

Qty

9

18

2

2

Manuf

H1

H1

H1

H1

H3

Н3

H4

H4C

Product

IUS2.56/9.5

IUS2.56/9.5

IUS2.56/9.5

IUS2.56/9.5 HUS1.81/10

HUS1.81/10

HUC410

HGUS410

		Products			
PlotID	Length	Product	Plies	Net Qty	
J1	16-00-00	9 1/2" NI-40x	1	29	╢
J2	12-00-00	9 1/2" NI-40x	1	11	
J2DJ	12-00-00	9 1/2" NI-40x	2	4	
J3	10-00-00	9 1/2" NI-40x	1	2	
J4	4-00-00	9 1/2" NI-40x	1	8	
J5	2-00-00	9 1/2" NI-40x	1	4	
B3	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1	
B7	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2	
B1	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2	
B4	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1	
B5	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1	
B2	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2	
B6	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2	
B8	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2	

FROM PLAN DATED: OCT 2017

BUILDER: GREEN PARK HOMES

SITE: SECONDO VALES ESTATES

MODEL: HOLLAND 3A

ELEVATION: 1, 2

LOT:

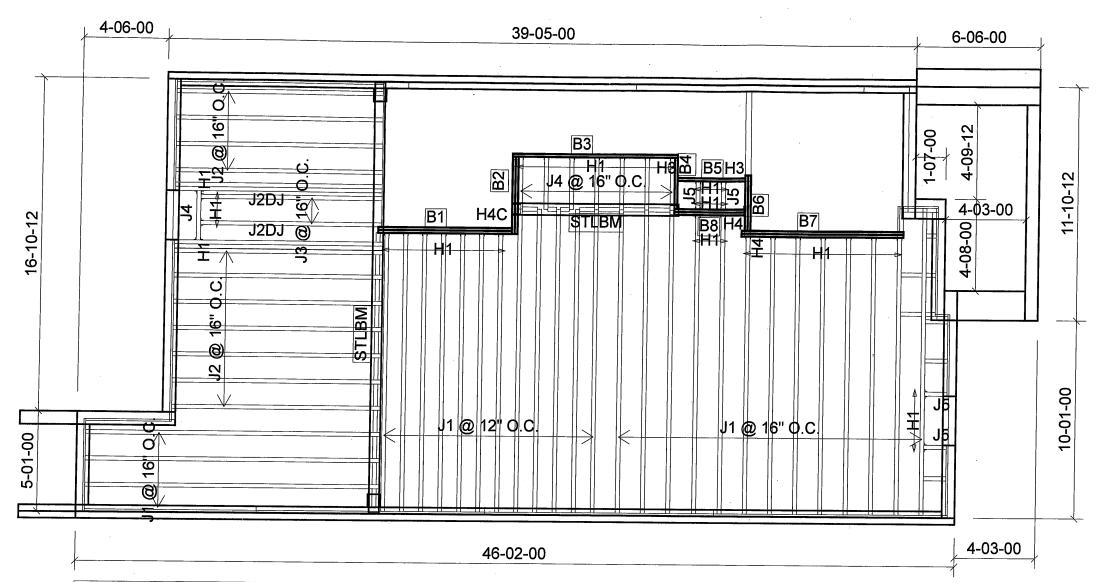
CITY: EAST GWILLIMBURY

SALESMAN: M D DESIGNER: AJ REVISION: Ibv

NOTES:

REFER TO THE **NORDIC INSTALLATION**GUIDE FOR PROPER STORAGE AND
INSTALLATION.

SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2 S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. CERAMIC TILE APPLICATION AS PER O.B.C 9.30.6.


LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft² TILED AREAS: 20 lb/ft²

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 2018-01-29

1st FLOOR

		Products			(Connector	Summary
PlotID	Length	Product	Plies	Net Qty	Qty	Manuf	Product
J1	16-00-00	9 1/2" NI-40x	1	29	9	H1	IUS2.56/9.5
J2	12-00-00	9 1/2" NI-40x	1	11	18	H1	IUS2.56/9.5
J2DJ	12-00-00	9 1/2" NI-40x	2	4	2	H1	IUS2.56/9.5
J3	10-00-00	9 1/2" NI-40x	1	2	4	H1	IUS2.56/9.5
J4	4-00-00	9 1/2" NI-40x	1	8	1	H3	HUS1.81/10
J5	2-00-00	9 1/2" NI-40x	1	4	1	H3	HUS1.81/10
B3	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1	1	H4C	HUC410
B7	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2	2	H4	HGUS410
B1	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B4	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			
B5	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			
B2	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B6	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B8	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			

FROM PLAN DATED: OCT 2017

BUILDER: GREEN PARK HOMES

SITE: SECONDO VALES ESTATES

MODEL: HOLLAND 3A

ELEVATION: 1A

LOT:

CITY: EAST GWILLIMBURY

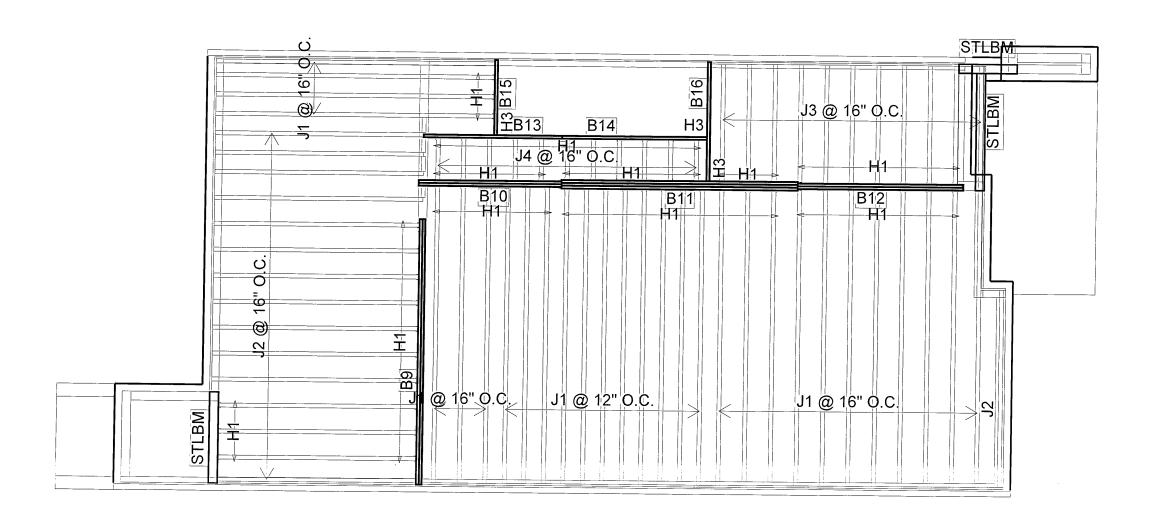
SALESMAN: MD **DESIGNER:** AJ **REVISION:** Ibv

NOTES:

REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION.

SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2 S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH **BLOCKS** REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED

JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. CERAMIC TILE APPLICATION AS PER O.B.C 9.30.6.


LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED


DATE: 2018-01-20

1st FLOOR

		Products		
PlotID	Length	Product	Plies	Net Qty
J1	16-00-00	9 1/2" NI-40x	1	29
J2	12-00-00	9 1/2" NI-40x	1	16
J3	8-00-00	9 1/2" NI-40x	1	11
J4	4-00-00	9 1/2" NI-40x	1	11
B9	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B11	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	3	3
B12	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B13	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B14	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B16	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B10	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B15	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1

Connector Summary									
Qty	Manuf	Product							
14	H1	IUS2.56/9.5							
35	H1	IUS2.56/9.5							
20	H1	IUS2.56/9.5							
3	H1	IUS2.56/9.5							
2	H3	HUS1.81/10							
1	H3	HUS1.81/10							

FROM PLAN DATED: OCT 2017

BUILDER: GREEN PARK HOMES

SITE: SECONDO VALES ESTATES

MODEL: HOLLAND 3A

ELEVATION: 1

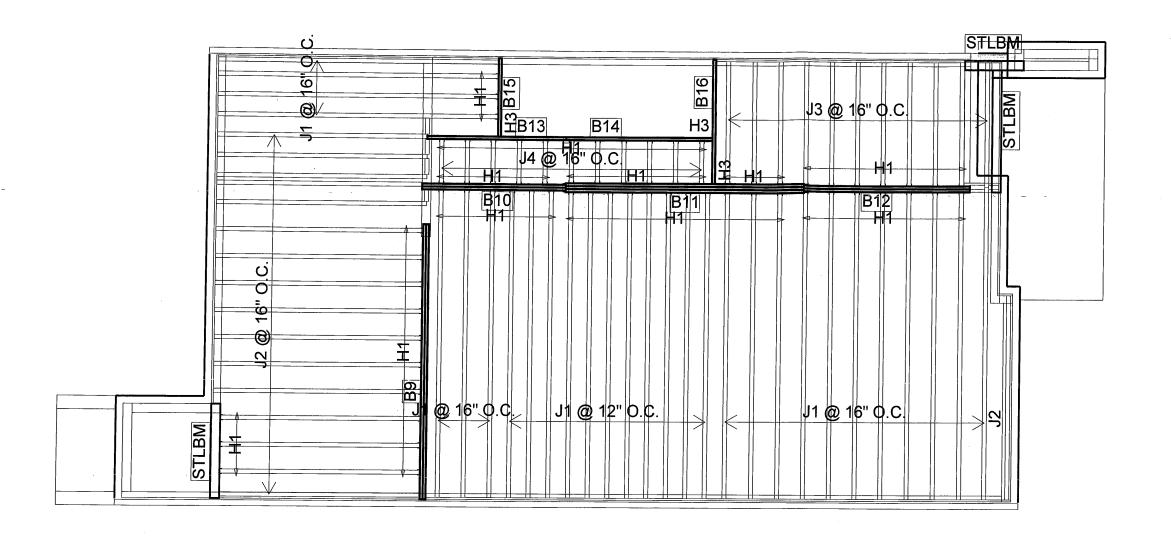
LOT:

CITY: EAST GWILLIMBURY

SALESMAN: M D DESIGNER: AJ REVISION: Ibv

NOTES:

REFER TO THE NORDIC INSTALLATION **GUIDE** FOR PROPER STORAGE AND INSTALLATION. SQUASH BLOCKS OF 2x4. 2x6, 2x8 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURE 7 TABLES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD **CUT OPENINGS** SEE FIGURE 7 TABLES 1 & 2 OF THE INSTALLATION GUIDE. CERAMIC TILE APPLICATION AS PER O.B.C. 9.30.6


LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft² TILED AREAS: 20 lb/ft²

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 2017-11-23

2nd FLOOR

		Products		
PlotID	Length	Product	Plies	Net Qty
J1	16-00-00	9 1/2" NI-40x	1	29
J2	12-00-00	9 1/2" NI-40x	1	16
J3	8-00-00	9 1/2" NI-40x	1	11
J4	4-00-00	9 1/2" NI-40x	1	11
B9	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B11	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	3	3
B12	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B13	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B14	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B16	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B10	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B15	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1

C	Connector Summary									
Qty	Manuf	Product								
14	H1	IUS2.56/9.5								
35	H1	IUS2.56/9.5								
20	H1	IUS2.56/9.5								
3	H1	IUS2.56/9.5								
2	H3	HUS1.81/10								
1	H3	HUS1.81/10								

FROM PLAN DATED: OCT 2017

BUILDER: GREEN PARK HOMES

SITE: SECONDO VALES ESTATES

MODEL: HOLLAND 3A

ELEVATION: 1A

LOT:

CITY: EAST GWILLIMBURY

SALESMAN: M D DESIGNER: AJ REVISION: Ibv

NOTES:

REFER TO THE NORDIC INSTALLATION **GUIDE FOR PROPER STORAGE AND** INSTALLATION. SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. **CANTILEVERED JOISTS INCLUDING CANT'** OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURE 7 TABLES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD **CUT OPENINGS** SEE FIGURE 7 TABLES 1 & 2 OF THE INSTALLATION GUIDE. CERAMIC TILE APPLICATION AS PER O.B.C. 9.30.6

LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft² TILED AREAS: 20 lb/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 2017-11-23

2nd FLOOR

COMPANY TAMARACK LUMBER BURLINGTON Nov. 23, 2017 14:17

PROJECT J1 2ND FLR

Design Check Calculation Sheet

Nordic Sizer - Canada 6.4

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	е	Unit
	1		tern	Start	End	Start	End	
Loadl	Dead	Full Area				20.00		psf
Load2	Live	Full Area				40.00		psf

Maximum Reactions (lbs), Bearing Resistances (lbs) and Bearing Lengths (in):

Unfactored: Dead Live	209 417		203 407
Factored: Total	887		864
Bearing:			
Resistance			
Joist	1893		1859
Support	7735		-
Des ratio			
Joist	0.47		0.46
Support	0.11		_
Load case	#2		#2
Length	4-3/8		2*
Min req'd	1-3/4		1-3/4
Stiffener	No		No
Kd	1.00		1.00
KB support	1.00		_
fcp sup	769		-
Kzcp sup	1.15	•	

*Minimum bearing length for joists is 2" for exterior supports

Bearing for wall supports is perpendicular-to-grain bearing on top plate. No stud design included.

Nordic Joist 9-1/2" NI-40x Floor joist @ 16" o.c.

Supports: 1 - Lumber Wall, No.1/No.2; 2 - Hanger;

Total length: 15'-5.4"; 5/8" nailed and glued OSB sheathing with 1/2" gypsum ceiling

This section PASSES the design code check.

Limit States Design using CSA 086-14 and Vibration Criterion:

1		<u> </u>			·	
	Criterion	Analysis Value	Design	Value	Unit	Analysis/Design
	Shear	Vf = 854	Vr =	1895	lbs	Vf/Vr = 0.45
l	Moment (+)	Mf = 3215	Mr =	4824	lbs-ft	Mf/Mr = 0.67
	Perm. Defl'n	$0.13 = \langle L/999$	0.50 =	L/360	in	0.26
	Live Defl'n	0.26 = L/694	0.38 =	L/480	I I DO	0.69
	Total Defl'n	0.39 = L/463	0.75 =	L/240	1/18 CD	5/R 0.52
	Bare Defl'n	0.31 = L/578	0.50 =	L/360	St S. KATS	0.62
	Vibration	Lmax = 15'-1	Lv =	15'-9	St S. KATS	DULAKOS 🖫 📗
	Defl'n	= 0.038	=	0.043	ain	l 🥢 👭 0.86 l
L		1			a a	
					13	DWG NO. TAM S
					N.S. E.	DWG NO. TAM S
					Colon Colon	SIRUCTU
						COMPONENT

DWG NO. TAM 5354 -18

STRUCTURAL COMPONENT ONLY

WoodWorks® Sizer

for NORDIC STRUCTURES

J1 2ND FLR

Nordic Sizer - Canada 6.4

Page 2

Additional	Data:								- "
	f/E				$_{ m KL}$	KT	KS	KN	LC#
Vr	1895	1.00	1.00	-	-	_	-	_	#2
Mr+					1.000	-	_	_	#2
EI ·						_	-	_	#2
CRITICAL LC	DAD COMBI	INATIONS	S: .						
Shear	: LC #2	= 1.2	5D + 1.5I	J					
Moment(+)									
Deflectio									
			0 + 1.0L						
			0 + 1.0L						
) + 1.0L						
Bearing			LC #2 = 1						
			LC #2 = 1			, .		4 h a le a	
Load Type	es: D=dead	d W=wi	nd S=sno	ow H=ea	arth,grou	ndwate	r E=ear	tnquake	
					ive(stora			r=rre	
Load Patt	erns: s=	S/2 L=1	L+Ls _=r	no patte	ern Load	in thi	s span		
All Load		ions (L	Cs) are l	Listed :	ın the An	arysis	output		
CALCULATIC						06.11			
Deflectio	n: Elef:	f = 2	268e06 lk	o-in2 I	K = 4.94e	U6 Lbs	/1/	استاد	
"Live" de	flection	= Defle	ection fr	com all	non-dead	Loads	(live,	wina, sn	iow)

Design Notes:

- 1. WoodWorks analysis and design are in accordance with the 2010 National Building Code of Canada (NBC Part 4) and the CSA O86-14 Engineering Design in Wood standard (May 2014 edition).
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Refer to technical documentation for installation guidelines and construction details.
- 4. Nordic I-joists are listed in CCMC evaluation report 13032-R.
- 5. Joists shall be laterally supported at supports and continuously along the compression edge.
- 6. The design assumptions and specifications have been provided by the client. Any damages resulting from faulty or incorrect information, specifications, and/or designs furnished, and the correctness or accuracy of this information is their responsibility. This analysis does not constitute a record of the structural integrity of the building nor suitability of the design assumptions made. Nordic Structures is responsible only for the structural adequacy of this component based on the design criteria and loadings shown.

DWG NO. TAM \$ 3 \$ 4 - 18
STRUCTURAL
COMPONENT ONLY

COMPANY TAMARACK LUMBER BURLINGTON Nov. 23, 2017 11:25 PROJECT
J1 GRD FLR

Design Check Calculation Sheet

Nordic Sizer - Canada 6.4

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitu	de	Unit
Tioad	1750	i I	tern		End	Start	End	
Load1	Dead	Full Area				20.00		psf
Load2	Live	Full Area				40.00		psf

Maximum Reactions (lbs), Bearing Resistances (lbs) and Bearing Lengths (in): -- 15'-5.4" -0, Š 15'-2.1" Unfactored: 206 206 Dead 411 413 Live Factored: 874 877 Total Bearing: Resistance 1865 Joist 1869 3651 Support Des ratio 0.47 0.47 Joist 0.24 Support #2 #2 Load case 2-3/8 2 - 5/8Length 1 - 3/4Min req'd 1 - 3/4No No Stiffener 1.00 1.00 Kd 1.00 KB support 769 fcp sup 1.00 Kzcp sup

*Minimum bearing length for joists is 2" for exterior supports

Nordic Joist 9-1/2" NI-40x Floor joist @ 16" o.c.

Supports: 1 - Steel Beam, W; 2 - Lumber Sill plate, No.1/No.2; Total length: 15'-5.4"; 3/4" nailed and glued OSB sheathing This section PASSES the design code check.

Limit States Design using CSA 086-14 and Vibration Criterion:

	· · · · · · · · · · · · · · · · · · ·										
Criterion	Analysis Value	Design Value	Unit	Analysis/Design							
Shear	Vf = 860	Vr = 1895	lbs	Vf/Vr = 0.45							
Moment (+)	Mf = 3264	Mr = 4824	lbs-ft	ESS/Mf/Mr = 0.68							
Perm. Defl'n	$0.13 = \langle L/999 \rangle$	0.51 = L/360	in property	0.26							
1	0.26 = L/698	0.38 = L/480	ing the	0.69							
	0.39 = L/465	0.76 = L/240	18811	41 /3 0.52							
Total Defl'n	0.39 = L/405 0.32 = L/565	$0.70 \pm 1/210$ 0.51 = L/360	in	0.64							
Bare Defl'n	151.0	$T_{\rm IV} = 16'-2$	S KAT	SOULAKOS II							
Vibration	Lmax = 15'-2	= 0.043	1 7 4 5 1	0.82							
Defl'n	= 0.035	= 0.043	in .	0.02							

P6 12

NOT OF ONTE

WoodWorks® Sizer

for NORDIC STRUCTURES

J1 GRD FLR


Nordic Sizer - Canada 6.4

Page 2

A 1.190 1	D-4								
Additional					***	TZ TT	KS	KN	LC#
FACTORS:	f/E		KH			KT	СЛ	1/1/	#2
Vr			1.00		_	_	_	_	#2
Mr+		1.00		-	1.000	-	_	_	#2 #2
ΕI	218.1 m	illion	-	-	_	-	_	_	# 4
CRITICAL LO	AD COMBI	INATIONS	:						
Shear	- 11.0		5D + 1.5I	J					
Moment(+)	: LC #2	= 1.25	5D + 1.5I	٠					
Deflectio	n: LC #1	= 1.00	(perma	nent)	•				
BOLLOGGE	LC #2	= 1.00	+1.0L	(live)				
	T ₁ C #2	= 1.00	+ 1.0L	(tota	1)				
	LC #2	= 1.00	+ 1.0L	(bare	joist)				
Bearing	: Suppo:	rt 1 - I	C #2 = 1	.25D +	1.5L				
	Suppo	rt 2 - I	C #2 = 1	25D +	1.5L				
Load Type	e. D=dead	d W≔wir	d S=sno	w H=e	arth, grou	ndwate	r E=ear	thquake	
HOUG TYPE	J.=live	e (use.oc	cupancy)	Ls≔l	ive(stora	ge, equ	ipment)	f=fire	
Load Patt	orns. s=	S/2 $T=T$	+Ls =r	no patt	ern load	in thi	s span	•	
All Load	Combinat	ions (LC	s) are I	listed	in the An	alysis	output		
		10110 (110	,, 410			-		,	
CALCULATIO Deflectio	JNO.		76006 11	n-in2	K= 4.94e	06 lbs	¥		
Deflectio "Live" de	n: Eleli	_ Dofle	ation fi	-om all	non-dead	lloads	(live,	wind, s	now)
"Live" de	riection	- Derre	CCTOIL TI	Om all					

Design Notes:

- 1. WoodWorks analysis and design are in accordance with the 2010 National Building Code of Canada (NBC Part 4) and the CSA O86-14 Engineering Design in Wood standard (May 2014 edition). **CONFORMS TO OBC 2012**
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Refer to technical documentation for installation guidelines and construction details.
- 4. Nordic I-joists are listed in CCMC evaluation report 13032-R.
- 5. Joists shall be laterally supported at supports and continuously along the compression edge.
- 6. The design assumptions and specifications have been provided by the client. Any damages resulting from faulty or incorrect information, specifications, and/or designs furnished, and the correctness or accuracy of this information is their responsibility. This analysis does not constitute a record of the structural integrity of the building nor suitability of the design assumptions made. Nordic Structures is responsible only for the structural adequacy of this component based on the design criteria and loadings shown.

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B1(i2253)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:32

BC CALC® Design Report

Build 5033

File Name: HOLLAND 3Ammdl Description: Designs\Flush Beams\Basment\Flush Beams\B1(i2253)

Specifier:

Designer: AJ Company:

City, Province, Postal Code: EAST GWILLIMBURY, Customer:

Job Name:

Address:

Code reports:

CCMC 12472-R

Misc:

\overline{V}		
	Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ	
B0	07-00-06	B1

Total Horizontal Product Length = 07-00-06

Reaction Summary (Do	wn / Uplift) (lbs)				
Be aring .	Live	De ad	Snow	Wind	
B0, 3-1/4"	1,032 / 0	573/0			
B1	996/0	530/0			

Load Summary		•				Live	Dead	Snow	Wind	Trib.
	Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
0	Smoothed Load	Unf. Lin. (lb/ft)	L	00-11-08	06-11-08	292	146			n/a
1	-	Conc. Pt. (lbs)	L	00-04-02	00-04-02	263	155			n/a

CONFORMS TO OBC 2012

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	3,616 ft-lbs	25,408 ft-lbs	14.2%	1	03-05-08
End Shear	1,840 lbs	11,571 lbs	15.9%	1	06-00-14
Total Load Defl.	L/999 (0.041")	n/a	n/a	4	03-07-00
Live Load Defl.	L/999 (0.027")	n/a	n/a	5	03-07-00
Max Defl.	0.041"	n/a	n/a	4	03-07-00
Span / Depth	8.5	n/a	n/a		00-00-00

				De mand/	De mand/	
				Resistance	Resistance	
Bear	ing Supports	Dim.(L x W)	Demand	Support	Member	Material
B0	Beam	3-1/4" x 3-1/2"	2,264 lbs	37.3%	16.3%	Unspecified
B1	Hanger	2" x 3-1/2"	2,156 lbs	n/a	25.2%	HGUS410

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

DWG NO. TAM 5356 STRUCTURAL COMPONENT ONLY

Page 1 of 2

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B1(i2253)

BC CALC® Design Report

November 23, 2017 14:11:32

Dry | 1 span | No cantilevers | 0/12 slope (deg)

File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\Basment\Flush Beams\B1(i225)

Specifier:

Designer: Company.

Misc:

Build 5033

Job Name: Address:

Customer: Code reports:

CCMC 12472-R

City, Province, Postal Code: EAST GWILLIMBURY,

Connection Diagram

a minimum = 2"

c = 2-3/4"

d= 20 64 b minimum = 3"

Calculated Side Load = 589.2 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d Nails

3-1/2" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Property

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B3(i2078)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:42

Build 5033

Job Name:

Address: City, Province, Postal Code:EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\Basment\Flush Beams\B3(i2078)

Specifier:

Designer: AJ

Company: Misc:

$\overline{\mathbb{V}}$	2
08-08-06 BO	J) · B1

Total Horizontal Product Length = 08-08-06

Reaction Summary (I	Down / Uplift) (lbs) Live	De ad	Snow	Wind	
B0, 3-1/2"	230/0	135/0			
B1, 1-3/4"	226/0	133/0			

Load Summary				Live	Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	En d	1.00	0.65	1.00 1.15	
0 Smoothed Load	Unf. Lin. (lb/ft)	L 01-01-02	07-09-02	55	27		n/a
1 J4(i2077)	Conc. Pt. (lbs)	L 00-05-02	00-05-02	48	24		n/a
2 J4(i2090)	Conc. Pt. (lbs)	L 08-05-02	08-05-02	43	22		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	1,073 ft-lbs	12,704 ft-lbs	8.4%	1	04-05-02
End Shear	423 lbs	5,785 lbs	7.3%	1	01-01-00
Total Load Defl.	L/999 (0.038")	n/a	n/a	4	04-05-02
Live Load Defl.	L/999 (0.024")	n/a	n/a	5	04-05-02
Max Defl.	0.038"	n/a	n/a	4	04-05-02
Span / Depth	10.6	n/a	n/a		00-00-00

		•		Demand/ Resistance	Demand/ Resistance	
Bearin	ng Supports	Dim.(L x W)	Demand	Support	Member	Material
B0	Post	3-1/2" x 1-3/4"	514 lbs	10.3%	6.9%	Unspecified
B1	Post	1-3/4" x 1-3/4"	505 lbs	20.3%	13.5%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA 086.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SY STEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM 5357.18 STRUCTURAL COMPONENT ONLY

CONFORMS TO OBC 2012

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B4(i2111)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:37

Build 5033

Job Name:

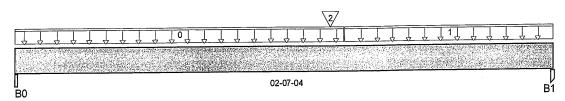
Address: City, Province, Postal Code:EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl


Description: Designs\Flush Beams\Basment\Flush Beams\B4(i2111)

Specifier:

Designer: AJ

Company:

Misc:

Total Horizontal Product Length = 02-07-04

Reaction Summary (D	own / Uplift) (lbs)	De ad	Snow	Wind	
B0, 2-3/4"	234/0	127/0			
B1, 1-3/4"	285/0	153/0			

	ad Cummanı				Live	Dead	Snow Wind	Trib.
	oad Summary g Description	Load Type	Ref. Start	En d	1.00	0.65	1.00 1.15	
0	FC1 Floor Material	Unf. Lin. (lb/ft)	L 00-00-00	01-07-00	27	13		n/a
1	FC1 Floor Material	Unf. Lin. (lb/ft)	L 01-07-00	02-07-04		3		n/a
2	B5(i2132)	Conc. Pt. (lbs)	L 01-06-02	01-06-02	471	244		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	614 ft-lbs	12,704 ft-lbs	4.8%	1	01-06-02
End Shear	603 lbs	5,785 lbs	10.4%	1	01-08-00
Total Load Defl.	L/999 (0.001")	n/a	n/a	6	01-04-10
Live Load Defl.	L/999 (0.001")	n/a	n/a	8	01-04-10
Max Defl.	0.001"	n/a	n/a	6	01-04-10
Span / Depth	3	n/a	n/a		00-00-00

				De mand/ Resistance	Demand/ Resistance	•
Bear	ing Supports	Dim.(L x W)	Demand	Support	Member	Material
B0	Beam	2-3/4" x 1-3/4"	509 lbs	19.8%	8.7%	Unspecified
B1	Post	1-3/4" x 1-3/4"	619 lbs	24.9%	16.6%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086. BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SY STEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM \$ 350 .18
STRUCTURAL
COMPONENT ONLY

CONFORMS TO OBC 2012

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B5(i2132)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:34

Build 5033

Job Name:

Address:
City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

B0

CCMC 12472-R

File Name: HOLLAND 3Ammdl


Description: Designs\Flush Beams\Basment\Flush Beams\B5(i2132)

Specifier:

Designer: AJ

Company.

Misc:

Total Horizontal Product Length = 03-06-08

Reaction Summary (Down / Bearing	Uplift) (lbs) Live	De ad	Snow	Wind	,	
B0 B1	471/0 470/0	243/0 244/0				

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					Dead	Snow Wind	Trib.
Load Summary Tag Description	Load Type	Ref. Start	En d	1.00	0.65	1.00 1.15	
0 STAIR	Unf. Lin. (lb/ft)	L 00-00-00	03-06-08	240	120		n/a
1 J5(i2137)	Conc. Pt. (lbs)	I 01-00-12			21		n/a
2 15(i2151)	Conc. Pt. (lbs)	L 02-04-12	02-04-12	48	24		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	813 ft-lbs	12,704 ft-lbs	6.4%	1	01-09-04
End Shear	516 lbs	5,785 lbs	8.9%	1	00-11-08
Total Load Defl.	L/999 (0.005")	n/a	n/a	4	01-09-04
Live Load Defl.	L/999 (0.003")	n/a	n/a	5	01-09-04
Max Defl.	0.005"	n/a	n/a	4	01-09-04
Span / Depth	4.2	n/a	n/a		00-00-00

Bearing Supports		Dim . (L x W)	Resistance Resis		De mand/ Resistance Member	Material
B0	Hanger	2" x 1-3/4"	1,010 lbs	n/a	23.7%	HUS1.81/10
B1	Hanger	2" x 1-3/4"	1,010 lbs	n/a	23.7%	HUS1.81/10

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO OBC 2012

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM 5359 -18 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B6(i2254)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:38

BC CALC® Design Report

Build 5033 Job Name:

File Name: HOLLAND 3Ammdi

Description: Designs\Flush Beams\Basment\Flush Beams\B6(i2254)

Address: City, Province, Postal Code: EAST GWILLIMBURY,

Specifier:

Customer:

Designer: AJ Company:

Code reports:

CCMC 12472-R

Misc:

Total Horizontal Product Length = 02-09-12

Reaction Summary (Down / Uplift) (Ibs)									
Be aring	Live	De ad	Snow	Wind					
B0	3,151/0	1,742 / 0	· · · · · · · · · · · · · · · · · · ·						
B1.3-1/2"	2.238/0	1.228 / 0							

Load Summary			Live	Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	End 1.00	0.65	1.00 1.15	•
0 -	Conc. Pt. (lbs)	L 00-11-14	00-11-14 4,850	2,664) 🛧	TOPENGE WATHER	n/a
1 B5 (i2132)	Conc. Pt. (lbs)	L 02-07-02	02-07-02 470	244		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
			23.8%		01-00-00
Pos. Moment	6,042 ft-lbs	25,408 ft-lbs	23.0%	ı	01-00-00
End Shear	6,838 lbs	11,571 lbs	59.1%	1	00-11-08
Total Load Defl.	L/999 (0.007")	n/a	n/a	4	01-02-12
Live Load Defl.	L/999 (0.005")	n/a	n/a	5	01-02-12
Max Defl.	0.007"	n/a	n/a	4	01-02-12
Span / Depth	3.1	n/a	n/a		00-00-00

Bearing Supports				Demano <i>l</i> Resistance	Resistance	
		Dim.(L x W)	Demand Suppor		Member	Material
B0	Hanger	2" x 3-1/2"	6,905 lbs	n/a	80.9%	HGUS410
B1	Wall/Plate	3-1/2" x 3-1/2"	4,892 lbs	74.8%	32.7%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume unbraced length of Top: 00-01-12, Bottom: 00-01-12.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

CONFORMS TO OBC 2012

Importance Factor: Normal Part code: Part 9

DWG NO. TAM 5360.78
STRUCTURAL
COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B6(i2254)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:38

Build 5033

Job Name:

Address:

City, Province, Postal Code: EAST GWILLIMBURY,

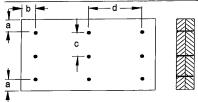
Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\Basment\Flush Beams\B6(i225


Specifier:

Designer:

Company.

Misc:

Connection Diagram

a minimum = 2"

c = 2-3/4"

b minimum = 3"

Calculated Side Load = 1,007.3 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d Mails

3-1/2" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM 5360 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B7(i2257)

Dry | 2 spans | Left cantilever | 0/12 slope (deg)

November 23, 2017 14:11:35

B2

BC CALC® Design Report

Build 5033

Job Name: Address:

City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\Basment\Flush Beams\B7(i2257)

Specifier:

Designer: AJ

Company. Misc:

-16 4 A307 BOLZS dungstens/4025

08-02-12

Total Horizontal Product Length = 08-06-08

Reaction Summary (Down / Uplift) (Ibs)									
Be aring	Live	De ad	Snow	Wind					
B1, 3-1/2"	4,481 / 0	2,448 / 0							
B2, 3-1/2"	1,369 / 0	727/0							

Lo	ad Summary					Live	Dead	Snow	Wind		Trib.
	Description	Load Type	Ref	. Start	En d	1.00	0.65	1.00	1.15	-	
0	Smoothed Load	Unf. Lin. (lb/ft)	L	00-00-00	08-06-08	316	158				n/a
1	B6 (i2254)	Conc. Pt. (lbs)	L	00-03-12	00-03-12	3,136	1,733				n/a

Domand/

Domand/

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	5,079 ft-lbs	25,408 ft-lbs	20%	1	04-04-04
End Shear	2,130 lbs	11,571 lbs	18.4%	1	07-05-08
Cont. Shear	2,075 lbs	11,571 lbs	17.9%	1	01-03-00
Total Load Defl.	L/999 (0.081")	n/a	n/a	4	04-04-04
Live Load Defi.	L/999 (0.053")	n/a	n/a	5	04-04-04
Total Neg. Defl.	2xL/1,998 (-0.0	1") n/a	n/a	4	00-00-00
Max Defl.	0.081"	n/a	n/a	4	04-04-04
Span / Depth	10.1	n/a	n/a		00-00-00

Bearing Supports	Dim . (L x W)	De man d	Resistance Support	Resistance Member	Material	
B1 Post	3-1/2" x 3-1/2"	9,782 lbs	98.3%	65.5%	Unspecified	
B2 Wall/Plate	3-1/2" x 3-1/2"	2,963 lbs	45.3%	19.8%	Unspecified	

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA **CONFORMS TO OBC 2012**

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Cantilevers require sheathed bottom flanges, blocking at cantilever support and closure at ends.

DWG NO. TAM 5361-12 STRUCTURAL COMPONENT ONLY

Boise Cascade Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B7(i2257)

BC CALC® Design Report

Dry | 2 spans | Left cantilever | 0/12 slope (deg)

November 23, 2017 14:11:35

Build 5033

Job Name: Address:

File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\Basment\Flush Beams\B7(i225'

Specifier:

Designer: AJ Company:

City, Province, Postal Code: EAST GWILLIMBURY, Customer: Misc: Code reports: CCMC 12472-R

Connection Diagram

Concentrated side-load exceeds allowable magnitude for connection design. Please consult a technical representative or Professional Engineer for the design of the connection. Occur if

BOLZING

NALLING

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

PROVIDE4 ROWS OF 3-1/2" ARDOX SPIRAL NAILS @ 12" O/C FOR MULTI-PLY NAILING. MAINTAIN A MIN. 1" LUMBER EDGE / END DISTANCE. DO NOT USE AIR NAILS.

DWG NO. TAM 536/ STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B8(i2249)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:43

BC CALC® Design Report

File Name: HOLLAND 3Ammdl Description: Designs\Flush Beams\Basment\Flush Beams\B8(i2249)

Specifier:

Designer: AJ

City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Build 5033

Job Name:

Address:

Code reports:

CCMC 12472-R

Company. Misc:

Total Horizontal Product Length = 03-08-04

Reaction Summary (Down / Uplift) (lbs)								
Be aring	Live	De ad	SHOW	- WING				
B0, 2-3/4"	459/0	247/0						
B1	848/0	461/0						

Load Summary	Load Type		Live	Live Dead	Snow Wind	Trib.
Tag Description		Ref. Start	End 1.	.00 0.65	1.00 1.15	
0 -	Conc. Pt. (lbs)	L 01-02-08	01-02-08 4	53 226		n/a
1 -	Conc. Pt. (lbs)	L 02-06-08	02-06-08 47	72 236		n/a
2 PBO8(i474)	Conc. Pt. (lbs)	L 03-08-00	03-08-00 38	82 210		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	1,047 ft-lbs	25,408 ft-lbs	4.1%	1	02-06-08
End Shear	1,001 lbs	11,571 lbs	8.7%	1	02-08-12
Total Load Defl.	L/999 (0.003")	n/a	n/a	4	01-10-08
Live Load Defl.	L/999 (0.002")	n/a	n/a	5	01-10-08
Max Defl.	0.003"	n/a	n/a	4	01-10-08
Span / Depth	4.3	n/a	n/a		00-00-00

				De mand/	Demand/		
			Resistance Resis		Resistance	ance	
Bear	ing Supports	Dim.(LxW)	Demand	Support	Member	Material	
B0	Beam	2-3/4" x 3-1/2"	997 lbs	19.4%	8.5%	Unspecified	
B1	Hanger	2" x 3-1/2"	1,848 lbs	n/a	21.6%	HGUS410	

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO OBC 2012

DWG NO. TAM 5362-18 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B8(i2249)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:43

Build 5033

Job Name:

Address:

City, Province, Postal Code: EAST GWILLIMBURY,

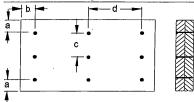
Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\Basment\Flush Beams\B8(i224


Specifier:

Designer:

Company.

Msc:

Connection Diagram

a minimum = 2"

c = 2-3/4"

d = 🌌 b minimum = 3"

Calculated Side Load = 480.6 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d Spile: Nails

3-1/2" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®. BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM 5362 STRUCTURAL. COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B9(i2005)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:48

Build 5033

Job Name:

Address:

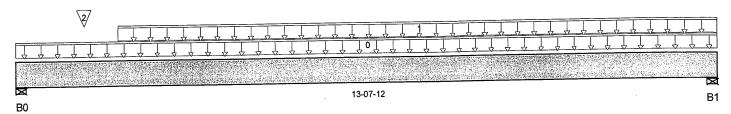
City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\89(i2005)

Specifier:

Designer: AJ

Company:

Misc:

Total Horizontal Product Length = 13-07-12

Reaction Summary (Do	own / Uplift) (lbs)	n	Sn ow	Wind	
Be aring	Live	De ad	Snow	TTIII .	
B0, 3-1/2"	1,346 / 0	736/0			
B1. 7-1/2"	1,656 / 0	895/0			

				Live	Dead	Snow Wind	I rib.
Load Summary Tag Description	Load Type	Ref. Start	E n d	1.00	0.65	1.00 1.15	
·		1 00-00-00	13-07-12	15	7		n/a
FC2 Floor Materi		_ 00 00			108		n/a
1 Smoothed Load	Unf. Lin. (lb/ft)	L 02-00-00	13-07-12	218			
2 .J2(i1991)	Conc. Pt. (lbs)	L 01-04-00	01-04-00	260	130		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	10,218 ft-lbs	25,408 ft-lbs	40.2%	1	06-08-00
End Shear	2,941 lbs	11.571 lbs	25.4 %	1	12-02-12
Total Load Defl.	L/361 (0.427")	0.643"	66.5%	4	06-08-00
Live Load Defl.	L/557 (0.277")	0.428"	64.7%	5	06-08-00
Max Defl.	0.427"	n/a	n/a	4	06-08-00
Span / Depth	16.2	n/a	n/a		00-00-00

De seiner Supports	Dim . (L x W)	De man d	Resistance Support	Resistance Member	Material	
Be aring Supports BO Wall/Plate B1 Wall/Plate	3-1/2" x 3-1/2"	2,938 lbs	44.9%	19.7%	Un specified	
	7-1/2" x 3-1/2"	3,602 lbs	25.7%	11.2%	Un specified	

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

CONFORMS TO OBC 2012

Importance Factor: Normal Part code: Part 9

Boise Cascade Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B9(i2005)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:48

Build 5033

Job Name:

Address:

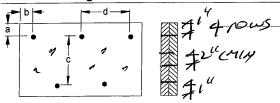
City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\B9(i200t

Specifier:

Designer: ΑJ Company.

Misc:

Connection Diagram

a minimum =@" b minimum = 3"

Calculated Side Load = 435.4 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d contains Nails

3-1/2" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM 5363 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B10(i2025)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:52

BC CALC® Design Report

Build 5033

Job Name: Address:

City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B10(i2025)

Specifier:

Designer: A Company:

Misc:

	\($\sqrt{}$	2/	3	4	5/
	1945-146 144-146 144-146		Section of the sectio			
⊠ B0			07-04-06			JJ B1

Total Horizontal	Product	Length	= 07-04-06
------------------	---------	--------	------------

Reaction Summary (Down / Uplift) (lbs)							
Be aring	Live	De ad	Snow	Wind			
B0, 5-1/2"	1,196 / 0	634/0					
B1, 1-3/4"	1,179/0	623/0					

Loa	d Summary					Live	Dead	Snow	Wind	Trib.
Tag Description		Load Type	Re	Ref. Start	En d	1.00	0.65	1.00	1.15	
0	-	Conc. Pt. (lbs)	L	00-11-12	00-11-12	407	203			n/a
1	-	Conc. Pt. (lbs)	L	02-03-12	02-03-12	4 79	239			n/a
2	- .	Conc. Pt. (lbs)	L	03-07-12	03-07-12	428	213			n/a
3	· -	Conc. Pt. (lbs)	L	04-08-07	04-08-07	376	188			n/a
4	J1(i1989)	Conc. Pt. (lbs)	L	05-07-12	05-07-12	309	155			n/a
5	, ,	Conc. Pt. (lbs)	L	06-07-01	06-07-01	376	188			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	4,667 ft-lbs	25,408 ft-lbs	18.4%	1	03-07-12
End Shear	2,354 lbs	11,571 lbs	20.3%	1	06-05-02
Total Load Defl.	L/999 (0.055")	n/a	n/a	4	03-10-12
Live Load Defl.	L/999 (0.036")	n/a	n/a	5	03-10-12
Max Defl.	0.055"	n/a	n/a	4	03-10-12
Span / Depth	8.7	n/a	n/a		00-00-00

Beari	ng Supports	Dim. (L x W)	De man d	Resistance Support	Resistance Member	Material
B0	Wall/Plate	5-1/2" x 3-1/2"	2,587 lbs	25.2%	11 %	Unspecified
B1	Post	1-3/4" x 3-1/2"	2,547 lbs	51.2%	34.1%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86. CONFORMS TO OBC 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

DWG NO. TAM 5 364-18
STRUCTURAL
COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B10(i2025)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:52

BC CALC® Design Report

Build 5033 Job Name: Address:

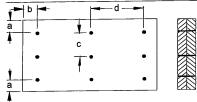
City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\B10(i202

Specifier:

Designer: Company:

Misc:

Connection Diagram

a minimum = 2"

c = 2-3/4"

b minimum = 3"

64

Calculated Side Load = 591.3 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d Connectors Nails

3-1/2" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®. BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM 536 STRUCTURAL COMPONENT ONLY

Triple 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B11(i2248)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:45

BC CALC® Design Report

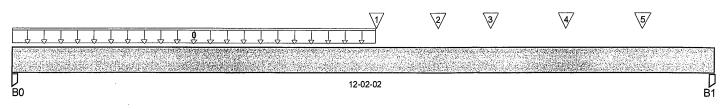
File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B11(i2248)

Address: Specifier: City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Build 5033


Job Name:

Code reports:

CCMC 12472-R

Designer: AJ Company:

Misc:

Total Horizontal Product Length = 12-02-02

Reaction Summary (Down / Uplift) (lbs)						
Be aring	Live	De ad	Snow	Wind		
B0, 1-3/4"	2,410/0	1,298 / 0				
B1, 1-1/2"	2,313/0	1,258 / 0				

Lo	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
0	Smoothed Load	Unf. Lin. (lb/ft)	L	00-00-00	06-03-06	352	175			n/a
1	J1 (i2014)	Conc. Pt. (lbs)	L	06-03-06	06-03-06	311	155			n/a
2	-	Conc. Pt. (lbs)	L	07-04-03	07-04-03	538	294			n/a
3	-	Conc. Pt. (lbs)	L	08-03-06	08-03-06	495	247			n/a
4	-	Conc. Pt. (lbs)	L	09-07-06	09-07-06	584	292			n/a
5	-	Conc. Pt. (lbs)	L	10-11-06	10-11-06	584	292			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	15,809 ft-lbs	39,636 ft-lbs	39.9%	1	06-03-06
End Shear	5,025 lbs	17,356 lbs	29%	1	11-03-02
Total Load Defl.	L/372 (0.388")	0.602"	64.5%	4	06-01-06
Live Load Defl.	L/574 (0.251")	0.401"	62.7%	5	06-01-06
Max Defl.	0.388"	n/a	n/a	4	06-01-06
Span / Depth	15.2	n/a	n/a		00-00-00

Bearin	ng Supports	Dim . (L x W)	De man d	De mand/ Resistance Support	De mand/ Resistance Member	Material
B0	Post	1-3/4" x 5-1/4"	5,238 lbs	70.2%	46.7%	Unspecified
B1	Post	1-1/2" x 5-1/4"	5,042 lbs	78.8%	52.5%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA CONFORMS TO OBC 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

P6 14 DWG NO. TAM 5 365.8 STRUCTURAL COMPONENT ONLY

Boise Cascade Triple 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B11(i2248)

Dry | 1 span | No cantilevers | 0/12 slope (deg) BC CALC® Design Report

November 23, 2017 14:11:45

Build 5033

Job Name: Address:

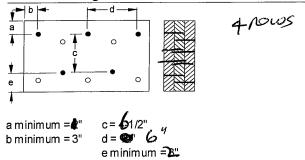
City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\B11(i224

Specifier:

Designer:

Company. Misc:

Connection Diagram

Calculated Side Load = 641.4 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record. Nailing schedule applies to both sides of the member.

Connectors are: 16d Common Nails

3-1/2" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD $^{\mathsf{TM}}$, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM 5365 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP

PASSED

1st Floor\Flush Beams\B12(i2801)

BC CALC® Design Report

Dry | 1 span | No cant.

January 9, 2018 11:33:05

Build 6215

Job name: Address:

Customer:

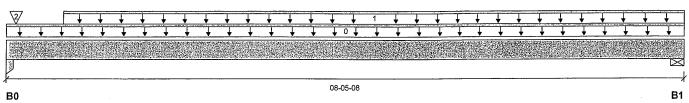
Code reports:

City, Province, Postal Code: EAS...URY

CCMC 12472-R

File name:

HOLLAND 3A EL 1A.mmdl


Description: 1st Floor\Flush Beams\B12(i2801)

Wind

Specifier:

Designer: ΑJ

Company:

Total Horizontal Product Length = 08-05-08

Reaction Summary (Down / Uplift) (Ibs)

Bearing	Live	Dead	Sn
B0, 1-3/4"	2,069 / 0	1,074 / 0	
B1, 3-1/2"	1,966 / 0	1,023 / 0	

Lo	ad Summary					Live	Dead	Snow	Wind	Tributary
Tag	Description	Load Type	Ref.	Start	End	1.00	0.65	1.00	1.15	
0	Self-Weight	Unf. Lin. (lb/ft)	L	00-00-00	08-05-08		10			00-00-00
1	Smoothed Load	Unf. Lin. (lb/ft)	L	80-80-00	08-05-08	446	222			n\a
2	-	Conc. Pt. (lbs)	L	00-01-06	00-01-06	580	290			n\a

		Factored	Demand/		
Controls Summary	Factored Demand	Resistance	Resistance	Case	Location
Pos. Moment	7,818 ft-lbs	23,220 ft-lbs	33.7 %	1	04-00-08
End Shear	3,202 lbs	11,571 lbs	27.7 %	1	00-11-04
Total Load Deflection	L/754 (0.13")	n\a	31.8 %	4	04-01-08
Live Load Deflection	L/999 (0.085")	n\a	n\a	5	04-01-08
Max Defl.	0.13"	n\a	n\a	4	04-01-08
Span / Depth	10.3				

Bearing	g Supports	Dim. (LxW)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
B0	Column	1-3/4" x 3-1/2"	4,446 lbs	89.4 %	59.5 %	Unspecified
B1	Wall/Plate	3-1/2" x 3-1/2"	4,228 lbs	64.6 %	28.3 %	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

CONFORMS TO OBC 2012

Importance Factor: Normal Part code: Part 9

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP

PASSED

1st Floor\Flush Beams\B12(i2801)

BC CALC® Design Report

Dry | 1 span | No cant.

January 9, 2018 11:33:05

Build 6215

Job name: Address:

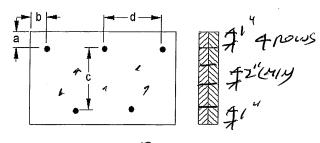
City, Province, Postal Code: EAS...URY

Customer:

Code reports: CCMC 12472-R

Specifier:

File name:


Designer: AJ

HOLLAND 3A EL 1A.mmdl

Description: 1st Floor\Flush Beams\B12(i2801)

Company:

Connection Diagram

a minimum = #" b minimum = 3"

c = 4 - 1/2"

Calculated Side Load = 719.9 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d Surker Nails

3-1/2" ARDOX SPIRAL

Disclosure

Use of the Boise Cascade Software is subject to the terms of the End User License Agreement (EULA). Completeness and accuracy of input must be reviewed and verified by a qualified engineer or other appropriate expert to assure its adequacy, prior to anyone relying on such output as evidence of suitability for a particular application. The output here is based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call (800)232-0788 before installation.

BC CALC®, BC FRAMER® , AJS™ ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, BC FloorValue®, VERSA-LAM®, VERSA-RIM PLUS®

> DWG NO. TAM 5366 STRUCTURAL COMPONENT ONLY

Boise Cascade Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B13(i1987)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:56

BC CALC® Design Report

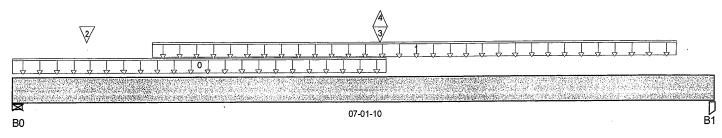
File Name: HOLLAND 3A.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B13(i1987)

Job Name: Address: City, Province, Postal Code: EAST GWILLIMBURY,

Specifier:

Customer:


Build 5033

Designer: AJ Company:

Code reports:

CCMC 12472-R

Misc:

Total Horizontal Product Length = 07-01-10

Reaction Summary (Down / Uplift) (lbs)				
Be aring .	Live	De ad	Snow	Wind	
B0, 2-3/4"	483/73	226/0			
B1, 1-3/4"	453/77	208/0			

10	ad Summary					Live	Dead	Snow	Wind	Trib.
	Description	Load Type	Re f	. Start	En d	1.00	0.65	1.00	1.15	
0	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	03-09-08	21	11			n/a
1	Smoothed Load	Unf. Lin. (lb/ft)	L	01-05-00	06-09-00	48	24			n/a
2	J4(i2020)	Conc. Pt. (lbs)	L	00-09-00	00-09-00	56	28		•	n/a
3	B15(i2038)	Conc. Pt. (lbs)	L	03-08-10	03-08-10	540	203			n/a
4	B15(i2038)	Conc. Pt. (lbs)	L	03-08-10	03-08-10	-150				n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	2,616 ft-lbs	12,704 ft-lbs	20.6%	1	03-08-10
End Shear	934 lbs	5,785 lbs	16.1%	1	06-02-06
Total Load Defl.	L/999 (0.054")	n/a	n/a	6	03-07-11
Live Load Defl.	L/999 (0.037")	n/a	n/a	8	03-07-11
Max Defl.	0.054"	n/a	n/a	6	03-07-11
Span / Depth	8.7	n/a	n/a		00-00-00

				De mand/ Resistance	Demand/ Resistance	
Bea	ring Supports	Dim.(L x W)	De man d	Support	Member	Material
B0	Wall/Plate	2-3/4" x 1-3/4"	1,007 lbs	39.2%	17.2%	Unspecified
B1	Post	1-3/4" x 1-3/4"	940 lbs	37.8%	25.2%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA CONFORMS TO OBC 2012 O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

DWG NO. TAM 5 367 -18
STRUCTURAL COMPONENT ONLY

Boise Cascade Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B13(i1987)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:56

Build 5033

Job Name:

Address:

City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B13(i198

Specifier:

Designer: /
Company:

Misc:

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

COMPONENT ONLY

Boise Cascade Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B14(i1974)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:47

BC CALC® Design Report

Build 5033

Job Name: Address:

City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdi

Description: Designs\Flush Beams\1st Floor\Flush Beams\B14(i1974)

Specifier:

Designer: AJ Company:

Misc:

	1/
07-05-14 B0	B1

Total Horizontal Product Length = 07-05-14

Reaction Summary	(Down / Uplift) (lbs)				
Bearing	Live	De ad	Snow	Wind	
B0, 1-3/4"	200/0	117/0			
B1	172/0	103/0			

۱۵	ad Summary				Live	Dead	Snow	Wind	Trib.
	Description	Load Type	Ref. St	tart End	1.00	0.65	1.00	1.15	
0	Smoothed Load	Unf. Lin. (lb/ft)	L 00-	00-00 06-03-0	5 52	25			n/a
1	J4(i2008)	Conc. Pt. (lbs)	L 06-	11-06 06-11-0	3 47	24			n/a

CONFORMS TO OBC 2012

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	718 ft-lbs	12,704 ft-lbs	5.7%	1	04-03-06
End Shear	328 lbs	5,785 lbs	5.7%	1	06-06-06
Total Load Defl.	L/999 (0.02")	n/a	n/a	4	03-08-06
Live Load Defl.	L/999 (0.012")	n/a	n/a	5	03-08-06
MaxDefi.	0.02"	n/a	n/a	4	03-08-06
Span / Depth	9.2	n/a	n/a		00-00-00

				De mand/ Resistance	Demand/ Resistance	
Beari	ing Supports	Dim . (L x W)	Demand	Support	Member	Material
B0	Post	1-3/4" x 1-3/4"	446 lbs	17.9%	11.9%	Unspecified
B1	Hanger	2" x 1-3/4"	387 lbs	n/a	9.1%	HUS1.81/10

Notes

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SY STEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B16(i2258)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:47

Build 5033

Job Name:

Address:

City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B16(i2258'

Specifier:

Designer: AJ

Company:

Misc:

₹	
	4 4
	2.70,4100
$\sqrt{\lambda}$	<u> </u>
06-01-14	D4

B0

Total Horizontal Product Length = 06-01-14

Reaction Summary (Down / Uplift) (lbs)				
Bearing	Live	De ad	Snow	Wind	
B0	176/0	114/0			
B1, 3-1/2"	115/0	79 / 0			

ı	Load Summary						Dead	Snow	Wind	Trib.
Tag Description		Load Type	Ref. Start		En d	1.00	0.65	1.00	1.15	
ō	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	02-03-06	27	13			n/a
1	FC2 Floor Material	Unf. Lin. (lb/ft)	L	02-03-06	06-01-14	16	8			n/a
2	B14(i1974)	Conc. Pt. (lbs)	L	02-02-08	02-02-08	169	102			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	702 ft-lbs	12,704 ft-lbs	5.5%	1	02-02-08
End Shear	346 lbs	5,785 lbs	6%	1	00-11-08
Total Load Defl.	L/999 (0.01")	n/a	n/a	4	02-09-11
Live Load Defl.	L/999 (0.006")	n/a	n/a	5	02-09-11
Max Defl.	0.01"	n/a	n/a	4	02-09-11
Span / Depth	7.4	n/a	n/a		00-00-00

				De mand/	De man d/	
				Resistance	Resistance	
Bear	ing Supports	Dim.(LxW)	Demand	Support	Member	Material
B0	Hanger	2" x 1-3/4"	406 lbs	n/a	9.5%	HUS1.81/10
B1	Wall/Plate	3-1/2" x 1-3/4"	272 lbs	8.3%	3.6%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

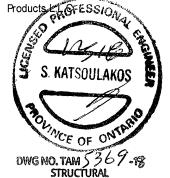
Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

CONFORMS TO OBC 2012


Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™,
ALLJOIST®, BC RIM BOARD™, BCI®,
BOISE GLULAM™, SIMPLE FRAMING
SY STEM®, VERSA-LAM®, VERSA-RIM
PLUS®, VERSA-RIM®,
VERSA-STRAND®, VERSA-STUD® are
trademarks of Boise Cascade Wood

COMPONENT ONLY

Boise Cascade Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B15(i2038)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:51

BC CALC® Design Report

Build 5033 Job Name: Address:

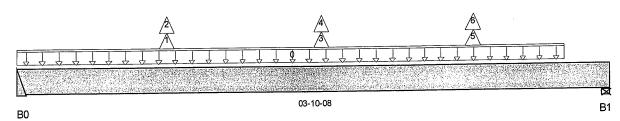
City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\B15(i2038)

Specifier:

Designer: AJ

Company:

Misc:

Total Horizontal Product Length = 03-10-08

Reaction Summary (D		s)	_	_			ng			
Be aring	Live	De a		S	now	v	Vind			
B0	554/1									
B1, 3-1/2"	519/1	62 188	/0							
					*	Live	Dead	Snow	Wind	Trib
Load Summary Tag Description	Load Typ	oe .	Re	f. Start	En d	1.00	0.65	1.00	1.15	
0 STAIR	Unf. Lin.		L	00-00-00	03-07-00	240	120			n/a
1 J1 (i1986)	Conc. Pt		L	00-11-12	00-11-12	76	-18			n/a
2 J1(i1986)	Conc. Pt		L	00-11-12	00-11-12	-111				n/a
3 J1(i2040)	Conc. Pt	• •	L	01-11-12	01-11-12	74	-18			n/a
4 J1 (i2040)	Conc. Pt	•	L	01-11-12	01-11-12	-111				n/a
5 J1 (i1998)	Conc. Pt	• •	L	02-11-12	02-11-12	63	-16			n/a
6 J1(i1998)	Conc. Pt	• •	L	02-11-12	02-11-12	-94				n/a
	Factored	Factored		emand/	Load	Locat	tion			
Controls Summary	Demand	Resistance	F	esistance	Case					
Pos. Moment	948 ft-lbs	12,704 ft-lbs	;	7.5%	1		01-11-06			
Neg. Moment	-116 ft-lbs	-12,704 ft-lbs		0.9%	4		01-11-12			
End Shear	597 lbs	5,785 lbs		10.3%	1		00-11-08			
Uplift	75 lbs	n/a		n/a	4		03-10-08			
Total Load Defl.	L/999 (0.006")	n/a	1	n/a	6		01-10-10			
Live Load Defl.	L/999 (0.004")	n/a		n/a	. 8		01-10-10			
Max Defl.	0.006"	n/a		n/a	6		01-10-10			
Span / Depth	4.5	n/a		n/a			00-00-00			!

Bearir	ng Supports	Dim . (L x W)	De man d	De mand/ Re sistance Support	De mand/ Resistance Member	Material
B0	Hanger	2" x 1-3/4"	1,092 lbs	n/a	25.6%	HUS1.81/10
B0	Hanger Uplift	2" x 1-3/4"	42 lbs	n/a	0.01	HUS1.81/10
B1	Wall/Plate	3-1/2" x 1-3/4"	1,013 lbs	31%	13.6%	Unspecified

Cautions

Uplift of 75 lbs found at span 1 - Right (SIMPSON 1-H25A@O.BI)

Notes

DWG NO. TAM 5370-18 STRUCTURAL COMPONENT ONLY

Boise Cascade Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B15(i2038)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 23, 2017 14:11:51

BC CALC® Design Report

Build 5033 Job Name:

Address: City, Province, Postal Code: EAST GWILLIMBURY,

Customer:

Code reports:

CCMC 12472-R

File Name: HOLLAND 3Ammdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B15(i20;

Specifier:

Designer: Company:

CONFORMS TO OBC 2012

Misc:

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM \$ 370.18 STRUCTURAL **COMPONENT ONLY**

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP

PASSED

Basment\Flush Beams\B2(i2486)

BC CALC® Design Report

Dry | 2 spans | L cant.

January 20, 2018 10:36:51

Build 6215

Job name:

Address:

City, Province, Postal Code: EAS...URY

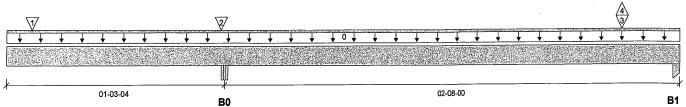
Customer:

Code reports:

CCMC 12472-R

File name:

HOLLAND 3A.mmdl


Wind

Description: Basment\Flush Beams\B2(i2486)

Specifier:

Designer: ΑJ

Company:

Total Horizontal Product Length = 03-11-04

Snow

Reaction Summary (Down / Uplift) (lbs)

Bearing	Live	Dead
B0, 7"	5,085 / 5	2,829 / 0
D1 2 3/4"	633 / 5/11	151 / 0

Lo	ad Summary					Live	Dead	Snow	Wind	Tributary
	Description	Load Type	Ref.	Start	End	1.00	0.65	1.00	1.15	
0	Self-Weight	Unf. Lin. (lb/ft)	L	00-00-00	03-11-04		10			00-00-00
1	B1(i2484)	Conc. Pt. (lbs)	L	00-01-12	00-01-12	967	514			n\a
2	PBO10(i476)	Conc. Pt. (lbs)	L	01-03-00	01-03-00	(3,587	2,001)-TOP	E116E	LOADEA\a
3	PBO9(i475)	Conc. Pt. (lbs)	L.	03-07-04	03-07-04	665	411			n\a
4	PBO9(i475)	Conc. Pt. (lbs)	L	03-07-04	03-07-04	-79				n\a

Controls Summary	Factored Demand	Factored Resistance	Demand/ Resistance	Case	Location
Pos. Moment	189 ft-lbs	23,220 ft-lbs	0.8%	4	03-07-04
Neg. Moment	-2,540 ft-lbs	-23,220 ft-lbs	10.9%	1	01-03-04
End Shear	906 lbs	11,571 lbs	7.8%	1	02-11-00
Cont. Shear	2,108 lbs	11,571 lbs	18.2%	1	00-02-04
Total Load Deflection	2xL/1,998 (0.009")	n\a	n\a	12	00-00-00
Live Load Deflection	2xL/1,998 (0.006")	n\a	n\a	16	00-00-00
Total Neg. Defl.	L/999 (-0.002")	n\a	n\a	12	02-03-13
Max Defl.	-0.002"	n\a	n\a	12	02-03-13
Span / Depth	3.2				

Bearing	g Supports	Dim. (LxW)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
B0	Beam	7" x 3-1/2"	11,163 lbs	85.3%	37.3%	Unspecified
B1	Column	2-3/4" x 3-1/2"	1,138 lbs	14.6%	9.7%	Unspecified
B1	Uplift		676 lbs			

Cautions

Uplift of 676 lbs found at span 2 - Right.

DWG NO. TAM 53 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP

PASSED

January 20, 2018 10:36:51

Basment\Flush Beams\B2(i2486) Dry | 2 spans | L cant.

BC CALC® Design Report

Build 6215

Job name:

Address:

Customer: Code reports:

City, Province, Postal Code: EAS...URY

CCMC 12472-R

File name:

HOLLAND 3A.mmdl

Basment\Flush Beams\B2(i2486) Description:

Specifier:

Designer: AJ

Company:

Notes

Design meets User specified (2xL/240) Total load deflection criteria.

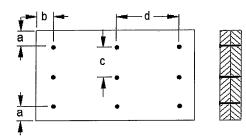
Design meets User specified (2xL/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA 086.

Design based on Dry Service Condition.


CONFORMS TO OBC 2012

Importance Factor: Normal Part code: Part 9

Cantilevers require sheathed bottom flanges, blocking at cantilever support and closure at ends.

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connection Diagram

a minimum = 2"

b minimum = 3"

c = 2-3/4" 6

Calculated Side Load = 531.6 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d Spice: Nails

3-1/2" ARDOX SPIRAL

Disclosure

Use of the Boise Cascade Software is subject to the terms of the End User License Agreement (EULA). Completeness and accuracy of input must be reviewed and verified by a qualified engineer or other appropriate expert to assure its adequacy, prior to anyone relying on such output as evidence of suitability for a particular application. The output here is based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask guestions, please call (800)232-0788 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, BC FloorValue®, VERSA-LAM®, VERSA-RIM PLUS®

DWG NO. TAM 537 STRUCTURAL COMPONENT ONLY

Maximum Floor Spans

Live Load = 40 psf, Dead Load = 15 psf Simple Spans, L/480 Deflection Limit 5/8" OSB G&N Sheathing

				Bare		_1	1/2" Gyp	sum Ceiling	
Depth	Series			tre Spacing				re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-1"	14'-2"	13'-9"	N/A	15'-7"	14'-8"	14'-2"	N/A
	NI-40x	16'-1"	15'-2"	14'-8"	N/A	16'-7"	15'-7"	15'-1"	N/A
9 -1/ 2"	NI-60	16'-3"	15'-4"	14'-10"	N/A	16'-8"	15'-9"	15'-3"	N/A
	NI-70	17'-1"	16'-1"	15'-6"	N/A	17'-5"	16'-5"	15'-10"	N/A
	NI-80	17'-3"	16'-3"	15'-8"	N/A	17'-8"	16'-7"	16'-0"	N/A
	NI-20	16'-11"	16'-0"	15'-5"	N/A	17'-6"	16'-6"	16'-0"	N/A
	NI-40x	18'-1"	17'-0"	16' - 5"	N/A	18'-9"	17'-6"	16'-11"	N/A
11-7/8"	NI-60	18'-4"	17'-3"	16'-7"	N/A	19'-0"	17'-8"	17'-1"	N/A
,0	NI-70	19'-6"	18'-0"	17'-4"	N/A	20'-1"	18'-7"	17'-9"	N/A
	NI-80	19'-9"	18'-3"	17'-6"	N/A	20'-4"	18'-10"	17'-11"	N/A
	NI-90x	20'-4"	18'-9"	17'-11"	N/A	20'-10"	19'-3"	18'-5"	N/A
	NI-40x	20'-1"	18'-7"	17'-10"	N/A	20'-10"	19'-4"	18'-6"	N/A
	NI-60	20'-5"	18'-11"	18'-1"	N/A	21'-2"	19'-7"	18'-9"	N/A
14"	NI-70	21'-7"	20'-0"	19'-1"	N/A	22'-3"	20'-7"	19' - 8"	N/A
	NI-80	21'-11"	20' - 3"	19'-4"	N/A	22'-7"	20'-11"	20'-0"	N/A
	NI-90x	22'-7"	20'-11"	19'-11"	N/A	23'-3"	21'-6"	20'-6"	N/A
	NI-60	22'-3"	20'-8"	19'-9"	N/A	23'-1"	21'-5"	20'-6"	N/A
16"	NI-70	23'-6"	21'-9"	20'-9"	N/A	24'-3"	22'-5"	21'-5"	N/A
	NI-80	23'-11"	22'-1"	21'-1"	N/A	24'-8"	22'-10"	21'-9"	N/A
	NI-90x	24'-8"	22'-9"	21'-9"	N/A	25'-4"	23'-5"	22'-4"	N/A

			Mid-Spa	ın Blocking		Mid-	Span Blocking a	nd 1/2" Gypsum	Ceiling
Depth	Series		On Cent	re Spacing				re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	16'-8"	15'-3"	14'-5"	N/A	16'-8"	15'-3"	14'-5"	N/A
	NI-40x	17'-11"	16'-11"	16'-1"	N/A	18'-5"	17'-1"	16'-1"	N/A
9-1/2"	NI-60	18'-2"	17'-1"	16'-4"	N/A	18'-7"	17'-4"	16'-4"	N/A
	NI-70	19'-2"	17'-10"	17'-2"	N/A	19'-7"	18'-3"	17'-7"	N/A
	NI-80	19'-5"	18'-0"	17'-4"	N/A	19'-10"	18'-5"	17'-8"	N/A
	NI-20	19'-6"	18'-1"	17'-3"	N/A	19'-11"	18'-3"	17'-3"	N/A
	NI-40x	21'-0"	19'-6"	18'-8"	N/A	21'-7"	20'-2"	19'-2"	N/A
11-7/8"	NI-60	21'-4"	19'-9 "	18'-11"	N/A	21'-11"	20'-4"	19'-6"	N/A
11 //0	NI-70	22'-6"	20'-10"	19'-11"	N/A	23'-0"	21'-5"	20'-5"	N/A
	NI-80	22'-9"	21'-1"	20'-1"	N/A	23'-3"	21'-7"	20'-8"	N/A
	NI-90x	23'-4"	21'-8"	20'-8"	N/A	23'-10"	22'-2"	21' - 2"	N/A
	NI-40x	23'-7"	21'-11"	20'-11"	N/A	24'-3"	22'-7"	21'-7"	N/A
	NI-60	24'-0"	22'-3"	21'-3"	N/A	24'-8"	22'-11"	21'-11"	N/A
14"	NI-70	25'-3"	23'-4"	22'-3"	N/A	25'-10"	24'-0"	22'-11"	N/A
	NI-80	25' - 7"	23'-8"	22'-7"	N/A	26'-2"	24'-4"	23' - 2"	N/A
	NI-90x	26'-4"	24'-4"	23'-3"	N/A	26'-10"	24'-11"	23'-9"	N/A
	NI-60	26'-5"	24'-6"	23'-4"	N/A	27'-2"	25'-3"	24'-2"	N/A
16"	NI-70	27 '- 9"	25'-8"	24'-6"	N/A	28'-5"	26'-5"	25' - 2"	N/A
	NI-80	28'-2"	26'-1"	24'-10"	N/A	28'-10"	26'-9"	25'-6"	N/A
	NI-90x	29'-0"	26'-10"	25' - 7"	N/A	29'-7"	27'-5"	26' - 2"	N/A

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Maximum Floor Spans

Live Load = 40 psf, Dead Load = 15 psf Simple Spans, L/480 Deflection Limit 3/4" OSB G&N Sheathing

			E	Bare		1	1/2" Gy	psum Ceiling	
Depth	Series			tre Spacing				tre Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-10"	15'-0"	14'-5"	13'-5"	16'-4"	15'-5"	14'-6"	13'-5"
	NI-40x	17'-0"	16'-0"	15'-5"	14'-9"	17'-5"	16'-5"	15'-10"	15'-2"
9-1/2"	NI-60	17'-2"	16'-2"	15'-7"	14'-11"	17'-6"	16'-7"	15'-11"	15'-3"
	NI-70	18'-0"	16'-11"	16'-3"	15'-7"	18'-5"	17'-3"	16'-7"	15'-11"
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'-5"	16'-9"	16'-1"
	NI-20	17'-10"	16'-10"	16'-2"	15'-6"	18'-6"	17'-4"	16'-9"	16'-1"
	NI-40x	19'-4"	17'-11"	17'-3"	16'-6"	19'-11"	18'-6"	17'-9"	17'-0"
11-7/8"	NI-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18'-9"	17'-11"	17'-2"
11-7/0	NI-70	20'-9"	19'-2"	18'-3"	17'-5"	21'-4"	19'-9"	18'-10"	17'-10"
	NI-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"
	NI-90x	21'-8"	20'-0"	19'-1"	18'-0"	22'-2"	20'-6"	19'-6"	18'-6"
	NI-40x	21'-5"	19'-10"	18'-11"	17'-11"	22'-1"	20'-6"	19'-7"	18'-7"
	NI-60	21'-10"	20'-2"	19'-3"	18'-2"	22'-5"	20'-10"	19'-11"	18'-10"
14"	NI-70	23'-0"	21'-3"	20'-3"	19'-2"	23'-8"	21'-11"	20'-10"	19'-9"
	NI-80	23' - 5"	21'-7"	20'-7"	19'-5"	24'-0"	22'-3"	21'-2"	20'-0"
	NI-90x	24'-1"	22'-3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"
	NI-60	23'-9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"
16"	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25'-9"	23'-10"	22'-9"	21'-6"
10	NI-80	25'-6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23'-1"	21'-10"
	NI-90x	26'-4"	24'-3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22'-5"

			Mid-Spa	an Blocking		Mid-9	pan Blocking ar	nd 1/2" Gypsum	Ceiling
Depth	Series			tre Spacing				re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	16'-10"	15'-5"	14'-6"	13'-5"	16'-10"	15'-5"	14'-6"	13'-5"
	NI-40x	18'-8"	17'-2"	16'-3"	15'-2"	18'-10"	17'-2"	16'-3"	15'-2"
9-1/2"	NI-60	18'-11"	17'-6"	16'-6"	15'-5"	19'-2"	17'-6"	16'-6"	15'-5"
	NI-70	20'-0"	18'-7"	17'-9"	16'-7"	20'-5"	18'-11"	17'-10"	16'-7"
	NI-80	20'-3"	18'-10"	17'-11"	16'-10"	20'-8"	19'-3"	18'-2"	16'-10'
	NI-20	20'-1"	18'-5"	17'-5"	16'-2"	20'-1"	18'-5"	17'-5"	16'-2"
	NI-40x	21'-10"	20'-4"	19'-4"	17'-8"	22'-5"	20'-6"	19'-4"	17'-8"
11-7/8"	NI-60	22'-1"	20'-7"	19'-7"	18'-4"	22'-8"	20'-10"	19'-8"	18'-4"
11 //0	NI-70	23'-4"	21'-8"	20'-8"	19'-7"	23'-10"	22'-3"	21'-2"	19'-9"
	NI-80	23'-7"	21'-11"	20'-11"	19'-9"	24'-1"	22'-6"	21'-5"	20'-0"
	NI-90x	24' - 3"	22'-6"	21'-6"	20'-4"	24'-8"	23'-0"	22'-0"	20'-9"
	NI-40x	24'-5"	22'-9"	21'-8"	19'-5"	25'-1"	23'-2"	21'-9"	19'-5"
	NI-60	24'-10"	23'-1"	22'-0"	20'-10"	25'-6"	23'-8"	22'-4"	20'-10"
14"	NI-70	26'-1"	24'-3"	23'-2"	21'-10"	26'-8"	24'-11"	23'-9"	22'-4"
	NI-80	26 '- 6"	24'-7"	23' - 5"	22'-2"	27'-1"	25'-3"	24'-1"	22'-9"
	NI-90x	27' - 3"	25'-4"	24'-1"	22'-9"	27 '- 9"	25'-11"	24'-8"	23'-4"
	NI-60	27'-3"	25'-5"	24'-2"	22'-10"	28'-0"	26'-2"	24'-9"	23'-1"
16"	NI-70	28'-8"	26'-8"	25'-4"	23'-11"	29'-3"	27'-4"	26'-1"	24'-8"
LU	NI-80	29'-1"	27'-0"	25'-9"	24'-4"	29'-8"	27'-9"	26'-5"	25'-0"
	NI-90x	29'-11"	27'-10"	26'-6"	25'-0"	30'-6"	28'-5"	27'-2"	25'-8"

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

3. Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Maximum Floor Spans

Live Load = 40 psf, Dead Load = 30 psf Simple Spans, L/480 Deflection Limit 5/8" OSB G&N Sheathing

				Bare			1/2" Gyp	sum Ceiling	
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-1"	14'-1"	13'-3"	N/A	15'-7"	14'-1"	13'-3"	N/A
	NI-40x	16'-1"	15'-2"	14'-8"	N/A	16'-7"	15'-7"	15'-1"	N/A
9-1/2"	NI-60	16'-3"	15'-4"	14'-10"	N/A	16'-8"	15'-9"	15' - 3"	N/A
	NI-70	17'-1"	16'-1"	15'-6"	N/A	17'-5"	16'-5"	15'-10"	N/A
	NI-80	17'-3"	16'-3"	15'-8"	N/A	17'-8"	16'-7"	16'-0"	N/A
	NI-20	16'-11"	16'-0"	15'-5"	N/A	17'-6"	16'-6"	16'-0"	N/A
	NI-40x	18'-1"	17'-0"	16'-5"	N/A	18'-9"	17'-6"	16'-11"	N/A
11-7/8"	NI-60	18'-4"	17' - 3"	16'-7"	N/A	19'-0"	17'-8"	17'-1"	N/A
11-7/6	NI-70	19'-6"	18'-0"	17'-4"	N/A	20'-1"	18'-7"	17'-9"	N/A
	NI-80	19'-9"	18'-3"	17'-6"	N/A	20'-4"	18'-10"	17'-11"	N/A
	NI-90x	20'-4"	18'-9"	17'-11"	N/A	20'-10"	19'-3"	18'-5"	N/A
	NI-40x	20'-1"	18'-7"	17'-10"	N/A	20'-10"	19'-4"	18'-6"	N/A
	NI-60	20'-5"	18'-11"	18'-1"	N/A	21'-2"	19'-7"	18'-9"	N/A
14"	NI-70	21 '- 7"	20'-0"	19'-1"	N/A	22'-3"	20'-7"	19'-8"	N/A
	NI-80	21'-11"	20'-3"	19'-4"	N/A	22'-7"	20'-11"	20'-0"	N/A
	NI-90x	22'-7"	20'-11"	19'-11"	N/A	23'-3"	21'-6"	20'-6"	N/A
	NI-60	22 '- 3"	20'-8"	19'-9"	N/A	23'-1"	21'-5"	20'-6"	N/A
16"	NI-70	23'-6"	21'-9"	20'-9"	N/A	24'-3"	22 '- 5"	21'-5"	N/A
10	NI-80	23'-11"	22'-1"	21'-1"	N/A	24'-8"	22'-10"	21'-9"	N/A
	NI-90x	24'-8"	22'-9"	21'-9"	N/A	25'-4"	23'-5"	22'-4"	N/A

			Mid-Spa	n Blocking		Mid-S	pan Blocking ar	nd 1/2" Gypsum	Ceiling
Depth	Series		On Cent	re Spacing		1	On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-1"	13'-3"	N/A	15'-7"	14'-1"	13'-3"	N/A
	NI-40x	17'-9"	16'-1"	15'-1"	N/A	17'-9"	16'-1"	15'-1"	N/A
9-1/2"	NI-60	18'-1"	16'-4"	15'-4"	N/A	18'-1"	16'-4"	15'-4"	N/A
	NI-70	19'-2"	17'-10"	16'-9"	N/A	19'-7"	17'-10"	16'-9"	N/A
	NI-80	19'-5"	18'-0"	17'-1"	N/A	19'-10"	18'-3"	17'-1"	N/A
	NI-20	18'-9"	17'-0"	16'-0"	N/A	18'-9"	17'-0"	16'-0"	N/A
	NI-40x	21'-0"	19'-3"	17'-9"	N/A	21'-3"	19'-3"	17'-9"	N/A
11-7/8"	NI-60	21'-4"	19'-8"	18'-5"	N/A	21'-8"	19'-8"	18'-5"	N/A
11-//0	NI-70	22'-6"	20'-10"	19'-11"	N/A	23'-0"	21'-4"	20'-0"	N/A
	NI-80	22'-9"	21'-1"	20'-1"	N/A	23'-3"	21'-7"	20' - 5"	N/A
	NI-90x	23'-4"	21'-8"	20'-8"	N/A	23'-10"	22'-2"	21'-2"	N/A
	NI-40x	23'-7"	21'-5"	19'-6"	N/A	24'-1"	21'-5"	19'-6"	N/A
	NI-60	24'-0"	22'-3"	21'-0"	N/A	24'-8"	22 '- 5"	21'-0"	N/A
14"	NI-70	25'-3"	23'-4"	22' - 3"	N/A	25'-10"	24'-0"	22' - 9"	N/A
	NI-80	25'-7"	23' - 8"	22'-7"	N/A	26'-2"	24'-4"	23'-2"	N/A
	NI-90x	26'-4"	24'-4"	23'-3"	N/A	26'-10"	24'-11"	23'-9"	N/A
	NI-60	26'-5"	24'-6"	23'-4"	N/A	27'-2"	24'-10"	23'-4"	N/A
16"	NI-70	27'-9"	25'-8"	24'-6"	N/A	28'-5"	26'-5"	25'-2"	N/A
10	NI-80	28'-2"	26'-1"	24'-10"	N/A	28'-10"	26'-9"	25'-6"	N/A
	NI-90x	29'-0"	26'-10"	25'-7"	N/A	29'-7"	27'-5"	26'-2"	N/A

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 30 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Maximum Floor Spans

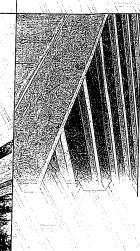
Live Load = 40 psf, Dead Load = 30 psf Simple Spans, L/480 Deflection Limit 3/4" OSB G&N Sheathing

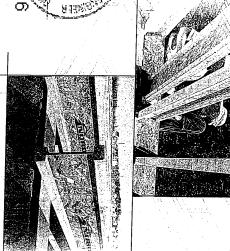
			В	are			1/2" Gyp	sum Ceiling	
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-2"	13'-4"	12'-4"	15'-7"	14'-2"	13'-4"	12'-4"
	NI-40x	17'-0"	16'-0"	15'-1"	13'-11"	17'-5"	16'-1"	15'-1"	13'-11"
9-1/2"	NI-60	17'-2"	16'-2"	15'-5"	14'-3"	17'-6"	16'-5"	15'-5"	14'-3"
	NI-70	18'-0"	16'-11"	16'-3"	15'-6"	18'-5"	17'-3"	16'-7"	15'-6"
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'-5"	16'-9"	15'-10"
	NI-20	17'-10"	16'-10"	16'-0"	14'-10"	18'-6"	17'-1"	16'-0"	14'-10"
	NI-40x	19'-4"	17'-11"	17'-3"	15'-10"	19'-11"	18'-6"	17'-9"	15'-10"
11-7/8"	NI-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18'-9"	17'-11"	17'-1"
11-7/0	NI-70	20'-9"	19'-2"	18'-3"	17'-5"	21'-4"	19'-9"	18'-10"	17'-10"
	NI-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"
	NI-90x	21'-8"	20'-0"	19'-1"	18'-0"	22'-2"	20'-6"	19'-6"	18'-6"
	NI-40x	21'-5"	19'-10"	18'-11"	17'-5"	22'-1"	20'-6"	19'-6"	17'-5"
	NI-60	21'-10"	20'-2"	19'-3"	18'-2"	22'-5"	20'-10"	19'-11"	18'-10"
14"	NI-70	23'-0"	21'-3"	20'-3"	19'-2"	23'-8"	21'-11"	20'-10"	19'-9"
	NI-80	23' - 5"	21'-7"	20'-7"	19'-5"	24'-0"	22'-3"	21'-2"	20'-0"
	NI-90x	24'-1"	22'-3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"
	NI-60	23'-9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"
16"	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25'-9"	23'-10"	22' - 9"	21'-6"
10	NI-80	25' - 6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23'-1"	21'-10"
	NI-90x	26'-4"	24' - 3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22'-5"

			Mid-Spa	n Blocking		Mid-S	pan Blocking ar	nd 1/2" Gypsum	Ceiling
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-2"	13'-4"	12'-4"	15'-7"	14'-2"	13'-4"	12'-4"
	NI-40x	17'-9"	16'-1"	15'-1"	13'-11"	17'-9"	16'-1"	15'-1"	13'-11"
9-1/2"	NI-60	18'-1"	16'-5"	15'-5"	14'-3"	18'-1"	16'-5"	15'-5"	14'-3"
	NI-70	19'-10"	17'-11"	16'-9"	15'-6"	19'-10"	17'-11"	16'-9"	15'-6"
	NI-80	20'-2"	18'-3"	17'-1"	15'-10"	20'-2"	18'-3"	17'-1"	15'-10"
	NI-20	18'-10"	17'-1"	16'-0"	14'-10"	18'-10"	17'-1"	16'-0"	14'-10"
	NI-40x	21' - 3"	19'-3"	17' - 9"	15'-10"	21'-3"	19' - 3"	17' - 9"	15'-10"
11-7/8"	NI-60	21' - 9"	19'-8"	18'-5"	17'-1"	21'-9"	19'-8"	18'-5"	17'-1"
11-7/0	NI-70	23'-4"	21'-5"	20'-1"	18'-6"	23'-8"	21'-5"	20'-1"	18' - 6"
	NI-80	23'-7"	21'-10"	20'-5"	18'-11"	24'-1"	21'-10"	20'-5"	18'-11"
	NI-90x	24'-3"	22' - 6"	21'-3"	19'-7"	24'-8"	22' - 7"	21'-3"	19'-7"
	NI-40x	24'-2"	21'-5"	19'-6"	17'-5"	24'-2"	21'-5"	19'-6"	17'-5"
	NI-60	24'-9"	22' - 5"	21'-0"	19'-6"	24'-9"	22' - 5"	21'-0"	19' - 6"
14"	NI-70	26'-1"	24'-3"	22' - 9"	21'-0"	26'-8"	24'-3"	22' - 9"	21'-0"
	NI-80	26'-6"	24'-7"	23' - 3"	21'-6"	27'-1"	24'-10"	23'-3"	21' - 6"
	NI-90x	27' - 3"	25'-4"	24'-1"	22'-4"	27'-9"	25'-10"	24'-3"	22'-4"
	NI-60	27'-3"	24'-11"	23'-5"	21'-7"	27'-6"	24'-11"	23'-5"	21'-7"
16"	NI-70	28'-8"	26'-8"	25'-3"	23'-4"	29'-3"	26'-11"	25 '- 3"	23'-4"
10	NI-80	29'-1"	27'-0"	25' - 9"	23'-10"	29'-8"	27'-6"	25' - 10"	23'-10"
	NI-90x	29'-11"	27'-10"	26'-6"	24'-10"	30'-6"	28'-5"	26'-11"	24'-10"

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 30 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.


^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.


^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

NSTALLATION GUIDE FOR RESIDENTIAL FLOORS

Distributed by:

SAFETY AND CONSTRUCTION PRECAUTIONS

N-C301 / November 2014

braced and sheathed

I-joists are not stable until completely installed, and will not carry any load until fully

braced, or serious inju-ries can result. until fully fastened and Do not walk on I-joists

concentrated loads from Once sheathed, do not over-stress I-joist with unsheathed I-joists. building materials. materials over

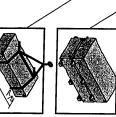
Never stack building

Avoid Accidents by Following these Important Guidelines: Brace and nail each I-joist as it is installed, using hangers, blocking panels, rim board, and/or cross-bridging at joist ends. When I-joists are applied continuous over interior supports and a load-bearing wall is planned at that location, blocking will be required at the interior support.

When the building is completed, the floor sheathing will provide lateral support for the top flanges of the Lioists. Until this sheathing is applied. ■ Temporary bracing or struts must be 1x4 inch minimum, at least 8 feet long and spaced no more than 8 feet on centre, and must be secured with a minimum of two 2-1/2" nails fastened to the top surface of each Lioist. Nail to prevent I-joist rollover or buckling. temporary bracing, often called struts, or temporary sheathing must be applied

the bracing to a lateral restraint at the end of each bay. Lap ends of adjoining bracing over at least two I-joists.

Or, sheathing (temporary or permanent) can be nailed to the top flange of the first 4 feet of I-joists at the end of the bay,


3. For cantilevered Lioists, brace top and bottom flanges, and brace ends with closure panels, rim board, or cross-bridging.

4. Install and fully nail permanent sheathing to each Lipist before placing loads Never install a damaged I-joist. on the floor system. Then, stack building materials over beams or walls only.

can result in serious accidents. Follow these installation guidelines carefully, Improper storage or installation, failure to follow applicable building codes, failure to follow span ratings for Nordic Lioists, failure to follow allowable hole sizes and locations, or failure to use web stiffeners when required

STORAGE AND HANDLING GUIDELINES

- Bundle wrap can be slippery when wet. Avoid walking on wrapped
- Store, stack, and handle Ljoists vertically and level only.
- 3. Always stack and handle Lioists in the upright position only.
- Protect I-joists from weather, and use spacers to separate bundles. 4. Do not store I-joists in direct contact with the ground and/or flatwise
- Bundled units should be kept intact until time of installation.
- 7. When handling I-joists with a crane on the job site, take a few to your work crew. simple precautions to prevent damage to the I-joists and injury
- Pick 1-joists in bundles as shipped by the supplier
- Orient the bundles so that the webs of the I-joists are vertical.
- Pick the bundles at the 5th points, using a spreader bar if necessary.
- 8. Do not handle I-joists in a horizontal orientation.
- 9. NEVER USE OR TRY TO REPAIR A DAMAGED 1-JOIST.

MAXIMUM FLOOR SPANS

- . Maximum **clear** spans applicable to simple-span or For multiple-span applications, the end spans shall be 40% or more of the adjacent span. 1.25D. The serviceability limit states include the consideration for floor vibration and a live load deflection limit of L/480. multiple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L +
- 2. Spans are based on a composite floor with glued-nailed Standard. No concrete topping or bridging element was assumed. Increased spans may be achieved with the used of gypsum and/or a row of blocking at mid-span. thickness of 5/8 inch for a joist spacing of 19.2 inches or oriented strand board (OSB) sheathing with a minimum shall meet the requirements given in CGBS-71.26 less, or 3/4 inch for joist spacing of 24 inches. Adhesive
- Minimum bearing length shall be 1-3/4 inches for the end bearings, and 3-1/2 inches for the intermediate bearings.
- 4. Bearing stiffeners are not required when I-joists are used required for hangers. with the spans and spacings given in this table, except as
- 5. This span chart is based on uniform loads. For applications with other than uniform loads, an engineering analysis may be required based on the use of the design properties.
- 6. Tables are based on Limit States Design per CAN/CSA O86-09 Standard, and NBC 2010.
- 7. SI units conversion: 1 inch = 25.4 mm 1 foot = $0.305 \, \text{m}$

SIMPLE AND MULTIPLE SPANS MAXIMUM FLOOR SPANS FOR NORDIC I-JOISTS

				Joist Depth S
				Joist Series
2019 2019 2019	20:5	18-11 18-11 19-6 19-9 20-27	10.00 10.00	12"
2018 2019 2211 2230	11847 1841 2040 20-3 20-3 20-3 20-3	17.00 17.30 18.01 18.31 18.37	14:2" 15:21 15:4" 16:11	Simple On centro 16"
1949" 2011" 2111"	17-10 19-1 19-4 19-4 19-11	15-5 16-5 17-4 17-6 17-10	14-8" 14-10" 15-6"	spans e spacing 19.2
19410* 20410* 21-28* 21-6*	12-10* 19-2* 19-5* 19-5* 20-0*	15:6; 16:6; 17:7; 18:0;	18.51 14.9 14.11 15.77	24"
2497 26 0 2650 2651	23.70 23.70 23.70 24.33 24.33 25.00	20-0 20-0 20-3 21-8 21-8 21-8 22-5	-01-81 -27-81 -9-21:	12"
2219 2410 2410 2415 24110	20 11 22 11 22 5 22 10	18-9: 18-9: 19-11: 20-2: 20-7:	18,4 18,5 17,4 17,4	Multipl On centr
221.95 22-111 23-31 23-91	19-8 20-0 21-1 21-10 21-10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14-101 15-10 16-01 16-11	e spans e spacing 19.2"
231,101 (23:0" 23:4" 23:9"	1944 20:3 21:4 21:46 27:10	1000 1000 1000 1000 1000 1000 1000 100	14.7" 15:51 16:11 17:0	24"

CCMC EVALUATION REPORT 13032-R

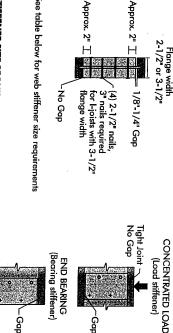
NORDIC I-JOIST SERIES

I-JOIST HANGERS

- Hangers shown illustrate the three to support I-joists. most commonly used metal hangers
- All nailing must meet the hanger manutacturer's recommendations.
- Hangers should be selected based and load capacity based on the maximum spans. on the joist depth, tlange width
- Web stiffeners are required when the brace the top flange of the I-joist. sides of the hangers do not laterally

Face Mount

WEB STIFFENERS


RECOMMENDATIONS:

- the stiffener and the flange is at the top. reactions greater than shown in the engineered applications with factored ■ A bearing stiffener is required in all Construction Guide (C101).The gap between -joist properties table found of the I-joist
- support, the top flange. The gap between the sides of the hanger do not extend up to, and ■ A bearing stiffener is required when stiffener and flange is at the top. the I-joist is supported in a hanger and the
- by the code. The gap between the stiffener adjusted for other load durations as permitted standard term load duration, and may be than 2,370 lbs is applied to the top flange where a factored concentrated load greater ■ A load stiffener is required at locations and the flange is at the bottom. tip and the support. These values are for cantilever, anywhere between the cantilever between supports, or in the case of a

SI units conversion: 1 inch = 25.4 mm

FIGURE 2

WEB STIFFENER INSTALLATION DETAILS


See table below for web stiffener size requirements

STIFFENER SIZE REQUIREMENTS

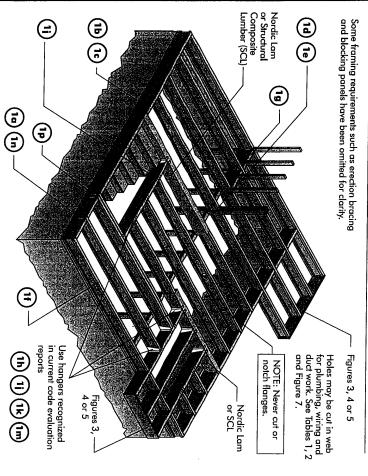
3-1/2"	2-1/2"	Flange Width
1-1/2" x 2-5/16" minimum width	1" x 2-5/16" minimum width	Web Stiffener Size Each Side of Web

Fight Joint

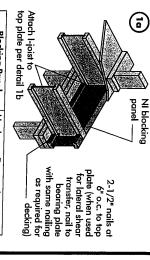
OS8 3/8"-

NPG Lumber 23 pieces per unit

manufacturing process. Every phase of the operation, from forest to the products to adhere to strict quality control procedures throughout the Chantiers Chibougamau Ltd. harvests its own trees, which enables Nortic finished product, reflects our commitment to quality.

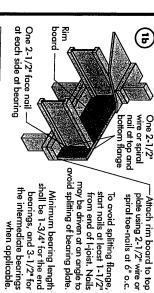

lumber in their flanges, ensuring consistent quality, superior strength armo. Nordic Engineered Wood I-joists use only finger-jointed back spruce longer span carrying capacity.

2019-04-1

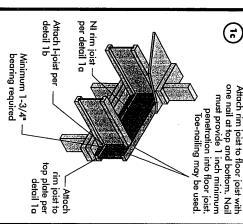

INSTALLING NORDIC I-JOISTS

- 1. Before laying out floor system components, verify that I-joist flange widths match hanger widths. If not, ணுழ்ச்தன்
- 2. Except for cutting to length, I-joist flanges should never be cut, drilled, or notched
- 3. Install I-joists so that top and bottom flanges are within 1/2 inch of true vertical alignment
- 4. I-joists must be anchored securely to supports before floor sheathing is attached, and supports for multiple நப்ப
- 5. Minimum bearing lengths: 1-3/4 inches for end bearings and 3-1/2 inches for intermediate bearings 20分子20年分
- 6. When using hangers, seat I-joists firmly in hanger bottoms to minimize settlement.
- 7. Leave a 1/16-inch gap between the I-joist end and a header.
- 8. Concentrated loads greater than those that can normally be expected in residential construction should only be applied to concentrated loads from the top of the I-joist. Or, attach the load to blocking that has been securely fastened to the the top surface of the top flange. Normal concentrated loads include track lighting fixtures, audio equipment and security cameras. Never suspend unusual or heavy loads from the Ljoist's bottom flange. Whenever possible, suspend all
- 9. Never install Ljoists where they will be permanently exposed to weather, or where they will remain in direct contact with concrete or masonry
- 10. Restrain ends of floor joists to prevent rollover. Use rim board, rim joists or Ljoist blocking panels.
- 11. For I-joists installed over and beneath bearing walls, use full depth blocking panels, rim board, or squash blocks (cripple members) to transfer gravity loads through the floor system to the wall or foundation below
- 12. Due to shrinkage, common framing lumber set on edge may never be used as blocking or rim boards. Hoist blocking panels or other engineered wood products – such as rim board – must be cut to fit between the Ljoists, and an l-joist-compatible depth selected.
- 13. Provide permanent lateral support of the bottom flange of all I-joists at interior supports of multiple-span joists. Similarly structure, the gypsum wallboard ceiling provides this lateral support. Until the final finished ceiling is applied, temporary support the bottom flange of all camilevered I-joists at the end support next to the cantilever extension. In the completed bracing or struts must be used
- 14. If square-edge panels are used, edges must be supported between I-joists with 2x4 blocking. Glue panels to blocking to underlayment layer is installed. minimize squeaks. Blocking is not required under structural finish flooring, such as wood strip flooring, or if a separate
- 15. Nail spacing: Space nails installed to the flange's top face in accordance with the applicable building code requirements or approved building plans.

TYPICAL NORDIC I-JOIST FLOOR FRAMING AND CONSTRUCTION DETAILS FIGURE 1



All nails shown in the above details are assumed to be common wire nails unless otherwise noted. 3" (0.122" dia.) common spiral nails may be substituted for 2-1/2" (0.128" dia.) common wire nails. Framing lumber assumed to be Spruce-Pine-Fir No. 2 or better. Individual components not shown to scale for clarity.

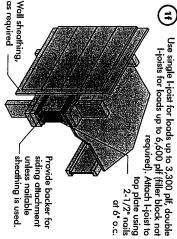


*Tho	NI Joists	Blocking Panel or Rim Joist
	3,300	Maximum Factored Uniform Vertical Load* (pH)

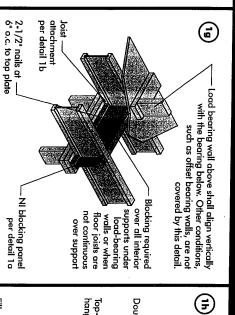
inches or less and is based on standard term load duration. such as joist, header, or rafter. For concentrated vertical It shall not be used in the design of a bending member, load transfer, see detail 1d. The unitorm vertical load is limited to a joist depth of 16


or less and is based on standard term load duration. It shall not be used in the design of a bending member, such as joist, header, or *The uniform vertical load is limited to a rim board depth of 16 inches rafter. For concentrated vertical load transfer, see detail 1d.

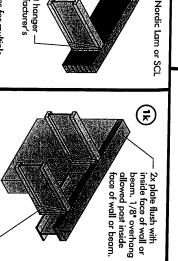
Squash block -	Œ.
	NI or rim board blocking panel per detail 1a—
	1/16" for squash blocks


Pair of Squash Blocks	Maximum Factored Vertical per Pair of Squash Blocks (Ibs)	red Vertical per h Blocks (lbs)
	3-1/2" wide	5-1/2" wide
2x Lumber	5,500	8,500
1-1/8" Rim Board Plus	4,300	6,600

Provide lateral bracing per detail 1a, 1b, or 1c


bearing below. Install squash blocks per detail 1d. Match to post above bearing area of blocks below

 \equiv



required when rim board is used. Bracing per code shall be Rim board may be used in lieu of I-joists. Backer is not carried to the foundation.

3

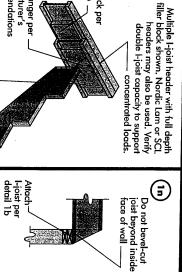
backer block will fit. Clinch. Install backer tight to top flange. additional 3" nails through the webs and filler block where the Backer block (use if hanger load exceeds 360 lbs)
Before installing a backer block to a double I-joist, drive three

manufacturer's recommendations Top-mount hanger installed per ___

Install hanger per

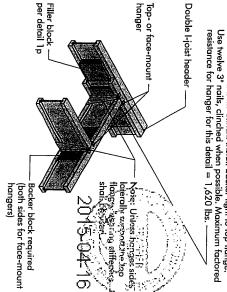
recommendations manutacturer's

beams, see the manufacturer's


For nailing schedules for multiple

recommendations.

recommendations installed per manutacturer's Top- or face-mount hanger


support the top flange, bearing Note: Unless hanger sides laterally

stiffeners shall be used support the top flange, bearing Note: Unless hanger sides laterally

detail 1p Filler block per

Note: Blocking required at bearing for lateral support, not shown

Verify double I-joist capacity to support concentrated loads. For hanger capacity see hanger manufacturer's recommendations.

BACKER BLOCKS (Blocks must be long enough to permit required nailing without splitting)

3-1/2"	2-1/2"	Flange Width
1-1/2"	1"	Material Thickness Required*
7-1/4"	5-1/2"	Minimum Depth**

- better for solid sawn lumber and wood structural panels conforming to CAN/CSA-O325 or CAN/CSA-O437 Standard. Minimum grade for backer block material shall be S-P-F No. 2 or
- ** For face-mount hangers use net joist depth minus 3-1/4" for joists with 1-1/2" thick flanges. For 2" thick flanges use net depth minus 4-1/4"

Notes:

(

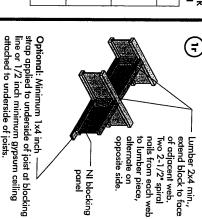
Filler block

- Leave a 1/8 to 1/4-inch gap between t prevent damage to web/flange connecti of filler block and bottom of top I-joist
- 3. Filler block is required between joists to
- tull length of span.
- 4. Nail joists together with two rows of 3" are required. nails at 12 inches o.c. (clinched when possible) on each side of the double I-jo can be clinched, only two nails per foot Total of four nails per foot required. If r

Offset nails from opposite face by 6"

The maximum factored load that may be using this detail is 860 lbf/ft. Verify double applied to one side of the double joist

—1/8" to 1/4" gap between top flange and filler block

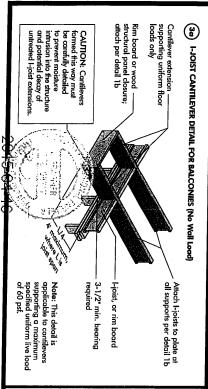

FILLER BLOCK REQUIREMENTS FOR

Maximum support capacity = 1,620 lbs.

clinch when possible.

detail 1h. Nail with twelve 3" nails, Backer block attached per

Ċ,		4.	ω		?	-
are required. 5. The maximum factored load that may be applied to one side of the double joist	nails at 12 inches o.c. (clinched when possible) on each side of the double I-joist. Total of four nails per foot required. If nails can be clinched, only two nails per foot	4. Nail joists together with two rows of 3"	Filler block is required between joists for full length of span.	flange.	Leave a 1/8 to 1/4-inch gap between top of filler block and bottom of ton Liviet	 Support back of I-joist web during nailing to prevent damage to web/flange connection.
3-1/2" × 2"	3-1/2"× 1-1/2"		2-1/2"× 1-1/2"		Flange Size	DOUBLE I
11-7/8" 14" 16"	9-1/2" 11-7/8" 14" 16"	16"		9-1/2"	Joist Depth	-JOIST CO
3" x 7" 3" x 9" 3" x 11"	일 × 6: 일 × 8: 일 × 10:	2-1/8" x 12"	2-1/8" × 8" 2-1/8" × 10"	2-1/8" × 6"	Filler Block Size	FILLER BLOCK REQUIREMENTS FOR DOUBLE 1-JOIST CONSTRUCTION

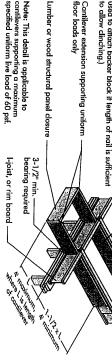


NI blocking - In some local codes, blocking is prescriptively required in (<u>1</u> tor spacing of the blocking board −One 2-1/2" nails at top and bottom flange One 2-1/2" nails one side only 2-1/2" nails at 6" o.c. iumber piece Two 2-1/2" nails from each web to -2x4 min. (1/8" gap minimum) I-joist blocking panel

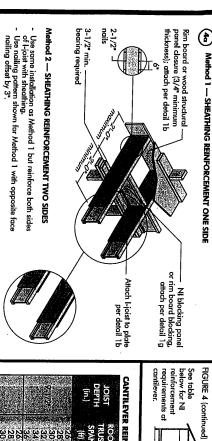
the first joist space (or first and second joist space) next to the starter joist. Where required, see local code requirements

All nails are common spiral in this detail

CANTILEVER DETAILS FOR BALCONIES (NO WALL LOAD)


Full depth backer block with 1/8" gap between block and top flange of Lioist. See detail 1 h. Nail with 2 rows of 3" nails at 6" o.c. and clinch.

Attach I-joists to plate at all supports per detail 1b


2x8 min. Nail to backer block and joist with 2 rows of 3" nails at 6" o.c. and clinch. (Cantilever nails may be used to attach backer block if length of nail is sufficient to allow clinching.)

Cantilever extension supporting uniform


cantilevers supporting a maximum specified uniform live load of 60 psf. Note: This detail is applicable to

CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD)

Note: Canadian softwood plywood sheathing or equivalent (minimum thickness 3/4") required on sides of joist. Depth shall match the full height of the joist. Nail with 2-1/2" nails at 6" o.c., top and bottom flange. Install with face grain horizontal. Attach I-joist to plate at all supports per detail 1b. Verify reinforced I-joist capacity.

1. N = No reinforcement required.
1 = INI reinforced with 3/4* wood structural panel on one side only.
2 = NI reinforced with 3/4* wood structural penel on both sides, or double Hoist.
X = Try a deeper joist or claser spacing.
2. Maximum design load shall be: 15 per froof dead load, 55 per floor total load, and 80 pif wall load. Yell load is based on 3-0* maximum width window or door openings.

CANTILEY JOIST DEPTH (in.)	ER REINFOI ROOF TRUSS SPAN	ANTILEVER REINFORCEMENT METHODS ALLOWED JOIST ROOF JOIST TRUSS DEPTH TRUSS LL = 30 psf, DL = 15 psf DEPTH SPAN JOIST SPACING (in.)	ALLOWED F	OOF LOADIN LL = 40 ps JOIST SP	G (UNFACTO), DL = 15 psi ACING (in.)	RED)	ICIST SPACING (in	L = 15 psf
97)/ Z *	28 30 32 32	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	, 2 , X , X , X	-	2 2 X X	×××××	2 2 2 2 2	(**** (****
1177.8	28 30 32 34 36		221442	ZZZZZZ zzz	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***NNNN	3-,	
1. (A)	488448886 48848886		. Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ZZZZZZZ ZZZZZZZ	zzz	NN		
	1688 ¥ 2008 1688 ¥		zzzzz		·zzzzzz	ZZZZZZZ	ZZZZZZZ	ZZZX

studs may be required.

3. Table applies to joists 12* to 24* o.c., that meet the floor span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of L/480. Use 12* o.c., requirements for lesser spacing. For larger openings, or multiple 3-.0" width openings spaced less than 6-.0" o.c., additional joists beneath the opening's cripple study many be premied.

 For conventional roof construction using a ridge beam, the Roof Truss Span column above is equivalent to the distance between truss is used. distance between the supporting walls as if a the supporting wall and the ridge beam.
When the roof is framed using a ridge board,
the Roof Truss Span is equivalent to the

Cantilevered joists supporting girder trusses or roof beams may require additional

RULES FOR CUTTING HOLES AND DUCT CHASE OPENINGS:

- The distance between the inside edge of the support and the centreline of any Table 1 or 2, respectively. hole or duct chase opening shall be in compliance with the requirements of
- Ņ I-joist top and bottom flanges must NEVER be cut, notched, or otherwise modified
- Whenever possible, field-cut holes should be centred on the middle of the web.
- 4. The maximum size hole or the maximum depth of a duct chase opening that can between the top or bottom of the hole or opening and the adjacent Ljoist flange. the I-joist minus 1/4 inch. A minimum of 1/8 inch should always be maintained be cut into an I-joist web shall equal the clear distance between the flanges of
- Ģ 3/4 of the diameter of the maximum round hole permitted at that location. The sides of square holes or longest sides of rectangular holes should not exceed
- ٥ size of the largest square hole (or twice the length of the longest side of the longest rectangular hole or duct chase opening) and each hole and duct chase Where more than one hole is necessary, the distance between adjacent hole opening shall be sized and located in compliance with the requirements of edges shall exceed twice the diameter of the largest round hole or twice the Tables 1 and 2, respectively.
- .7 A knockout is **not** considered a hole, may be utilized anywhere it occurs, and may be ignored for purposes of calculating minimum distances between holes and/or duct chase openings.
- œ Holes measuring 1-1/2 inches or smaller shall be permitted anywhere in a cantilevered section of a joist. Holes of greater size may be permitted subject to
- % A 1-1/2 inch hole or smaller can be placed anywhere in the web provided that it meets the requirements of rule number 6 above.
- 10. All holes and duct chase openings shall be cut in a workman-like manner in accordance with the restrictions listed above and as illustrated in Figure 7.
- 11. Limit three maximum size holes per span, of which one may be a duct chase
- 12. A group of round holes at approximately the same location shall be permitted if they meet the requirements for a single round hole circumscribed around them

Simple or Multiple Span for Dead Loads up to 15 psf and Live Loads up to 40 psf LOCATION OF CIRCULAR HOLES IN JOIST WEBS

				Joist Depth
00-1-1-	e)obelej:	jedalisia.	(P) [-(9-)	Joist Series
90909 7777			35035	2
000 88468			00001 88848	Min
				3
				<u> </u>
2.5				- 5 8
				₩ 2 8
				any su ameter 8-5/8
10000 10000	1028			
			ilitii	centre
200 200 300	2385 2486 2486			of ho
120	(HIII)	al del Til		e (ft-in
34 45 95 62 1111				
4-00-00 4-00-00		Politica		od 2-3/4
	9 (10.00		Span Justimen

Autore inche may be used tor I-joist spacing of 24 inches on centre or less.
 Hole location distance is measured from inside face of supports to centre of hole.
 Distances in this chart are based on uniformly loaded joists.

OPTIONAL:

The above table is based on the Hoists used at their maximum span. If the Hoists are placed at less than their full maximum span (see Maximum Picol Spans). The minimum distance from the centreline of the hole to the face of any support (D) as given above may be reduced as follows:

Dreduced = Lactual x D SAF

Where: Dreduced =

actual

201910升

ᇬ

Distance from the inside face of any support to centre of hole, reduced for less-than-maximum span applications (fit. The jeak joint distance shall not be less than 6 inches from the face of the support to edge of the hole. The minimum distance from the inside face of any support to centre of hole from this table Span Adjustment Factor given in this table. The actual measured span distance between the inside faces of supports (ff). Lactual is greater than 1, use 1 in the above calculation for Lactual

spaced 15 inches on centre along the length of the I-joist. Where possible, it is preferable to use knockouts instead of electrical or small plumbing lines. They for the contractor's convenience to install Knockouts are prescored holes provided /2 inches in diameter, and are

bearing -

distance from for minimum See Table 1

2x diameter of larger hole

diameter, length or hole 2x duct chase

larger whichever is

from bearing)

held-cut holes

Duct chase opening minimum distance see Table 2 for

FIELD-CUT HOLE LOCATOR

FIGURE 7

 \odot

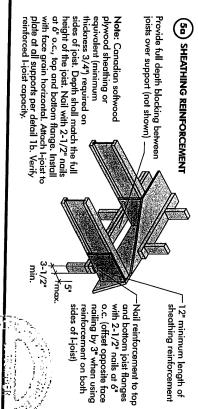
sharp saw. over-cut the web. should be cut with a Holes in webs

the rectangular hole by drilling a 1-inch diameter hole in each of the four corners the holes is another good method to and then making the cuts between stress concentrations. Slightly rounding the corners is recommended. Starting the corners, as this can cause unnecessary For rectangular holes, avoid over-cutting ninimize damage to the I-joist.

TABLE 2

DUCT CHASE OPENING SIZES AND LOCATIONS - Simple Span Only

E.					Joist Depth
					Joist Series
		250 ji		1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Wilnimu 8
100 1006	0 89 0 89 0 89 0 89 0 89 0 89 0 89 0 89		12.65	5555 855 855 855	m disiana 10
800		000 P.E.			n ins
		9.61			cha
				72.0	Tgr
					ਰੱ
		10.2 10.7 10.8 2.0 2.0 13.3			ğ
		10-8 10-11 11-2 12-8 13-0			ing

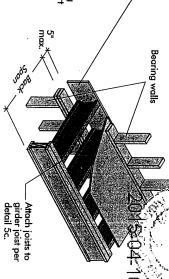

Above table may be used for Lioist spacing of 24 inches on centre or less.
 Duct chase opening location distance is measured from inside face of supports to centre of opening.
 The above table is based on simple-span joists only. For other applications, contact your local distributor.
 Distances are based on uniformly loaded floor joists that meet the span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of L/480. For other applications, contact your local distributor.

and may be ignored for purposes of calculating minimum distances A knockout is **NOT** considered a hole, may be utilized wherever it occurs between holes

See rule 12

between top and bottom flange — all duct chase openings and holes Maintain minimum 1/8" space

BRICK CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD)

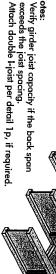


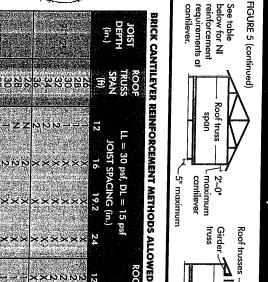
(F) SET-BACK DETAIL

(3/4" minimum thickness), structural panel closure attach per detail 1b. Rim board or wood

between joists over support Provide full depth blocking (not shown for clarity)

- Attach I-joist to plate at all supports per detail 1b. 3-1/2" minimum I-joist
- bearing required




(5c) SET-BACK CONNECTION

through joist web and web of girder using 2-1/2" nails. Vertical solid sawn blocks ______(2x6 S-P-F No. 2 or better) nailed

> bottom flanges. nails, toe-nail at top and Nail joist end using 3"

Alternate for opposite side.

3	Girder truss	Roof trusses
	Roof truss span	Z ©
5" maximum	2'-0" maximum cantilever	13'-0" maximum

For hip roofs with the jack requirements for a span of 26 ft. shall be permitted to the I-joist reinforcement the cantilevered floor joists, trusses running parallel to

JOIST DEPTH (in.)	TRUSS SPAN	LL = JO 12	30 psf, D IST SPACI 16	L = 15 p ING (in.) 19.2	sf 24	(C)	ADING (40 psf, D IST SPAC	UNFACT L = 15 p ING (in.) 19.2	ORED) »sf 24	LL = JO	50 psf, I NST SPAC)L = 15 p)ING (in.)	sf
0.11/Z	64 10 80 64 10 80	NN2-1-1-	X X X	X X X X	×××××	××××××	×××××	×××××	×××××	۵×××× و	*****	·×××××	*****
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	- <u>z</u>	××××××××	XXXXX	×××××	シング・コー キ	<******	<×××××	<x××××< td=""><td>(×0000±)</td><td>(×××××)</td><td>·×××××></td><td>*****</td></x××××<>	(×0000±)	(×××××)	·×××××>	*****
<u> </u>	228 320 327 327 328 327 328 328 328 328	<u></u>		×××××X0	××××××××××××××××××××××××××××××××××××××	SZ	<××××	<×××××	(××××××)	, רב-ממממים	*******	*****	*****
2	44333286 44086	-zzzzzzz	בבבייטטטטט	××××0000	****		~×××××°	×××××××	*****	>> マー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<×××××เงเง	«×××××××××××××××××××××××××××××××××××××	(×××××××)
	•						AGE CONTRACTOR	A Control of Con-	Victor 12	A. 700 Com	AND ASSESSMENT	X	X

Hanger may be used in lieu of solid sawn blocks

- N = No reinforcement required.

 1 = NI reinforced with 3/4" wood structural
- panel on one side only.
 2 = NI reinforced with 3/4" wood structural panel on both sides, or double I-joist.
- X = Try a deeper joist or closer spacing.
 2. Maximum design load shall be: 15 psf roof dead load, 55 psf floor total load, and 80 plf maximum width window or door openings. wall load. Wall load is based on 3'-0"
- For larger openings, or multiple 3-0" width openings spaced less than 6-0" o.c., additional joists beneath the opening's cripple studs may be required.
- Table applies to joists 12" to 24" o.c. that meet the floor span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of 1/480. Use 12" o.c. requirements for lesser spacing.
 - 4. For conventional roof construction using a the supporting wall and the ridge beam.
 When the roof is framed using a ridge board,
 the Roof Truss Span is equivalent to the above is equivalent to the distance between distance between the supporting walls as if a ridge beam, the Roof Truss Span column
- truss is used.

 5. Cantilevered joists supporting girder trusses or oof beams may require additional reinforcing.

INSTALLING THE GLUED FLOOR SYSTEM

- 1. Wipe any mud, dirt, water, or ice from I-joist flanges before gluing.
- 2. Snap a chalk line across the I-joists four feet in from the wall for panel edge alignment and as a boundary for spreading glue.
- 3. Spread only enough glue to lay one or two panels at a time, or follow specific recommendations from the glue manufacturer.
- 4. Lay the first panel with tongue side to the wall, and nail in place. This protects the tongue of the next panel from damage when tapped into place with a block and sledgehammer.
- 5. Apply a continuous line of glue (about 1/4-inch diameter) to the top flange of a single I-joist. Apply glue in a winding pattern on wide areas, such as with double I-joists.
- 6. Apply two lines of glue on I-joists where panel ends butt to assure proper gluing of each end.
- 7. After the first row of panels is in place, spread glue in the groove of one or two panels at a time a thinner line (1/8 inch) than used on I-joist flanges. before laying the next row. Glue line may be continuous or spaced, but avoid squeeze-out by applying
- 8. Tap the second row of panels into place, using a block to protect groove edges.
- Stagger end joints in each succeeding row of panels. A 1/8-inch space between all end joints and 1/8-inch at all edges, including T&G edges, is recommended. (Use a spacer tool or an 2-1/2" common nail to assure accurate and consistent spacing.)
- 10. Complete all nailing of each panel before glue sets. Check the manufacturer's recommendations finished deck can be walked on right away and will carry construction loads without damage to the table below. Closer nail spacing may be required by some codes, or for diaphragm construction. The 3/4-inch thick or less, and 2-1/2" ring- or screw-shank nails for thicker panels. Space nails per the for cure time. (Warm weather ac lerates glue setting.) Use 2" ring- or screw-shank nails for panels

FASTENERS FOR SHEATHING AND SUBFLOORING(1)

24	20	76	Maximum Joist Spacing (in.)
3/4	5/8	5/8	Minimum Panel Thickness (in.)
2"	. 2"	2"	Common Wire or Spiral Nails
1-3/4"	1-3/4"	1-3/4"	ail Size and Ty Ring Thread Nails or Screws
2	2	2"	pe Staples
6	6"	6	Maximum of Fast Edges
12"	12"	12"	n Spacing teners Interm. Supports

- 1. Fasteners of sheathing and subflooring shall conform to the above table.
- 2. Staples shall not be less than 1/16-inch in diameter or thickness, with not less than a 3/8-inch crown driven with the crown parallel to framing.

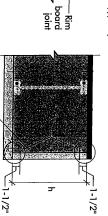
ō

- 3. Flooring screws shall not be less than 1/8-inch in diameter.
- 4. Special conditions may impose heavy traffic and concentrated loads that require construction in excess of the minimums shown.
- 5. Use only adhesives conforming to CAN/CGSB-71.26 Standard, Adhesives for Field-Gluing Plywood Lumber Framing for Floor System, applied in accordance with the manufacturer's recommendations. If OSB panels with sealed surfaces and edges are to be used, use only solvent-based glues; check with

Ref.: NRC-CNRC, National Building Code of Canada 2010, Table 9.23.3.5

IMPORTANT NOTE:

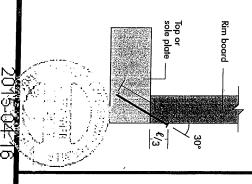
Floor sheathing must be field glued to the L-joist flanges in order to achieve the maximum spans shown in this document. If sheathing is nailed only, L-joist spans must be verified with your local distributor.


RIM BOARD INSTALLATION DETAILS

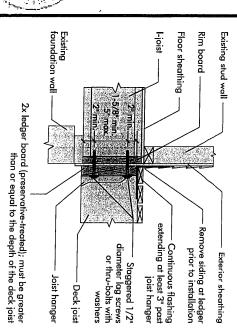
80 ATTACHMENT DETAILS WHERE RIM BOARDS ABUT

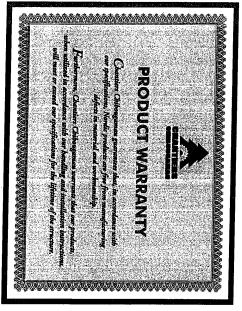
Rim board Joint Between Floor Joists

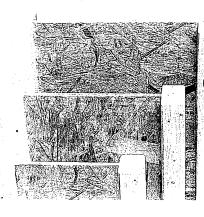
Rim board Joint at Corner



(F) TOE-NAIL CONNECTION AT RIM BOARD

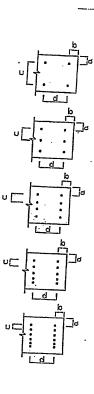

2-1/2" toe-nails at 6" o.c. (typical)


o.c. (typical)



٦ 2X LEDGER TO RIM BOARD ATTACHMENT DETAIL

Rim board joint -


· MICRO CITY

engineering services inc.

TEL: (519) 287 - 2242

R.R. #1, P.O. BOX 61, GLENCOE, ONTARIO, NOL 1M0

	TVI HEA	DED AND OG	NVENTIONAL
	LUM	BER NAILING	NVENTIONAL DETAILS
	DETAIL NUMBER	NUMBER OF ROWS	
	A	2.	1 12
	В	2	8
	С	2	6
	D	2	4
A STATE OF THE STA	1A	3	12
12.	1B	3	8
-	1C	3	. 6
	1D	3:	4
	2A	4	12
	2B	4	8
L	. 2C	4	6
Ŀ	2D	4	4
L	3A	5	12
L	3B	5	8
L	3C	5	6
Ŀ	3D 5		4
L	4A	6	12
Ŀ	4B	6	8
Ŀ	4C	. 6	6
L.	4D	6	4

NOTES:

- (1) MINIMUM LUMBER EDGE DISTANCE "a" = 1"
 - (2) MINIMUM LUMBER END DISTANCE "b" = 2"
 - (3) MINIMUM NAIL ROW SPACING "c" = 2"
 - (4) STAGGER NAILS "d/2" BETWEEN PLIES FOR MULTI-PLY MEMBERS (3 PLY OR MORE)
 - (5) ALL NAILS ARE 3-1/2" ARDOX SPIRAL NAILS
 - (6) DO NOT USE AIR-DRIVEN NAILS

DVG NO TÄMNICOI. 14. STRUCTURAL COMPONENT ONLY TO BE USED ONLY WITH BEAM CALCS BEARING THE STAMP BELOWS

PROVICE NAILING DETAIL Nº X'SEE OW8 #TAM N1001-14