------|-----------------------|--|--|--|
| Province:                         | Ontai                    | rio     |         |         |                       |  |  |  |
| Region:                           | Camb                     | ridge   |         |         |                       |  |  |  |
| Weather Station Location:         | Open flat terrain, grass |         |         |         |                       |  |  |  |
| Anemometer height (m):            | 10                       |         |         |         |                       |  |  |  |
| Local Sh                          | ieldin                   | g       |         |         |                       |  |  |  |
| Building Site:                    | Subu                     | rban, f | orest   |         |                       |  |  |  |
| Walls:                            | Heav                     | y       |         |         |                       |  |  |  |
| Flue:                             | Heav                     | y       |         |         |                       |  |  |  |
| Highest Ceiling Height (m):       | 8.53                     |         |         |         |                       |  |  |  |
| Building Cor                      | figur                    | ation   |         |         |                       |  |  |  |
| Туре:                             | Semi                     |         |         |         |                       |  |  |  |
| Number of Stories:                | Two                      |         |         |         |                       |  |  |  |
| Foundation:                       | Full                     |         |         |         |                       |  |  |  |
| House Volume (m³):                | 747.3                    |         |         |         |                       |  |  |  |
| Air Leakage/                      | Venti                    | latior  | 1       |         |                       |  |  |  |
| Air Tightness Type:               | Prese                    | nt (19  | 61-) (3 | .57 ACI | Н)                    |  |  |  |
| Custom BDT Data:                  | ELA @                    | 9 10 Pa | a.      |         | 996.1 cm <sup>2</sup> |  |  |  |
|                                   | 3.57                     |         |         |         | ACH @ 50 Pa           |  |  |  |
| Mechanical Ventilation (L/s):     | To                       | tal Sup | ply     |         | Total Exhaust         |  |  |  |
|                                   |                          | 30.0    |         |         | 30.0                  |  |  |  |
| Flue                              | Size                     |         |         |         |                       |  |  |  |
| Flue #:                           | #1                       | #2      | #3      | #4      |                       |  |  |  |
| Diameter (mm):                    | 0                        | 0       | 0       | 0       |                       |  |  |  |
| Natural Infilt                    | ation                    | Rate    | es      |         |                       |  |  |  |
| Heating Air Leakage Rate (ACH/H): |                          | C       | ).37    | 6       |                       |  |  |  |
| Cooling Air Leakage Rate (ACH/H): |                          | C       | ).10    | 0       |                       |  |  |  |

TYPE: CHERRY 2 WOB





**BARLASSINA** CAMBRIDGE, ONTARIO Block 121 Units 1 to 6 **WOB** 

CHERRY 2

Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

adequately insulated and be gas-proofed.

Specializing in Residential Mechanical Design Services Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be

|   | HEAT L       | OSS 31807          | BTU/H  | # OF RUNS      | S/A  | R/A    | FANS | Shee |
|---|--------------|--------------------|--------|----------------|------|--------|------|------|
|   | NAME         | UN <b>I</b> T DATA |        | 3RD FLOOR      |      |        |      |      |
|   | MAKE (       | GOODMAN            |        | 2ND FLOOR      | 10   | 4      | 3    |      |
|   | MODEL<br>GME | EC960402BN         | Α      | 1ST FLOOR      | 5    | 1      | 2    |      |
|   | INPUT        | 40                 | MBTU/H | BASEMENT       | 4    | 1      | 0    | Date |
| _ | OUTPUT       |                    | MBTU/H | ALL S/A DIFFU: | SERS | 4 "x10 | )"   | Scal |
|   | COOLING      | 38.4               |        | UNLESS NOTE    |      |        |      |      |
| , | COOLING      | 1.5                | TONS   | ON LAYOUT. A   |      |        |      |      |
|   | FAN SPEED    |                    | cfm @  | ON LAYOUT. U   |      |        | IOL  | L    |

DOORS 1" min. FOR R/A

695

| ۱S      | Sheet Title |               |  |  |  |  |  |  |  |  |  |
|---------|-------------|---------------|--|--|--|--|--|--|--|--|--|
|         | BA          | ASEMENT       |  |  |  |  |  |  |  |  |  |
|         | HEATING     |               |  |  |  |  |  |  |  |  |  |
| ,       | L           | _AYOUT        |  |  |  |  |  |  |  |  |  |
| ·<br> - | Date        | DEC/2022      |  |  |  |  |  |  |  |  |  |
|         | Scale       | 3/16" = 1'-0" |  |  |  |  |  |  |  |  |  |
| Ø       | В           | CIN# 19669    |  |  |  |  |  |  |  |  |  |
|         | LO#         | 99793         |  |  |  |  |  |  |  |  |  |



NOT THE GRANTING OF A PERMIT NOR REVIEWING OF SPECS & DRAWINGS NOR INSPECTIONS MADE DURING INSTALLATION BY THE OFFICIAL HAVING JURISDICTION SHALL RELIEVE THE OWNER FROM REQUIREMENTS OF THE ONTARIO BUILDING CODE AND ANY OTHER REFERENCED REQUIREMENTS.



FIRST FLOOR PLAN EL-2

WOB
CSA-F280-12
PACKAGE A1

|        |                           | 3.       |                                 |          |                              |           |                            |                 |      |
|--------|---------------------------|----------|---------------------------------|----------|------------------------------|-----------|----------------------------|-----------------|------|
| SYMBOL | DESCRIPTION               | SYMBOL   | DESCRIPTION                     | SYMBOL   | DESCRIPTION                  | SYMBOL    | DESCRIPTION                | 2.              |      |
|        | SUPPLY AIR GRILLE         |          | 6" SUPPLY AIR BOOT ABOVE        |          | 14"x8" RETURN AIR GRILLE     |           | RETURN AIR STACK ABOVE     | 1.              |      |
|        | SUPPLY AIR GRILLE 6" BOOT | 0        | SUPPLY AIR STACK FROM 2nd FLOOR | <u> </u> | 30"x8" RETURN AIR GRILLE     | $\bowtie$ | RETURN AIR STACK 2nd FLOOR | No. Description | Date |
|        | SUPPLY AIR BOOT ABOVE     | <b>Ø</b> | 6" SUPPLY AIR STACK 2nd FLOOR   |          | FRA- FLOOR RETURN AIR GRILLE | X         | REDUCER                    | REVISIO         | NS   |

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

Cllent

#### GREENPARK HOMES

Project Name

BARLASSINA CAMBRIDGE, ONTARIO Block 121 Units 1 to 6 WOB

WOB
CHERRY 2 2030 sqft

# HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR HEATING LAYOUT

Date DEC/2022 Scale 3/16" = 1'-0"

BCIN# 19669



NOT THE GRANTING OF A PERMIT NOR REVIEWING OF SPECS & DRAWINGS NOR INSPECTIONS MADE DURING INSTALLATION BY THE OFFICIAL HAVING JURISDICTION SHALL RELIEVE THE OWNER FROM REQUIREMENTS OF THE ONTARIO BUILDING CODE AND ANY OTHER REFERENCED REQUIREMENTS.



WOB

| HVAC LEGEND |                           |        |                                 |          |                              |        |                            | 3.  |             |      |  |
|-------------|---------------------------|--------|---------------------------------|----------|------------------------------|--------|----------------------------|-----|-------------|------|--|
| SYMBOL      | DESCRIPTION               | SYMBOL | DESCRIPTION                     | SYMBOL   | DESCRIPTION                  | SYMBOL | DESCRIPTION                | 2.  |             |      |  |
|             | SUPPLY AIR GRILLE         |        | 6" SUPPLY AIR BOOT ABOVE        |          | 14"x8" RETURN AIR GRILLE     |        | RETURN AIR STACK ABOVE     | 1.  |             |      |  |
|             | SUPPLY AIR GRILLE 6" BOOT | 0      | SUPPLY AIR STACK FROM 2nd FLOOR | <u> </u> | 30"x8" RETURN AIR GRILLE     | ×      | RETURN AIR STACK 2nd FLOOR | No. | Description | Date |  |
|             | SUPPLY AIR BOOT ABOVE     | Ø      | 6" SUPPLY AIR STACK 2nd FLOOR   |          | FRA- FLOOR RETURN AIR GRILLE | X      | REDUCER                    |     | REVISIONS   |      |  |

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

#### **GREENPARK HOMES**

Project Name

**BARLASSINA** CAMBRIDGE, ONTARIO Block 121 Units 1 to 6 **WOB** 

CHERRY 2

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be 2030 sqft adequately insulated and be gas-proofed.

SECOND FLOOR **HEATING** 

**LAYOUT** DEC/2022 3/16" = 1'-0"

BCIN# 19669