

NOT THE GRANTING OF A PERMIT NOR REVIEWING OF SPECS & DRAWINGS NOR INSPECTIONS MADE DURING INSTALLATION BY THE OFFICIAL HAVING JURISDICTION SHALL RELIEVE THE OWNER FROM REQUIREMENTS OF THE ONTARIO BUILDING CODE AND ANY OTHER REFERENCED REQUIREMENTS.

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2
Tel: 905.619.2300 Fax: 905.619.2375
Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

Block 121 Units 7 to 12

0.75								, OIL 12	21 01	iiis / ti	7 12																				
SITE NAME:									WOB									Dec-22						R CHANGE RATE		HEAT LOSS A					A-F280-12
BUILDER:		IPARK	HOME						CHER	RY 3E				2140			LO#	99794				MMER	R NATURAL A	R CHANGE RATE	0.100	HEAT GAIN	ΔT °F.	9	SE	-12 PAC	KAGE A
ROOM USE				MBR			ENS					BED-	2		BED-3	3		FLEX			BATH										
EXP. WALL				37			8					10			30			13			10										
CLG. HT.				9			9					9			9			9			9										
	FACTO	RS																													
GRS.WALL AREA	LOSS	GAIN		333			72					90			270			117			90										
GLAZING				LOSS	GAIN		LOSS	GAIN				LOSS	GAIN		LOSS	GAIN		LOSS	GAIN		LOSS C	GAIN									
NORTH	20.3	15.0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0									
EAST	20.3	40.5	0	0	0	0	0	0			2	547	1095	24	487	973	0	0	0	0	0	0									
SOUTH	20.3	23.9	0	0	0	0	0	0			0		0	0	0	0	18	365	430	7	142	167									
WEST	20.3	40.5	18	365	730	16	324	649			0	0	0	0	0	0	0	0	0	0	0	0									
SKYLT.	35.5	99.8	0	0	0	0	0	0			0		0	0	0	0	0	0	0	0	0	0									
DOORS	19.1	2.4	0	0	0	0	0	0			o		0	0	0	0	0	0	0	0	0	ō									
NET EXPOSED WALL	4.3	0.5	315	1339	170	56	238	30			6	-	34	246	-	133	99	421	53	83	353	45									
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR	3.4	0.4	0	0	0	0	0	0			0.		0	0	0	0	0	0	0	0	0	0									
EXPOSED CLG			348	425	183	136	166	72			20			160		84	252	308	133	80	98	42									
		0.5																													
NO ATTIC EXPOSED CLG		1.1	0	0	0	0	0	0			0		0	13	34	15	0	0	0	0	0	0									
EXPOSED FLOOR	2.4	0.3	0	0	0	0	0	0			20	6 500	64	32	78	10	0	0	0	0	0	0									
BASEMENT/CRAWL HEAT LOSS	l			0			0		1			0		1	0			0			0	l									
SLAB ON GRADE HEAT LOSS	l			0			0		1			0		1	0			0			0	l									
SUBTOTAL HT LOSS	l			2130			729					1568			1840			1094			593	l									
SUB TOTAL HT GAIN	l				1083			751					1301			1215			616			254									
LEVEL FACTOR / MULTIPLIER	l		0.20	0.35		0.20	0.35				0.2			0.20	0.35		0.20	0.35		0.20	0.35	l									
AIR CHANGE HEAT LOSS				753			258					554			651			387			210										
AIR CHANGE HEAT GAIN					59			41					71			66			34			14									
DUCT LOSS				0			0					212			249			0			0										
DUCT GAIN					0			0					239			230			0			0									
HEAT GAIN PEOPLE	240		2		480	0		0			1		240	1		240	0		0	0		0									
HEAT GAIN APPLIANCES/LIGHTS					780			0					780			780			780			0									
TOTAL HT LOSS BTU/H				2883			986					2334			2740			1481			802										
TOTAL HT GAIN x 1.3 BTU/H					3124			1029					3421			3291			1859			349									
																								ı							
ROOM USE										K/L/D					LAUN			PWD			FOY	I	MUD				-	WOB		BA	s
EXP. WALL										61					0			8			48		11					30		12	
CLG. HT.										10					9			10			10		10					9		9	
															•													•		_	
	IFACTO	RS																												75	n
GRS WALL AREA	FACTO									610					0			80			480		110					270		,,	SS GAIN
GRS.WALL AREA	LOSS									610	AIN				0	GAIN		80	GAIN		480	GAIN	110	GAIN				270	MINI	10	
GLAZING	LOSS	GAIN								LOSS G					LOSS	GAIN		LOSS		0	LOSS	GAIN	LOSS					LOSS GA			
GLAZING NORTH	LOSS 20.3	GAIN 15.0							0	LOSS G	0			0	LOSS 0	0	0	LOSS 0	0	0	LOSS (0	LOSS 0 0	0				LOSS GA)	0 0	0
GLAZING NORTH EAST	20.3 20.3	GAIN 15.0 40.5							0	LOSS G 0 0	0			0	LOSS 0 0	0	0	LOSS 0 0	0 0	11	0 223	0 446	LOSS 0 0 0 0	0			0 0	LOSS GA		0 0	0
GLAZING NORTH EAST SOUTH	20.3 20.3 20.3 20.3	15.0 40.5 23.9							0 0 50	LOSS G 0 0 1014 1	0 0 195			0 0	LOSS 0 0	0 0 0	0	0 0 0 142	0 0 167	11 0	0 223 0	0 446 0	LOSS 0 0 0 0 0 0	0 0 0			0 0 0	O (0	0 0 0 0 8 16	0 0 2 191
GLAZING NORTH EAST SOUTH WEST	20.3 20.3 20.3 20.3 20.3	15.0 40.5 23.9 40.5							0 0 50 48	O 0 1014 1 973 1	0 0 195 946			0	LOSS 0 0 0	0 0 0	0 7 0	0 0 142 0	0 0 167 0	11 0 0	0 223 0 0	0 446 0 0	LOSS 0 0 0 0 0 0 0 0	0 0 0			0 0 0 0 33	0 (0 (0 (0 (669 13))) 38	0 0 0 0 8 16 0 0	0 0 2 191 0
GLAZING NORTH EAST SOUTH WEST SKYLT.	20.3 20.3 20.3 20.3 20.3 35.5	15.0 40.5 23.9 40.5 99.8							0 0 50 48 0	LOSS G 0 0 1014 1 973 1	0 0 195 946 0			0	0 0 0 0 0	0 0 0 0	0 7 0	0 0 142 0 0	0 0 167 0	11 0 0 0	0 223 0 0 0	0 446 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0			0 0 0 33 0	0 (0 (0 (669 13	0 0 0 38 0	0 0 0 0 8 16 0 0	0 0 2 191 0 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS	20.3 20.3 20.3 20.3 20.3 35.5 19.1	15.0 40.5 23.9 40.5 99.8 2.4							0 0 50 48 0	LOSS G 0 0 1014 1 973 1 0 191	0 0 195 946 0			0 0	0 0 0 0 0	0 0 0 0 0	0 7 0 0	0 0 142 0 0	0 0 167 0 0	11 0 0 0 0	0 223 0 0 0 0 267	0 446 0 0 0 34	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 20 382	0 0 0 0 0 0 49			0 0 0 33 0	O (0 (0 (0 (669 13 0 (191 2	38	0 0 0 0 8 16 0 0 0 0	0 0 2 191 0 0 2 49
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL	20.3 20.3 20.3 20.3 35.5 19.1 4.3	15.0 40.5 23.9 40.5 99.8 2.4 0.5							0 0 50 48 0 10 502	LOSS G 0 0 1014 1 973 1 0 191 2134 2	0 0 195 946 0 24			0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 7 0 0 0 73	0 0 142 0 0 0 310	0 0 167 0 0 0 39	11 0 0 0 14 455	LOSS 0 223 0 0 0 267 1934	0 446 0 0 0 34 246	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 20 382 90 383	0 0 0 0 0 49 49			0 0 0 33 0 10 227	OSS GA 0 (0 0 (0 669 13 0 (0 191 2 965 12	0 0 0 38 0 4 23	0 0 0 0 8 16 0 0 0 0	0 0 2 191 0 0 2 49
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4							0 0 50 48 0 10 502	LOSS G 0 0 1014 1 973 1 0 191 2134 2	0 0 195 946 0 24 71			0 0 0 0	LOSS 0 0 0 0 0 0	0 0 0 0 0 0	0 7 0 0 0 73 0	LOSS 0 0 142 0 0 0 310 0	0 0 167 0 0 0 39	11 0 0 0 14 455 0	LOSS 0 223 0 0 0 267 1934 0	0 446 0 0 0 34 246	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0	0 0 0 0 0 49 49			0 0 0 33 0 10 227	OSS GA 0 (0 0 (0 669 13 0 (0 191 2 965 12 0 (0	0 0 0 38 0 44 223 0 3	0 0 0 0 8 16 0 0 0 0 20 38 0 0	0 0 2 191 0 0 2 49 0 36 163
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL EXPOSED CLG	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0	0 0 195 946 0 24 71 0			0 0 0 0 0 48	LOSS 0 0 0 0 0 0 0 0 0 59	0 0 0 0 0 0 0 0	0 7 0 0 0 73 0	LOSS 0 0 142 0 0 0 310 0	0 0 167 0 0 0 39 0	11 0 0 0 14 455 0	LOSS 0 223 0 0 0 267 1934 0 0	0 446 0 0 0 34 246 0	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0	0 0 0 0 0 0 49 49			0 0 0 33 0 10 227 0	LOSS GA 0 (0 0 (0 669 13 0 (0 191 2 965 12 0 (0	0 0 0 338 0 24 : 23 0 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 191 0 0 2 49 0 86 163
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 1014 1 973 1 0 191 2134 2 0 0	0 0 195 946 0 24 71 0			0 0 0 0 0 48 0	LOSS 0 0 0 0 0 0 0 0 59	0 0 0 0 0 0 0 0 0 25	0 7 0 0 0 73 0	LOSS 0 0 142 0 0 0 310 0	0 0 167 0 0 0 39	11 0 0 0 14 455 0 0	LOSS 0 0 223 0 0 0 0 267 1934 0 0	0 446 0 0 0 34 246	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0	0 0 0 0 0 49 49 0 0			0 0 0 33 0 10 227 0 0	LOSS GA 0 (0 (0 (669 13 0 (191 2 965 12 0 (0 (0 0 0 338 0 44 :: 23 0 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 191 0 0 2 49 0 36 163 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0	0 0 195 946 0 24 71 0			0 0 0 0 0 48	LOSS 0 0 0 0 0 0 0 0 0 59	0 0 0 0 0 0 0 0	0 7 0 0 0 73 0	LOSS 0 0 142 0 0 0 310 0	0 0 167 0 0 0 39 0	11 0 0 0 14 455 0	LOSS 0 223 0 0 0 267 1934 0 0	0 446 0 0 0 34 246 0	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0	0 0 0 0 0 0 49 49			0 0 0 33 0 10 227 0	LOSS GA 0 (0 0 (0 669 13 0 (0 191 2 965 12 0 (0	0 0 0 338 0 44 :: 23 0 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 191 0 0 2 49 0 36 163 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 1014 1 973 1 0 191 2134 2 0 0	0 0 195 946 0 24 71 0			0 0 0 0 0 48 0	LOSS 0 0 0 0 0 0 0 0 59	0 0 0 0 0 0 0 0 0 25	0 7 0 0 0 73 0	LOSS 0 0 142 0 0 310 0 0	0 0 167 0 0 0 39 0	11 0 0 0 14 455 0 0	LOSS 0 0 223 0 0 0 0 267 1934 0 0	0 446 0 0 0 34 246 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0	0 0 0 0 0 49 49 0 0			0 0 0 33 0 10 227 0 0	LOSS GA 0 (0 (0 (669 13 0 (191 2 965 12 0 (0 (0 0 0 338 0 44 :: 23 0 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 191 0 0 2 49 0 36 163 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED LG EXPOSED CLG EXPOSED LG EXPOSED FLOOR	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0 0	0 0 195 946 0 24 71 0			0 0 0 0 0 48 0	LOSS 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 25	0 7 0 0 0 73 0	LOSS 0 0 142 0 0 310 0 0	0 0 167 0 0 0 39 0	11 0 0 0 14 455 0 0	LOSS 0 223 0 0 0 267 1934 0 0 0	0 446 0 0 0 34 246 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 0	0 0 0 0 0 49 49 0 0			0 0 0 33 0 10 227 0 0	LOSS GA 0 (0 (0 (669 13 0 (191 2 965 12 0 (0 (0 0 0 338 0 44 :: 23 0 3	0 0 00 0 8 16 00 0 00 0 80 38 00 0 00 0 00 0	0 0 2 191 0 0 2 49 0 36 163 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0 0 0	0 0 195 946 0 24 71 0			0 0 0 0 0 48 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 25	0 7 0 0 0 73 0	LOSS 0 0 142 0 0 310 0 0 0	0 0 167 0 0 0 39 0	11 0 0 0 14 455 0 0	LOSS 0 0 223 0 0 0 267 1934 0 0 0 0	0 446 0 0 0 34 246 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 49 49 0 0			0 0 0 33 0 10 227 0 0	O (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	0 0 0 338 0 44 :: 23 0 3	0 0 00 0 8 16 00 0 00 0 80 38 00 0 00 0 00 0	0 0 2 191 0 0 2 49 0 36 163 0 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED SEMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED CLG SEXPOSED CLG SEXPOSED CLG SEXPOSED CLG SEXPOSED CLG SEXPOSED FLOOR BASEMENTICRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0 0 0 0 4312	0 0 195 946 0 24 71 0			0 0 0 0 0 48 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 25	0 7 0 0 0 73 0	LOSS 0 0 142 0 0 0 310 0 0 0 0 0 0 0 0 0	0 0 167 0 0 0 39 0	11 0 0 0 14 455 0 0	LOSS 0 223 0 0 0 267 1934 0 0 0 2425	0 446 0 0 0 34 246 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 49 49 0 0			0 0 0 33 0 10 227 0 0	LOSS GA 0 (0 0 (0 669 13 0 (1 191 2 965 12 0 (0 0 (0 300	0 0 0 338 0 44 : 223 0 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 191 0 0 2 49 0 36 163 0 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED ELG EXPOSED CLG EXPOSED LG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0 0 0 4312	0 0 195 946 0 24 71 0 0			0 0 0 0 0 48 0	COSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 25 0	0 7 0 0 0 73 0 0	LOSS 0 0 142 0 0 0 310 0 0 0 0 452	0 0 167 0 0 0 39 0 0	11 0 0 0 14 455 0 0	LOSS 0 223 0 0 0 267 1934 0 0 0 2425	0 446 0 0 0 34 246 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 0 765	0 0 0 0 0 49 49 0 0 0			0 0 0 33 0 10 227 0 0	O (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	0 0 0 338 0 24 :: 223 0 3 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 191 0 0 2 49 0 86 163 0 0 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 0 1014 1 973 1 0 1911 2134 2 0 0 0 0 0 4312 3 0.53	0 0 195 946 0 24 71 0 0			0 0 0 0 0 48 0	COSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 25 0	0 7 0 0 0 73 0	LOSS 0 0 142 0 0 0 310 0 0 0 0 0 0 0 0 0	0 0 167 0 0 0 39 0 0	11 0 0 0 14 455 0 0	LOSS 0 223 0 0 0 267 1934 0 0 0 2425	0 446 0 0 0 34 246 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 49 49 0 0 0			0 0 0 33 0 10 227 0 0	O (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	0 0 0 338 0 24 :: 223 0 3 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 191 0 0 2 49 0 36 163 0 0 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SUBTOTAL HT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0 0 0 4312 3 0.53 2304	0 0 195 946 0 24 771 0 0 0			0 0 0 0 0 48 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 25 0	0 7 0 0 0 73 0 0	LOSS 0 0 142 0 0 0 310 0 0 0 0 452 0.53	0 0 167 0 0 0 39 0 0 0	11 0 0 0 14 455 0 0	LOSS 0 223 0 0 0 267 1934 0 0 0 2425	0 446 0 0 0 34 246 0 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 765	0 0 0 0 0 49 49 0 0 0 0			0 0 0 33 0 10 227 0 0	O (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	0 0 0 338 0 24 :: 223 0 3 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED UG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLEIR AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6 2.4	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0 0 0 4312 3 0.53 2304	0 0 195 946 0 24 71 0 0			0 0 0 0 0 48 0	LOSS 0 0 0 0 0 0 0 0 59 0 0 59 0 2 1 21	0 0 0 0 0 0 0 0 0 25 0	0 7 0 0 0 73 0 0	LOSS 0 0 142 0 0 0 310 0 0 0 0 452 0.53 242	0 0 167 0 0 0 39 0 0	11 0 0 0 14 455 0 0	LOSS 0 223 0 0 267 1934 0 0 0 2425 0.53 1296	0 446 0 0 0 34 246 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 0 0 0 0 0 765	0 0 0 0 0 49 49 0 0 0			0 0 0 33 0 10 227 0 0	O (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	0 0 0 338 0 24 :: 223 0 3 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 2 191 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6 2.4	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0 0 0 4312 3 0.53 2304	0 0 195 346 0 24 771 0 0 0 0			0 0 0 0 0 48 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 25 0 0	0 7 0 0 0 73 0 0	LOSS 0 0 142 0 0 0 310 0 0 0 0 452 0.53	0 0 167 0 0 0 39 0 0 0	11 0 0 0 14 455 0 0	LOSS 0 223 0 0 0 267 1934 0 0 0 2425	0 446 0 0 0 34 246 0 0 0 0 726	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 765	0 0 0 0 49 49 49 0 0 0			0 0 0 33 0 10 227 0 0	O (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	0 0 0 338 0 24 :: 223 0 3 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 191 0 0 2 49 0 0 36 163 0 0 31 403 403 403 403
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS DUCT LOSS DUCT GAIN	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6 2.4	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0 0 0 4312 3 0.53 2304	0 0 195 946 0 224 771 0 0 0 0 0			0 0 0 0 0 48 0 0	LOSS 0 0 0 0 0 0 0 0 59 0 0 59 0 2 1 21	0 0 0 0 0 0 0 0 25 0 0	0 7 0 0 0 73 0 0	LOSS 0 0 142 0 0 0 310 0 0 0 0 452 0.53 242	0 0 167 0 0 0 39 0 0 0 0	11 0 0 0 14 455 0 0 0	LOSS 0 223 0 0 267 1934 0 0 0 2425 0.53 1296	0 446 0 0 34 246 0 0 0 726	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 0 765 0.30 0.53 409	0 0 0 0 0 49 49 0 0 0 0			0 0 0 33 0 10 227 0 0	O (() () () () () () () () ()	000000000000000000000000000000000000000	00 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 2 191 0 0 0 2 49 0 0 36 163 0 0 0 31 403 66 34 103 0 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6 2.4	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0 0 0 4312 3 0.53 2304	0 0 195 946 0 24 771 0 0 0 0 436			0 0 0 0 0 48 0	LOSS 0 0 0 0 0 0 0 0 59 0 0 59 0 2 1 21	0 0 0 0 0 0 0 0 0 25 0 0	0 7 0 0 0 73 0 0	LOSS 0 0 142 0 0 0 310 0 0 0 0 452 0.53 242	0 0 167 0 0 0 39 0 0 0	11 0 0 0 14 455 0 0	LOSS 0 223 0 0 267 1934 0 0 0 2425 0.53 1296	0 446 0 0 34 246 0 0 0 726	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 0 0 0 0 0 765	0 0 0 0 0 49 49 0 0 0 0 0			0 0 0 33 0 10 227 0 0	O (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	000000000000000000000000000000000000000	00 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GLAZING NORTH EAST SOUTH WEST SCHITH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT CAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6 2.4	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0 0	LOSS G 0 0 1014 1 973 1 0 191 2134 2 0 0 0 0 4312 3 0.53 2304 0	0 0 195 946 0 224 771 0 0 0 0 0			0 0 0 0 0 48 0 0	LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 25 0 0	0 7 0 0 0 73 0 0	LOSS 0 0 142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 167 0 0 0 39 0 0 0 0	11 0 0 0 14 455 0 0 0	LOSS 0 0 223 0 0 0 267 1934 0 0 0 0 2425 0.53 1296	0 446 0 0 34 246 0 0 0 726	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 0 0 765 0.30 0.53 409 0	0 0 0 0 0 49 49 0 0 0 0			0 0 0 33 0 10 227 0 0 0	LOSS GA 0 (0 0 (0 669 13 0 (1 191 2 965 12 0 (0 0 (0 300 2125 14	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GLAZING NORTH EAST SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED CLG EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	20.3 20.3 20.3 20.3 35.5 19.1 4.3 3.4 1.2 2.6 2.4	15.0 40.5 23.9 40.5 99.8 2.4 0.5 0.4 0.5							0 0 50 48 0 10 502 0 0 0	LOSS G 0 1014 1 973 1 0 191 2134 2 0 0 0 0 4312 3 0.53 2304 0	0 0 195 946 0 24 771 0 0 0 0 436			0 0 0 0 0 48 0 0	LOSS 0 0 0 0 0 0 0 0 59 0 0 59 0 2 1 21	0 0 0 0 0 0 0 0 0 25 0 0	0 7 0 0 0 73 0 0	LOSS 0 0 142 0 0 0 310 0 0 0 0 452 0.53 242	0 0 167 0 0 0 39 0 0 0 0	11 0 0 0 14 455 0 0 0	LOSS 0 0 223 0 0 0 0 267 1934 0 0 0 2425 0.53 1296 0	0 446 0 0 34 246 0 0 0 726	LOSS 0 0 0 0 0 0 0 0 0 0 20 382 90 383 0 0 0 0 0 0 0 0 765 0.30 0.53 409	0 0 0 0 0 49 49 0 0 0 0 0			0 0 0 33 0 10 227 0 0 0	O (() () () () () () () () ()	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL HEAT GAIN BTU/H:

25020

TONS: 2.09

LOSS DUE TO VENTILATION LOAD BTU/H: 1243

STRUCTURAL HEAT LOSS: 36230

TOTAL COMBINED HEAT LOSS BTU/H: 37473

Mehal Oxombe.

		BARLAS GREEN	SSINA PARK HO	OMES				TYPE:	WOB CHERRY				DATE:	Dec-22			GFA:	2140	LO#	99794				
HEATING CFM TOTAL HEAT LOSS AIR FLOW RATE CFM	24.57		TOTAL F		24,862 35.8		а	furı a/c coil vailable	pressure nace filter pressure pressure s/a & r/a	0.6 0.05 0.2 0.35								402BNA SPEED LOW	GOODMA 40	AN	OUTPUT	AFUE = (BTU/H) = (BTU/H) =	40,000 38,400	
RUN COUNT S/A	4th 0	3rd 0	2nd 10	1st 6	Bas 4		ple	enum pre	ssure s/a	0.18		r/a	pressure	0.17				EDLOW MEDIUM	695		DESI	GN CFM = CFM @ .	890 6 " E.S.P.	-
R/A	0	0	4	1	1		max	s/a dif p	ress. loss	0.02		grille pr	ess. Loss	0.02				M HIGH				_		
All S/A diffusers 4"x10" unle All S/A runs 5"Ø unless note				out.			min adji	usted pre	ssure s/a	0.16	adj	usted pre	essure r/a	0.15				HIGH	890	Т	EMPERAT	URE RISE	40	_ °F
RUN#	1	2		4	5	6	7	8	9	10			13	14	15		17	18	19	20	21	22	23	24
ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING	MBR 1.44 35 1.56 56	ENS 0.99 24 1.03 37		BED-2 1.17 29 1.71 61	BED-3 1.37 34 1.65 59	FLEX 1.48 36 1.86 67	BATH 0.80 20 0.35 12	BED-2 1.17 29 1.71 61	BED-3 1.37 34 1.65 59	MBR 1.44 35 1.56 56			K/L/D 2.21 54 1.91 68	K/L/D 2.21 54 1.91 68	K/L/D 2.21 54 1.91 68		LAUN 0.08 2 1.05 38	PWD 0.69 17 0.28 10	FOY 3.72 91 1.00 36	MUD 1.17 29 0.13 5	BAS 3.18 78 0.90 32	BAS 3.18 78 0.90 32	BAS 3.18 78 0.90 32	BAS 3.18 78 0.90 32
ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH	0.17 48 170 218	0.17 38 160 198		0.17 58 140 198	0.17 60 170 230	0.17 48 170 218	0.17 40 120 160	0.17 59 150 209	0.17 62 180 242	0.17 46 150 196			0.17 23 140 163	0.17 16 110 126	0.17 35 100 135		0.17 35 140 175	0.17 35 90 125	0.16 49 130 179	0.17 39 140 179	0.17 47 140 187	0.17 11 100 111	0.17 40 140 180	0.17 36 100 136
ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min)	0.08 5 257 411	0.09 4 275 424		0.09 5 213 448	0.07 5 250 433	0.08 5 264 492	0.11 4 229 138	0.08 5 213 448	0.07 5 250 433	0.09 5 257 411			0.11 5 396 499	0.14 5 396 499	0.13 5 396 499		0.1 4 23 436	0.14 4 195 115	0.09 6 464 184	0.1 4 333 57	0.09 5 573 235	0.15 5 573 235	0.1 5 573 235	0.13 5 573 235
OUTLET GRILL SIZE TRUNK	3X10 A	3X10 A		3X10 D	3X10 C	3X10 D	3X10 D	3X10 D	3X10 C	3X10 B			3X10 D	3X10 B	3X10 A		3X10 B	3X10 D	4X10 C	3X10 D	3X10 A	3X10 B	3X10 C	3X10 A
RUN # ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK																								
TRUNK A TRUNK A TRUNK B TRUNK C TRUNK C TRUNK C TRUNK E TRUNK E TRUNK F	TRUNK CFM 269 438 237 451 0	STATIC PRESS. 0.08 0.08 0.07 0.07 0.00 0.00	8.6 10.3 8.5 10.8 0	RECT DUCT 8 12 8 14 0	x x x x x	8 8 8 8	VELOCITY (ft/min) 605 657 533 580 0		TRUNK G TRUNK H TRUNK I TRUNK J TRUNK K TRUNK L	TRUNK CFM 0 0 0 0 0 0	STATIC PRESS. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROUND DUCT 0 0 0 0 0 0 0 0 0 0 0	RECT DUCT 0 0 0 0 0	x x x x x	8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0	TRUNK O TRUNK P TRUNK Q TRUNK R TRUNK S TRUNK T	TRUNK CFM 0 0 0 0 0 0 0	SIZE STATIC PRESS. 0.05 0.05 0.05 0.05 0.05 0.05 0.05	ROUND DUCT 0 0 0 0 0 0	RECT DUCT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x	8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0
																	TRUNK U TRUNK V	0	0.05 0.05	0	0	X X	8 8	0
RETURN AIR # AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE ROUND DUCT SIZE INLET GRILL SIZE INLET GRILL SIZE	1 0 85 0.15 82 225 307 0.05 6.3 8 X 14	2 0 85 0.15 75 235 310 0.05 6.3 8 X	3 0 85 0.15 66 195 261 0.06 6 8 X	4 0 95 0.15 70 150 220 0.07 6 8 X 14	5 0 384 0.15 41 185 226 0.07 10.1 8 X 30	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X 0	0 0 0.15 1 0 1 14.80 0 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	156 0.15 14 135 149 0.10 6.6 8 X	TRUNK W TRUNK X TRUNK Y TRUNK Z DROP	0 890 734 180 890	0.05 0.05 0.05 0.05 0.05 0.05	0 15.1 14.1 8.3 15.1	0 26 24 8 24	x x x x	8 8 8 8 10	0 616 551 405 534

NOT THE GRANTING OF A PERMIT NOR REVIEWING OF SPECS & DRAWINGS NOR INSPECTIONS MADE DURING INSTALLATION BY THE OFFICIAL HAVING JURISDICTION SHALL RELIEVE THE OWNER FROM REQUIREMENTS OF THE ONTARIO BUILDING CODE AND ANY OTHER REFERENCED REQUIREMENTS.

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2 Tel: 905.619.2300 Fax: 905.619.2375 Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

TYPE: CHERRY 3E SITE NAME: BARLASSINA 99794 WOB

RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL VE	NTILATION CAPACITY			9.32.3.5.
a)		Total Ventilation Capa	city	159	_	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Ventil.	Capacity	63.6	_	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Supplement	al Capacity	95.4	_	cfm
d) Solid Fuel (including fireplaces)						
e) No Combustion Appliances		PRINCIPAL EXHAUS				0147
		Model:	VANEE V150H	Location:		SMT
HEATING SYSTEM		63.6	cfm		✓ I	HVI Approved
Forced Air Non Forced Air		PRINCIPAL EXHAUS	T HEAT LOSS CALCULATION AT °F			% LOSS
Electric Space Heat		63.6 CFM	X 72 F X	FACTOR 1.08	Х	0.25
Electric opace rical		SUPPLEMENTAL FA	NS BY INST	ALLING CON	TRACTO	R
HOUSE TYPE	9.32.1(2)	Location ENS	Model BY INSTALLING CONTRACTOR	cfm 50	HVI	Sones
HOUSE ITPE	9.32.1(2)	BATH	BY INSTALLING CONTRACTOR	50	· /	3.5
I Type a) or b) appliance only, no solid fuel		LAUN	BY INSTALLING CONTRACTOR	50	✓	3.5
II Type I except with polid fixel (including fixences)		PWD	BY INSTALLING CONTRACTOR	50	✓	3.5
II Type I except with solid fuel (including fireplaces))	HEAT RECOVERY VE	ENTILATOR			9.32.3.11.
III Any Type c) appliance		Model:	VANEE V150H			
N/ Time Lead Huidh alsahia amasa hash		150	cfm high	35	_	cfm low
IV Type I, or II with electric space heat Other: Type I, II or IV no forced air		75	% Sensible Efficiency @ 32 deg F (0 deg C)		✓ I	HVI Approved
SYSTEM DESIGN OPTIONS	O.N.H.W.P.	LOCATION OF INSTA	ALLATION			
or or Em Bedick of Florid	0	Lot:		Concession		
1 Exhaust only/Forced Air System						
2 HRV with Ducting/Forced Air System		Township		Plan:		
		Address				
3 HRV Simplified/connected to forced air system		Roll #		Building Perr	nit #	
4 HRV with Ducting/non forced air system		BUILDER:	GREENPARK HOMES			
Part 6 Design		Name:				
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:				
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	cfm	City:				
Other Bedrooms 2 @ 10.6 cfm 21.2	cfm	Telephone #:		Fax#:		
Kitchen & Bathrooms 4 @ 10.6 cfm 42.4	cfm	INSTALLING CONTR	ACTOR			
Other Rooms 5 @ 10.6 cfm 53.0	cfm	Name:				
Table 9.32.3.A. TOTAL 159.0	cfm	Address:				
<u>—</u>						
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	City:				
		Telephone #:		Fax #:		
1 Bedroom 31.8	cfm	DESIGNER CERTIFIC	ATION			
2 Bedroom 47.7	cfm	I hereby certify that the	s ventilation system has been on the contraction of	lesigned		
3 Bedroom 63.6	cfm	Name:	HVAC Designs Ltd.			
4 Bedroom 79.5	cfm	Signature:	Micha	I Ofounde	٠.	
5 Bedroom 95.4	cfm	HRAI#		001820		
TOTAL 63.6 cfm		Date:		ecember-22		
I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUAL	IFIED IN THE AP		THER DESIGNER" UNDER DIVISION C	, 3.2.5 OF THE BU	ILDING CO	DE.

			CSA F28	30-12 Residential Hea	t Loss and Heat Gain	Calculations							
			Form	ula Sheet (For Air Lea	kage / Ventiliation C	alculation)							
LO#: 997	794	Model: CHERRY 3E			r: GREENPARK HOMES	•			Date:	12/22/2022			
		Volume Calculatio	n				Air Change & Delt	a T Data					
House Volume							TURAL AIR CHANG		0.376				
Level	Floor Area (ft²)	Floor Height (ft)	Volume (ft³)			SUMMER NA	TURAL AIR CHANG	E RATE	0.100				
Bsmt	981	9	8829										
First	981	10	9810										
Second	1159	9	10431					mperature Diff		AT 05			
Third	0	9	0			Winter DTDh	Tin °C	Tout °C	ΔT °C	ΔT °F			
Fourth	0	9 Total:	0 29,070.0 ft ³			Summer DTDc	22	-18 29	40 5	72 9			
		Total:	823.2 m ³			Sulliller DTDC	24	29	5	9			
		TOtal.	023.2 111										
	5.2.3.	1 Heat Loss due to Ai	r Leakage			6.2.6 9	Sensible Gain due	to Air Leakage					
			-					_					
	ш _	$LR_{airh} \times \frac{V_b}{3.6} \times L$	TD v 1 2		77	$IG_{salb} = LR_{airc} \times$	V_b	, 1 2					
	nL_{airb} —	$\frac{LK_{airh}}{3.6}$ $\frac{\lambda}{3.6}$	$1D_h \times 1.2$		П	$G_{salb} = LK_{airc} \times$	$\frac{1}{3.6}$ × DID_c	X 1.Z					
0.376	x 228.66	x 40 °C	x 1.2	= 4153 W	= 0.100	x 228.66	x 5 °C	x 1.2	=	140 W			
	<u></u>	<u></u>		·	·	<u> </u>			_				
				= 14169 Btu/h					=	477 Btu/h			
	5.2.3.2 Hea	t Loss due to Mechan	ical Ventilation			6.2.7 Ser	nsible heat Gain du	ie to Ventilatio	n				
	$HL_{vairb} = I$	$PVC \times DTD_h \times 1$	$.08 \times (1-E)$		$HL_{vairb} = PVC \times DTD_h \times 1.08 \times (1 - E)$								
64 CFM	x <u>72 °F</u>	x 1.08	x 0.25	= 1243 Btu/h	64 CFM	x <u>9°F</u>	x <u>1.08</u>	x <u>0.25</u>	_ =	158 Btu/h			
					(5 1 5 (5)								
			5.2.3.3 Calcula	tion of Air Change Heat	Loss for Each Room (Floo	or Multiplier Section)							
		HL_{ai}	$_{rr}=Level\ Factor$	$or \times HL_{airbv} \times \{(H_{airbv}) \times \{$	$(L_{agcr} + HL_{bgcr}) \div$	$(HL_{agclevel} + HL_{l}$	bgclevel)}						
		Level	Level Factor (LF)	HLairve Air Leakage + Ventilation Heat Loss (Btu/h)	Level Conductive Heat Loss: (HL _{clevel})	Air Leakage Heat Los HLairbv / F							
		1	0.5		5,636	1.25	7						
		2	0.3		7,954	0.53	4						
		3	0.2	14,169	8,011	0.35	4						
		4	0		0	0.00	0		Michael O'R	ourke			
		5	0		0	0.00	0		BCIN# 19669)			
			J	ventilation heat loss	=0				Micha	I Ofounde.			

NOT THE GRANTING OF A PERMIT NOR REVIEWING OF SPECS

& DRAWINGS NOR INSPECTIONS MADE DURING INSTALLATION
BY THE OFFICIAL HAVING JURISDICTION SHALL RELIEVE THE
OWNER FROM REQUIREMENTS OF THE ONTARIO BUILDING
CODE AND ANY OTHER REFERENCED REQUIREMENTS.
WEb: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL:	CHERRY 3E	WOB	BUILDER: GREENPARK HOMES	
SFQT:	2140	LO# 99794	SITE: BARLASSINA	
DESIGN A	SSUMPTIONS			
	R DESIGN TEMP. DESIGN TEMP. G DATA	°F 0 72	COOLING OUTDOOR DESIGN TEMP. INDOOR DESIGN TEMP. (MAX 75°F) WINDOW SHGC	°F 84 75 0.50
ATTACHM	1ENT:	ATTACHED	# OF STORIES (+BASEMENT):	3
FRONT FA	ACES:	EAST	ASSUMED (Y/N):	Υ
AIR CHAN	IGES PER HOUR:	3.57	ASSUMED (Y/N):	Υ
AIR TIGHT	TNESS CATEGORY:	AVERAGE	ASSUMED (Y/N):	Υ
WIND EX	POSURE:	SHELTERED	ASSUMED (Y/N):	Υ
HOUSE V	OLUME (ft³):	29070.0	ASSUMED (Y/N):	Υ
INTERNAL	L SHADING:	BLINDS/CURTAINS	ASSUMED OCCUPANTS:	4
INTERIOR	LIGHTING LOAD (Btu/h,	/ft²): 1.75	DC BRUSHLESS MOTOR (Y/N):	Υ
FOUNDAT	TION CONFIGURATION	BCIN_1	DEPTH BELOW GRADE:	6.0 ft
LENGTH:	62.0 ft	WIDTH: 20.0 ft	EXPOSED PERIMETER:	125.0 ft
WOB INS	ULATION CONFIGURATION	ON SCB_9	WOB EXPOSED PERIMETER	30.0 ft

2012 OBC - COMPLIANCE PACKAGE		·
	Compliand	e Package
Component		A1
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22	17.03
Basement Walls Minimum RSI (R)-Value	20 ci	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	0.28	-
Skylights Maximum U-Value	0.49	-
Space Heating Equipment Minimum AFUE	96%	-
HRV/ERV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	0.8	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Supplemental tool for CAN/CSA-F280

We	eather Sta	tion Description
Province:	Ontario	·
Region:	Cambrid	ge
	Site D	escription
Soil Conductivity:	Normal o	conductivity: dry sand, loam, clay
Water Table:	Normal (7-10 m, 23-33 ft)
	Foundatio	n Dimensions
Floor Length (m):	4.6	
Floor Width (m):	6.1	
Exposed Perimeter (m):	38.1	
Wall Height (m):	2.7	
Depth Below Grade (m):	1.46	Insulation Configuration
Window Area (m²):	0.7	
Door Area (m²):	1.9	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	tion Loads
Heating Load (Watts):		493

TYPE: CHERRY 3E **LO#** 99794

WOB

mellost.

HVAC Designs Ltd. 375 Finley Ave, Suite 202 Ajax ON, L1S 2E2 905-619-2300

Residential Slab on Grade Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Station Description												
Province:	Ontario											
Region:	Cambridge	e										
	Site Do	escription										
Soil Conductivity:	Normal co	onductivity: dry sand, loam, clay										
Nater Table: Normal (7-10 m, 23-33 ft)												
Foundation Dimensions												
ength (m): 1.5												
Width (m):	6.1											
Exposed Perimeter (m):	9.1	Insulation Configuration										
	Radia	ant Slab										
Heated Fraction of the Slab:	0											
Fluid Temperature (°C):	33											
	Desigr	n Months										
Heating Month	1											
	Re	esults										
Heating Load (Watts):		88										

TYPE: CHERRY 3E WOB

LO# 99794

nu 16A.

HVAC Designs Ltd. 375 Finley Ave, Suite 202 Ajax ON, L1S 2E2 905-619-2300

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Statio	n Des	cripti	ion		
Province:	Ontar	io			
Region:	Camb	ridge			
Weather Station Location:	Open	flat te	rrain, g	grass	
Anemometer height (m):	10				
Local Sh	ieldin	g			
Building Site:	Subur	ban, fo	orest		
Walls:	Heavy	/			
Flue:	Heavy	/			
Highest Ceiling Height (m):	8.53				
Building Cor	nfigura	ation			
Type:	Semi				
Number of Stories:	Two				
Foundation:	Full				
House Volume (m³):	823.2				
Air Leakage/	Ventil	atior	1		
Air Tightness Type:	Prese	nt (196	61-) (3.	57 ACH	H)
Custom BDT Data:	ELA @	9 10 Pa	Э.		1097.3 cm ²
	3.57				ACH @ 50 Pa
Mechanical Ventilation (L/s):	To	tal Sup	ply		Total Exhaust
		30.0			30.0
Flue	Size				
Flue #:	#1	#2	#3	#4	
Diameter (mm):	0	0	0	0	
Natural Infilt	ration	Rate	:S		
Heating Air Leakage Rate (ACH/H):		C	.37	6	
Cooling Air Leakage Rate (ACH/H):		C	0.10	0	

TYPE: CHERRY 3E WOB

LO# 99794

Project Name

BARLASSINA CAMBRIDGE, ONTARIO Block 121 Units 7 to 12

WOB CHERRY 3E

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be 2140 sqft adequately insulated and be gas-proofed.

	IILAIL	-033 3/4/		# OF RUNS	5/A	R/A	FAN5	
		UNIT DATA	١	3RD FLOOR				
	MAKE	GOODMAN		2ND FLOOR	10	4	3	
	MODEL			ZIVD I LOOK	10	4	J	
		EC960402B	NA	1ST FLOOR	6	1	2	
	INPUT	40	MBTU/H	BASEMENT	4	1	0	Date
	OUTPUT		MBTU/H	ALL S/A DIFFU	SERS	4 "x10)"	Scal
		38.4	510.11	UNLESS NOTE				
	COOLING	20	TONS	ON LAYOUT. A				
•	1	Z.U		LINI ESS NOTE	1) ()TE	₁⊢₽\//	121	l

ON LAYOUT, UNDERCUT

DOORS 1" min. FOR R/A

FAN SPEED

890

NS		Sheet Title											
	ŀ	3AS	SEMENT										
3		HEATING											
2		LAYOUT											
0	Date	DI	EC/2022										
	Scale	3/	16" = 1'-0"										
: "Ø		вс	IN# 19669										
•	LO	#	99794										

NOT THE GRANTING OF A PERMIT NOR REVIEWING OF SPECS & DRAWINGS NOR INSPECTIONS MADE DURING INSTALLATION BY THE OFFICIAL HAVING JURISDICTION SHALL RELIEVE THE OWNER FROM REQUIREMENTS OF THE ONTARIO BUILDING CODE AND ANY OTHER REFERENCED REQUIREMENTS.

FIRST FLOOR PLAN EL-2

CSA-F280-12 PACKAGE A1

			3.							
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u> </u>	30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE		REVISIONS	•						

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

Cllent

GREENPARK HOMES

Project Name

BARLASSINA CAMBRIDGE, ONTARIO Block 121 Units 7 to 12 WOB

WOB
CHERRY 3E 2140 so

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper.

Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR HEATING LAYOUT

Date DEC/2022

Scale 3/16" = 1'-0"

BCIN# 19669

LO# 99794

NOT THE GRANTING OF A PERMIT NOR REVIEWING OF SPECS & DRAWINGS NOR INSPECTIONS MADE DURING INSTALLATION BY THE OFFICIAL HAVING JURISDICTION SHALL RELIEVE THE OWNER FROM REQUIREMENTS OF THE ONTARIO BUILDING CODE AND ANY OTHER REFERENCED REQUIREMENTS.

SEC. FLOOR PLAN EL-2

WOB

HVAC LEGEND								3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u> </u>	30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER	REVISIONS		

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

GREENPARK HOMES

Project Name

BARLASSINA CAMBRIDGE, ONTARIO Block 121 Units 7 to 12

WOB CHERRY 3E

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be 2140 sqft adequately insulated and be gas-proofed.

SECOND FLOOR

HEATING LAYOUT

DEC/2022 3/16" = 1'-0"

BCIN# 19669

99794 LO#