

Products				
PlotID	Length	Product	Plies	Net Qty
J1	20-00-00	11 7/8" NI-40x	1	4
J2	18-00-00	11 7/8" NI-40x	1	22
J3	16-00-00	11 7/8" NI-40x	1	13
J4	12-00-00	11 7/8" NI-40x	1	5
J5	10-00-00	11 7/8" NI-40x	1	7
J6	8-00-00	11 7/8" NI-40x	1	2
J7	4-00-00	11 7/8" NI-40x	1	3
B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B1	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B4	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B2	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B13	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B1A	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B1B	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2

	Connector Summary				
Qty	Manuf	Product			
8	H1	IUS2.56/11.88			

BUILDER: GREENPARK HOMES

SITE: RUSSELL GARDENS

MODEL: ROSEWOOD 3

ELEVATION: 1,2

LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

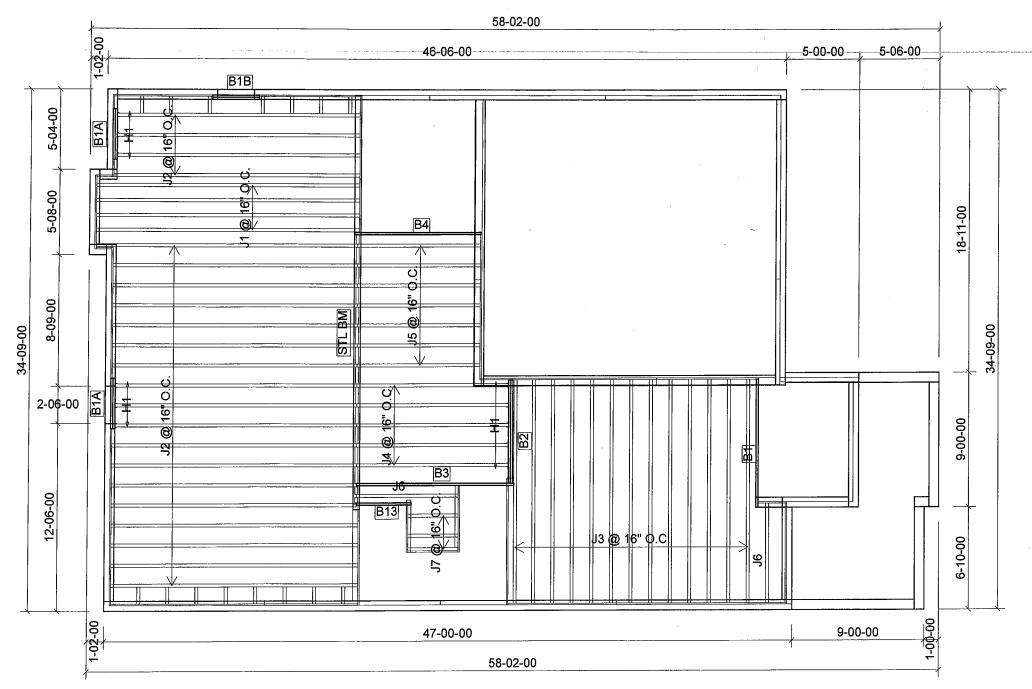
NOTES:

REFER TO THE NORDIC INSTALLATION
GUIDE FOR PROPER STORAGE AND

INSTALLATION.

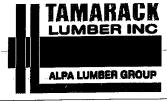
SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2 S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. CERAMIC TILE

LOADING:


DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft² TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

APPLICATION AS PER O.B.C 9.30.6.


DATE: 2017-09-01

1st FLOOR

		Products		
PlotID	Length	Product	Plies	Net Qty
J1	20-00-00	11 7/8" NI-40x	1	4
J2	18-00-00	11 7/8" NI-40x	1	22
J3	16-00-00	11 7/8" NI-40x	1	13
J4	12-00-00	11 7/8" NI-40x	1	5
J5	10-00-00	11 7/8" NI-40x	1	7
J6	8-00-00	11 7/8" NI-40x	1	2
J7	4-00-00	11 7/8" NI-40x	1	3
B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B1	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B4	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B2	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B13	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B1A	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	4
B1B	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2

	Connector Summary				
Qty	Manuf	Product			
11	H1	IUS2.56/11.88			

BUILDER: GREENPARK HOMES

SITE: RUSSELL GARDENS

MODEL: ROSEWOOD 3

ELEVATION: 1,2

LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION. **SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2** S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7. TABLES 1 & 2. CERAMIC TILE APPLICATION AS PER O.B.C 9.30.6. LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 8/19/2017

1st FLOOR

DECK CONDITION

	Products					
PlotID	Length	Product	Plies	Net Qty		
J1	20-00-00	11 7/8" NI-40x	1	4		
J2	18-00-00	11 7/8" NI-40x	1	22		
J3	16-00-00	11 7/8" NI-40x	1	13		
J4	12-00-00	11 7/8" NI-40x	1	5		
J5	10-00-00	11 7/8" NI-40x	1	7		
J6	8-00-00	11 7/8" NI-40x	1	2		
J7	4-00-00	11 7/8" NI-40x	1	3		
B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1		
B1	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1		
B4	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1		
B2	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2		
B13	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1		
B1A	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2		
B1B	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2		

Connector Summary				
Qty	Manuf	Product		
8	H1	IUS2.56/11.88		

BUILDER: GREENPARK HOMES

SITE: RUSSELL GARDENS

MODEL: ROSEWOOD 3

ELEVATION: 1,2

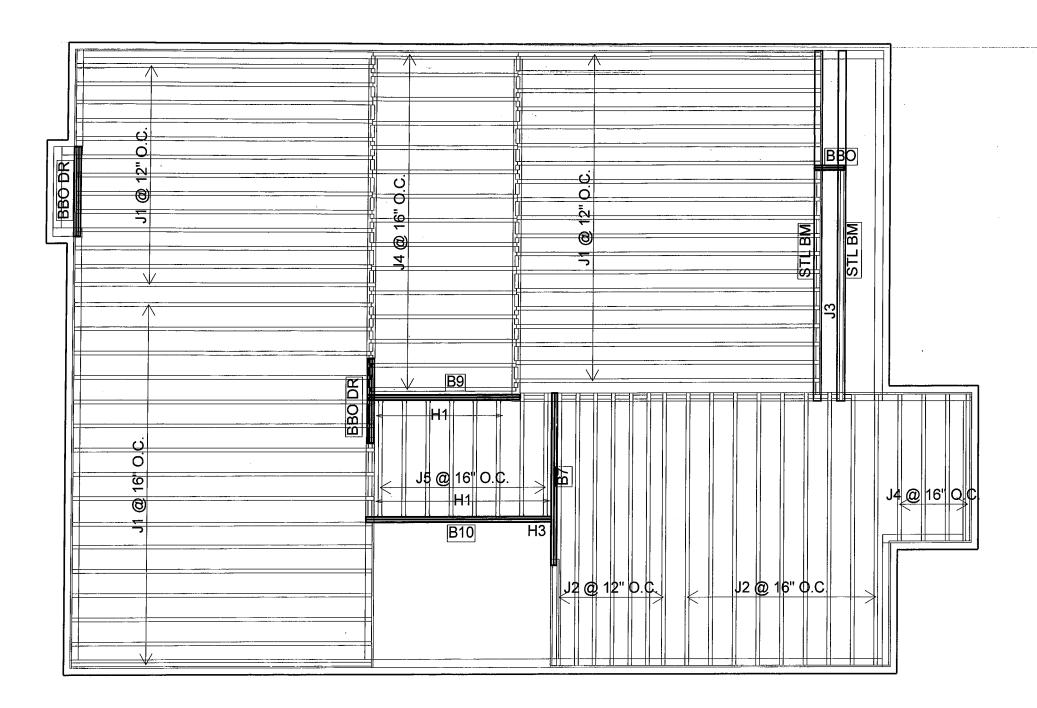
LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

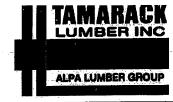
NOTES:

REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION. SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2 S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. CERAMIC TILE APPLICATION AS PÉR O.B.C 9.30.6.


LOADING:
DESIGN LOADS: L/480.000
LIVE LOAD: 40.0 lb/ft²
DEAD LOAD: 15.0 fb/ft
TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 8/19/2017


1st FLOOR

WALK UP

Products					
PlotID	Length	Product	Plies	Net Qty	
J1	18-00-00	11 7/8" NI-40x	1	48	
J2	16-00-00	11 7/8" NI-40x	1	16	
J3	14-00-00	11 7/8" NI-40x	1	1	
J4	10-00-00	11 7/8" NI-40x	1	19	
J5	8-00-00	11 7/8" NI-40x	1	8	
B10	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	
B7	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	
B9	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	

	Connector Summary				
Qty Manuf Product					
14	H1	IUS2.56/11.88			
1	H3	HGUS410			

BUILDER: GREENPARK HOMES

SITE: RUSSEL GARDENS

MODEL: ROSEWOOD 3

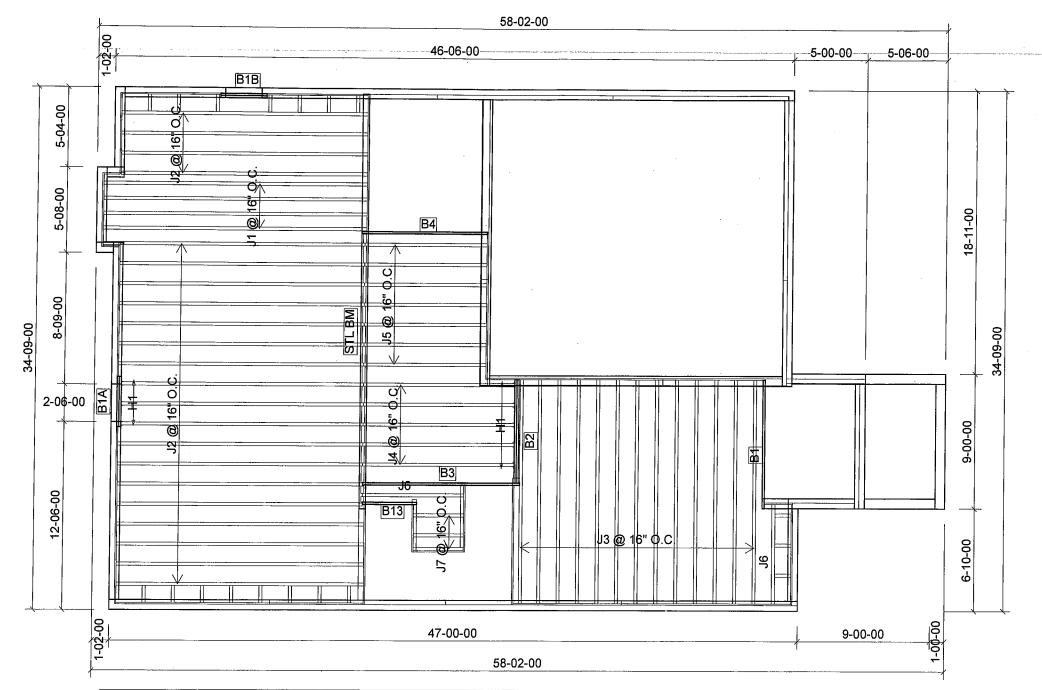
ELEVATION: 1,2

LOT:

CITY: WATERDOWN

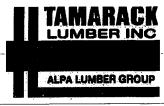
SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:


REFER TO THE NORDIC **INSTALLATION GUIDE FOR PROPER** STORAGE AND INSTALLATION. **SQUASH BLOCKS** OF 2x4, 2x6, 2x8 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURE 7 TABLES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7 TABLES 1 & 2 OF THE INSTALLATION GUIDE. CERAMIC TILE APPLICATION AS PER O.B.C. 9.30.6 LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 fb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 5/8" GLUED AND NAILED


DATE: 6/29/2017

2nd FLOOR

Products					
PlotID	Length	Product	Plies	Net Qty	
J1	20-00-00	11 7/8" NI-40x	1	4	
J2	18-00-00	11 7/8" NI-40x	1	22	
J3	16-00-00	11 7/8" NI-40x	1	13	
J4	12-00-00	11 7/8" NI-40x	1	5	
J5	10-00-00	11 7/8" NI-40x	1	7	
J6	8-00-00	11 7/8" NI-40x	1	2	
J7	4-00-00	11 7/8" NI-40x	1	3	
B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	
B1	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	
B4	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	
B2	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	
B13	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	
B1A	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	
B1B	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	

Connector Summary				
Qty	Manuf	Product		
8	H1	IUS2.56/11.88		

BUILDER: GREENPARK HOMES

SITE: RUSSEL GARDENS

MODEL: ROSEWOOD 3

ELEVATION: 3

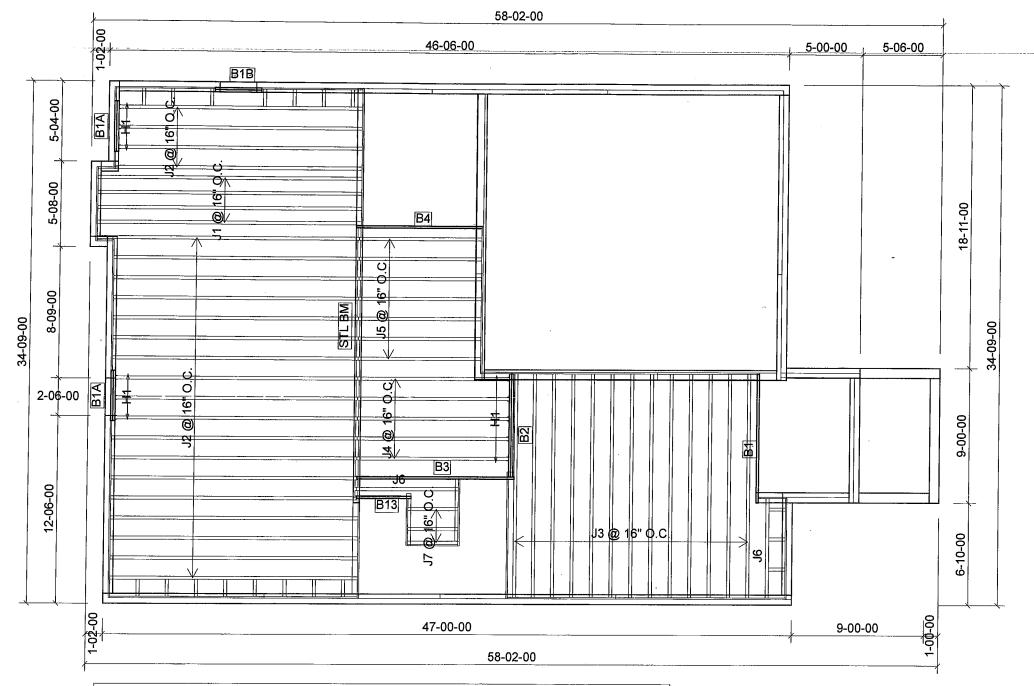
LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

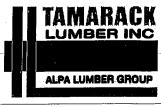
NOTES:

REFER TO THE NORDIC **INSTALLATION** GUIDE FOR PROPER STORAGE AND INSTALLATION. **SQUASH BLOCKS** OF 2x4, 2x6, 2x8 #2 S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. **CERAMIC TILE APPLICATION AS PER** O.B.C 9.30.6.


LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED


DATE: 6/29/2017

1st FLOOR

	Products				
PlotID	Length	Product	Plies	Net Qty	
J1	20-00-00	11 7/8" NI-40x	1	4	
J2	18-00-00	11 7/8" NI-40x	1	22	
J3	16-00-00	11 7/8" NI-40x	1	13	
J4	12-00-00	11 7/8" NI-40x	1	5	
J5	10-00-00	11 7/8" NI-40x	1	7	
J6	8-00-00	11 7/8" NI-40x	1	2	
J7	4-00-00	11 7/8" NI-40x	1	3	
B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	- 1	1	
B1	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	
B4	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	
B2	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	
B13	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	
B1A	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	4	
B1B	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	

Connector Summary				
Qty	Manuf	Product		
11	H1	IUS2.56/11.88		

BUILDER: GREENPARK HOMES

SITE: RUSSELL GARDENS

MODEL: ROSEWOOD 3

ELEVATION: 3

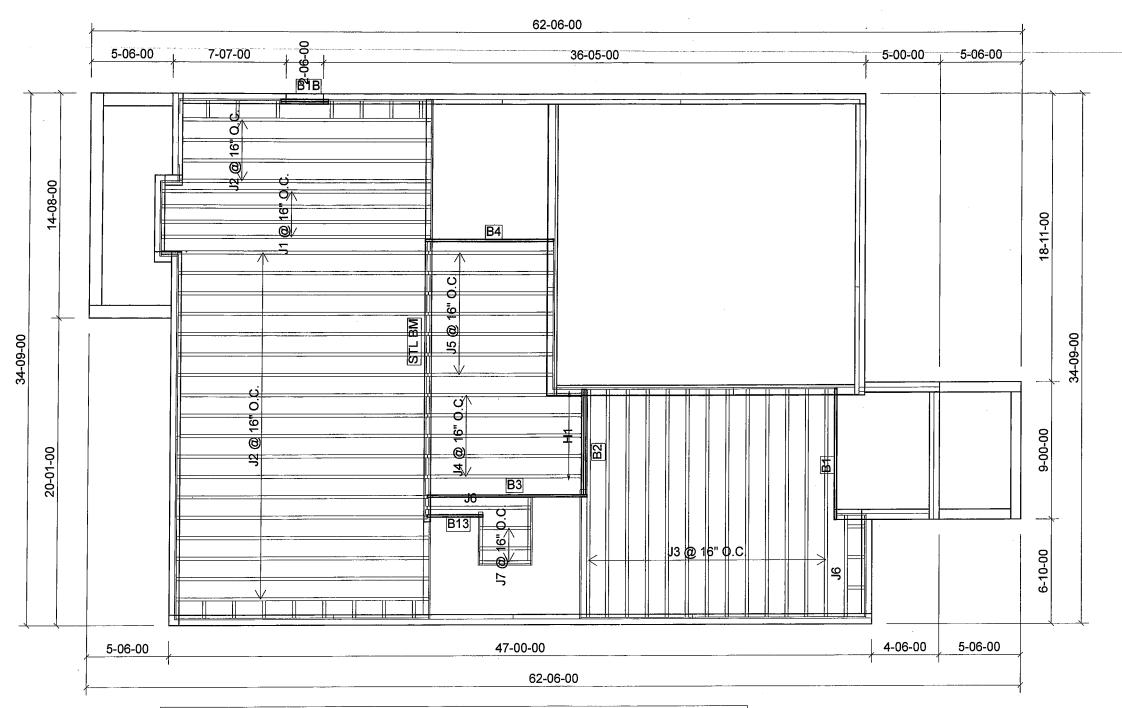
LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

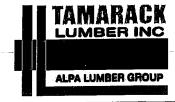
NOTES:

REFER TO THE NORDIC **INSTALLATION GUIDE FOR PROPER** STORAGE AND INSTALLATION. SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2 S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. CERAMIC TILE APPLICATION AS PER O.B.C 9.30.6. LOADING:


DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 8/19/2017


1st FLOOR

DECK CONDITION

Products									
PlotID	Length	Product	Plies	Net Qty					
J1	20-00-00	11 7/8" NI-40x	1	4					
J2	18-00-00	11 7/8" NI-40x	1	22					
J3	16-00-00	11 7/8" NI-40x	1	13					
J4	12-00-00	11 7/8" NI-40x	1	5					
J5	10-00-00	11 7/8" NI-40x	1	7					
J6	8-00-00	11 7/8" NI-40x	1	2					
J7	4-00-00	11 7/8" NI-40x	1	3					
B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1					
B1	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1					
B4	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1					
B2	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2					
B13	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1					
B1B	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2					

	Connecto	r Summary
Qty	Manuf	Product
5	HĪ	IUS2.56/11.88

BUILDER: GREENPARK HOMES

SITE: RUSSELL GARDENS

MODEL: ROSEWOOD 3

ELEVATION: 3

LOT:

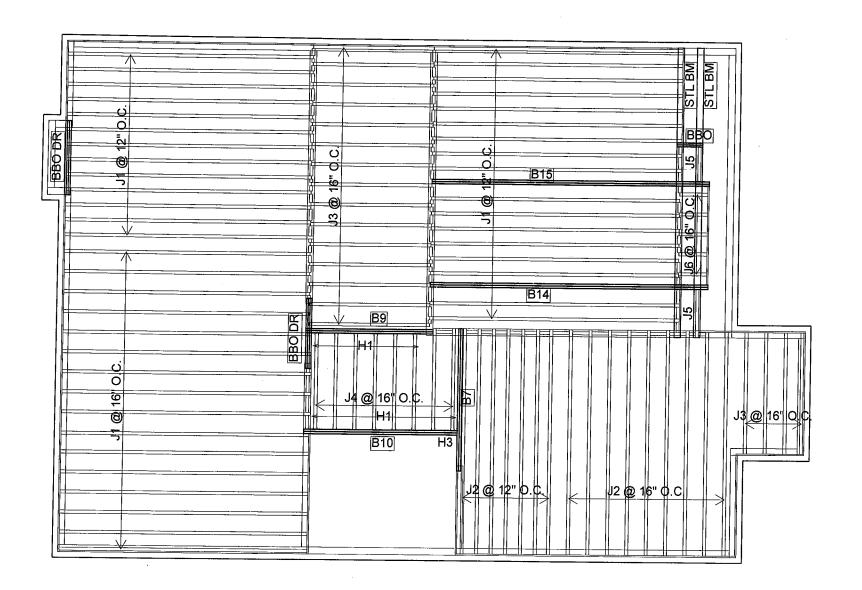
CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION. **SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2** S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. **CERAMIC TILE APPLICATION AS PER** O.B.C 9.30.6.

LOADING:


DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 8/19/2017

1st FLOOR

WALK UP

		Products		
PlotID	Length	Product	Plies	Net Qty
J1	18-00-00	11 7/8" NI-40x	1	46
J2	16-00-00	11 7/8" NI-40x	1	16
J3	10-00-00	11 7/8" NI-40x	1	19
J4	8-00-00	11 7/8" NI-40x	1	8
J5	4-00-00	11 7/8" NI-40x	1	2
J6	2-00-00	11 7/8" NI-40x	1	5
B14	20-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B15	20-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B10	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B7	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B9	10-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2

Connector Summary							
Qty	Manuf	Product					
14	H1	IUS2.56/11.88					
1	H3	HGUS410					

BUILDER: GREENPARK HOMES

SITE: RUSSEL GARDENS

MODEL: ROSEWOOD 3

ELEVATION: 3

LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

REFER TO THE NORDIC **INSTALLATION GUIDE FOR PROPER** STORAGE AND INSTALLATION. **SQUASH BLOCKS** OF 2x4, 2x6, 2x8 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURE 7 TABLES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7 TABLES 1 & 2 OF THE INSTALLATION GUIDE. CERAMIC TILE APPLICATION AS PER O.B.C. 9.30.6 LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 fb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 6/29/2017

2nd FLOOR

NORDIC STRUCTURES **COMPANY**June 29, 2017 17:29

PROJECT
J1 2ND FLOOR
NORDIC SIZER

Design Check Calculation Sheet

Nordic Sizer - Canada 6.4

Loads:

	Load	Туре	Distribution	Pat-	Location	[ft]	Magnitude	Unit
				tern	Start	End	Start En	ıd
ĺ	Load1	Dead	Full Area		-		20.00	psf
İ	Load2	Live	Full Area				40.00	psf
	Self-weight	Dead	Full UDL				2.9	plf

Maximum Reactions (lbs), Bearing Resistances (lbs) and Bearing Lengths (in):

	T		
Unfactored:			
Dead	192		192
Live	336		336
Factored:		The state of the s	
Total	745		745
Bearing:			ļ
Resistance			1 1
Joist	2189		2189
Support	5304		5304
Des ratio			
Joist	0.34		0.34
Support	0.14		0.14
Load case	#2		#2
Length	3		3
Min req'd	1-3/4		1-3/4
Stiffener	No		No
Kd	1.00		1.00
KB support	1.00		1.00
fcp sup	769		769
Kzcp sup	1.15		1.15

Nordic 11-7/8" NI-40x Floor joist @ 12" o.c. Supports: All - Lumber Sill plate, No.1/No.2

Supports: All - Lumber Sill plate, No.1/No.2
Total length: 17'-2.0"; 5/8" nailed and glued OSB sheathing
This section PASSES the design code check.

Limit States Design using CSA-O86-09 and Vibration Criterion:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	Vf = 745	Vr = 2336	lbs garage	5688Wf/Vr = 0.32
Moment(+)	Mf = 3130	Mr = 6255	lbs-ff QN	FESSION Vr = 0.32 Mf/Mr = 0.50
Perm. Defl'n	$0.11 = \langle L/999$	0.56 = L/360	1 / () /	0.19
Live Defl'n	$0.19 = \langle L/999 \rangle$	0.42 = L/480	in /s	0.45
Total Defl'n	0.30 = L/682	0.84 = L/240	in/5	0.19 0.45 0.35 0.39
Bare Defl'n	0.22 = L/934	0.56 = L/360	in S. K	ATSOULAKOS 0.39
Vibration	Lmax = 16'-10	Lv = 18'-4	ft\	
Defl'n	= 0.029	= 0.038	in la	0 0.77
			13	
			V	
			The state of the s	CE OF ON DWO NO . TI
			***	The same of the sa

DWO NO. TAM 4282617 STRUGTURAL COMPONENT ONLY

WoodWorks® Sizer

for NORDIC STRUCTURES

NORDIC SIZER

Nordic Sizer - Canada 6.4

Page 2

Additiona	ıl Data:								
FACTORS:	f/E	KD	KH	KZ	KL	KT	KS	KN	LC#
	2336						_	_	#2
Mr+	6255	1.00				-	-	-	#2
EI	371.1 m	illion	_	-	-	_	-	_	#2
CRITICAL L	OAD COMBI	NATIONS	3 :						
Shear	: LC #2	= 1.25	5D + 1.5	L					
1) : LC #2								
Deflecti	on: LC #1								
	LC #2	= 1.01	0 + 1.0L	(live))				
			0 + 1.0L		•				
			0 + 1.0L						
Bearing									
			C #2 = 3						
Load Typ	es: D=dead								
					lve(stora			f=fire	
	Combinati	lons (LO	Cs) are I	listed i	in the An	alysis	output		
CALCULATI	ONS:								
I .	on: Eleff								
"Live" de	eflection	= Defle	ection fa	com all	non-dead	loads	(live,	wind, sno	ow)

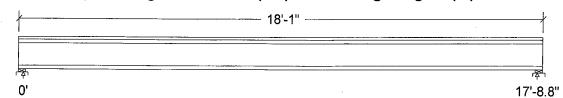
Design Notes:

- 1. WoodWorks analysis and design are in accordance with the 2010 National Building Code of Canada (NBC Part 4) and the CSA O86-09 Engineering Design in Wood standard, which includes Update No.1. CONFORMS TO DRE 2012
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Refer to technical documentation for installation guidelines and construction details.
- 4. Nordic I-joists are listed in CCMC evaluation report 13032-R.
- 5. Joists shall be laterally supported at supports and continuously along the compression edge.
- 6. The design assumptions and specifications have been provided by the client. Any damages resulting from faulty or incorrect information, specifications, and/or designs furnished, and the correctness or accuracy of this information is their responsibility. This analysis does not constitute a record of the structural integrity of the building nor suitability of the design assumptions made. Nordic Structures is responsible only for the structural adequacy of this component based on the design criteria and loadings shown.

COMPONENT ONLY

COMPANYJune 29, 2017 17:30

PROJECT
J1 1ST FLOOR
NORDIC SIZER


Design Check Calculation Sheet

Nordic Sizer - Canada 6.4

Loads:

Load	Туре	Distribution	Pat-	Location	[ft]	Magnitu	de	Unit
			tern	Start	End	Start	End	
Load1	Dead	Full Area				20.00		psf
Load2	Live	Full Area				40.00		psf
Self-weight	Dead	Full UDL				2.9		plf

Maximum Reactions (lbs), Bearing Resistances (lbs) and Bearing Lengths (in):

Unfactored: Dead Live Factored:	203 355		203 355
Total	785		785
Bearing:		The state of the s	
Resistance			
Joist	2189		2189
Support	5304		5304
Des ratio			
Joist	0.36		0.36
Support	0.15		0.15
Load case	#2		#2
Length	3		3
Min req'd	1-3/4		1-3/4
Stiffener	No		No
Kd	1.00		1.00
KB support	1.00		1.00
fcp sup	769		769
Kzcp sup	1.15		1.15

Nordic 11-7/8" NI-40x Floor joist @ 12" o.c.

Supports: All - Lumber Sill plate, No.1/No.2
Total length: 18'-1.0"; 3/4" nailed and glued OSB sheathing
This section PASSES the design code check.

Limit States Design using CSA-O86-09 and Vibration Criterion:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	Vf = 785	Vr = 2336	lbs	Vf/Vr = 0.34
Moment(+)	Mf = 3480	Mr = 6255	lbs-ft	Mf/Mc = 0.56
Perm. Defl'n	$0.13 = \langle L/999$	0.59 = L/360	in profes	0.22
Live Defl'n	0.23 = L/945	0.44 = L/480	in /0/	0.51
Total Defl'n	0.35 = L/601	0.89 = L/240	in /5 (_	8412 2 0.40
Bare Defl'n	0.26 = L/805	0.59 = L/360	in /W	m 10 15
Vibration	Lmax = 17'-9	Lv = 19'-6	ft 👸 S.I	KATSOULAKOS 9
Defl'n	= 0.027	= 0.035	in	0.78
			R III	

DWO NO.TAM 42022.17 STRUCTURAL COMPONENT ONLY

ON INCE OF ONTER

WoodWorks® Sizer

for NORDIC STRUCTURES

NORDIC SIZER

Nordic Sizer - Canada 6.4

Page 2

	Additional										
	FACTORS:	f/E	KD	KH	KZ	$_{ m KL}$	KT	KS	KN	LC#	
	Vr	2336	1.00	1.00	_	_	_	_	_	#2	
-	Mr+	6255	1.00	1.00	_	1.000	_	_	_		
-						_	-	_	_	#2	
ı	CRITICAL LC	AD COMB	INATIONS	:						,, _	
1	Shear	: LC #2	= 1.25	5D + 1.51	L						
1	Moment(+)	: LC #2	= 1.25	5D + 1.51	_						
1	Deflectio	n: LC #1	= 1.00) (perma	anent)						
1		LC #2	= 1.0D	+1.0L	(live)						
ľ		LC #2	= 1.0D	+ 1.0L	(total)					
1		LC #2	= 1.0D	+ 1.0L	(bare	ioist)					
ĺ	Bearing	: Suppor	rt 1 - L	C #2 = 1	.25D +	1.5L					
ſ		Suppor	rt 2 - L	C #2 = 1	.25D +	1.5L					
	Load Type:	s: D=dead	d W=win	d S=sno	w H=ea	rth, arou	ndwater	E=ear	thquake		
1		L=live	e(use,oc	cupancy)	Ls=li	ve(stora	ae, eaui	pment)	f=fire		
ı	All Load (Combinati	lons (LC	s) are l	isted in	n the An	alvsis	output			
l	CALCULATIO	NS:					1	owere			
	Deflection	n: EIeff	= 4.	43e06 lb	-in2 K	= 6.18e	06 lbs				
	"Live" def	flection	= Defle	ction fr	om all i	non-dead	loads	(live. v	wind. sr	OW)	
H								122.07			

Design Notes:

- 1. WoodWorks analysis and design are in accordance with the 2010 National Building Code of Canada (NBC Part 4) and the CSA O86-09 Engineering Design in Wood standard, which includes Update No.1. CONFORMS TO OBE 2012
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Refer to technical documentation for installation guidelines and construction details.
- 4. Nordic I-joists are listed in CCMC evaluation report 13032-R.
- 5. Joists shall be laterally supported at supports and continuously along the compression edge.
- 6. The design assumptions and specifications have been provided by the client. Any damages resulting from faulty or incorrect information, specifications, and/or designs furnished, and the correctness or accuracy of this information is their responsibility. This analysis does not constitute a record of the structural integrity of the building nor suitability of the design assumptions made. Nordic Structures is responsible only for the structural adequacy of this component based on the design criteria and loadings shown.

STRUCTURAL COMPONENT ONLY

Boise Cascade Single 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B1(i3719)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:41

BC CALC® Design Report

Build 5033

Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B1(i3719)

Specifier:

Designer: Company.

Misc:

resident i minavasi dan seda		1000 1000 1000 1000 1000 1000 1000 100
	08-06-14	図
B0		B1

Total Horizontal Product Length = 08-06-14

Reaction Summary (Down / Uplift) (lbs)						
Bearing	Live	De ad	Snow	Wind		
B0, 8"	62 / 0	58 / 0				
B1, 4-3/8"	63 / 0	56 / 0				

Load Summary				Live	Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	En d	1.00	0.65	1.00 1.15	
0 FC1 Floor Material	Unf. Lin. (lb/ft)	L 00-04-08	08-06-14	15	8		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	293 ft-lbs	19,364 ft-lbs	1.5%	1	04-05-04
End Shear	111 lbs	7,232 lbs	1.5%	1	01-07-14
Total Load Defl.	L/999 (0.005")	n/a	n/a	4	04-05-04
Live Load Defl.	L/999 (0.002")	n/a	n/a	5	04-05-04
Max Defl.	0.005"	n/a	n/a	4	04-05-04
Span / Depth	7.7	n/a	n/a		00-00-00

				De mand/ Resistance	Demand/ Resistance	
Bear	ring Supports	Dim.(LxW)	Demand	Support	Member	Material
B0	Wall/Plate	8" x 1-3/4"	165 lbs	1%	1%	Unspecified
B1	Wail/Plate	4-3/8" x 1-3/4"	165 lbs	5%	1.8%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood

Products L.L.C.

CONFORMS TO OBC 2012

DWO NO . TAM 12828-17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\...\B2(i3711)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:41

BC CALC® Design Report

*

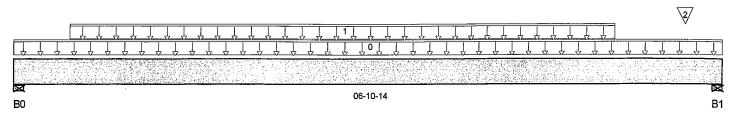
Build 5033

Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:


CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B2(i3711)

Specifier: Designer: Company.

Misc:

Total Horizontal Product Length = 06-10-14

Reaction Summary (Down / Uplift) (!bs)									
Bearing	Live	De ad	Snow	Wind					
B0,4"	628/0	356/0							
B1, 4-3/8"	920/0	518/0							

	ad Summary g Description	Load Type	Re	f. Start	En d	Live 1.00	Dead 0.65	Snow 1.00	Wind 1.15	Trib.
0	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	06-10-14	7	3			n/a
1	Smoothed Load	Unf. Lin. (lb/ft)	L	00-06-08	05-10-08	208	104			n/a
2	J4(i3720)	Conc. Pt. (lbs)	L	06-06-08	06-06-08	384	208			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	2,378 ft-lbs	38,727 ft-lbs	6.1%	1	03-10-08
End Shear	1,276 lbs	14,464 lbs	8.8%	1	01-03-14
Total Load Defl.	L/999 (0.012")	n/a	n/a	4	03-05-08
Live Load Defl.	L/999 (0.008")	n/a	n/a	5	03-05-08
Max Defl.	0.012"	n/a	n/a	4	03-05-08
Span / Depth	6.4	n/a	n/a		00-00-00

		•		Resistance	Resistance	
Bear	ing Supports	Dim. (LxW)	Demand	Support	Member	Material
B0	Wall/Plate	4" x 3-1/2"	1,388 lbs	23.2%	8.1%	Unspecified
B1	Wall/Plate	4-3/8" x 3-1/2"	2,027 lbs	31%	10.8%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA $\,$

O86.

CONFORMS TO OBC 2012

Design based on Dry Service Condition.
Importance Factor: Normal Part code: Part 9

DWO NO. TAMUP 2917
STRUCTURAL
COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\...\B2(i3711)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:41

BC CALC® Design Report

Build 5033 Job Name:

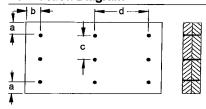
Address: City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl


Description: Designs\Flush Beams\Basment\Flush Beams\B2(i371

Specifier: Designer:

Company.

Misc:

Connection Diagram

a minimum = 2" b minimum = 3" c = 3-15/16"

Calculated Side Load = 461.8 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d Nails 3½" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

> POLINCE OF ON THE DWO NO . FAM L

STRUCTUŔAL COMPONENT ONLY

Boisc Cascado Single 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B3(i3896)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:41

Build 5033

Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B3(i3896)

Specifier: Designer:

Company. Misc:

3	7	
8	0 10-08-04	⊠ α B1

Total Horizontal Product Length = 10-08-04

Reaction Summary (Down / Uplift) (lbs)								
Bearing	Live	De ad	Snow	Wind				
B0, 2-5/8"	405/0	246/0						
B1. 5-1/2"	859/0	462/0						

Lo	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
0	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	07-00-04	41	20			n/a
1	Us er Load	Unf. Lin. (lb/ft)	L	06-08-12	10-02-12	240	120			n/a
2	FC1 Floor Material	Unf. Lin. (lb/ft)	L	07-00-04	10-02-12	27	14			n/a
3	6(i544)	Conc. Pt. (lbs)	L	00-00-04	00-00-04	49	36			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	3,124 ft-lbs	19,364 ft-lbs	16.1%	1	07-00-04
End Shear	1,290 lbs	7,232 lbs	17.8%	1	09-02-14
Total Load Defl.	L/999 (0.078")	n/a	n/a	4	05-07-05
Live Load Defl.	L/999 (0.05")	n/a	n/a	5	05-07-05
Max Defl.	0.078"	n/a	n/a	4	05-07-05
Span / Depth	10.2	n/a	n/a		00-00-00

				De mand/ Resistance	Demand/ Resistance	
Bear	ing Supports	Dim. (L x W)	Demand	Support	Member	Material
B0	Beam	2-5/8" x 1-3/4"	915 lbs	46.6%	16.3%	Unspecified
B1	Wall/Plate	5-1/2" x 1-3/4"	1,866 lbs	45.4%	15.9%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO DBC 2012

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are

trademarks of Boise Cascade Wood

Products L.L.C.

DWO NO. TAM \$\frac{12030}{217}\$
STRUCTURAL
COMPONENT ONLY

Single 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B4(i3693)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:41

Build 5033

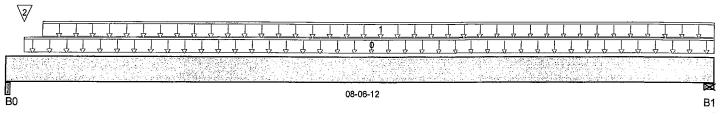
Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R


File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B4(i3693)

Specifier: Designer:

Company:

Misc:

Total Horizontal Product Length = 08-06-12

Reaction Summary (Down / Uplift) (lbs)										
Be aring	Live	De ad	Snow	Wind						
B0, 5-1/4"	151/0	113/0								
B1, 4-3/8"	80 / 0	66 / 0								

	ad Summary g Description	Load Type	Re	f. Start	En d	Live 1.00	Dead 0.65	Snow 1.00	Wind 1.15	Trib.
Ō	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-02-10	08-06-12	16	8			n/a
1	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-05-04	08-06-12	3	1			, n/a
2	5(i532)	Conc. Pt. (lbs)	L	00-02-10	00-02-10	73	48			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	372 ft-lbs	19,364 ft-lbs	1.9%	1	04-03-13
End Shear	138 lbs	7,232 lbs	1.9%	1	01-05-02
Total Load Defl.	L/999 (0.006")	n/a	n/a	4	04-03-13
Live Load Defl.	L/999 (0.003")	n/a	n/a	5	04-03-13
Max Defl.	0.006"	n/a	n/a	4	04-03-13
Span / Depth	8	n/a	n/a		00-00-00

				Demand/ Resistance	Demand/ Resistance	
Beari	ng Supports	Dim. (L x W)	Demand	Support	Member	Material
B0	Beam	5-1/4" x 1-3/4"	368 lbs	9.4%	3.3%	Unspecified
B1	Wall/Plate	4-3/8" x 1-3/4"	203 lbs	6.2%	2.2%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA 086.

CONFORMS TO OBC 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone w ho would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STUD® are trademarks of Boise Cascade Wood

Products L.L.C.

DWO NO. TAM 420317 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\...\B1B(i3706)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:41

Build 5033

Job Name: Address:

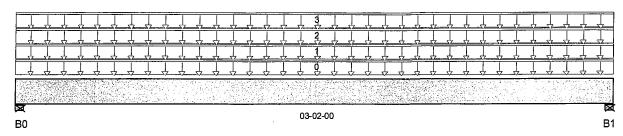
City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl


Description: Designs\Flush Beams\Basment\Flush Beams\B1B(i3706

Specifier:

Designer:

Company:

Misc:

Total Horizontal Product Length = 03-02-00

Reaction Summary (Down / Uplift) (lbs)										
Be aring	Live	De ad	Snow	Wind						
B0, 4"	71 / 0	443/0								
B1, 4"	71 / 0	443/0								

Lo	ad Summary					Live	Dead	Snow	Wind	Trib.
Tag Description		Load Type		Ref. Start End		1.00	.00 0.65	1.00	1.15	
0	E13(i3076)	Unf. Lin. (lb/ft)	Ĺ	00-00-00	03-02-00	18	93			n/a
1	E14(i3256)	Unf. Lin. (lb/ft)	L	00-00-00	03-02-00		81 ·			n/a
2	E6 (i429)	Unf. Lin. (lb/ft)	L	00-00-00	03-02-00		81			n/a
3	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	03-02-00	27	13			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	338 ft-lbs	25,173 ft-lbs	1.3%	0	01-07-00
End Shear	102 lbs	9,401 lbs	1.1%	0	01-03-14
Total Load Defl.	L/999 (0")	n/a	n/a	4	01-07-00
Live Load Defl.	L/999 (0")	n/a	n/a	5	01-07-00
Max Defl.	0"	n/a	n/a	4	01-07-00
Span / Depth	2.7	n/a	n/a		00-00-00

_		Di (I 140)	D	Resistance		
Be a	ring Supports Wall/Plate	Dim. (L x W) 4" x 3-1/2"	Demand 621 lbs	Support 16%	Member 5.6%	Material Unspecified
B1	Wall/Plate	4" x 3-1/2"	621 lbs	16%	5.6%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO OBG 2012

STRUCTURAL
COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\...\B1B(i3706)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:41

Build 5033

Job Name:

Address:

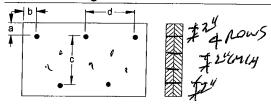
City, Province, Postal Code: WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl


Description: Designs\Flush Beams\Basment\Flush Beams\B1B(i37

Specifier: Designer:

Company:

Misc:

Connection Diagram

a minimum = 2"

c = 7-7/8" d = **20** 6 4 b minimum = 3"

Member has no side loads. Connectors are: 16d

/ Nails ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

POVINCE OF

STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\...\B1A(i3899)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:42

BC CALC® Design Report

Build 5033

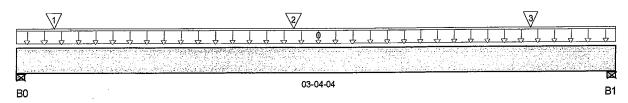
Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R


File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B1A(i3899

Specifier:

Designer: Company:

Misc:

Total Horizontal Product Length = 03-04-04

Reaction Summary (Down / Uplift) (lbs)										
Bearing	Live	De ad	Snow	Wind						
B0, 4"	1,241 / 0	768/0								
B1, 6-1/4"	1,281 / 0	805/0								

Lo	ad Summary					Live	Dead	Snow	Wind	Trib.
Tag Description		Load Type	Ref	Ref. Start		1.00	0.65	1.00	1.15	
0	E1(i431)	Unf. Lin. (lb/ft)	L	00-00-00	03-04-04	346	254			n/a
1	J2(i3901)	Conc. Pt. (lbs)	L	00-02-08	00-02-08	454	227			n/a
2	J2(i3890)	Conc. Pt. (lbs)	L	01-06-08	01-06-08	454	227			n/a
3	J2(i3821)	Conc. Pt. (lbs)	L	02-10-08	02-10-08	454	227			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	1,374 ft-lbs	38,727 ft-lbs	3.5%	1	01-06-08
End Shear	1,556 lbs	14,464 lbs	10.8%	1	01-03-14
Total Load Defl.	L/999 (0.001")	n/a	n/a	4	01-06-15
Live Load Defl.	L/999 (0.001")	n/a	n/a	5	01-06-15
Max Defl.	0.001"	n/a	n/a	4	01-06-15
Span / Depth	2.7	n/a	n/a		00-00-00

				De mand/ Resistance	Demand/ Resistance	
Bear	ing Supports	Dim.(L x W)	Demand	Support	Member	Material
B0	Wall/Plate	4" x 3-1/2"	2,820 lbs	47.2%	16.5%	Unspecified
B1	Wall/Plate	6-1/4" x 3-1/2"	2,927 lbs	31.3%	11%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO DBC 2012

DWOND. TAM 428 STRUCTURAL

COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\...\B1A(i3899)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:42

Build 5033

Job Name: Address:

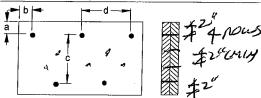
City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl


Description: Designs\Flush Beams\Basment\Flush Beams\B1A(i38)

Specifier: Designer:

Company.

Misc:

Connection Diagram

a minimum = 2" b minimum = 3" c = 7-7/8"

Calculated Side Load = 862.9 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d Nails 3½ ARDOX S

ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

POVINCE OF

STRUCTURAL COMPONENT ONLY

Single 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\...\B13(i3872)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:42

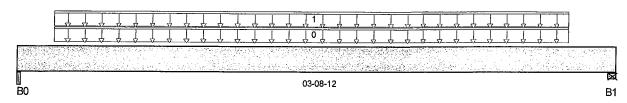
BC CALC® Design Report

Build 5033 Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:


CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B13(i3872

Specifier: Designer: Company:

Misc:

Total Horizontal Product Length = 03-08-12

Reaction Summary (Down / Uplift) (lbs)									
Be aring	Live	Dead	Snow	Wind					
B0, 2-5/8"	404/0	213/0		-					
B1, 3-1/2"	406/0	214/0							
Load Summary				Live	Dead	Snow Wind	Trib.		

Lo	Load Summary						Dead	Snow Wind	Trib.
	g Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00 1.15	
0	Us er Load	Unf. Lin. (lb/ft)	L	00-02-12	03-05-04	240	120		n/a
1	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-02-12	03-05-04	12	6		n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	758 ft-lbs	19,364 ft-lbs	3.9%	1	01-09-15
End Shear	862 lbs	7,232 lbs	11.9%	1	01-02-08
Total Load Defl.	L/999 (0.002")	n/a	n/a	4	01-09-15
Live Load Defl.	L/999 (0.001")	n/a	n/a	5	01-09-15
Max Defl.	0.002"	n/a	n/a	4	01-09-15
Span / Depth	3.4	n/a	n/a		00-00-00

Beari	ing Supports	Dim . (L x W)	Demand	De mand/ Resistance Support	Demand/ Resistance Member	Material
B0	Beam	2-5/8" x 1-3/4"	871 lbs	44.4%	15.5%	Unspecified
B1	Wall/Plate	3-1/2" x 1-3/4"	877 lbs	33.5%	11.7%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86. CONFORMS TO OBC 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are

trademarks of Boise Cascade Wood

Products L.L.C.

DWO NO . TAM S STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B7(i3850)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:42

BC CALC® Design Report

*

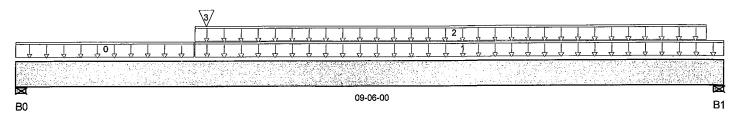
Build 5033 Job Name:

Address: City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R


File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B7(i3850)

Specifier: Designer:

Company:

Misc:

Total Horizontal Product Length = 09-06-00

Reaction Summary (Down / Uplift) (lbs)										
Be aring	Live	De ad	Snow	Wind						
B0, 4"	708/0	457/0								
B1.5-1/2"	285/0	216/0								

10	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
0	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	02-04-12	9	4	_		n/a
1	FC2 Floor Material	Unf. Lin. (lb/ft)	L	02-04-12	09-06-00	6	3			n/a
2	FC2 Floor Material	Unf. Lin. (lb/ft)	L	02-04-12	09-03-04	6	3			n/a
3	B10(i3965)	Conc. Pt. (lbs)	L	02-06-08	02-06-08	885	505			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	3,600 ft-lbs	38,727 ft-lbs	9.3%	1	02-06-08
End Shear	1,589 lbs	14,464 lbs	11%	1	01-03-14
Total Load Defl.	L/999 (0.029")	n/a	n/a	4	04-03-03
Live Load Defl.	L/999 (0.018")	n/a	n/a	5	04-03-03
Max Defl.	0.029"	n/a	n/a	4	04-03-03
Span / Depth	8.9	n/a	n/a		00-00-00

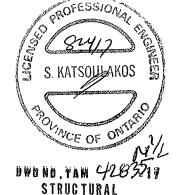
Beari	ing Supports	Dim . (L x W)	De man d	Resistance Support	Resistance Member	Material
B0	Wall/Plate	4" x 3-1/2"	1,634 lbs	27.3%	9.6%	Unspecified Unspecified
B1	Wall/Plate	5-1/2" x 3-1/2"	698 lbs	8.5%	3%	

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.


Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO OBC 2012

COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B7(i3850)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:42

Build 5033

Job Name:

Address:

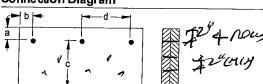
City, Province, Postal Code: WATERDOWN.

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\B7(i385(

Specifier:

Designer: Company:

Misc:

Connection Diagram

a minimum = 2" b minimum = 3"

c = 7-7/8"

Calculated Side Load = 206.2 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: Nails 3½" ARDOX SPIRAL

ner allessa, de mei a la constante de la const

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCR®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO . TAM Y

STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B9(i3839)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:42

BC CALC® Design Report

*

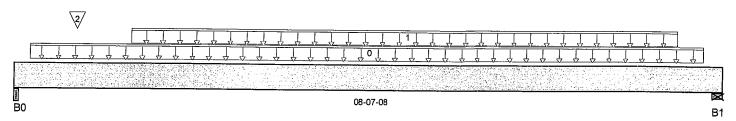
Build 5033

Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:


CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B9(i3839)

Specifier: Designer: Company:

Misc:

Total Horizontal Product Length = 08-07-08

Reaction Summary (Down / Uplift) (lbs)										
Bearing	Live	De ad	Snow	Wind						
B0, 4-1/2"	555/0	329/0								
B1, 5-1/2"	545/0	326/0								

	ad Summary g Description	Load Type	Re	f. Start	En d	Live 1.00	Dead 0.65	Snow 1.00	Wind 1.15	Trib.
0	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-02-04	08-04-12		4			n/a
1	Smoothed Load	Unf. Lin. (lb/ft)	L	01-05-00	08-01-00	134	68			n/a
2	J4(i3992)	Conc. Pt. (lbs)	L	00-09-00	00-09-00	125	62			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	2,502 ft-lbs	38,727 ft-lbs	6.5%	1	04-09-00
End Shear	1,088 lbs	14,464 lbs	7.5%	1	07-02-02
Total Load Defl.	L/999 (0.02")	n/a	n/a	4	04-03-00
Live Load Defl.	L/999 (0.013")	n/a	n/a	5	04-03-00
Max Defl.	0.02"	n/a	n/a	4	04-03-00
Span / Depth	8	n/a	n/a		00-00-00

Beari	ing Supports	Dim.(L x W)	Demand	De mand/ Resistance Support	Demand/ Resistance Member	Material
B0	Beam	4-1/2" x 3-1/2"	1,243 lbs	18.5%	6.5%	Unspecified
B1	Wall/Plate	5-1/2" x 3-1/2"	1,225 lbs	14.9%	5.2%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO DBG 2012

DWO NO. TAM \$283.
STRUCTURAL
COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B9(i3839)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:42

BC CALC® Design Report

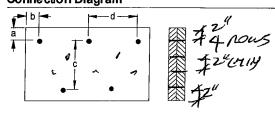
Build 5033

Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer: Code reports:

CCMC 12472-R


File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B9(i383)

Designer:

Company: Misc:

Connection Diagram

a minimum = 2" b minimum = 3"

c = 7-7/8" d = 64

Calculated Side Load = 251.6 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: ``.'

Nails

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®. BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

OLINCE OF ONTR

Page 2 of 2

STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B10(i3965)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:42

Build 5033

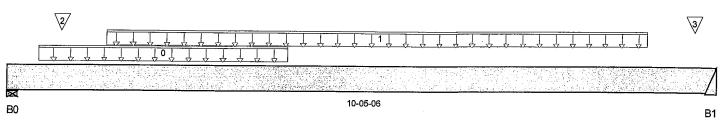
Job Name:

Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:


CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\810(i3965'

Specifier: Designer:

Company: Misc:

Total Horizontal Product Length = 10-05-06

Reaction Summary (Down / Uplift) (lbs)											
Be aring	Live	De ad	Snow	Wind	·						
B0, 5-1/2"	1,397 / 0	765/0	,								
B1	892/0	509/0									

Lo	ad Summary					Live	Dead	Snow	Wind	Trib.
Tag Description		Load Type Ref. Start End		En d	1.00	0.65	1.00 1.15			
0	Us er Load	Unf. Lin. (lb/ft)	L	00-05-08	04-01-08	240	120			n/a
1	Smoothed Load	Unf. Lin. (lb/ft)	L	01-05-08	09-05-08	141	71			n/a
2	J4(i3992)	Conc. Pt. (lbs)	L	00-09-08	00-09-08	131	66			n/a
3	J4 (i3985)	Conc. Pt. (lbs)	L	10-01-08	10-01-08	148	74			n/a

Demand/

Demand/

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	5,825 ft-lbs	38,727 ft-lbs	15%	1	04-09-08
End Shear	2,336 lbs	14,464 lbs	16.2%	1	01-05-06
Total Load Defl.	L/999 (0.075")	n/a	n/a	4	05-01-08
Live Load Defl.	L/999 (0.048")	n/a	n/a	5	05-01-08
Max Defl.	0.075"	n/a	n/a	4	05-01-08
Span / Depth	10.1	n/a	n/a		00-00-00

Bear	ing Supports	Dim. (L x W)	Demand	Resistance Support	Resistance Member	Material
B0	Wall/Piate	5-1/2" x 3-1/2"	3,053 lbs	37.1%	13%	Unspecified
B1	Hanger	2" x 3-1/2"	1,974 lbs	n/a	23.1%	HGUS410

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

CONFORMS TO OBC 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

DWG NO. TAM 1283917
STRUCTURAL
COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B10(i3965)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 29, 2017 17:27:42

Build 5033

Job Name:

Address:

City, Province, Postal Code: WATERDOWN,

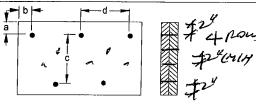
BC CALC® Design Report

Customer:

Code reports:

File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B10(i396


Specifier: Designer:

Company.

Misc:

CCMC 12472-R

Connection Diagram

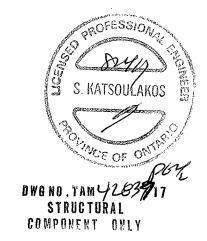
a minimum = 2"

c = 7-7/8"

b minimum = 3" d = 🗫

Calculated Side Load = 286.2 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.


Connectors are: 16d July Nails

312" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™. ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B14(i3723)

BC CALC® Design Report

Dry | 3 spans | Right cantilever | 0/12 slope (deg)

June 29, 2017 17:27:43

Build 5033

Job Name:

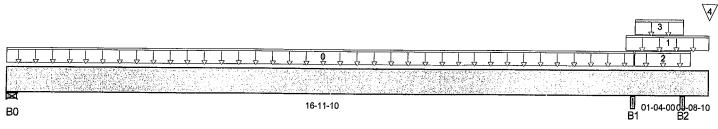
Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R


File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B14(i3723)

Specifier:

Designer: Company:

Misc:

Total Horizontal Product Length = 19-00-04

Reaction Summary (Down / Uplift) (ibs)								
Be aring	Live	Dead	Snow	Wind				
B0, 2-3/4"	265/0	212/0	0/0		***			
B1, 5-1/4"	1,469 / 0	1,217/0	58 / 0					
B2, 5-1/4"	130/916	0/481	152/0					

L.c	oad Summary					Live	Dead	Snow	Wind	Trib.
Ta	g Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
0	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	17-00-00	40	20			n/a
1	Us er Load	Unf. Lin. (lb/ft)	L	16-09-00	19-00-04	33	130	78		n/a
2	FC2 Floor Material	Unf. Lin. (lb/ft)	L	17-00-00	18-06-04	17	9			n/a
3	FC2 Floor Material	Unf. Lin. (lb/ft)	L	17-00-00	18-03-14	50	25			n/a
4	FC2 Floor Material	Conc. Pt. (lbs)	L	19-00-00	19-00-00	18	38	20		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location	
Pos. Moment	2,085 ft-lbs	38,727 ft-lbs	5.4%	27	06-08-01	
Neg. Moment	-3,280 ft-lbs	-38,727 ft-lbs	8.5%	39	16-11-10	
End Shear	540 lbs	14,464 lbs	3.7%	1	01-02-10	
Cont. Shear	2,254 lbs	14,464 lbs	15.6%	92	18-02-02	
Uplift	1,976 lbs	n/a	n/a	92	18-03-10	
Total Load Defl.	L/999 (0.06")	n/a	n/a	241	07-05-10	
Live Load Defl.	L/999 (0.034")	n/a	n/a	345	07-05-10	
Total Neg. Defl.	L/999 (-0")	n/a	n/a	241	17-06-08	
Max Defl.	0.06"	n/a	n/a	241	07-05-10	
Span / Depth	17	n/a	n/a		00-00-00	

Beari	ing Supports	Dim . (L x W)	Demand	De mand/ Resistance Support	Demand/ Resistance Member	Material
B0	Wall/Plate	2-3/4" x 3-1/2"	663 lbs	16.1%	5.6%	Unspecified
B1	Beam	5-1/4" x 3-1/2"	3,754 lbs	47.8%	16.7%	Unspecified
B2	Beam	5-1/4" x 3-1/2"	1,976 lbs	25.2%	8.8%	Unspecified

Cautions

Uplift of 1,976 lbs found at span 2 - Right. Uplift of 1,976 lbs found at span 3 - Left.

OWO NO. TAM 42048 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B14(i3723)

BC CALC® Design Report

Dry | 3 spans | Right cantilever | 0/12 slope (deg)

June 29, 2017 17:27:43

Build 5033

Job Name:

Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B14(i372

Specifier: Designer:

Company.

Misc:

Notes

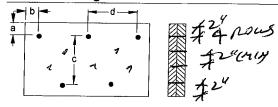
Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

CONFORMS TO OBC 2012


Unbalanced snow loads determined from building geometry were used in selected product's verification.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Cantilevers require sheathed bottom flanges, blocking at cantilever support and closure at ends.

Connection Diagram

a minimum = 2" b minimum = 3" c = 7-7/8" d = 2 4

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Member has no side loads.

Connectors are: 16d 🏗 🕝 Nails

3%" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

S. KATSOULAKOS STORY OF ONLINE OF ONLINE

DWO NO. TAM 42036; STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B15(i3712)

BC CALC® Design Report

Dry | 3 spans | Right cantilever | 0/12 slope (deg)

June 29, 2017 17:27:43

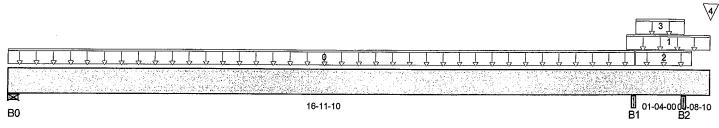
Build 5033

Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:


CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B15(i3712)

Specifier: Designer: Company.

Misc:

Total Horizontal Product Length = 19-00-04

Reaction Summary	Reaction Summary (Down / Uplift) (Ibs)							
Be aring	Live	De ad	Snow	Wind				
B0, 2-3/4"	265/0	212/0	0/0					
B1, 5-1/4"	1,458 / 0	1,216 / 0	59 / 0	•				
B2, 5-1/4"	112/928	0/502	144/0		×			

Load Summary Tag Description		,				Live	Dead	Snow	Wind	Trib.
		Load Type Ref.		f. Start End 1		1.00	0.65	1.00 1.15		
0	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	17-00-00	40	20			n/a
1	Us er Load	Unf. Lin. (lb/ft)	L	16-09-00	19-00-04	33	130	78		n/a
2	FC2 Floor Material	Unf. Lin. (lb/ft)	L	17-00-00	18-06-04	14	7			n/a
3	FC2 Floor Material	Unf. Lin. (lb/ft)	L	17-00-00	18-03-14	35	17			n/a
4	FC2 Floor Material	Conc. Pt. (lbs)	L	19-00-00	19-00-00	15	28	14		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	2,085 ft-lbs	38,727 ft-lbs	5.4%	27	06-08-01
Neg. Moment	-3,279 ft-lbs	-38,727 ft-lbs	8.5%	39	16-11-10
End Shear	540 lbs	14,464 lbs	3.7%	1	01-02-10
Cont. Shear	2,269 lbs	14,464 lbs	15.7%	92	18-02-02
Uplift	2,019 lbs	n/a	n/a	94	18-03-10
Total Load Defl.	L/999 (0.06")	n/a	n/a	241	07-05-10
Live Load Defl.	L/999 (0.034")	n/a	n/a	345	07-05-10
Total Neg. Defl.	L/999 (-0")	n/a	n/a	241	17-06-06
MaxDefl.	0.06"	n/a	n/a	241	07-05-10
Span / Depth	17	n/a	n/a		00-00-00

Bear	ing Supports	Dim.(LxW)	De man d	Resistance Support	Resistance Member	Material
B0	Wall/Plate	2-3/4" x 3-1/2"	663 lbs	16.1%	5.6%	Unspecified
B1	Beam	5-1/4" x 3-1/2"	3,737 lbs	47.6%	16.7%	Unspecified
B2	Beam	5-1/4" x 3-1/2"	2,019 lbs	25.7%	9%	Unspecified

Cautions

Uplift of 2,019 lbs found at span 2 - Right) - SIMPSON 1-TS22 @ 07-32)
Uplift of 2,019 lbs found at span 3 - Left.

DWO NO . TAM A CO STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B15(i3712)

BC CALC® Design Report

Dry | 3 spans | Right cantilever | 0/12 slope (deg)

June 29, 2017 17:27:43

Build 5033

Job Name:

Address:

City, Province, Postal Code: WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 3 EL-3 NEW.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B15(i37*

Specifier:

Designer: Company.

Misc:

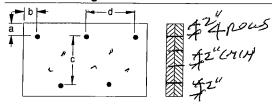
Notes

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86. GONFORMS TO OBC 2012


Unbalanced snow loads determined from building geometry were used in selected product's verification.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Cantilevers require sheathed bottom flanges, blocking at cantilever support and closure at ends.

Connection Diagram

a minimum = 2"

c = 7-7/8"

d = 269 b m inimum = 3"

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record. Member has no side loads.

Connectors are: 16d applica Nails

312" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

> NOE OF ONTER DWG ND . TAM G

STRUCTURAL COMPONENT ONLY

Live Load = 40 psf, Dead Load = 15 psf Simple Spans, L/480 Deflection Limit 3/4" OSB G&N Sheathing

			В	are		L	1/2" Gyr	sum Ceiling	
Depth	Series		On Cent	re Spacing			On Cen	tre Spacing	
		12"	16"	19.2"	24"	12"	16"	/ 19.2"	24"
	NI-20	15'-10"	15'-0"	14'-5"	13'-5"	16'-4"	15'-5"	14'-6"	13'-5"
	N1-40x	17'-0"	16'-0"	15'-5"	14'-9"	17'-5"	16'-5"	15'-10"	15'-2"
9-1/2"	NI-60	17'-2"	16'-2"	15'-7"	14'-11"	17'-6"	16'-7"	15'-11"	15'-3"
	NI-70	18'-0"	16'-11"	16'-3"	15'-7"	18'-5"	17'-3"	16'-7"	15'-11"
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'-5"	16'-9"	16'-1"
	NI-20	17'-10"	16'-10"	16'-2"	15'-6"	18'-6"	17'-4"	16'-9"	16'-1"
	NI-40x	19'-4"	17'-11"	17'-3"	16'-6"	19'-11"	18'-6"	17'-9"	17'-0"
44.7/01	N1-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18'-9"	17'-11"	17'-2"
11-7/8"	NI-70	20 '- 9"	19'-2"	18'-3"	17'-5"	21'-4"	19'-9"	18'-10"	17'-10"
	N1-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"
	NI-90x	21'-8"	20'-0"	19'-1"	18'-0"	22'-2"	20'-6"	19'-6"	18'-6"
	NI-40x	21'-5"	19'-10"	18'-11"	17'-11"	22'-1"	20'-6"	19'-7"	18'-7"
	NI-60	21'-10"	20'-2"	19'-3"	18'-2"	22'-5"	20'-10"	19'-11"	18'-10"
14"	NI-70	23'-0"	21'-3"	20'-3"	19'-2"	23'-8"	21'-11"	20'-10"	19'-9"
	NI-80	23'-5"	21'-7"	20'-7"	19'-5"	24'-0"	22'-3"	21'-2"	20'-0"
	NI-90x	24'-1"	22'-3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"
	NI-60	23'-9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"
16"	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25 '- 9"	23'-10"	22'-9"	21'-6"
70	NI-80	25'-6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23'-1"	21'-10"
	NI-90x	26'-4"	24'-3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22'-5"

			Mid-Spa	n Blocking		Mid-9	pan Blocking ar	nd 1/2" Gypsum	Ceiling
Depth	Series	-	On Cent	re Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	16'-10"	15'-5"	14'-6"	13'-5"	16'-10"	15'-5"	14'-6"	13'-5"
	NI-40x	18'-8"	17'-2"	16'-3"	15 '- 2"	18'-10"	17'-2"	16'-3"	15'-2"
9-1/2"	NI-60	18'-11"	17'-6"	16 ' -6"	15'-5"	19'-2"	17'-6"	16'-6"	15'-5"
	NI-70	20'-0"	18'-7"	17'-9"	16'-7"	20'-5"	18'-11"	17'-10"	16'-7"
	NI-80	20'-3"	18'-10"	17'-11"	16'-10"	20'-8"	19'-3"	18'-2"	16'-10"
	NI-20	20'-1"	18'-5"	17'-5"	16'-2"	20'-1"	18'-5"	17'-5"	16'-2"
	NI-40x	21'-10"	20'-4"	19'-4"	17'-8"	22'-5"	20'-6"	19'-4"	17'-8"
44 7/08	NI-60	22'-1"	20'-7"	19'-7"	18'-4"	22'-8"	20'-10"	19'-8"	18'-4"
11-7/8"	NI-70	23'-4"	21'-8"	20'-8"	19'-7"	23'-10"	22'-3"	21'-2"	19'-9"
	NI-80	23'-7"	21'-11"	20'-11"	19'-9"	24'-1"	22'-6"	21'-5"	20'-0"
	NI-90x	24'-3"	22'-6"	21'-6"	20'-4"	24'-8"	23'-0"	22'-0"	20'-9"
	NI-40x	24'-5"	22'-9"	21'-8"	19'-5"	25'-1"	23'-2"	21'-9"	19'-5"
	NI-60	24'-10"	23'-1"	22'-0"	20'-10"	25'-6"	23'-8"	22'-4"	20'-10"
14"	NI-70	26'-1"	24'-3"	23'-2"	21'-10"	26'-8"	24'-11"	23'-9"	22'-4"
	NI-80	26'-6"	24'-7"	23'-5"	22'-2"	27'-1"	25' - 3"	24'-1"	22'-9"
	NI-90x	27'-3"	25'-4"	24'-1"	22'-9"	27'-9"	25'-11"	24'-8"	23'-4"
***********	NI-60	27'-3"	25'-5"	24'-2"	22'-10"	28'-0"	26'-2"	24'-9"	23'-1"
16"	NI-70	28'-8"	26'-8"	25'-4"	23'-11"	29'-3"	27'-4"	26' -1"	24 '- 8"
10	NI-80 .	29'-1"	27'-0"	25'-9"	24'-4"	29'-8"	27'-9"	26'-5"	25'-0"
	NI-90x	29'-11"	27'-10"	26'-6"	25'-0"	30'-6"	28'-5"	27'-2"	25'-8"

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.
 Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Live Load = 40 psf, Dead Load = 15 psf Simple Spans, L/480 Deflection Limit 5/8" OSB G&N Sheathing

			В	are			1/2" Gyp	sum Ceiling	
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-1"	14'-2"	13'-9"	N/A	15'-7"	14'-8"	14'-2"	N/A
	NI-40x	16'-1"	15'-2"	14'-8"	N/A	16'-7"	15'-7"	15'-1"	N/A
9-1/2"	NI-60	16'-3"	15'-4"	14'-10"	N/A	16'-8"	15'-9"	15'-3"	N/A
	NI-70	17'-1"	16'-1"	15'-6"	N/A	17'-5"	16'-5"	15'-10"	N/A
	NI-80	17'-3"	16'-3"	15'-8"	N/A	17'-8"	16'-7"	16'-0"	N/A
	NI-20	16'-11"	16'-0"	15'-5"	N/A	17'-6"	16'-6"	16'-0"	N/A
	NI-40x	18'-1"	17'-0"	16'-5"	N/A	18'-9"	17'-6"	16'-11"	N/A
11-7/8"	NI-60	18'-4"	17'-3"	16'-7"	N/A	19'-0"	17'-8"	17'-1"	N/A
11-7/6	NI-70	19'-6"	18'-0"	17'-4"	N/A	20'-1"	18'-7"	17'-9"	N/A
	NI-80	19'-9"	18'-3"	17'-6"	N/A	20'-4"	18'-10"	17'-11"	N/A
	NI-90x	20'-4"	18'-9"	17'-11"	N/A	20'-10"	19'-3"	18'-5"	N/A
	NI-40x	20'-1"	18'-7"	17'-10"	N/A	20'-10"	19'-4"	18'-6"	N/A
	NI-60	20'-5"	18'-11"	18'-1"	N/A	21'-2"	19'-7"	18'-9"	N/A
14"	NI-70	21'-7"	20'-0"	19' - 1"	N/A	22'-3"	20'-7"	19' - 8"	N/A
	NI-80	21'-11"	20'-3"	19 '- 4"	N/A	22'-7"	20'-11"	20'-0"	N/A
	NI-90x	22'-7"	20'-11"	19'-11"	N/A	23'-3"	21'-6"	20'-6"	N/A
	NI-60	22'-3"	20'-8"	19'-9"	N/A	23'-1"	21'-5"	20'-6"	N/A
16"	NI-70	23'-6"	21'-9"	20'-9"	N/A	24'-3"	22'-5"	21'-5"	N/A
10	NI-80	23'-11"	22'-1"	21'-1"	N/A	24'-8"	22'-10"	21'-9"	N/A
	NI-90x	24'-8"	22'-9"	21'-9"	N/A	25'-4"	23'-5"	22'-4"	N/A

			Mid-Spa	n Blocking		Mid-S	Span Blocking a	nd 1/2" Gypsum	Ceiling
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
-	NI-20	16'-8"	15'-3"	14'-5"	N/A	16'-8"	15'-3"	14'-5"	N/A
	NI-40x	17'-11"	16'-11"	16'-1"	N/A	18'-5"	17'-1"	16'-1"	N/A
9-1/2"	NI-60	18'-2"	17'-1"	16'-4"	N/A	18'-7"	17'-4"	16'-4"	N/A
	NI-70	19'-2"	17'-10"	17'-2"	N/A	19'-7"	18'-3"	17'-7"	N/A
	NI-80	19 '- 5"	18'-0"	17'-4"	N/A	19'-10"	18'-5"	17'-8"	N/A
	NI-20	19'-6"	18'-1"	17'-3"	N/A	19'-11"	18'-3"	17'-3"	N/A
	NI-40x	21'-0"	19'-6"	18'-8"	N/A	21'-7"	20'-2"	19'-2"	N/A
11-7/8"	NI-60	21'-4"	19'-9"	18'-11"	N/A	21'-11"	20'-4"	19'-6"	N/A
11-//0	NI-70	22'-6"	20'-10"	19'-11"	N/A	23'-0"	21'-5"	20'-5"	N/A
	N1-80	22' -9 "	21'-1"	20'-1"	N/A	23'-3"	21'-7"	20'-8"	N/A
	NI-90x	23'-4"	21'-8"	20'-8"	N/A	23'-10"	22'-2"	21'-2"	N/A
	NI-40x	23'-7"	21'-11"	20'-11"	N/A	24'-3"	22'-7"	21'-7"	N/A
	NI-60	24'-0"	22'-3"	21'-3"	N/A	24'-8"	22'-11"	21'-11"	N/A
14"	NI-70	25'-3"	23'-4"	22'-3"	N/A	25'-10"	24'-0"	22'-11"	N/A
	NI-80	25' - 7"	23'-8"	22'-7"	N/A	26'-2"	24'-4"	23'-2"	N/A
	NI-90x	26'-4"	24' - 4"	23'-3"	N/A	26'-10"	24'-11"	23'-9"	N/A
	NI-60	26'-5"	24'-6"	23'-4"	N/A	27'-2"	25'-3"	24'-2"	N/A
16"	NI-70	27'-9"	25' - 8"	24'-6"	N/A	28'-5"	26'-5"	25'-2"	N/A
10	NI-80	28'-2"	26'-1"	24'-10"	N/A	28'-10"	26'-9"	25'-6"	N/A
	NI-90x	29'-0"	26'-10"	25'-7"	N/A	29'-7"	27'-5"	26'-2"	N/A

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Live Load = 40 psf, Dead Load = 30 psf Simple Spans, L/480 Deflection Limit 5/8" OSB G&N Sheathing

			В	are			1/2" Gyp	sum Ceiling	
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-1"	14'-1"	13'-3"	N/A	15'-7"	14'-1"	13'-3"	N/A
	NI-40x	16'-1"	15'-2"	14'-8"	N/A	16'-7"	15'-7"	15'-1"	N/A
9-1/2"	NI-60	16'-3"	15'-4"	14'-10"	N/A	16'-8"	15'-9"	15'-3"	N/A
	NI-70	17'-1"	16'-1"	15'-6"	N/A	17'-5"	16'-5"	15'-10"	N/A
	NI-80	17'-3"	16'-3"	15'-8"	N/A	17'-8"	16'-7"	16'-0"	N/A
	NI-20	16'-11"	16'-0"	15'-5"	N/A	17'-6"	16'-6"	16'-0"	N/A
	NI-40x	18'-1"	17'-0"	16'-5"	N/A	18'-9"	17'-6"	16'-11"	N/A
11-7/8"	NI-60	18'-4"	17'-3"	16'-7"	N/A	19'-0"	17'-8"	17'-1"	N/A
11-7/0	NI-70	19'-6"	18'-0"	17'-4"	N/A	20'-1"	18'-7"	17' - 9"	N/A
	NI-80	19'-9"	18'-3"	17'-6"	N/A	20'-4"	18'-10"	17'-11"	N/A
	NI-90x	20'-4"	18'-9"	17'-11"	N/A	20'-10"	19'-3"	18'-5"	N/A
	NI-40x	20'-1"	18'-7"	17'-10"	N/A	20'-10"	19'-4"	18'-6"	N/A
	NI-60	20' - 5"	18'-11"	18'-1"	N/A	21'-2"	19'-7"	18'-9"	N/A
14"	NI-70	21'-7"	20'-0"	19'-1"	N/A	22'-3"	20'-7"	19'-8"	N/A
	NI-80	21'-11"	20'-3"	19' - 4"	N/A	22'-7"	20'-11"	20'-0"	N/A
	NI-90x	22'-7"	20'-11"	19'-11"	N/A	23'-3"	21'-6"	20 '-6"	N/A
	NI-60	22'-3"	20'-8"	19'-9"	N/A	23'-1"	21'-5"	20'-6"	N/A
16"	NI-70	23'-6"	21'-9"	20'-9"	N/A	24'-3"	22'-5"	21'-5"	N/A
10	NI-80	23'-11"	22'-1"	21'-1"	N/A	24'-8"	22'-10"	21'-9"	N/A
	NI-90x	24'-8"	22'-9"	21'-9"	N/A	25'-4"	23'-5"	22'-4"	N/A

			Mid-Spa	n Blocking		Mid-S	Span Blocking ar	nd 1/2" Gypsum	Ceiling
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-1"	13'-3"	N/A	15'-7"	14'-1"	13'-3"	N/A
	NI-40x	17'-9"	16'-1"	15'-1"	N/A	17'-9"	16'-1"	15' - 1"	N/A
9-1/2"	NI-60	18'-1"	16'-4"	15'-4"	N/A	18'-1"	16'-4"	15'-4"	N/A
	NI-70	19'-2"	17'-10"	16'-9"	N/A	19'-7"	17'-10"	16'-9"	N/A
	NI-80	19'-5"	18'-0"	17'-1"	N/A	19'-10"	18'-3"	17'-1"	N/A
	NI-20	18'-9"	17'-0"	16'-0"	N/A	18'-9"	17'-0"	16'-0"	N/A
	NI-40x	21'-0"	19'-3"	17'-9"	N/A	21'-3"	19'-3"	17'-9"	N/A
11-7/8"	NI-60	21'-4"	19'-8"	18'-5"	N/A	21'-8"	19'-8"	18'-5"	N/A
11-//0	NI-70	22'-6"	20'-10"	19'-11"	N/A	23'-0"	21'-4"	20'-0"	N/A
	NI-80	22'-9"	21'-1"	20'-1"	N/A	23'-3"	21'-7"	20'-5"	N/A
	NI-90x	23'-4"	21'-8"	20'-8"	N/A	23'-10"	22'-2"	21'-2"	N/A
	NI-40x	23'-7"	21'-5"	19'-6"	N/A	24'-1"	21'-5"	19'-6"	N/A
	NI-60	24'-0"	22' - 3"	21'-0"	N/A	24'-8"	22 '- 5"	21'-0"	N/A
14"	NI-70	25'-3"	23'-4"	22'-3"	N/A	25'-10"	24'-0"	22'-9"	N/A
	NI-80	25'-7"	23'-8"	22'-7"	N/A	26'-2"	24'-4"	23'-2"	N/A
	NI-90x	26'-4"	24'-4"	23'-3"	N/A	26'-10"	24'-11"	23 '- 9"	N/A
	NI-60	26'-5"	24'-6"	23'-4"	N/A	27'-2"	24'-10"	23'-4"	N/A
16"	NI-70	27'-9"	25' - 8"	24'-6"	N/A	28'-5"	26'-5"	25'-2"	N/A
10	NI-80	28'-2"	26'-1"	24'-10"	N/A	28'-10"	26'-9"	25 '- 6"	N/A
	NI-90x	29'-0"	26'-10"	25'-7"	N/A	29'-7"	27'-5"	26'-2"	N/A

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 30 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.
 Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Live Load = 40 psf, Dead Load = 30 psf Simple Spans, L/480 Deflection Limit 3/4" OSB G&N Sheathing

			В	are			1/2" Gyp	sum Ceiling	
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-2"	13'-4"	12'-4"	15'-7"	14'-2"	13'-4"	12'-4"
	NI-40x	17'-0"	16'-0"	15'-1"	13'-11"	17'-5"	16'-1"	15'-1"	13'-11"
9-1/2"	NI-60	17'-2"	16'-2"	15'-5"	14'-3"	17'-6"	16'-5"	15'-5"	14'-3"
	NI-70	18'-0"	16'-11"	16'-3"	15'-6"	18'-5"	17'-3"	16'-7"	15'-6"
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'-5"	16'-9"	15'-10"
	NI-20	17'-10"	16'-10"	16'-0"	14'-10"	18'-6"	17'-1"	16'-0"	14'-10"
	NI-40x	19 '- 4"	17'-11"	17'-3"	15'-10"	19'-11"	18'-6"	17'-9"	15'-10"
11-7/8"	NI-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18 '- 9"	17'-11"	17'-1"
11-7/0	NI-70	20'-9"	19'-2"	18'-3"	17'-5"	21'-4"	19'-9"	18'-10"	17'-10"
	NI-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"
	NI-90x	21'-8"	20'-0"	19'-1"	18'-0"	22'-2"	20'-6"	19'-6"	18'-6"
	NI-40x	21'-5"	19'-10"	18'-11"	17' - 5"	22'-1"	20'-6"	19'-6"	17'-5"
	NI-60	21'-10"	20'-2"	19'-3"	18'-2"	22'-5"	20'-10"	19'-11"	18'-10"
14"	NI-70	23'-0"	21' - 3"	20'-3"	19' - 2"	23'-8"	21'-11"	20'-10"	19' - 9"
	NI-80	23'-5"	21'-7"	20'-7"	19' - 5"	24'-0"	22'-3"	21'-2"	20'-0"
	NI-90x	24'-1"	22'-3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"
	NI-60	23 '- 9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"
16"	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25'-9"	23'-10"	22' - 9"	21'-6"
10	NI-80	25'-6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23 '-1 "	21'-10"
	NI-90x	26'-4"	24'-3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22'-5"

			Mid-Spa	n Blocking		Mid-S	pan Blocking ar	nd 1/2" Gypsum	Ceiling
Depth	Series		On Cent	re Spacing		i i	On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-2"	13'-4"	12'-4"	15'-7"	14'-2"	13'-4"	12'-4"
	NI-40x	17'-9"	16'-1"	15'-1"	13'-11"	17'-9"	16'-1"	15'-1"	13'-11"
9-1/2"	NI-60	18'-1"	16'-5"	15'-5"	14'-3"	18'-1"	16'-5"	15'-5"	14'-3"
	NI-70	19'-10"	17'-11"	16'-9"	15'-6"	19'-10"	17'-11"	16'-9"	15'-6"
	NI-80	20'-2"	18'-3"	17'-1"	15'-10"	20'-2"	18'-3"	17'-1"	15'-10"
	NI-20	18'-10"	17'-1"	16'-0"	14'-10"	18'-10"	17'-1"	16'-0"	14'-10"
	NI-40x	21'-3"	19'-3"	17'-9"	15'-10"	21'-3"	19'-3"	17'-9"	15'-10"
44 7/01	NI-60	21'-9"	19'-8"	18'-5"	17'-1"	21'-9"	19'-8"	18'-5"	17'-1"
11-7/8"	NI-70	23'-4"	21'-5"	20'-1"	18'-6"	23'-8"	21'-5"	20'-1"	18'-6"
	NI-80	23'-7"	21'-10"	20 '- 5"	18'-11"	24'-1"	21'-10"	20'-5"	18'-11"
	NI-90x	24'-3"	22'-6"	21'-3"	19'-7"	24'-8"	22'-7"	21'-3"	19'-7"
	NI-40x	24'-2"	21'-5"	19'-6"	17'-5"	24'-2"	21'-5"	19'-6"	17'-5"
	NI-60	24'-9"	22' - 5"	21'-0"	19'-6"	24'-9"	22'-5"	21'-0"	19'-6"
14"	NI-70	26'-1"	24'-3"	22'-9"	21'-0"	26'-8"	24'-3"	22'-9"	21'-0"
	NI-80	26'-6"	24'-7"	23'-3"	21'-6"	27'-1"	24'-10"	23'-3"	21'-6"
	NI-90x	27'-3"	25'-4"	24'-1"	22'-4"	27'-9"	25'-10"	24'-3"	22'-4"
	NI-60	27'-3"	24'-11"	23'-5"	21'-7"	27'-6"	24'-11"	23'-5"	21'-7"
4.611	NI-70	28'-8"	26'-8"	25'-3"	23'-4"	29'-3"	26'-11"	25'-3"	23'-4"
16"	NI-80	29'-1"	27'-0"	25'-9"	23'-10"	29'-8"	27'-6"	25'-10"	23'-10"
	NI-90x	29'-11"	27'-10"	26'-6"	24'-10"	30'-6"	28'-5"	26'-11"	24'-10"

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 30 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

- Avoid Accidents by Following these Important Guidelines: 1. Brace and nail each I-joist as it is installed, using hangers, blocking panek, rim blocking will be required at the interior support. board, and/or cross-bridging at joist ends. When I-joists are applied continuous over interior supports and a load-bearing wall is planned at that location,
- 2. When the building is completed, the floor sheathing will provide lateral to prevent l-joist rollover or buckling. temporary bracing, often called struts, or temporary sheathing must be applied support for the top flanges of the I-joists. Until this sheathing is applied

braced, or serious injuuntil fully fastened and

ries can result.

Do not walk on I-joists

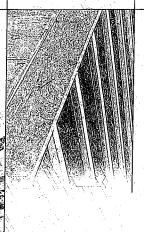
- Temporary bracing or struts must be 1x4 inch minimum, at least 8 feet long and spaced no more than 8 feet on centre, and must be secured with a bracing over at least two I-joists. the bracing to a lateral restraint at the end of each bay. Lap ends of adjoining minimum of two 2-1/2" nails fastened to the top surface of each I-joist. Nail
- Or, sheathing (temporary or permanent) can be nailed to the top flange of the first 4 feet of I-joists at the end of the bay.
- 3. For cantilevered I-joists, brace top and bottom flanges, and brace ends with closure panels, rim board, or cross-bridging.
- 4. Install and fully nail permanent sheathing to each I-joist before placing loads on the floor system. Then, stack building materials over beams or walls only.

concentrated loads from building materials.

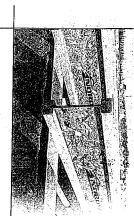
Once sheathed, do not over-stress I-joist with

unsheathed I-joists.

materials over


Never stack building

Improper storage or installation, failure to follow applicable building codes, failure to follow span ratings for Nordic I-joists, failure to follow allowable hole sizes and locations, or failure to use web stiffeners when required can result in serious accidents. Follow these installation guidelines carefully.


5. Never install a damaged I-joist.

ENGINEERED WOOD

ASTALIATION GUIDE FOR RESIDENTIAL FLOORS

Distributed by:

STORAGE AND HANDLING GUIDELINES

- Bundle wrap can be slippery when wet. Avoid walking on wrapped
- 2. Store, stack, and handle Ljoists vertically and level only.
- 4. Do not store I-joists in direct contact with the ground and/or flatwise

Always stack and handle Lioists in the upright position only.

- 5. Protect I-joists from weather, and use spacers to separate bundles
- 6. Bundled units should be kept intact until time of installation.
- 7. When handling Lipoists with a crane on the job site, take a few to your work crew. simple precautions to prevent damage to the I-joists and injury
- Pick I-joists in bundles as shipped by the supplier.
- Orient the bundles so that the webs of the I-joists are vertical.
- Pick the bundles at the 5th points, using a spreader bar if necessary
- 9. NEVER USE OR TRY TO REPAIR A DAMAGED I-JOIST 8. Do not handle Ljoists in a horizontal orientation.

MAXIMUM FLOOR SPANS

- . Maximum clear spans applicable to simple-span or limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration and a live load deflection limit of L/480. or more of the adjacent span. For multiple-span applications, the end spans shall be 40% live load of 40 psf and dead load of 15 psf. The ultimate multiple-span residential floor construction with a design
- 2. Spans are based on a composite floor with glued-nailed of gypsum and/or a row of blocking at mid-span. Standard. No concrete topping or bridging element was thickness of 5/8 inch for a joist spacing of 19.2 inches or less, or 3/4 inch for joist spacing of 24 inches. Adhesive shall meet the requirements given in CGBS-71.26 assumed. Increased spans may be achieved with the used oriented strand board (OSB) sheathing with a minimum
- Minimum bearing length shall be 1-3/4 inches for the end bearings, and 3-1/2 inches for the intermediate bearings.
- Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as
- 5. This span chart is based on uniform loads. For applications be required based on the use of the design properties. with other than uniform loads, an engineering analysis may
- 6. Tables are based on Limit States Design per CAN/CSA O86-09 Standard, and NBC 2010.
- 7. SI units conversion: 1 inch = 25.4 mm

SIMPLE AND MULTIPLE SPANS MAXIMUM FLOOR SPANS FOR NORDIC I-JOISTS

Depth Series On centre spacing On centre spacing 12" 16" 19.2 24" 12" 16" 19.2* 18-00 15-11 14.2 13.5 13.5 15.5	Joist	Joist		Simple	e spans			Multip	le spans
12" 16" 19.2 24" 12" 16" 18.2 18" 18" 18" 18" 18" 18" 18" 18" 18" 18"	Depth	Series		On centr	e spacing			On cent	re spacine
19-11 14-2 13-5 13-3 16-3		CONTRACTOR CONTRACTOR	12"	16"	19.2	24"	12"	16 ⁿ	19.2"
15.3 15.4 14.10 3.11 1777 16.7 1778 1779 16.7 1779 16.7 1779 16.7 1779			252	143	13:9"	13.5	6.9	15.4	01-80
17-11 16-14 15-5 16-7 16-7 17-4 16-7			16:31	151.	14:10	14-11	7.7	1000	0.00
10.73 1163 1550 1670 1770 1770 1770 1770 1770 1770 177				16:11	15-6	15.75			
18 19 11 16 00 15 57 15 50 15 50 16		NEGO	173	163	15'8"	15.9			
18.1 17.0 16.5 260 260 18.8 18.3 18.5 260 260 260 260 260 260 260 260 260 260		10.25 IN	161291E	ALON E		150		10 M	TIPOTAN
18-4 17-3 18-7 17-5 20-3 18-8 18-9 18-9 18-9 18-9 18-9 18-9 18-9									16.8
19-6 18-6 19-4 17-5 21-5 19-6 19-6 19-6 19-6 19-6 19-6 19-6 19-6				17.7		0.0			
1979 1833 1970 215 207 207 207 207 207 207 207 207 207 207			10.			0.7			010
20.2 18.7 17210 17219 22.5 20.7 20.4 18.9 17211 18.9 22.5 20.9 20.5 18.1 18.2 17211 18.9 22.5 20.9 20.5 18.1 18.2 17211 18.9 22.5 20.9 20.5 18.1 18.2 17211 18.1 22.5 20.9 20.5 18.1 18.1 18.1 18.2 22.7 20.9 20.6 18.1 18.1 18.2 22.7 20.9 20.7 20.8 18.4 18.2 22.7 20.9 20.8 18.2 18.2 18.3 24.5 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22						Š			
2014 185 1741 184 225 206 2014 185 1741 184 225 206 2015 184 1741 184 225 206 217.5 284 184 184 185 227 228 218.5 284 185 285 227 228 227.5 208 184 185 285 227 228 227.5 208 184 185 285 228 227.5 208 185 185 285 285 285 285 285 285 285 285 285 2		Ų.		0.0	14.0			20.7	
2011 184 117.10 17.117 22.2 20.4 20.5 184 17.10 17.10 17.117 22.2 20.4 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5			12014	10.7				20.7	
2015 (81) (82) (82) (27) (20) (21) (21) (22) (22) (23) (23) (23) (23) (23) (23		NAME OF STREET	N. W. Inches	TOLY				202	27-10
29.77 20.00 10.41 10.22 23.10 22.41			50.5						
21:11 203 194 185 243 223 225 225 225 225 225 225 225 225 22			5117		10-1			2021	200
22.5 20.8 19.7 27.70 27.				300			20-10	22	271
22-27 20-31 - 19-21 - 20-30				200				K	21.5
22.5 20.6 19.5 19.5 24.7 22.5 22.5 22.5 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6		No card	22.7	2011	1911				K
23.14 21.15		100 m	22.3	20-8	19:9	19.10	24.7	20.00	
21(2) 22(1) 21(1) 21(2) 21(2) 21(2) 21(3) 21(3) 21(3) 21(3) 21(3) 21(3) 21(3) 21(3) 21(3) 21(3) 21(3) 21(3) 21			23'-6"	21:9	20.9	20.10	28.0	570.	
24'5" 22'8" 21'5" 21'5" 21'6" 3'YST II 3'KST II	6	New	23-11	22'1	2111	2710	285		
		NESOTA S	24'5"	22.6	2115	21.6	200		

CCMC EVALUATION REPORT 13032-R

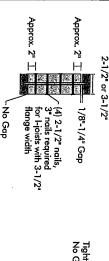
NORDIC I-JOIST SERIES

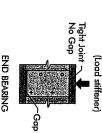
I-JOIST HANGERS

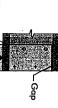
- 1. Hangers shown illustrate the three to support I-joists. most commonly used metal hangers
- 2. All nailing must meet the hanger manutacturer's recommendations.
- Hangers should be selected based on the joist depth, flange width maximum spans. and load capacity based on the
- Web stiffeners are required when the sides of the hangers do not laterally brace the top flange of the I-joist.

Face Mount

WEB STIFFENERS


RECOMMENDATIONS:


- Construction Guide (C101). The gap between the stiffener and the flange is at the top. engineered applications with factored A bearing stiffener is required in all -joist properties table found of the I-joist reactions greater than shown in the
- stiffener and flange is at the top. support, the top flange. The gap between the sides of the hanger do not extend up to, and the I-joist is supported in a hanger and the A bearing stiffener is required when
- A load stiffener is required at locations and the flange is at the bottom. by the code. The gap between the stiffener adjusted for other load durations as permitted standard term load duration, and may be tip and the support. These values are for cantilever, anywhere between the cantilever between supports, or in the case of a than 2,370 lbs is applied to the top flange where a factored concentrated load greater
- SI units conversion: 1 inch = 25.4 mm


WEB STIFFENER INSTALLATION DETAILS

Flange width

CONCENTRATED LOAD

Web Stiffener Size Each Side of Web 1-1/2" x 2-5/16" minimum width Tight Join

STIFFENER SIZE REQUIREMENTS

Flange Width 2-1/2

1" x 2-5/16" minimum width

See table below for web stiffener size requirements

S-P-F No.2 1950f MSR 33 pieces per unit

2100f MSR 33 pieces per unit

1950f MSR 23 pieces per unit

2100f MSR 23 pieces per unit

2400f MSR 23 pieces per unit

NPG Lumber 23 pieces per unit

(Bearing stiffener)

finished product, reflects our commitment to quality. manufacturing process. Every phase of the operation, from forest to the products to adhere to strict quality control procedures throughout the Chantiers Chibougamau Ltd. harvests its own trees, which enables Northic

longer span carrying capacity lumber in their flanges, ensuring consistent quality, superior strength, time. Nordic Engineered Wood I-joists use only finger-jointed black spruce

INSTALLING NORDIC I-JOISTS

- 1. Before laying out floor system components, verify that I-joist flange widths match hanger widths. If not, contact your
- 2. Except for cutting to length, I-joist flanges should never be cut, drilled, or notched.
- 3. Install 1-joists so that top and bottom flanges are within 1/2 inch of true vertical alignment
- 4. I-joists must be anchored securely to supports before floor sheathing is attached, and supports for multiples
- 5. Minimum bearing lengths: 1-3/4 inches for end bearings and 3-1/2 inches for intermediate bearings 10イラーロギーイ
- 6. When using hangers, seat I-joists firmly in hanger bottoms to minimize settlement
- 7. Leave a 1/16-inch gap between the I-joist end and a header.
- 8. Concentrated loads greater than those that can normally be expected in residential construction should only be applied to concentrated loads from the top of the I-joist. Or, attach the load to blocking that has been securely fastened to the the top surface of the top flange. Normal concentrated loads include track lighting fixtures, audio equipment and security cameras. Never suspend unusual or heavy loads from the Ljoist's bottom flange. Whenever possible, suspend all
- 9. Never install I-joists where they will be permanently exposed to weather, or where they will remain in direct contact with concrete or masonry.
- 10. Restrain ends of floor joists to prevent rollover. Use rim board, rim joists or I-joist blocking panels.
- 11. For I-joists installed over and beneath bearing walls, use full depth blocking panels, rim board, or squash blocks (cripple members) to transfer gravity loads through the floor system to the wall or foundation below
- 12. Due to shrinkage, common framing lumber set on edge **may never** be used as blocking or rim boards. I-joist blocking i-joist-compatible depth selected. panels or other engineered wood products — such as rim board — must be cut to fit between the I-joists, and an
- 13. Provide permanent lateral support of the bottom flange of all I-joists at interior supports of multiple-span joists. Similarly, support the bottom flange of all cantilevered I-joists at the end support next to the cantilever extension. In the completed structure, the gypsum wallboard ceiling provides this lateral support. Until the final finished ceiling is applied, temporary bracing or struts must be used
- 14. If square-edge panels are used, edges must be supported between 1-joists with 2x4 blocking. Glue panels to blocking to minimize squeaks. Blocking is not required under structural finish flooring, such as wood strip flooring, or if a separate underfayment layer is installed
- 15. Nail spacing: Space nails installed to the flange's top face in accordance with the applicable building code requirements or approved building plans.

(a

panel NI blocking

(

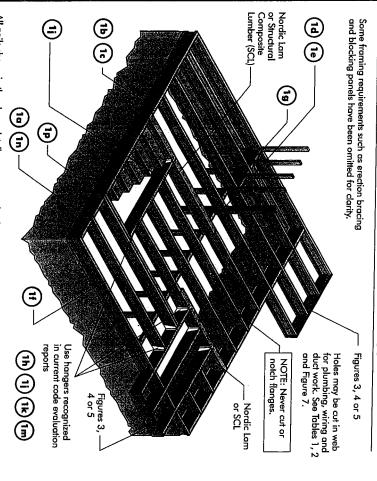
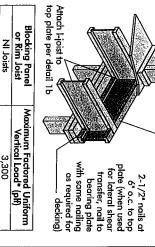
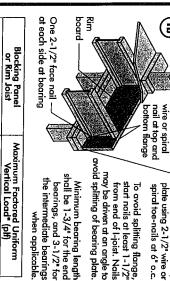

One 2-1/2"

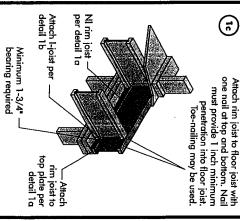
plate using 2-1/2" wire or

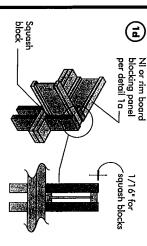

Attach rim board to top


FIGURE 1

TYPICAL NORDIC I-JOIST FLOOR FRAMING AND CONSTRUCTION DETAILS

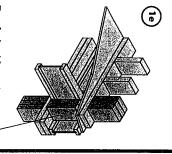
All nails shown in the above details are assumed to be common wire nails unless otherwise noted. 3" (0.122" dia.) common spiral nails may be substituted for 2-1/2" (0.128" dia.) common wire nails. Framing lumber assumed to be Spruce-Pine-Fir No. 2 or better. Individual components not shown to scale for clarity.

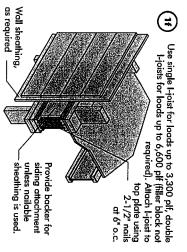




rafter. For concentrated vertical load transfer see detail 1d	used in the design of a bending member, such as joist, header, or	or less and is based on standard term load duration. It shall not be	*The uniform vertical load is limited to a rim board depth of 16 inches
---	---	--	---

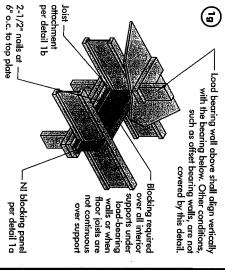
1-1/8" Rim Board Plus

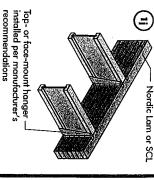

8,090



6,600	4,300	1-1/8" Rim Board Plus
8,500	5,500	2x Lumber
5-1/2" wide	3-1/2" wide	
Maximum Factored Vertical per Pair of Squash Blocks (lbs)	Maximum Factored Vertical p Pair of Squash Blocks (lbs)	Pair of Squash Blocks

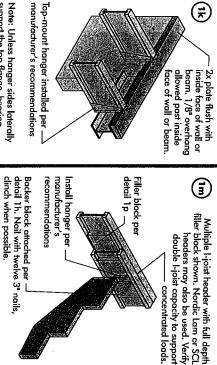
Provide lateral bracing per detail 1a, 1b, or 1c




to post above bearing area of blocks below bearing below. Install squash blocks per detail 1d. Match Transfer load from above to

required when rim board is used. Bracing per code shall be carried to the foundation. Rim board may be used in lieu of I-joists. Backer is not

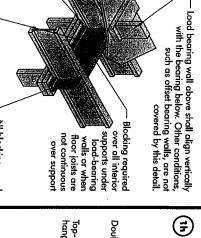
(F)


For nailing schedules for multiple

recommendations. beams, see the manufacturer's

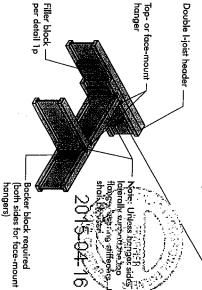
support the top flange, bearing Note: Unless hanger sides laterally

stiffeners shall be used


(g)

support the top flange, bearing stitteners shall be used Maximum support capacity = 1,620 lbs

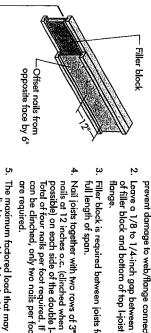
> l-joist per detail 1b Attach: Do not bevel-cut face of wall joist beyond inside


Note: Blocking required at bearing for lateral support, not shown

NI blocking panel per detail 1a

headers may also be used. Verify double I-joist capacity to support concentrated loads. **3**

Before installing a backer block to a double I-joist, drive three additional 3" nails through the webs and filler block where the backer block will fit. Clinch. Install backer tight to top flange. Backer block (use if hanger load exceeds 360 lbs) Use twelve 3" nails, clinched when possible. Maximum factored resistance for hanger for this detail = 1,620 lbs.

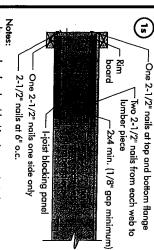


For hanger capacity see hanger manufacturer's recommendations. Verify double I-joist capacity to support concentrated loads

BACKER BLOCKS (Blocks must be long enough to permit required nailing without splitting)

3-1/2"	2-1/2"	Flange Width
1-1/2"	1"	Material Thickness Required*
7-1/4"	5-1/2"	Minimum Depth**

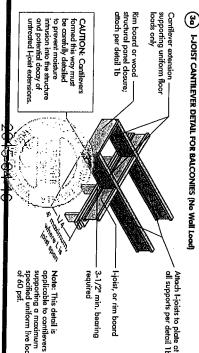
- better for solid sawn lumber and wood structural panels conforming to CAN/CSA-O325 or CAN/CSA-O437 Standard. Minimum grade for backer block material shall be S-P-F No. 2 or
- ** For face-mount hangers use net joist depth minus 3-1/4" for joists with 1-1/2" thick flanges. For 2" thick flanges use net depth minus 4-1/4"

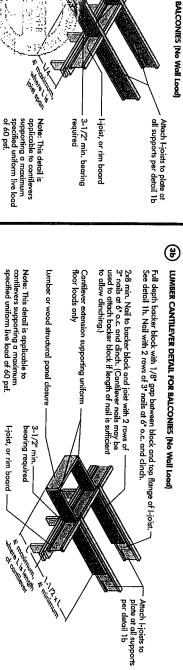

-1/8" to 1/4" gap between top flange and filler block

Support back of I-joist web during nailing to FILLER BLOCK REQUIREMENTS FOR DOUBLE I-JOIST CONSTRUCTION

	•	COPLE	יינים כני	CONSTRUCTION
2.	Leave a 1/8 to 1/4-inch gap between top of filler block and bottom of top 1-joint	Flange Size	Joist Depth	Filler Block Size
	flange.		9-1/2"	2-1/8"×6"
ω	3. Filler block is required between joints for	2-1/2"×	11-7/8"	2-1/8" x 8"
	full length of span.	1-1/2"	<u>‡</u>	2-1/8" x 10"
4	4. Nail injets together with two rous of 2"		16"	2-1/8" x 12"
:	nails at 12 inches o.c. (clinched when)	9-1/2"	3" × 6"
	possible) on each side of the double 1-joint	3-1/2 ×	11-7/8"	ယူ လူ
	Total of four nails per foot required If nails	1-1/2"	14"	3" x 10"
	can be clinched, only two nails per foot		16"	3" x 12"
	are required.	3-1/2" \	11-7/8"	3" × 7"
Ċī	The maximum factored load that may be	٠ ۱ ۱	14.	3º × 9º
	applied to one side of the double joist		16"	3"×11"
	using this detail is 860 lbf/ft. Verify double		i	

<i>0</i>		₹
NI blocking panel	Iwo 2-1/2" spiral nails from each web to lumber piece, alternate on opposite side.	Lumber 2x4 min., extend block to face of adjacent web.
	NI blocking panel	noils from each web to lumber piece, alternate on opposite side. NI blocking panel


attached to underside of joists



- In some local codes, blocking is prescriptively required in the first joist space (or first and second joist space) next to the starter joist. Where required, see local code requirements tor spacing of the blocking

All nails are common spiral in this detail

CANTILEVER DETAILS FOR BALCONIES (NO WALL LOAD)

CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD)

FIGURE 4 (continued)

below for NI See table

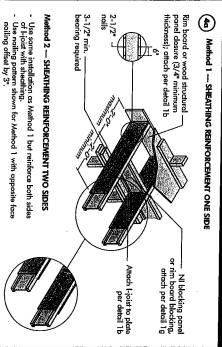
Roof truss _ span

2-0 cantilever

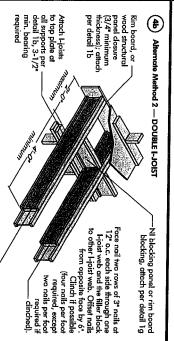
> SSUT Girder Roof trusses

span

maximum cantilever -2 0 Jack trusses

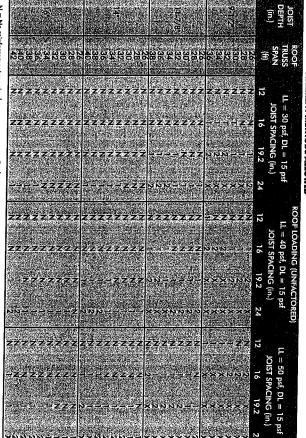

Toof truss

子^{13'-0" maximum}


For hip roofs with the jack trusses running parallel to the cantilevered floor joists, the I-joist reinforcement

requirements for a span of 26 ft. shall be permitted to

requirements at



Notes: Canadian softwood phywood sheathing or equivalent (minimum thickness 3/4") required on sides of joist. Depth shall match the full height of the joist. Nail with 2-1/2" nails at 6" o.c., top and bottom flange. Install with face grain horizontal. Attach Hjoist to plate at all supports per detail 1b. Verify reinforced Hjoist capacity.

Block I-joists together with filler blocks for the full length of the reinforcement For I-joist flange widths greater than 3 inches place an additional row of 3° centreline of the reinforcing panel from each side. Clinch when possible. an additional row of 3" nails along the

CANTILEVER REINFORCEMENT METHODS ALLOWED

- N = No reinforcement required.
 1 = Il reinforced with 3/4 wood structural panel on one side only.
 2 = Il reinforced with 3/4 wood structural panel on one side only.
 2 = Il reinforced with 3/4 wood structural panel on both sides, or double I-joist.
 X = Try a deeper joist or closer spacing.
 Moximum design load shall be: 15 pst froot food, and 80 pst fivent load, and 80 pst fivent load, and 80 pst fivent load in 3-0;
- studs may be required.

 3. Table applies to joists 17: to 24* o.c. that meel the floor span requirements for a design live load of 40 per and dead load of 15 per, and a live load deflection limit of L480. Use 12* o.c. requirements for lesser spacing. For larger openings, or multiple 3'.0" width openings spaced less than 6'-0" o.c., additional joists beneath the opening's cripple
 - 4. For conventional roof construction using a ridge beam, the Roof Truss Span column the supporting wall and the ridge beam.
 When the roof is framed using a ridge board,
 the Roof Iruss Span is equivalent to the above is equivalent to the distance between distance between the supporting walls as if a
- truss is used.

 5. Cantilevered joists supporting girder trusses or roof beams may require additional

RULES FOR CUTTING HOLES AND DUCT CHASE OPENINGS:

- The distance between the inside edge of the support and the centreline of any Table 1 or 2, respectively. hole or duct chase opening shall be in compliance with the requirements of
- ы 1-joist top and bottom flanges must NEVER be cut, notched, or otherwise modified
- ω Whenever possible, field-cut holes should be centred on the middle of the web.
- 4. between the top or bottom of the hole or opening and the adjacent I-joist flange be cut into an I-joist web shall equal the clear distance between the flanges of the I-joist minus 1/4 inch. A minimum of 1/8 inch should always be maintained The maximum size hole or the maximum depth of a duct chase opening that can
- Ņ The sides of square holes or longest sides of rectangular holes should not exceed 3/4 of the diameter of the maximum round hole permitted at that location.
- 6٠ Where more than one hole is necessary, the distance between adjacent hole opening shall be sized and located in compliance with the requirements of size of the largest square hole (or twice the length of the longest side of the longest rectangular hole or duct chase opening) and each hole and duct chase edges shall exceed twice the diameter of the largest round hole or twice the Tables 1 and 2, respectively
- 7. A knockout is **not** considered a hole, may be utilized anywhere it occurs, and may be ignored for purposes of calculating minimum distances between holes and/or duct chase openings.
- φ Holes measuring 1-1/2 inches or smaller shall be permitted anywhere in a cantilevered section of a joist. Holes of greater size may be permitted subject to
- 9. A 1-1/2 inch hole or smaller can be placed anywhere in the web provided that it meets the requirements of rule number 6 above.
- 11. Limit three maximum size holes per span, of which one may be a duct chase 10. All holes and duct chase openings shall be cut in a workman-like manner in accordance with the restrictions listed above and as illustrated in Figure 7
- 12. A group of round holes at approximately the same location shall be permitted if they meet the requirements for a single round hole circumscribed around them.

LOCATION OF CIRCULAR HOLES IN JOIST WEBS

Simple or Multiple Span for Dead Loads up to 15 psf and Live Loads up to 40 psf

1. Above table 1					Joist Depth
may be used fo					in a
r 1-joist spacing					ω
of 24 inches or	Ne.				5
centre or less		iddini.			6-1/4
	THE RESIDENCE OF THE PARTY OF T			一种	nd hole dian
		· · · · · · · · · · · · · · · · · · ·		经产品的关系	— — —
- 13				建筑建筑	centre of ho
3		20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ole (ft-in.)
		landa) e	HBBBBBB	ajadi s	- ed
201010		(31);E			Span justment Factor

- Hole location distance is measured from inside face of supports to centre of hole Distances in this chart are based on uniformly loaded joists.

OPTIONAL:

The above table is based on the I-joists used at their maximum span. If the I-joists are placed at less than their full maximum span (see Maximum floor Spans), the minimum distance from the centreline of the hole to the face of any support (D) as given above may be reduced as follows:

 $\frac{\mathsf{D}_{\mathsf{reduced}} = \frac{\mathsf{L}_{\mathsf{actual}}}{\mathsf{SAF}} \times \mathsf{D}$

Where: Dreduced

Distance from the inside face of any support to centre of hole, reduced for less-than-maximum span applications (fit. The realized latence shall not be less than 6 inches from the face of the support to edge of the hole.

The actual measured span distance between the inside faces of supports (fit).

¥ Span Adjustment Factor given in this table.

The minimum distance from the inside face of any support to centre of hole from this table

b Minimum usuance were man 1, use 1 in the above calculation for Ladual SAF

0

spaced 15 inches on centre along the length of the I-joist. Where possible, it is preferable to use knockouts instead of electrical or small plumbing lines. They are 1-1/2 inches in diameter, and are for the contractor's convenience to install Knockouts are prescored holes provided

See Table 1

2x diameter of larger hole

diameter, length or hole whichever is

from bearing) minimum distance (see Table 2 for Duct chase opening

field-cut holes

2x duct chase

FIELD-CUT HOLE LOCATOR

FIGURE 7

bearing distance from for minimum

X

over-cut the web. notch the flange, or Never drill, cut or

should be cut with a Holes in webs

sharp saw.

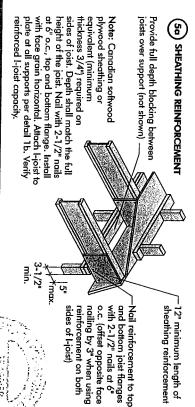
the corners, as this can cause unnecessary stress concentrations. Slightly rounding and then making the cuts between the rectangular hole by drilling a 1-inch diameter hole in each of the four corners the holes is another good method to the corners is recommended. Starting For rectangular holes, avoid over-cutting

and may be ignored for purposes of calculating minimum distances A knockout is NOT considered a hole, may be utilized wherever it occurs

between holes

Knockouts

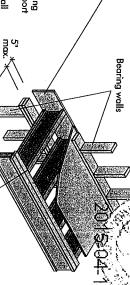
See rule 12


all duct chase openings and holes between top and bottom flange — Maintain minimum 1/8" space

DUCT CHASE OPENING SIZES AND LOCATIONS — Simple Span Only

		Joist Depth
		Joist Series
	andret Ido	8
		12
		Duct chas 14
		ise length
		18
		20
		22
		24

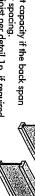
- Above table may be used for Ljoist spacing of 24 inches on centre or less.
 Duct chase opening location distance is measured from Inside face of supports to centre of opening.
 The above table is based on simple-span joists only. For other applications, contact your local distributor.
 Distances are based on uniformly loaded floor joists that meet the span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of L/480. For other applications, contact your local distributor.


BRICK CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD)

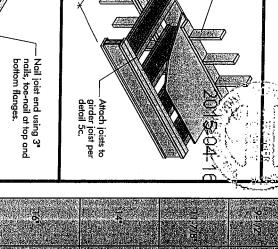
(F) SET-BACK DETAIL

structural panel closure (3/4" minimum thickness), attach per detail 1b. Rim board or wood

- Provide full depth blocking between joists over support (not shown for clarity)
- supports per detail 1b. Attach I-joist to plate at all
- 3-1/2" minimum I-joist bearing required.

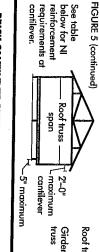


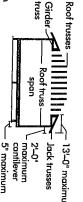
(5c) SET-BACK CONNECTION


through joist web and web of girder using 2-1/2" nails. (2x6 S-P-F No. 2 or better) nailed Vertical solid sawn blocks

Notes:

exceeds the joist spacing. Attach double I-joist per detail 1p, if required.


- N = No reinforcement required.
 1 = NI reinforced with 3/4* wood structural panel on one side only.
 2 = NI reinforced with 3/4* wood structural


solid sawn blocks used in lieu of Hanger may be


- panel on both sides, or double I-joist.
- 2. Maximum design load shall be: 15 psf roof X = Try a deeper joist or closer spacing. wall load. Wall load is based on 3'-0" dead load, 55 psf floor total load, and 80 plf maximum width window or door openings.
- For larger openings, or multiple 3'-0" width openings spaced less than 6'-0" o.c., additional joists beneath the opening's cripple studs may be required.
- the floor span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of L/480. Use Table applies to joists 12" to 24" o.c. that meet the Roof Truss Span is equivalent to the distance between the supporting walls as if a
 - 4. For conventional roof construction using a ridge beam, the Roof Truss Span column When the roof is framed using a ridge board, above is equivalent to the distance between the supporting wall and the ridge beam.
- Cantilevered joists supporting girder trusses or oof beams may require additional reinforcing.

truss is used.

12" o.c. requirements for lesser spacing.

For hip roofs with the jack trusses running parallel to the cantilevered floor joists, requirements for a span of 26 ft. shall be permitted to the I-joist reinforcement be used.

BRICK CANTILEVER REINFORCEMENT METHODS ALLOWED

는 쿺 SI	ROOF TRUSS SPAN (f)	LL = JC	= 30 psf, DIST SPA(DL = 15 CING (in. 19.2	psf) 24	ROOF L LL = JG 12	OADING = 40 psf, DIST SPA	(UNFAC DL = 15 CING (in 19.2	TORED) psf .) 24	73 _ F	= 50 psf, IOIST SPA	DL = 15 CING (in	.) ps
2	3086 344	11 '1 11 '2 2 '2	******	<××××	(# X 3 %)	gaaa x .	XXXX			>>> y	×××× ē	XXXX	
	32.2 6	-zz	222	XXX	×××	#### ####		×××	×××	30-2	XXX		XX
. 8	32 34 38		***;o	×××	***	iloni -			y y y	ادادان	1871 S	***	
	26 28 30	2222	921	×××15	·×××	2	લવવ	×××		X	XXX	****	XXX X
	34 36 38		×NNNK	××××	**	3-5-35		(משטעו	XX XX	××××;	
	8888	. z z z	.122	000	XXX	ZZZ	- an	×××	XX	2	¥aā×	***	XXXX
	4 3 3 4 5 8 6 4	zzzz	0000	(×××)	.xx.x	JOEN,	ندلاد	***		2	×××	××××	****
N New Confession	**************************************	さい 大変を かんじゅ	1	X	が経過人が言葉		X	X	X	2	×	X	X

INSTALLING THE GLUED FLOOR SYSTEM

- 1. Wipe any mud, dirt, water, or ice from I-joist flanges before gluing.
- 2. Snap a chalk line across the I-joists four feet in from the wall for panel edge alignment and as a boundary for spreading give.
- Spread only enough glue to lay one or two panels at a time, or follow specific recommendations from
- 4. Lay the first panel with tongue side to the wall, and nail in place. This protects the tongue of the next panel from damage when tapped into place with a block and sledgehammer.
- 5. Apply a continuous line of glue (about 1/4-inch diameter) to the top flange of a single I-joist. Apply glue in a winding pattern on wide areas, such as with double 1-joists.
- 6. Apply two lines of glue on I-joists where panel ends butt to assure proper gluing of each end
- 7. After the first row of panels is in place, spread glue in the groove of one or two panels at a time before laying the next row. Glue line may be continuous or spaced, but avoid squeeze-out by applying a thinner line (1/8 inch) than used on I-joist flanges.
- 8. Tap the second row of panels into place, using a block to protect groove edges.
- Stagger end joints in each succeeding row of panels. A 1/8-inch space between all end joints and 1/8-inch at all edges, including 1&G edges, is recommended. (Use a spacer tool or an 2-1/2" common nail to assure accurate and consistent spacing.)
- 10. Complete all nailing of each panel before glue sets. Check the manufacturer's recommendations table below. Closer nail spacing may be required by some codes, or for diaphragm construction. The finished deck can be walked on right away and will carry construction loads without damage to the for cure time. (Warm weather accelerates glue setting.) Use 2" ring- or screw-shank nails for panels 3/4-inch thick or less, and 2-1/2" ring- or screw-shank nails for thicker panels. Space nails per the

FASTENERS FOR SHEATHING AND SUBFLOORING(1)

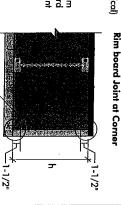
	24	20	16	Maximum 1 Joist Spacing (in.)
	3/4	5/8	5/8	Winimum Panel Thickness (in.)
i	2"	. 2"	2"	Common Wire or Spiral Nails
	1-3/4"	1-3/4"	1-3/4"	Ring Thread Nails or Screws
	2"	2"	2"	pe Staples
	6"	6"	6*	Maximun of Fas Edges
	12"	12"	12"	n Spacing steners Interm, Supports

- 1. Fasteners of sheathing and subflooring shall conform to the above table.
- 5 Staples shall not be less than 1/16-inch in diameter or thickness, with not less than a 3/8-inch crown driven with the crown parallel to framing.
- 3. Flooring screws shall not be less than 1/8-inch in diameter
- 4. Special conditions may impose heavy traffic and concentrated loads that require construction in excess
- 5. Use only adhesives conforming to CAN/CGSB-71.26 Standard, Adhesives for Field-Gluing Plywood to Lumber Framing for Floor System, applied in accordance with the manufacturer's recommendations. If OSB panels with sealed surfaces and edges are to be used, use only solvent-based glues; check with panel manutacturer.

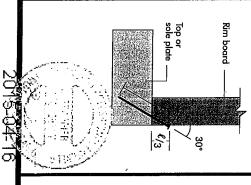
Ref.: NRC-CNRC, National Building Code of Canada 2010, Table 9.23.3.5

IMPORTANT NOTE:

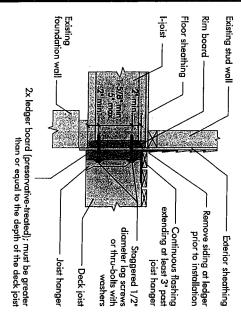
Floor sheathing must be field glued to the I-joist flanges in order to achieve the maximum spans shown in this document. If sheathing is nailed only, I-joist spans must be verified with your local distributor.

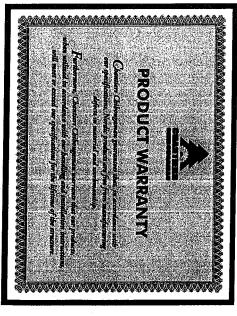

RIM BOARD INSTALLATION DETAILS

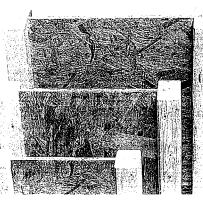
(8a) ATTACHMENT DETAILS WHERE RIM BOARDS ABUT


Rim board Joint Between Floor Joists

2-1/2" nails at 6" o.c. (typical)

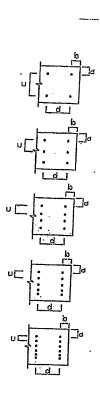



(B) TOE-NAIL CONNECTION AT RIM BOARD



٦ 2X LEDGER TO RIM BOARD ATTACHMENT DETAIL

Rim board joint-


· MICRO CITY

Engineering services inc.

TEL: (519) 287 - 2242

R.R. #1, P.O. BOX 61, GLENCOE, ONTARIO, NOL 1MO

	LVL HEADER AND CONVENTIONAL				
		SER NAILING I			
	DETAIL NUMBER	NUMBER OF ROWS	SPACING (INCHES o/c		
	. A	2	12		
	В	2	8		
	С	2	6		
	D	2	4		
	1A	3	12		
	1B	3	8		
	1C	3	. 6		
	1D	. 3:	4		
	2A	4	. 12		
	2B	4	8		
	2C	4	6		
	2D	4	4		
	3A	5	12		
L	3B	5	8		
ŀ	3C	5	6		
L	3D	5_	4		
	4A	6 1.	12		
Ŀ	4B	6	8		
Ŀ	4C	6	6		
L	4D	6	4		

NOTES:

- (1) MINIMUM LUMBER EDGE DISTANCE "a" = 1"
- (2) MINIMUM LUMBER END DISTANCE "b" = 2"
- (3) MINIMUM NAIL ROW SPACING "c" = 2"
- (4) STAGGER NAILS "d/2" BETWEEN PLIES FOR MULTI-PLY MEMBERS (3 PLY OR MORE)
- (5) ALL NAILS ARE 3-1/2" ARDOX SPIRAL NAILS
- (6) DO NOT USE AIR-DRIVEN NAILS

DNG NO TÄNNLOOT. 14
STRUCTURAL
COMPONENT ONLY
TO BE USED ONLY
WITH BEAM CALCS
BEADING THE
STAMP BELOWS

PROVICE NATLING DETAIL № X/SEE ONG #TAMN1001-14