


Products				•	
	PlotID	Length	Product	Plies	Net Qty
	J1	18-00-00	11 7/8" NI-40x	1	18
	J2	16-00-00	11 7/8" NI-40x	1	13
	J3	14-00-00	11 7/8" NI-40x	1	12
	J3DJ	14-00-00	11 7/8" NI-40x	2	4
	J4	12-00-00	11 7/8" NI-40x	1	2
	J5	4-00-00	11 7/8" NI-40x	1	1
	J6	2-00-00	11 7/8" NI-40x	1	4
	B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3
	B1 .	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3
	B4	6-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
	B9	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
ľ	B2	2-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1

	Connector Summary				
Qty	Manuf	Product			
4	H1	IUS2.56/11.88			
2	H1	IUS2.56/11.88			
13	H1	IUS2.56/11.88			
6	H1	IUS2.56/11.88			

BUILDER: GREENPARK HOMES

SITE: RUSSEL GARDENS

MODEL: ROSEWOOD 1

ELEVATION: 1

LOT:

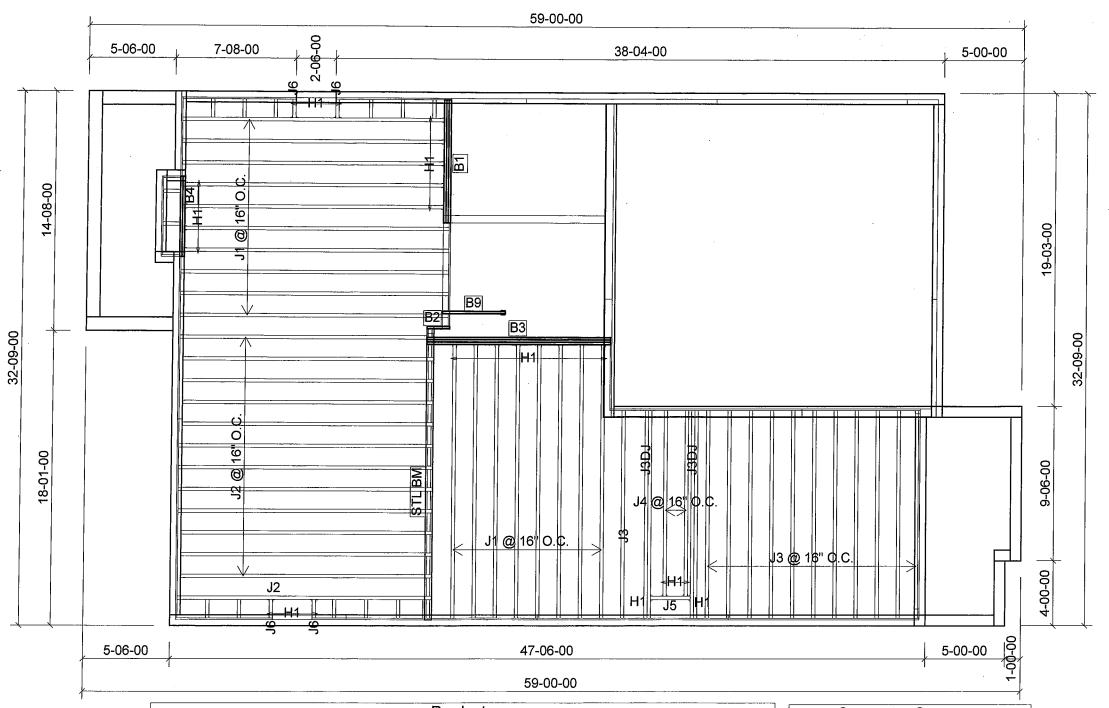
CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

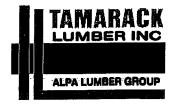
REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION. SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2 S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. **CERAMIC TILE APPLICATION AS PER** O.B.C 9.30.6.

LOADING: DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft²


DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 8/19/2017


1st FLOOR

STANDARD

	Products			
PlotID	Length	Product	Plies	Net Qty
J1	18-00-00	11 7/8" NI-40x	1	18
J2	16-00-00	11 7/8" NI-40x	1	13
J3	14-00-00	11 7/8" NI-40x	1	12
J3DJ	14-00-00	11 7/8" NI-40x	2	4
J4	12-00-00	11 7/8" NI-40x	1	2
J5	4-00-00	11 7/8" NI-40x	1	1
J6	2-00-00	11 7/8" NI-40x	1	4
B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3
B1	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3
B4	6-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B9	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B2	2-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1 .

	Connecto	r Summary
Qty	Manuf	Product
4	H1	IUS2.56/11.88
2	H1	IUS2.56/11.88
13	H1	IUS2.56/11.88
6	H1	IUS2.56/11.88
	Qty 4 2 13	Qty Manuf 4 H1 2 H1 13 H1

BUILDER: GREENPARK HOMES

SITE: RUSSELL GARDENS

MODEL: ROSEWOOD 1

ELEVATION: 1

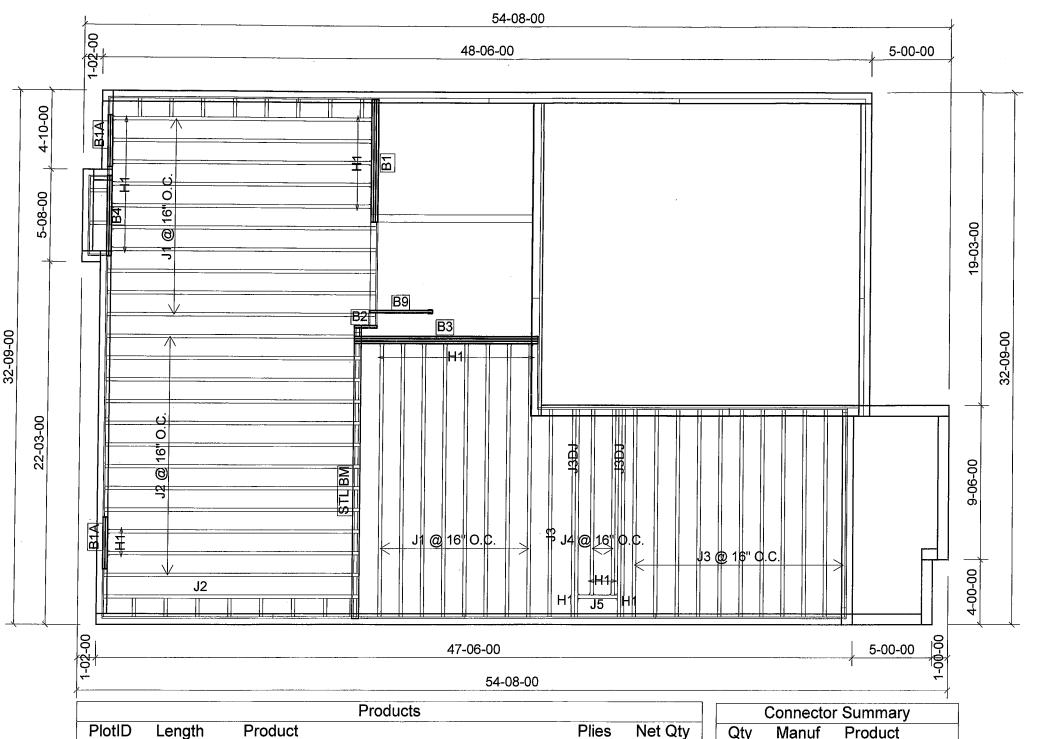
LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION. SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2 S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. **CERAMIC TILE APPLICATION AS PER** O.B.C 9.30.6.


LOADING:
DESIGN LOADS: L/480.000
LIVE LOAD: 40.0 lb/ft²
DEAD LOAD: 15.0 lb/ft
TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 8/19/2017

1st FLOOR

WALK UP

	Products			
PlotID	Length	Product	Plies	Net Qty
J1	18-00-00	11 7/8" NI-40x	1	18
J2	16-00-00	11 7/8" NI-40x	1	13
J3	14-00-00	11 7/8" NI-40x	1	12
J3DJ	14-00-00	11 7/8" NI-40x	2	4
J4	12-00-00	11 7/8" NI-40x	1	2
J5	4-00-00	11 7/8" NI-40x	1	1
B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3
B1	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3
B4	6-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B9	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B1A	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	4
B2	2-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1

Connector Summary				
Manuf	Product			
H1	IUS2.56/11.88			
	Manuf H1 H1 H1			

BUILDER: GREENPARK HOMES

SITE: RUSSELL GARDENS

MODEL: ROSEWOOD 1

ELEVATION: 1

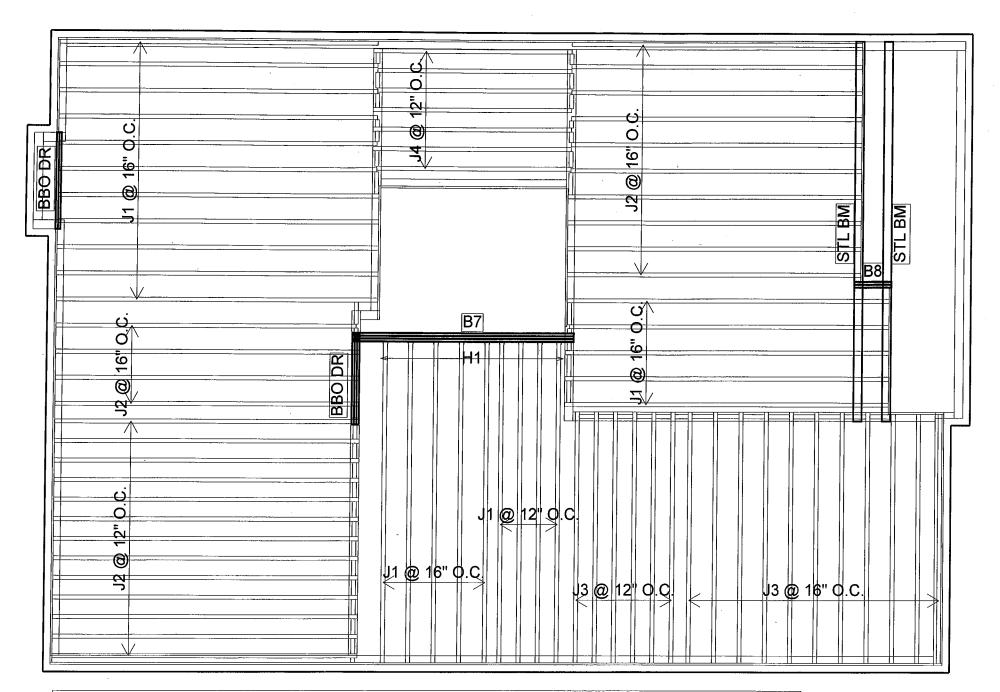
LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

REFER TO THE NORDIC **INSTALLATION GUIDE FOR PROPER** STORAGE AND INSTALLATION. **SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2** S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. CERAMIC TILE APPLICATION AS PER O.B.C 9.30.6. LOADING:


DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 8/19/2017


1st FLOOR

DECK CONDITION

	Products				
PlotID	Length	Product	Plies	Net Qty	
J1	18-00-00	11 7/8" NI-40x	1	25	
J2	16-00-00	11 7/8" NI-40x	1	27	
J3	14-00-00	11 7/8" NI-40x	1	17	
J4	12-00-00	11 7/8" NI-40x	1	7	
B7	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3	
B8	2-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	

	Connector Summary		
Qty	Manuf	Product	
9	H1	IUS2.56/11.88	

BUILDER: GREENPARK HOMES

SITE: RUSSEL GARDENS

MODEL: ROSEWOOD 1

ELEVATION: 1

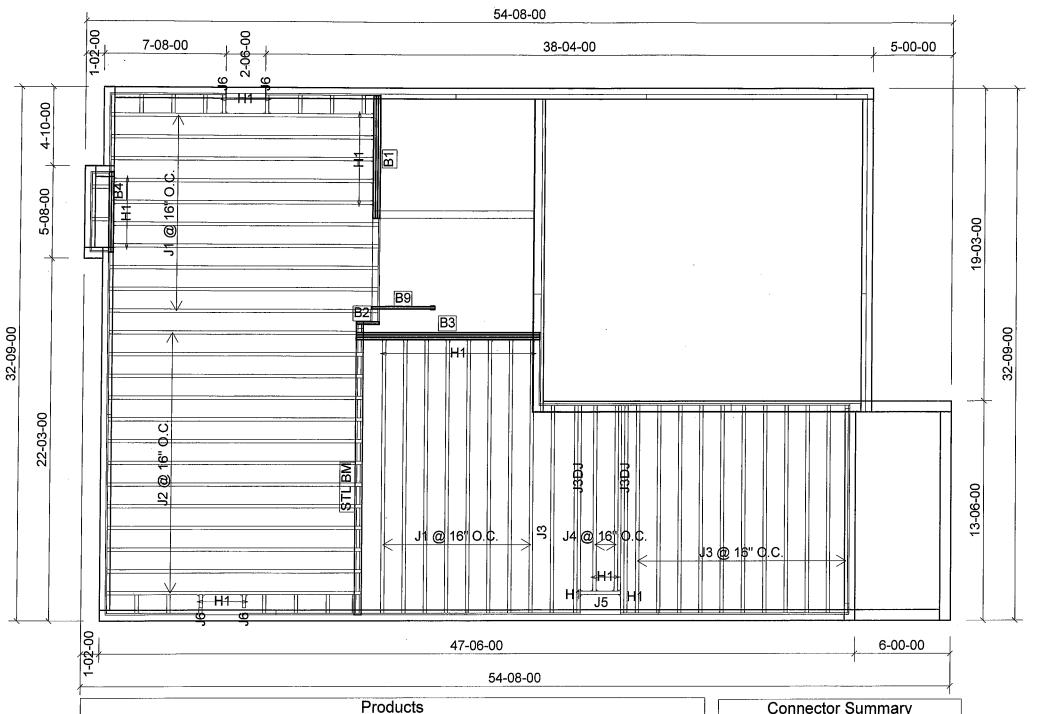
LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION. **SQUASH BLOCKS** OF 2x4, 2x6, 2x8 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURE 7 TABLES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7 TABLES 1 & 2 OF THE INSTALLATION GUIDE. CERAMIC TILE APPLICATION AS PER O.B.C. 9.30.6 LOADING:


DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 5/2/2017


2nd FLOOR

STANDARD

	Products			
PlotID	Length	Product	Plies	Net Qty
J1	18-00-00	11 7/8" NI-40x	1	18
J2	16-00-00	11 7/8" NI-40x	1	13
J3	14-00-00	11 7/8" NI-40x	1	12
J3DJ	14-00-00	11 7/8" NI-40x	2	4
J4	12-00-00	11 7/8" NI-40x	1	2
J5	4-00-00	11 7/8" NI-40x	1	1
J6	2-00-00	11 7/8" NI-40x	1	4
B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3
B1	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3
B4	6-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B9	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1
B2	2-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1

	Connector Summary				
Qty	Manuf	Product			
4	H1	IUS2.56/11.88			
2	H1	IUS2.56/11.88			
13	H1	IUS2.56/11.88			
6	H1	IUS2.56/11.88			

BUILDER: GREENPARK HOMES

SITE: RUSSEL GARDENS

MODEL: ROSEWOOD 1

ELEVATION: 2,3

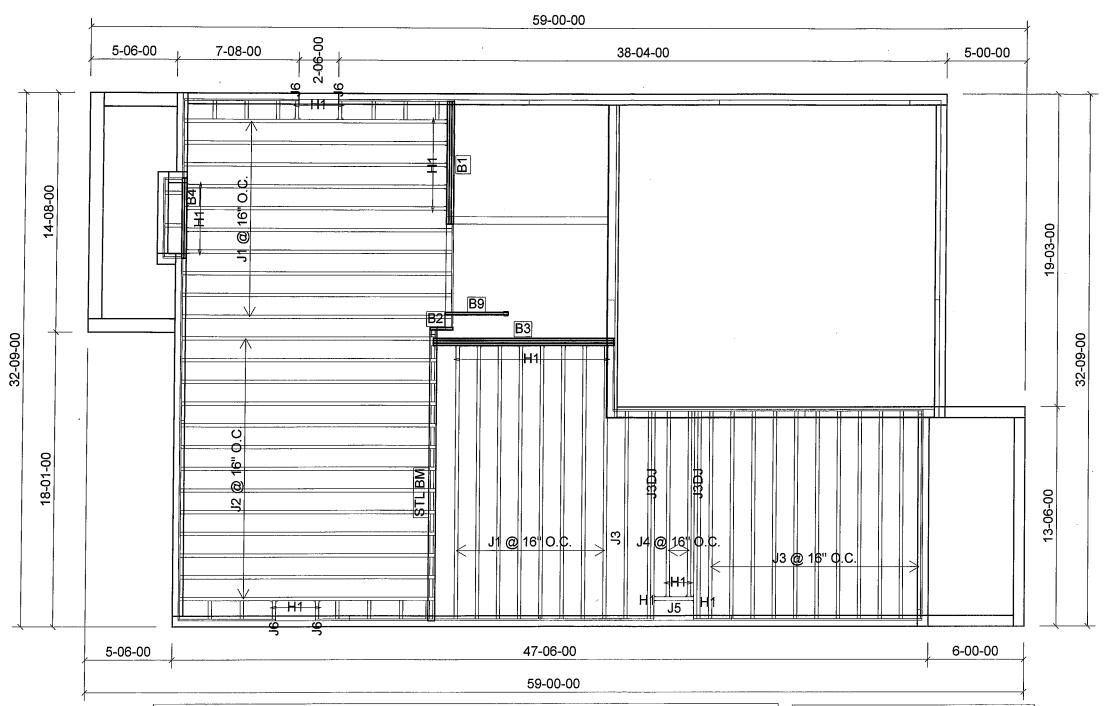
LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION. **SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2** S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. CERAMIC TILE APPLICATION AS PER O.B.C 9.30.6. LOADING:


DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 8/19/2017

1st FLOOR

STANDARD

	Products				
PlotID	Length	Product	Plies	Net Qty	
J1	18-00-00	11 7/8" NI-40x	1	18	
J2	16-00-00	11 7/8" NI-40x	1	13	
J3	14-00-00	11 7/8" NI-40x	1	12	
J3DJ	14-00-00	11 7/8" NI-40x	2	4	
J4	12-00-00	11 7/8" NI-40x	1	2	
J5	4-00-00	11 7/8" NI-40x	1	1	
J6	2-00-00	11 7/8" NI-40x	1	4	
B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3	
B1	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3	
B4	6-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	
B9	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	
B2	2-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	

	Connector Summary				
Qty Manuf Product					
4	H1	IUS2.56/11.88			
2	H1	IUS2.56/11.88			
13	H1	IUS2.56/11.88			
6	H1	IUS2.56/11.88			

BUILDER: GREENPARK HOMES

SITE: RUSSELL GARDENS

MODEL: ROSEWOOD 1

ELEVATION: 2,3

LOT:

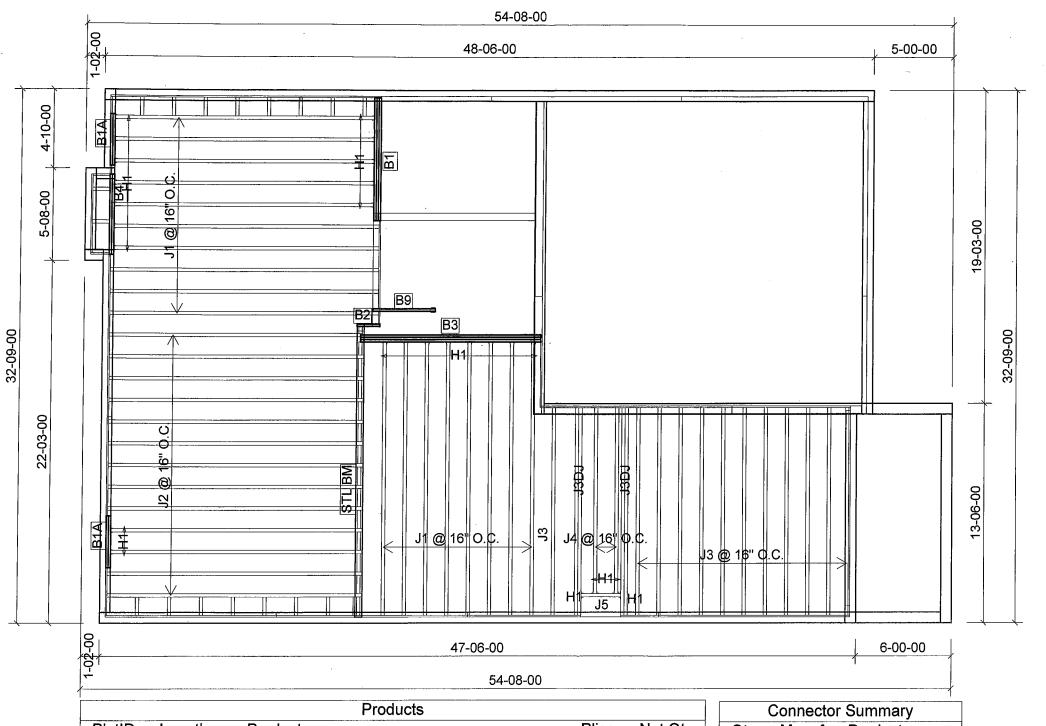
CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

REFER TO THE NORDIC **INSTALLATION GUIDE FOR PROPER** STORAGE AND INSTALLATION. SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2 S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. **CERAMIC TILE APPLICATION AS PER** O.B.C 9.30.6.

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft


SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 8/19/2017

LOADING:

1st FLOOR

WALK UP

]		Products			
	PlotID	Length	Product	Plies	Net Qty	
	J1	18-00-00	11 7/8" NI-40x	1	18	
	J2	16-00-00	11 7/8" NI-40x	1 -	13	
	J3	14-00-00	11 7/8" NI-40x	1	12	
	J3DJ	14-00-00	11 7/8" NI-40x	2	4	
	J4	12-00-00	11 7/8" NI-40x	1	2	
	J5	4-00-00	11 7/8" NI-40x	1	1	
	B3	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3	
	B1	8-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3	
	B4	6-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2	
	B9	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	
i	B1A	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	4	
	B2	2-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1	

Connector Summary							
Qty Manuf Product							
H1	IUS2.56/11.88						
H1	IUS2.56/11.88						
H1	IUS2.56/11.88						
H1	IUS2.56/11.88						
	Manuf H1 H1 H1						

BUILDER: GREENPARK HOMES

SITE: RUSSELL GARDENS

MODEL: ROSEWOOD 1

ELEVATION: 2,3

LOT:

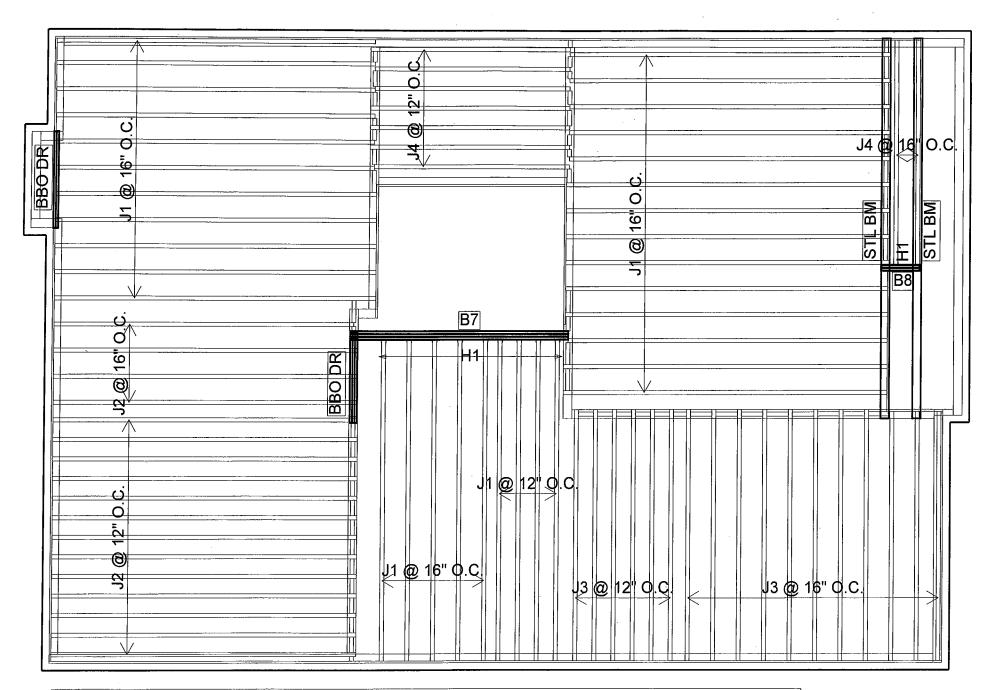
CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

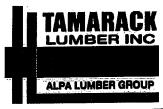
REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION. **SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2** S.P.F REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7, TABLES 1 & 2. CERAMIC TILE APPLICATION AS PER O.B.C 9.30.6.

LOADING:


DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 8/19/2017


1st FLOOR

DECK CONDITION

Products									
PlotID	Length	Product	Plies	Net Qty					
J1	18-00-00	11 7/8" NI-40x	1	34					
J2	16-00-00	11 7/8" NI-40x	1	17					
J3	14-00-00	11 7/8" NI-40x	1	17					
J4	12-00-00	11 7/8" NI-40x	1	9					
B7	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3					
B8	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2					

Connector Summary							
Qty Manuf Product							
1	H1	IUS2.56/11.88					
9	H1	IUS2.56/11.88					

BUILDER: GREENPARK HOMES

SITE: RUSSEL GARDENS

MODEL: ROSEWOOD 1

ELEVATION: 2

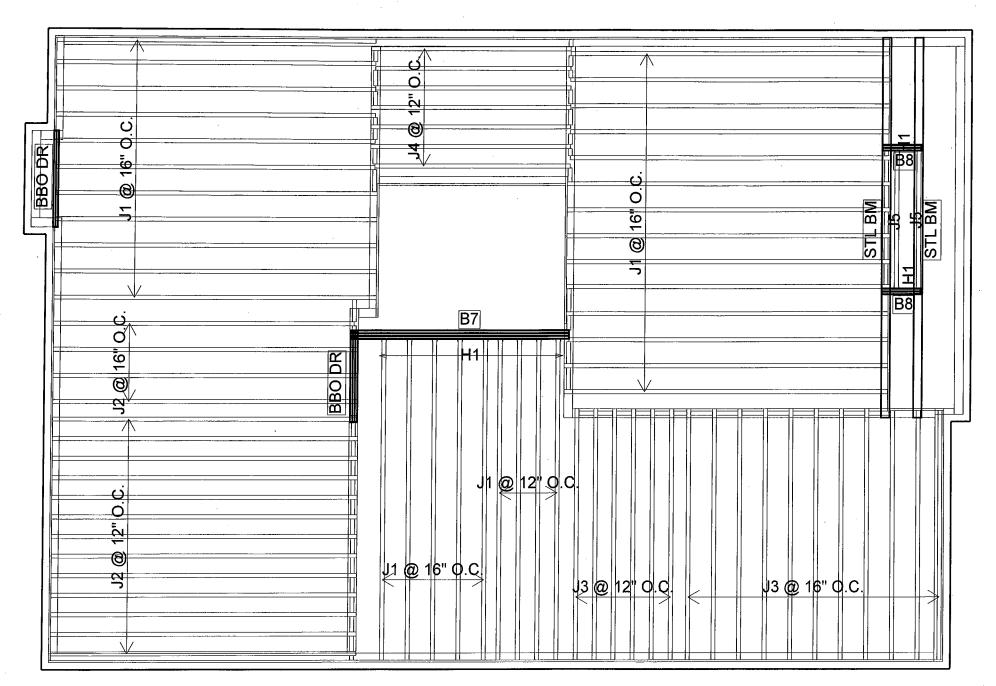
LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION. **SQUASH BLOCKS OF 2x4, 2x6, 2x8 #2** S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURE 7 TABLES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7 TABLES 1 & 2 OF THE INSTALLATION GUIDE. CERAMIC TILE APPLICATION AS PER O.B.C. 9.30.6 LOADING:


DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 5/2/2017

2nd FLOOR

STANDARD

	Products								
PlotID	Length	Product	Plies	Net Qty					
J1	18-00-00	11 7/8" NI-40x	1	34					
J2	16-00-00	11 7/8" NI-40x	1	17					
J3	14-00-00	11 7/8" NI-40x	1	17					
J4	12-00-00	11 7/8" NI-40x	1	7					
J5	8-00-00	11 7/8" NI-40x	1	2					
B7	12-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	3	3					
B8	4-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	4					

Connector Summary						
Qty	Manuf	Product				
2	H1	IUS2.56/11.88				
9	H1	IUS2.56/11.88				

BUILDER: GREENPARK HOMES

SITE: RUSSEL GARDENS

MODEL: ROSEWOOD 1

ELEVATION: 3

LOT:

CITY: WATERDOWN

SALESMAN: M D DESIGNER: AJ REVISION:

NOTES:

REFER TO THE NORDIC INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION. **SQUASH BLOCKS** OF 2x4, 2x6, 2x8 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS. MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS. SEE FIGURE 1. CANTILEVERED JOISTS INCLUDING CANT' OVER BRICK REQ. I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS. SEE FIGURE 7 TABLES 4 & 5 FOR REINFORCEMENT REQUIREMENTS. FOR HOLES INCLUDING DUCT CHASE AND FIELD CUT OPENINGS SEE FIGURE 7 TABLES 1 & 2 OF THE INSTALLATION GUIDE. CERAMIC TILE APPLICATION AS PER O.B.C. 9.30.6 LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 5/2/2017

2nd FLOOR

STANDARD

Boise Cascade Single 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B9(i2723)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

August 19, 2017 10:08:03

BC CALC® Design Report

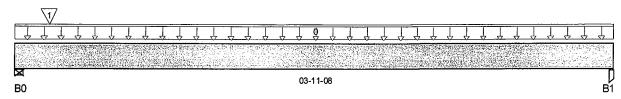
Build 5033

Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:


CCMC 12472-R

File Name: ROSEWOOD 1 EL-2.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B9(i2723)

Specifier: Designer:

Company: Misc:

Total Horizontal Product Length = 03-11-08

Reaction Summary (D	own / Uplift) (lbs)							
Be aring	Live	De ad S	Sn ow	Win	d			
B0, 5-1/2"	546/0	297/0						
B1, 3-1/2"	455/0	239/0						
Load Summary				Live	Dead	Snow	Wind	Trib
Tag Description	Load Type	Ref. Start	En d	1.00	0.65	1.00	1.15	
0 User Load	Unf. Lin. (lb/ft)	L 00-00-00	03-11-08	240	120			n/a
1 5(i350)	Conc. Pt. (lbs)	L 00-02-12	00-02-12	49	36			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	719 ft-lbs	14,291 ft-lbs	5%	1	02-00-12
End Shear	318 lbs	7,232 lbs	4.4%	1	01-05-06
Total Load Defl.	L/999 (0.002")	n/a	n/a	4	02-00-12
Live Load Defl.	L/999 (0.001")	n/a	_ n/a	5	02-00-12
Max Defl.	0.002"	n/a	n/a	4	02-00-12
Span / Depth	3.4	n/a	n/a		00-00-00

				De mand/ Resistance	Demand/ Resistance	
Beari	ng Supports	Dim.(LxW)	Demand	Support	Member	Material
B0	Wall/Plate	5-1/2" x 1-3/4"	1,190 lbs	28.9%	10.1%	Unspecified
B1	Post	3-1/2" x 1-3/4"	981 lbs	24.7%	13.1%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume unbraced length of Top: 03-06-00, Bottom: 03-06-00.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO OBC 2012

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

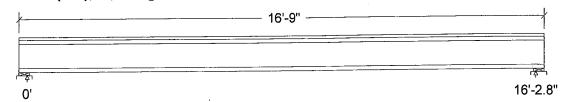
BC CALO®, BC FRAMER®, AJS™ ALLJOIST®, BC RIM BOARD $^{\mathsf{TM}}$, BC $^{\mathsf{R}}$ 0, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood

STRUCTURAL COMPONENT ONLY

NORDIC STRUCTURES

COMPANY May 2, 2017 16:10

PROJECT
J1 2nd FLOOR
J1 ABOVE GARAGE


Design Check Calculation Sheet

Nordic Sizer - Canada 6.4

Loads:

Load	Туре	Distribution	Pat- tern	Location Start	[ft] End	Magnitud Start	de _End	
Load1	Dead	Full Area				20.00		psf
Load2	Live	Full Area				40.00		psf
Self-weight	Dead	Full UDL				2.9		plf

Maximum Reactions (lbs), Bearing Resistances (lbs) and Bearing Lengths (in):

Unfactored: Dead Live	240 433	240 433
Factored: Total	949	949
Bearing: Resistance Joist Support	2333 7072	2333 7072
Des ratio Joist Support Load case	0.41 0.13 #2	0.41 0.13 #2
Length Min req'd Stiffener	1-3/4 No 1.00	1-3/4 No 1.00
Kd KB support fcp sup Kzcp sup	1.00 1.00 769 1.15	1.00 769 1.15

Nordic 11-7/8" NI-40x Floor joist @ 16" o.c.

Supports: All - Lumber Sill plate, No.1/No.2 Total length: 16'-9.0"; 5/8" nailed and glued OSB sheathing This section PASSES the design code check.

Limit States Design using CSA-O86-09 and Vibration Criterion:

Analysis Value	Design Value	Unit	Analysis/Design
Vf = 949	Vr = 2336	lbs	$\epsilon = 0.41$
Mf = 3849	Mr = 6255	lbs-ft.	Mf/Mr = 0.62
$0.12 = \langle L/999 \rangle$	0.54 = L/360	in /o	0.22
0.21 = L/912	0.41 = L/480	in/5//	140 0.53
0.33 = L/587	0.81 = L/240	in S	m 0.41
0.25 = L/773	0.54 = L/360	in S.K	ATSOULAKOS \$ 0.47
1	Lv = 17'-2	1 -C + 21 +250	
= 0.033	= 0.039	in	0.83
	Vf = 949 Mf = 3849 0.12 = <l 999<br="">0.21 = L/912 0.33 = L/587 0.25 = L/773 Lmax = 16'-3</l>	Vf = 949 Mf = 3849 0.12 = <l 999<br="">0.21 = L/912 0.33 = L/587 0.25 = L/773 0.26 = L/360 0.27 = L/240 0.27 = L/360 0.28 = L/240 0.29 = L/360 0.20 = L/360 0.21 = L/360 0.21 = L/360 0.21 = L/360 0.22 = L/773 0.23 = L/360 0.24 = L/360 0.25 = L/773 0.26 = L/360</l>	Vf = 949

DWG NO.TAM 42725-17 STRUCTURAL COMPONENT ONLY

WoodWorks® Sizer

for NORDIC STRUCTURES

J1 ABOVE GARAGE

Nordic Sizer - Canada 6.4

Page 2

Additional	Data:								
FACTORS:	f/E	KD	KH	KZ	KL	KT	KS	KN	LC#
l Vr	2336	1.00	1.00	_	_	_	-	_	#2
Mr+	6255	1.00	1.00	-	1.000	-		-	#2
EI	371.1 m	illion	_	_	_	-	-	_	#2
CRITICAL LO	DAD COMB	INATIONS	S :						
Shear									
Moment(+)									
Deflection									
) + 1.0L						
ŀ			+ 1.0L						
			+ 1.0L						
Bearing									
	Suppo	rt 2 - I	LC #2 = 1	25D +	1.5L		÷	1.1	
Load Type	es: D=dea	d W=wir	nd S=sno	ow H=ea	arth,grou	ındwate	r E=ear	tnquake	
	L=liv	e(use,oc	ccupancy)	Ls=1:	ive(stora	.ge,equ:	ipment)	r=r1re	
All Load		ions (LO	Cs) are l	isted :	in the An	alysis	output		
CALCULATION									
Deflectio	on: Elef	f = 4	148e06 lk	o-in2 I	K = 6.18e	06 lbs			,
"Live" de	eflection	= Defle	ection fr	om all	non-dead	lloads	(live,	wind, si	now)
									

Design Notes:

- 1. WoodWorks analysis and design are in accordance with the 2010 National Building Code of Canada (NBC Part 4) and the CSA O86-09 Engineering Design in Wood standard, which includes Update No.1.

 CONFORMS TO DBC 2012
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Refer to technical documentation for installation guidelines and construction details.
- 4. Nordic I-joists are listed in CCMC evaluation report 13032-R.
- 5. Joists shall be laterally supported at supports and continuously along the compression edge.
- 6. The design assumptions and specifications have been provided by the client. Any damages resulting from faulty or incorrect information, specifications, and/or designs furnished, and the correctness or accuracy of this information is their responsibility. This analysis does not constitute a record of the structural integrity of the building nor suitability of the design assumptions made. Nordic Structures is responsible only for the structural adequacy of this component based on the design criteria and loadings shown.

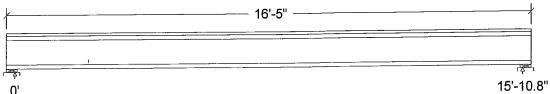
S. KATSOULAKOS S. S. KATSOULAKOS S. DWG NO. TAM 42725-17

OWO NO.TAM 42723 STRUCTURAL COMPONENT ONLY

NORDIC STRUCTURES

COMPANY May 2, 2017 16:11

PROJECT J1 2nd FLOOR J1 2ND FLOOR


Design Check Calculation Sheet

Nordic Sizer - Canada 6.4

Loads:

Load	Туре	Distribution	Pat- tern	Location Start	[ft] End	Magnitude Start	End	
Load1	Dead	Full Area				20.00		psf
Load2	Live	Full Area				40.00		psf
Self-weight	Dead	Full UDL				2.9		plf

Maximum Reactions (lbs), Bearing Resistances (lbs) and Bearing Lengths (in):

	0'	5'-10.8"
Unfactored: Dead Live	235 424	235
Factored: Total Bearing:	929	929
Resistance Joist Support	2333 7072	2333 7072
Des ratio Joist Support Load case	0.40 0.13 #2	0.40 0.13 #2
Length Min req'd Stiffener	1-3/4 No	1-3/4 No
Kd KB support fcp sup Kzcp sup	1.00 1.00 769 1.15	1.00 1.00 769 1.15

Nordic 11-7/8" NI-40x Floor joist @ 16" o.c.

Supports: All - Lumber Sill plate, No.1/No.2

Total length: 16'-5.0", 5/8" nailed and glued OSB sheathing with 1/2" gypsum ceiling

This section PASSES the design code check.

Limit States Design using CSA-O86-09 and Vibration Criterion:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	Vf = 929	Vr = 2336	lbs	Vf/Vr = 0.40 $Vf/Mr = 0.59$
Moment (+)	Mf = 3693	Mr = 6255	lbs-f# ₹	Mf/Mr = 0.59
Perm. Defl'n	$0.11 = \langle L/999 \rangle$	0.53 = L/360	in AS	[N. V. 0.21]
Live Defl'n	0.20 = L/966	0.40 = L/480	in/8 Com	EMP 0.50
Total Defl'n	0.31 = L/622	0.79 = L/240	in S s K	ATSOULAKOS \$ 0.39
Bare Defl'n	0.23 = L/819	0.53 = L/360	in 5. K	ATSOULAKOS \$ 0.44
Vibration	Lmax = 15'-11	Lv = 17'-8	ft\	month framewood
Defl'n	= 0.029	= 0.041	in	0.72

VINCE OF CAST DWO NO. TAM 42726-17
STRUCTURAL
COMPONENT ONLY

J1 2ND FLOOR

Nordic Sizer - Canada 6.4

Page 2

Additional	l Data:									
FACTORS:		KD	KH	KZ	KL	KT	KS	KN		
Vr	2336	1.00	1.00	-	_	_	_	-	#2	
Mr+	6255	1.00	1.00	-	1.000	-	_	-	#2	
EI	371.1 m	illion	_	-	_	-	-	-	#2	•
CRITICAL LO	DAD COMBI	NATIONS	3 :							
	: LC #2			L						
Moment(+)) : LC #2	= 1.25	5D + 1.51	L						
Deflection	on: LC #1	= 1.01) (perma	anent)						
			+ 1.0L							
			+ 1.0L							
) + 1.0L							
Bearing	: Suppor	ct 1 - I	$_{1}C #2 = 3$	1.25D +	1.5L					
	Suppor	rt 2 - I	$_{1}C #2 = 3$	1.25D +	1.5L		_			
Load Type	es: D=dead	d W=wir	nd S=sno	ow H=ea	arth,grou	ındwate:	r E=ear	thquake		
	L=live	e(use,oo	cupancy) Ls=1:	ive(stora	ige, equi	ipment)	i=iire		
All Load	Combinat:	ions (LO	Cs) are I	listed :	in the An	nalysis	output			
CALCULATION	ONS:									
Deflection	on: Eleft	E = 4	48e06 l	o-in2 1	$K = 6.18 \epsilon$	06 lbs				
"Live" de	eflection	= Defle	ection for	rom all	non-dead	l loads	(live,	wind, s	now)	

Design Notes:

- 1. WoodWorks analysis and design are in accordance with the 2010 National Building Code of Canada (NBC Part 4) and the CSA O86-09 Engineering Design in Wood standard, which includes Update No.1.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Refer to technical documentation for installation guidelines and construction details.
- 4. Nordic I-joists are listed in CCMC evaluation report 13032-R.
- 5. Joists shall be laterally supported at supports and continuously along the compression edge.
- 6. The design assumptions and specifications have been provided by the client. Any damages resulting from faulty or incorrect information, specifications, and/or designs furnished, and the correctness or accuracy of this information is their responsibility. This analysis does not constitute a record of the structural integrity of the building nor suitability of the design assumptions made. Nordic Structures is responsible only for the structural adequacy of this component based on the design criteria and loadings shown.

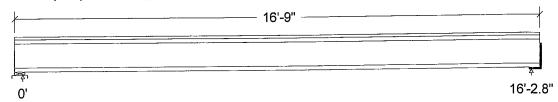
BWO NO. TAN 42726 17
STRUCTURAL

COMPONENT ONLY

NORDIC STRUCTURES

COMPANY May 2, 2017 16:12

PROJECT
J1 1ST FLOOR


Design Check Calculation Sheet

Nordic Sizer - Canada 6.4

Loads:

Load	Туре	Distribution		Location Start	[ft] End	Magnitu Start	de End	Unit
			tern	Start	EIIU		ши	
Load1	Dead	Full Area				20.00		psf
Load2	Live	Full Area				40.00		psf
Self-weight	Dead	Full UDL				2.9		plf

Maximum Reactions (lbs), Bearing Resistances (lbs) and Bearing Lengths (in):

		The state of the s	
Unfactored:			240
Dead	240		433
Live	433		433
Factored:			949
Total	949		949
Bearing:			
Resistance			2222
Joist	2333		2333
Support	7072		_
Des ratio			0 41
Joist	0.41		0.41
Support	0.13		по -
Load case	#2		#2
Length	4		4
Min req'd	1-3/4		1-3/4
Stiffener	No		No 1 00
Kd	1.00		1.00
KB support	1.00		-
fcp sup	769		-
Kzcp sup	1.15		

Nordic 11-7/8" NI-40x Floor joist @ 16" o.c.

Supports: 1 - Lumber Sill plate, No.1/No.2; 2 - Hanger; Total length: 16'-9.0"; 5/8" nailed and glued OSB sheathing This section PASSES the design code check.

Limit States Design using CSA-O86-09 and Vibration Criterion:

Conittonion	Analysis Value	Design Value	Unit	Analysis/Design
Criterion		Vr = 2336	lbs	Vf/Vr = 0.41
Shear	Vf = 949		1	
Moment(+)	Mf = 3849	Mr = 6255	lbs-ft	FESSIMF/Mr = 0.62
Perm. Defl'n	$0.12 = \langle L/999$	0.54 = L/360	in RA	0.22
Live Defl'n	0.21 = L/912	0.41 = L/480	in / S	0.53
Total Defl'n	0.33 = L/587	0.81 = L/240	in/S/	0.41
Bare Defl'n	0.25 = L/773	0.54 = L/360	in	0.47
Vibration	$L_{max} = 16'-3$	Lv = 17'-2	ft 3 S.K.	ATSOULAKOS 🖫
Defl'n	= 0.033	= 0.039	1 : 11	0.83
Derr ii	0.000		A Character	
			13.1	TAT. ON DWO NO. TAI
			NOV.	CE OF ONLY STRUC
			Contraction of the Contraction o	
				COMPONEN

DWO NO .TAM 42727 - 17 STRUCTURAL COMPONENT ONLY

WoodWorks® Sizer

for NORDIC STRUCTURES

J1 2ND FLOOR

Nordic Sizer - Canada 6.4

Page 2

Additional	l Data:								
FACTORS:	f/E	KD	KH	KZ	KL		KS	KN	LC#
Vr	2336	1.00	1.00		_		-	-	#2
Mr+	6255	1.00	1.00	_	1.000	-	-	_	#2
EI	371.1 m	illion	-		_	-	-	-	#2
CRITICAL LO									
Shear	: LC #2	= 1.25	5D + 1.5I	L					
Moment(+)									
Deflection									
			0 + 1.0L						
			0 + 1.0L						
}			0 + 1.0L						
Bearing	: Suppo	rt 1 - I	LC #2 = 1	L.25D +	1.5L				
	Suppo	rt 2 - I	LC #2 = 1	L.25D +	1.5L		. E-05"	+ h au a lea	
Load Type	es: D=dea	d W=wir	nd S=sno	ow H=ea	arth,grou	nawatei	r Ŀ=ear	f-fire	
	L=liv	e(use,oc	ccupancy	Ls=l:	ive(stora	.ge,equi	ipment)	r=rrre	
All Load		ions (LO	Cs) are	Listed :	ın the An	arysis	output		
CALCULATION						0.6.11			
Deflection	on: Elef	f = 4	148e06 lk	o-in2	K = 6.18e	06 lbs	(1)	يم فيدني	
"Live" de	eflection	= Defle	ection fi	com all	non-dead	Loads	(live,	wina, si	now)

Design Notes:

- 1. WoodWorks analysis and design are in accordance with the 2010 National Building Code of Canada (NBC Part 4) and the CSA O86-09 Engineering Design in Wood standard, which includes Update No.1. CONFORMS TO OBC 2012
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Refer to technical documentation for installation guidelines and construction details.
- 4. Nordic I-joists are listed in CCMC evaluation report 13032-R.
- 5. Joists shall be laterally supported at supports and continuously along the compression edge.
- 6. The design assumptions and specifications have been provided by the client. Any damages resulting from faulty or incorrect information, specifications, and/or designs furnished, and the correctness or accuracy of this information is their responsibility. This analysis does not constitute a record of the structural integrity of the building nor suitability of the design assumptions made. Nordic Structures is responsible only for the structural adequacy of this component based on the design criteria and loadings shown.

DWO NO.TAM 42727-17 STRUCTURAL COMPONENT ONLY

Triple 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B1(i1807)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:31

BC CALC® Design Report

*

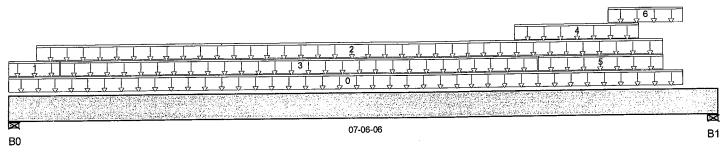
Build 5033

Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:


CCMC 12472-R

File Name: ROSEWOOD 1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B1(i1807)

Specifier: Designer: Company.

Misc:

Total Horizontal Product Length = 07-06-06

Reaction Summary (Do	wn / Uplift) (lbs)			Marin al
Be aring	Live	De ad	Snow	Wind
B0, 5-1/2"	3,260 / 0	2,018/0		
B1. 2-3/8"	2,800/0	1,733/0		

	0					Live	Dead	Snow	wina	Trib.
	ad Summary g Description	Load Type	Re	f. Start	End	1.00	0.65	1.00	1.15	
0	5(i350)	Unf. Lin. (lb/ft)	L	00-00-00	07-02-00		81			n/a
1	5(i350)	Unf. Lin. (lb/ft)	L	00-00-00	00-06-08	324	165			n/a
2	Smoothed Load	Unf. Lin. (lb/ft)	L	00-03-08	06-11-08	343	172			n/a
3	5(i350)	Unf. Lin. (lb/ft)	L	00-06-08	05-07-08	548	274			n/a
4	5(i350)	Unf. Lin. (lb/ft)	L	05-04-08	06-08-08	153	76			· n/a
5	5(i350)	Unf. Lin. (lb/ft)	L	05-07-08	06-11-08	308	154			n/a
6	5(i350)	Unf. Lin. (lb/ft)	L	06-04-08	07-02-00	201	101			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	12,414 ft-lbs	60,415 ft-lbs	20.5%	1	03-07-08
End Shear	6,420 lbs	21,696 lbs	29.6%	1	01-05-06
Total Load Defl.	L/999 (0.053")	n/a	n/a	4	03-10-08
Live Load Defl.	L/999 (0.033")	n/a	n/a	5	03-10-08
Max Defl.	0.053"	n/a	n/a	4	03-10-08
Span / Depth	7.1	n/a	n/a		00-00-00

				De mand/ Resistance	Demand/ Resistance	
Beari	ing Supports	Dim.(L x W)	De man d	Support	Member	Material
B0	Wall/Plate	5-1/2" x 5-1/4"	7,412 lbs	48.1%	21%	Unspecified
B1	Wall/Plate	2-3/8" x 5-1/4"	6,367 lbs	95.6%	41.9%	Unspecified

Notes

DWO NO.TAM 42028-17 STRUCTURAL COMPONENT ONLY

Triple 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B1(i1807)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:31

Build 5033

Job Name:

Address:
City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B1(i180

Specifier:

Designer: Company:

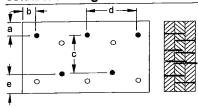
Misc:

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA


O86.

CONFORMS TO OBG 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Connection Diagram

grows

a minimum = 1" c=6-7/8" b minimum = 3" d = 6

e minimum = 2"

Calculated Side Load = 645.0 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Nailing schedule applies to both sides of the member.

Connectors are: 16d ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWO NO .TAM 42028-17 STRUCTURAL COMPONENT ONLY

Boise Cascade Single 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B2(i1665)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:08

BC CALC® Design Report

Build 5033

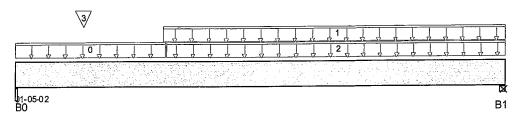
Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R


File Name: ROSEWOOD 1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B2(i1665)

Specifier: Designer:

Company:

Misc:

Total Horizontal Froduct Length = 01-05-02

Reaction Summary (Down / Uplift) (lbs)										
Bearing	Live	De ad	Snow	Wind						
B0, 5-1/4"	64 / 0	71 / 0								
B1 5-1/2"	11 / 0	68 / 0								

1.0	ad Summary					Live	Dead	Snow	Wind	Trib.
Tag Description		Load Type	Re f.	f. Start	En d	1.00	0.65	1.00	1.15	
0	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	00-05-04	18	9			n/a
1	6(i351)	Unf. Lin. (lb/ft)	L	00-05-02	01-05-02		81			n/a
2	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-05-04	01-05-02	16	8			n/a
3	7(i352)	Conc. Pt. (lbs)	L	00-02-06	00-02-06	52	38			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	7 ft-lbs	n/a	n/a	0	00-08-07
End Shear	35 lbs	4,701 lbs	0.8%	0	00-05-04
Span / Depth	0.7	n/a	n/a		00-00-00

Bearing Supports		Dim.(L x W)			Demand/ Resistance Member	Material
B0	Beam	5-1/4" x 1-3/4"	184 lbs	4.7%	1.6%	Unspecified
B1	Wall/Plate	5-1/2" x 1-3/4"	96 lbs	3.6%	1.3%	Unspecified

Notes

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA CONFORMS TO OBG 2012 O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood

DWO NO. TAM 42729-17 STRUCTURAL COMPONENT ONLY

Triple 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B3(i1651)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:08

BC CALC® Design Report

Build 5033 Job Name:

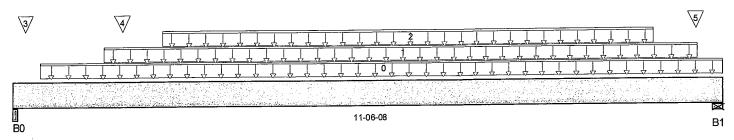
Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R


File Name: ROSEWOOD 1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B3(i1651)

Specifier: Designer:

Company:

Misc:

Total Horizontal Product Length = 11-06-08

Reaction Summary (Down /	Uplift) (lbs) Live	De ad	Snow	Wind	
B0, 5-1/4"	2,904 / 0	1,594 / 0			
B1, 4-3/8"	3,298 / 0	1,754/0			

ء ا	ad Summan					Live	Dead	Snow	Wind	Trib.
	ad Summary g Description	Load Type	Ref. S	Start	En d	1.00	0.65	1.00	1.15	·
ō	FC1 Floor Material	Unf. Lin. (lb/ft)	L 00	-05-04	11-06-08	9	4			n/a
1	Us er Load	Unf. Lin. (lb/ft)	L 01	-05-10	11-01-10	240	120			n/a
2	Smoothed Load	Unf. Lin. (lb/ft)	L 02	2-05-02	10-05-02	343	172			n/a
3	7(i352)	Conc. Pt. (lbs)	L 00	-02-06	00-02-06	161	116			n/a
4	J1(i1647)	Conc. Pt. (lbs)	L 01	-09-02	01-09-02	482	241			n/a
5	J1 (i1676)	Conc. Pt. (lbs)	L 11	-01-02	11-01-02	398	199			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	18,775 ft-lbs	60,415 ft-lbs	31.1%	1	05-09-02
End Shear	6.308 lbs	21,696 lbs	29.1%	1	10-02-04
Total Load Defl.	L/682 (0.191")	0.543"	35.2%	4	05-09-02
Live Load Defl.	L/999 (0.125")	n/a	n/a	5	05-09-02
Max Defl.	0.191"	n/a	n/a	4	05-09-02
Snan / Denth	11	n/a	n/a		00-00-00

Beari	ng Supports	Dim . (L x W)	De man d	De mand/ Resistance Support	De mand/ Resistance Member	Material	
B0	Beam	5-1/4" x 5-1/4"	6,348 lbs	53.9%	18.9%	Un specified	
B1	Wall/Plate	4-3/8" x 5-1/4"	7,139 lbs	72.8%	25.5%	Un specified	

Notes

DWG NO. TAM 4275217 STRUCTURAL COMPONENT ONLY

Triple 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B3(i1651)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:08

Build 5033

Job Name:

Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B3(i165

Specifier:

Designer: Company:

Misc:

Design meets Code minimum (L/240) Total load deflection criteria.

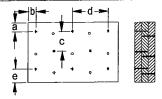
Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.


Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

POC 2010 and CSA partic

CONFORMS TO OBC 2012

Connection Diagram

a minimum = 2" b minimum = 3" c= 3-7/16" d= 6"

e minimum = 3"

Calculated Side Load = 667.2 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record. Nailing schedule applies to both sides of the member.

Connectors are: 16d \(\) Nails

312" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO.TAM 4230-17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP Basment\...\B4(i1652)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:08

BC CALC® Design Report

*

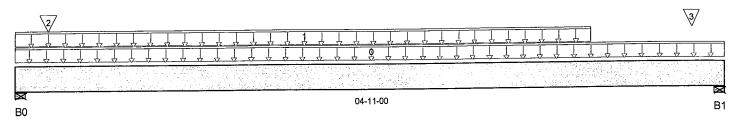
Build 5033 Job Name:

Address:
City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R


File Name: ROSEWOOD 1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B4(i1652)

Specifier: Designer:

Company.

Misc:

Total Horizontal Product Length = 04-11-00

Reaction Summary	(Down / Uplift) (lbs) Live	De ad	Snow	Wind		
B0, 3-1/2"	1,880 / 0	1,022 / 0			•	
B1.3-1/2"	1,766 / 0	964/0				

	ad Summary Description	Load Type	Ret	f. Start	En d	Live 1.00	De ad 0.65	1.00	1.15	I FID.
0	Smoothed Load	Unf. Lin. (lb/ft)	L	00-00-00	04-11-00	363	182			n/a
1	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	04-00-00	26	13			n/a
2	E1 (i207)	Conc. Pt. (lbs)	L	00-02-12	00-02-12	909	506			n/a
3	E4(i204)	Conc. Pt. (lbs)	L	04-08-04	04-08-04	841	472			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	1.878 ft-lbs	38,727 ft-lbs	4.8%	1	02-11-06
End Shear	1,229 lbs	14,464 lbs	8.5%	1	03-07-10
Total Load Defl.	L/999 (0.005")	n/a	n/a	4	02-05-11
Live Load Defl.	L/999 (0.003")	n/a	n/a	5	02-05-11
Max Defl.	0.005"	n/a	n/a	4	02-05-11
Span / Depth	4.5	n/a	n/a		00-00-00

Roarii	ng Supports	Dim . (L x W)	De man d	De mand/ Resistance Support	Demand/ Resistance Member	Material
B0	Wall/Plate	3-1/2" x 3-1/2"	4,097 lbs	78.3%	27.4%	Unspecified
B1	Wall/Plate	3-1/2" x 3-1/2"	3,854 lbs	73.6%	25.8%	Unspecified

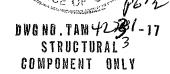
Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.


BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO OBC 2012

Build 5033

Job Name:

Customer:

Code reports:

Address:

Basment\...\B4(i1652) Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP

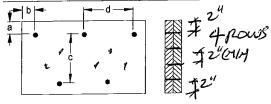
Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:08

BC CALC® Design Report

File Name: ROSEWOOD 1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B4(i165)


Specifier:

Designer: Company.

City, Province, Postal Code: WATERDOWN, CCMC 12472-R

Misc:

Connection Diagram

a minimum = 2" c = 7-7/8" d= 4" b minimum = 3"

Calculated Side Load = 768.1 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d TARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM $^{\text{TM}}$, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are

trademarks of Boise Cascade Wood Products L.L.C.

> POVINCE OF ONLY DWG NO. TAM 4238

STRUCTURAL COMPONENT ONLY

Triple 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B7(i1354)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:08

BC CALC® Design Report

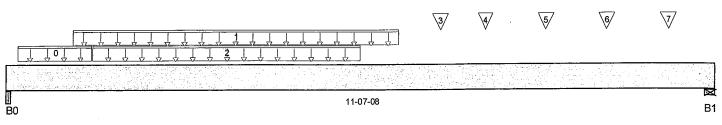
Build 5033 Job Name:

Address: City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R


File Name: ROSEWOOD 1.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B7(i1354)

Specifier: Designer:

Company:

Misc:

Total Horizontal Product Length = 11-07-08

Reaction Summary (Down / Uplift) (lbs)				
Bearing	Live	De ad	Snow	Wind	
B0, 4-3/16"	2,380 / 0	1,294 / 0			
B1.5-1/2"	2,172/0	1,192/0			

Lo	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
0	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-02-04	01-05-00	45	23			n/a
1	Smoothed Load	Unf. Lin. (lb/ft)	L	01-01-00	06-05-00	340	170			n/a
2	Us er Load	Unf. Lin. (lb/ft)	L	01-05-00	05-09-08	240	120			n/a
3	J1(i1524)	Conc. Pt. (lbs)	L	07-01-00	07-01-00	356	178			n/a
4	J1 (i1426)	Conc. Pt. (lbs)	L	07-10-04	07-10-04	299	150			n/a
5	J1 (i1356)	Conc. Pt. (lbs)	L	08-10-04	08-10-04	338	169			n/a
6	J1 (i1454)	Conc. Pt. (lbs)	L	09-10-04	09-10-04	338	169			n/a
7	J1 (i1407)	Conc. Pt. (lbs)	L	10-10-04	10-10-04	297	149			n/a

Controls Summary	Factore d Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	14,865 ft-lbs	60,415 ft-lbs	24.6%	1	05-05-00
End Shear	5,048 lbs	21,696 lbs	23.3%	1	01-04-01
Total Load Defl.	L/858 (0.153")	0.547"	28%	4	05-07-00
Live Load Defl.	L/999 (0.099")	n/a	n/a	5	05-07-00
Max Defl.	0.153"	n/a	n/a	4	05-07-00
Span / Depth	11.1	n/a	n/a		00-00-00

Beari	ng Supports	Dim . (L x W)	De man d	Resistance Support	Resistance Member	Material
В0	Beam	4-3/16" x5-1/4"	5,188 lbs	55.4%	19.4%	Unspecified
B1	Wall/Plate	5-1/2" x 5-1/4"	4,748 lbs	38.5%	13.5%	Unspecified

Notes

COMPONENT ONLY

Triple 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B7(i1354)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:08

Build 5033

Job Name:

Address: City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 1.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B7(i1354

Specifier: Designer:

Company.

Misc:

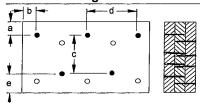
Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA


O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO DBC 2012

Connection Diagram

4 Rows

a minimum = #" c = @-7/8" b minimum = 3" d= 10 6

e minimum = 2"

Calculated Side Load = 629.2 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Nailing schedule applies to both sides of the member.

Connectors are: 16d Connectors Arbox Nails 3½ ARDOX

ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B8(i1611)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:09

BC CALC® Design Report

*

Build 5033

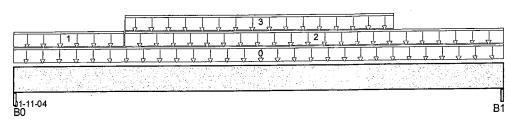
Job Name: Address:

City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R


File Name: ROSEWOOD 1.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B8(i1611)

Specifier:

Designer: Company.

Misc:

Total Horizontal Product Length = 01-11-04

Reaction Summary	(Down / Uplift) (lbs) Live	De ad	Snow	Wind	
B0, 5-1/4"	53 / 0	104/0	67 / 0		
B1, 5-1/4"	51 / 0	104/0	67 / 0		

١.	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Re f	. Start	En d	1.00	0.65	1.00	1.15	
0	Us er Load	Unf. Lin. (lb/ft)	L	00-00-00	01-11-04	33	30	69		n/a
1	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	00-05-04	23	11			n/a
	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-05-04	01-11-04	20	10			n/a
3	User Load	Unf. Lin. (lb/ft)	L	00-05-04	01-06-00		100			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Dem and	Resistance	Resistance	Case	
Pos. Moment	37 ft-lbs	25,173 ft-lbs	0.1%	0	00-11-10
End Shear	98 lbs	9,401 lbs	1%	0	01-05-02
Span / Depth	1.2	n/a	n/a		00-00-00

Bea	ring Supports	Dim.(L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
B0	Beam	5-1/4" x 3-1/2"	257 lbs	3.3%	1.1%	Unspecified
B1	Beam	5-1/4" x 3-1/2"	255 lbs	3.3%	1.1%	Unspecified

Notes

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86. **CONFORMS TO OBC 2012**

Unbalanced snow loads determined from building geometry were used in selected product's verification.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

DWG NO.TAM 423-17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B8(i1611)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

May 2, 2017 15:29:09

BC CALC® Design Report

Build 5033 Job Name:

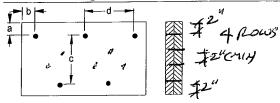
Address: City, Province, Postal Code:WATERDOWN,

Customer:

Code reports:

CCMC 12472-R

File Name: ROSEWOOD 1.mmdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\88(i161*

Specifier: Designer:

Company:

Misc:

Connection Diagram

a minimum = 2" b minimum = 3"

c = 7-7/8" d= 806"

Member has no side loads.

Connectors are: 16d 🕏 🚁 Nails

ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

POVINCE OF ON THE

STRUCTURAT COMPONENT ONLY

Live Load = 40 psf, Dead Load = 15 psf Simple Spans, L/480 Deflection Limit 3/4" OSB G&N Sheathing

			В	are			1/2" Gyr	sum Ceiling	
Depth	Series		On Cent	re Spacing			On Cen	tre Spacing	
		12"	16"	19.2"	24"	12"	16"	/ 19.2"	24"
	NI-20	15'-10"	15'-0"	14'-5"	13'-5"	16'-4"	15'-5"	14'-6"	13'-5"
	NI-40x	17'-0"	16'-0"	15'-5"	14'-9"	17'-5"	16'-5"	15'-10"	15'-2"
9-1/2"	NI-60	17'-2"	16'-2"	15'-7"	14'-11"	17'-6"	16'-7"	15'-11"	15'-3"
	NI-70	18'-0"	16'-11"	16'-3"	15'-7"	18'-5"	17'-3"	16'-7"	15'-11"
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'-5"	16'-9"	16'-1"
	NI-20	17'-10"	16'-10"	16'-2"	15'-6"	18'-6"	17'-4"	16'-9"	16'-1"
	NI-40x	19 '- 4"	17'-11"	17'-3"	16'-6"	19'-11"	18'-6"	17'-9"	17'-0"
11 7/0"	NI-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18'-9"	17'-11"	17'-2"
11-7/8"	NI-70	20'-9"	19'-2"	18'-3"	17'-5"	21'-4"	19'-9"	18'-10"	17'-10"
	NI-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"
	NI-90x	21 '- 8"	20'-0"	19'-1"	18'-0"	22'-2"	20'-6"	19'-6"	18'-6"
	NI-40x	21'-5"	19'-10"	18'-11"	17'-11"	22'-1"	20'-6"	19'-7"	18'-7"
	NI-60	21'-10"	20'-2"	19'-3"	18'-2"	22'-5"	20'-10"	19'-11"	18'-10"
14"	NI-70	23'-0"	21'-3"	20'-3"	19'-2"	23'-8"	21'-11"	20'-10"	19'-9"
	NI-80	23'-5"	21'-7"	20'-7"	19'-5"	24'-0"	22' - 3"	21'-2"	20'-0"
	NI-90x	24'-1"	22'-3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"
	NI-60	23'-9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"
16"	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25 '- 9"	23'-10"	22'-9"	21'-6"
10	NI-80	25'-6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23'-1"	21'-10"
	NI-90x	26'-4"	24'-3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22'-5"

			Mid-Spa	n Blocking		Mid-Span Blocking and 1/2" Gypsum Ceiling					
Depth	Series		On Cent	re Spacing			On Centre Spacing				
		12"	16"	19.2"	24"	12"	16"	19.2"	24"		
	NI-20	16'-10"	15'-5"	14'-6"	13'-5"	16'-10"	15'-5"	14'-6"	13'-5"		
	NI-40x	18'-8"	17'-2"	16'-3"	15'-2"	18'-10"	17'-2"	16'-3"	15'-2"		
9-1/2"	· NI-60	18'-11"	17'-6"	16'-6"	15'-5"	19'-2"	17'-6"	16'-6"	15'-5"		
	NI-70	20'-0"	18'-7"	17'-9"	16'-7"	20'-5"	18'-11"	17'-10"	16'-7"		
	NI-80	20'-3"	18'-10"	17'-11"	16'-10"	20'-8"	19'-3"	18'-2"	16'-10"		
	NI-20	20'-1"	18'-5"	17'-5"	16'-2"	20'-1"	18'-5"	17'-5"	16'-2"		
	NI-40x	21'-10"	20'-4"	19'-4"	17!-8"	22'-5"	20'-6"	19'-4"	17'-8"		
11-7/8"	NI-60	22'-1"	20'-7"	19'-7"	18'-4"	22'-8"	20'-10"	19'-8"	18'-4"		
11-//8	NI-70	23'-4"	21'-8"	20'-8"	19'-7"	23'-10"	22'-3"	21'-2"	19'-9"		
	NI-80	23'-7"	21'-11"	20'-11"	19'-9"	24'-1"	22'-6"	21'-5"	20'-0"		
	NI-90x	24'-3"	22'-6"	21'-6"	20'-4"	24'-8"	23'-0"	22'-0"	20'-9"		
	NI-40x	24'-5"	22'-9"	21'-8"	19'-5"	25'-1"	23'-2"	21'-9"	19'-5"		
	NI-60	24'-10"	23'-1"	22'-0"	20'-10"	25'-6"	23'-8"	22'-4"	20'-10"		
14"	NI-70	26'-1"	24'-3"	23'-2"	21'-10"	26'-8"	24'-11"	23' -9 "	22'-4"		
	NI-80	26'-6"	24'-7"	23'-5"	22'-2"	27'-1"	25 '- 3"	24'-1"	22'-9"		
	NI-90x	27'-3"	25'-4"	24'-1"	22'-9"	27'-9"	25'-11"	24'-8"	23'-4"		
	NI-60	27'-3"	25'-5"	24'-2"	22'-10"	28'-0"	26'-2"	24'-9"	23'-1"		
16"	NI-70	28'-8"	26'-8"	25'-4"	23 '- 11"	29'-3"	27'-4"	26'-1"	24'-8"		
10	NI-80	29'-1"	27'-0"	25'-9"	24'-4"	29'-8"	27'-9"	26'-5"	25'-0"		
	NI-90x	29'-11"	27'-10"	26'-6"	25'-0"	30'-6"	28'-5"	27'-2"	25'-8"		

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.
4. Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Live Load = 40 psf, Dead Load = 15 psf Simple Spans, L/480 Deflection Limit 5/8" OSB G&N Sheathing

			В	are			1/2" Gyp	sum Ceiling			
Depth	Series		On Cent	re Spacing			On Centre Spacing				
_		12"	16"	19.2"	24"	12"	16"	19.2"	24"		
	NI-20	15'-1"	14'-2"	13'-9"	N/A	15'-7"	14'-8"	14'-2"	N/A		
	NI-40x	16'-1"	15'-2"	14'-8"	N/A	16'-7"	15'-7"	15'-1"	N/A		
9-1/2"	NI-60	16'-3"	15'-4"	14'-10"	N/A	16'-8"	15'-9"	15'-3"	N/A		
	NI-70	17'-1"	16'-1"	15'-6"	N/A	17'-5"	16'-5"	15'-10"	N/A		
	NI-80	17'-3"	16'-3"	15'-8"	N/A	17'-8"	16'-7"	16'-0"	N/A		
	NI-20	16'-11"	16'-0"	15'-5"	N/A	17'-6"	16'-6"	16'-0"	N/A		
	NI-40x	18'-1"	17'-0"	16'-5"	N/A	18'-9"	17'-6"	16'-11"	N/A		
11-7/8"	NI-60	18 '- 4"	17'-3"	16'-7"	N/A	19'-0"	17'-8"	17'-1"	N/A		
11-//0	NI-70	19'-6"	18'-0"	17'-4"	N/A	20'-1"	18'-7"	17'-9"	N/A		
	NI-80	19'-9"	18'-3"	17'-6"	N/A	20'-4"	18'-10"	17'-11"	N/A		
	N1-90x	20'-4"	18'-9"	17'-11"	N/A	20'-10"	19'-3"	18'-5"	N/A		
	NI-40x	20'-1"	18'-7"	17'-10"	N/A	20'-10"	19'-4"	18'-6"	N/A		
	NI-60	20'-5"	18'-11"	18'-1"	N/A	21'-2"	19'-7"	18'-9"	N/A		
14"	NI-70	21'-7"	20'-0"	19'-1"	N/A	22'-3"	20'-7"	19'-8"	N/A		
	NI-80	21'-11"	20'-3"	19'-4"	N/A	22'-7"	20'-11"	20'-0"	N/A		
	NI-90x	22'-7"	20'-11"	19'-11"	N/A	23'-3"	21'-6"	20'-6"	N/A		
	NI-60	22'-3"	20'-8"	19'-9"	N/A	23'-1"	21'-5"	20'-6"	N/A		
16"	NI-70	23'-6"	21' - 9"	20'-9"	N/A	24'-3"	22'-5"	21'-5"	N/A		
10	N1-80	23'-11"	22'-1"	21'-1"	N/A	24'-8"	22'-10"	21'-9"	N/A		
	NI-90x	24'-8"	22'-9"	21'-9"	N/A	25'-4"	23'-5"	22'-4"	N/A		

			Mid-Spa	n Blocking		Mid-9	pan Blocking a	nd 1/2" Gypsum	Ceiling
Depth	Series	On Centre Spacing					On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	16'-8"	15'-3"	14'-5"	N/A	16'-8"	15'-3"	14'-5"	N/A
	NI-40x	17'-11"	16'-11"	16'-1"	N/A	18'-5"	17'-1"	16'-1"	N/A
9-1/2"	NI-60	18'-2"	17'-1"	16'-4"	N/A	18'-7"	17'-4"	16'-4"	N/A
	NI-70	19'-2"	17'-10"	17'-2"	N/A	19'-7"	. 18'-3"	17'-7"	N/A
	NI-80	19' - 5"	18'-0"	17'-4"	N/A	19'-10"	18'-5"	17'-8"	N/A
	NI-20	19'-6"	18'-1"	17'-3"	N/A	19'-11"	18'-3"	17'-3"	N/A
11-7/8"	NI-40x	21'-0"	19'-6"	18'-8"	N/A	21'-7"	20'-2"	19'-2"	N/A
	NI-60	21'-4"	19'-9"	18'-11"	N/A	21'-11"	20'-4"	19'-6"	N/A
11-//0	NI-70	22'-6"	20'-10"	19'-11"	N/A	23'-0"	21'-5"	20'-5"	N/A
	NI-80	22'-9"	21'-1"	20'-1"	N/A	23'-3"	21'-7"	20'-8"	N/A
	NI-90x	23'-4"	21'-8"	20'-8"	N/A	23'-10"	22'-2"	21'-2"	N/A
	NI-40x	23'-7"	21'-11"	20'-11"	N/A	24'-3"	22'-7"	21'-7"	N/A
	NI-60	24'-0"	22'-3"	21'-3"	N/A	24'-8"	22'-11"	21'-11"	N/A
14"	NI-70	25'-3"	23'-4"	22'-3"	N/A	25'-10"	24'-0"	22'-11"	N/A
	NI-80	25'-7"	23'-8"	22'-7"	N/A	26'-2"	24'-4"	23'-2"	N/A
	NI-90x	26'-4"	24'-4"	23'-3"	N/A	26'-10"	24'-11"	23'-9"	N/A
	NI-60	26'-5"	24'-6"	23'-4"	N/A	27'-2"	25'-3"	24'-2"	N/A
16"	NI-70	27'-9"	25'-8"	24'-6"	N/A	28'-5"	26'-5"	25'-2"	N/A
10	NI-80	28'-2"	26'-1"	24'-10"	N/A	28'-10"	26' - 9"	25'-6"	N/A
	NI-90x	29'-0"	26'-10"	25'-7"	N/A	29'-7"	27'-5"	26'-2"	N/A

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Live Load = 40 psf, Dead Load = 30 psf Simple Spans, L/480 Deflection Limit 5/8" OSB G&N Sheathing

			B	are			1/2" Gyp	sum Ceiling	
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
рерип		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-1"	14'-1"	13'-3"	N/A	15'-7"	14'-1"	13'-3"	N/A
	NI-40x	16'-1"	15'-2"	14'-8"	N/A	16'-7"	15'-7"	15'-1"	N/A
9-1/2"	NI-60	16'-3"	15'-4 "	14'-10"	N/A	16'-8"	15'-9"	15'-3"	N/A
	NI-70	17'-1"	16'-1"	15'-6"	N/A	17'-5"	16'-5"	15'-10"	N/A
	NI-80	17'-3"	16'-3"	15'-8"	N/A	17'-8"	16'-7"	16'-0"	N/A
	NI-20	16'-11"	16'-0"	15'-5"	N/A	17'-6"	16'-6"	16'-0"	N/A
	NI-40x	18'-1"	17'-0"	16'-5"	N/A	18'-9"	17'-6"	16'-11"	N/A
11-7/8"	NI-60	18'-4"	17'-3"	16'-7"	N/A	19'-0"	17'-8"	17'-1"	N/A
11-//0	N!-70	19'-6"	18'-0"	17'-4"	N/A	20'-1"	18'-7"	17'-9"	N/A
	NI-80	19'-9"	18'-3"	17'-6"	N/A	20'-4"	18'-10"	17'-11"	N/A
	NI-90x	20'-4"	18'-9"	17'-11"	N/A	20'-10"	19'-3"	18'-5"	N/A
	NI-40x	20'-1"	18'-7"	17'-10"	N/A	20'-10"	19'-4"	18'-6"	N/A
	NI-60	20' - 5"	18'-11"	18'-1"	N/A	21'-2"	19'-7"	18'-9"	N/A
14"	NI-70	21'-7"	20'-0"	19'-1"	N/A	22'-3"	20'-7"	19'-8"	N/A
	NI-80	21'-11"	20'-3"	19'-4"	N/A	22'-7"	20'-11"	20'-0"	N/A
	NI-90x	22'-7"	20'-11"	19'-11"	N/A	23'-3"	21'-6"	20'-6"	N/A
	NI-60	22'-3"	20'-8"	19'-9"	N/A	23'-1"	21'-5"	20'-6"	N/A
16"	NI-70	23'-6"	21' -9 "	20'-9"	N/A	24'-3"	22'-5"	21'-5"	N/A
10	NI-80	23'-11"	22'-1"	21'-1"	N/A	24'-8"	22'-10"	21'-9"	N/A
	NI-90x	24 '- 8"	22'-9"	21'-9"	N/A	25'-4"	23'-5"	22'-4"	N/A

		Mid-Span Blocking On Centre Spacing				Mid-Span Blocking and 1/2" Gypsum Ceiling				
Depth	Series						On Cent	re Spacing		
Depth		12"	16"	19.2"	24"	12"	16"	19.2"	24"	
	NI-20	15'-7"	14'-1"	13'-3"	N/A	15'-7"	14'-1"	13'-3"	N/A	
	NI-40x	17'-9"	16'-1"	15'-1"	N/A	17'-9"	16'-1"	15'-1"	N/A	
9-1/2"	NI-60	18'-1"	16'-4"	15'-4"	N/A	18'-1"	16'-4"	15'-4"	N/A	
	NI-70	19'-2"	17'-10"	16'-9"	N/A	19'-7"	17'-10"	16'-9"	N/A	
	NI-80	19'-5"	18'-0"	17'-1"	N/A	19'-10"	18'-3"	17'-1"	N/A	
	NI-20	18'-9"	17'-0"	16'-0"	N/A	18'-9"	17'-0"	16'-0"	N/A	
	NI-40x	21'-0"	19'-3"	17'-9"	N/A	21'-3"	19'-3"	17'-9"	N/A	
11-7/8"	NI-60	21'-4"	19'-8"	18'-5"	N/A	21'-8"	19'-8"	18'-5"	N/A	
11-//0	NI-70	22'-6"	20'-10"	19'-11"	N/A	23'-0"	21'-4"	20'-0"	N/A	
	NI-80	22'-9"	21'-1"	20'-1"	N/A	23'-3"	21'-7"	20'-5"	N/A	
	NI-90x	23'-4"	21'-8"	20'-8"	N/A	23'-10"	22'-2"	21'-2"	N/A	
	NI-40x	23'-7"	21'-5"	19'-6"	N/A	24'-1"	21'-5"	19'-6"	N/A	
	NI-60	24'-0"	22'-3"	21'-0"	N/A	24'-8"	22'-5"	21'-0"	N/A	
14"	NI-70	25'-3"	23'-4"	22'-3"	N/A	25'-10"	24'-0"	22'-9"	N/A	
	NI-80	25'-7"	23'-8"	22'-7"	N/A	26'-2"	24'-4"	23'-2"	N/A	
	NI-90x	26'-4"	24'-4"	23'-3"	N/A	26'-10"	24'-11"	23'-9"	N/A	
	NI-60	26'-5"	24'-6"	23'-4"	N/A	27'-2"	24'-10"	23'-4"	N/A	
16"	NI-70	27'-9"	25'-8"	24'-6"	N/A	28'-5"	26'-5"	25'-2"	N/A	
10	NI-80	28'-2"	26'-1"	24'-10"	N/A	28'-10"	26'-9"	25 '- 6"	N/A	
	NI-90x	29'-0"	26'-10"	25'-7"	N/A	29'-7"	27'-5"	26'-2"	N/A	

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 30 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Live Load = 40 psf, Dead Load = 30 psf Simple Spans, L/480 Deflection Limit 3/4" OSB G&N Sheathing

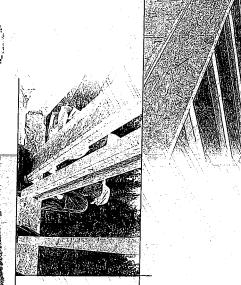
				are			1/2" Gyp	sum Ceiling	
Depth	Series	On Centre Spacing					On Cent	re Spacing	•
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-2"	13'-4"	12'-4"	15'-7"	14'-2"	13'-4"	12'-4"
	NI-40x	17'-0"	16'-0"	15'-1"	13'-11"	17'-5"	16'-1"	15'-1"	13'-11"
9-1/2"	NI-60	17'-2"	16'-2"	15'-5"	14'-3"	17'-6"	16'-5"	15'-5"	14'-3"
	NI-70	18'-0"	16'-11"	16'-3"	15'-6"	18'-5"	17'-3"	16'-7"	15'-6"
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'-5"	16'-9"	15'-10"
	NI-20	17'-10"	16'-10"	16'-0"	14'-10"	18'-6"	17'-1"	16'-0"	14'-10"
	NI-40x	19'-4"	17'-11"	17'-3"	15'-10"	19'-11"	18'-6"	17'-9"	15'-10"
11-7/8"	NI-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18'-9"	17'-11"	17'-1"
11-7/6	NI-70	20'-9"	19'-2"	18'-3"	17'-5"	21'-4"	19'-9"	18'-10"	17'-10"
	NI-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"
	NI-90x	21'-8"	20'-0"	19'-1"	18'-0"	22'-2"	20'-6"	19'-6"	18'-6"
	NI-40x	21'-5"	19'-10"	18'-11"	17'-5"	22'-1"	20'-6"	19'-6"	17'-5"
	NI-60	21'-10"	20'-2"	19'-3"	18'-2"	22'-5"	20'-10"	19'-11"	18'-10"
14"	NI-70	23'-0"	21'-3"	20'-3"	19'-2"	23'-8"	21'-11"	20'-10"	19'-9"
	NI-80	23'-5"	21'-7"	20 '- 7"	19'-5"	24'-0"	22'-3"	21'-2"	20'-0"
	NI-90x	24'-1"	22'-3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"
	NI-60	23'-9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"
16"	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25'-9"	23'-10"	22'-9"	21'-6"
10	NI-80	25'-6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23'-1"	21'-10"
	NI-90x	26'-4"	24'-3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22'-5"

			Mid-Spa	n Blocking		Mid-Span Blocking and 1/2" Gypsum Ceiling				
Depth	Series		On Cent	re Spacing			On Centre Spacing			
		12"	16"	19.2"	24"	12"	16"	19.2"	24"	
	NI-20	15'-7"	14'-2"	13'-4"	12'-4"	15'-7"	14'-2"	13'-4"	12'-4"	
	NI-40x	17'-9"	16'-1"	15'-1"	13'-11"	17'-9"	16'-1"	15'-1"	13'-11"	
9-1/2"	N1-60	18'-1"	16'-5"	15'-5"	14'-3"	18'-1"	16'-5"	15'-5"	14'-3"	
	NI-70	19'-10"	17'-11"	16'-9"	15'-6"	19'-10"	17'-11"	16'-9"	15'-6"	
	NI-80	20'-2"	18'-3"	17'-1"	15'-10"	20'-2"	18'-3"	17'-1"	15'-10"	
	NI-20	18'-10"	17'-1"	16'-0"	14'-10"	18'-10"	17'-1"	16'-0"	14'-10"	
11-7/8"	NI-40x	21'-3"	19'-3"	17'-9"	15'-10"	21'-3"	19'-3"	17'-9"	15'-10"	
	NI-60	21'-9"	19'-8"	18'-5"	17'-1"	21'-9"	19'-8"	18'-5"	17'-1"	
11-7/6	NI-70	23'-4"	21'-5"	20'-1"	18'-6"	23'-8"	21'-5"	20'-1"	18'-6"	
	NI-80	23'-7"	21'-10"	20'-5"	18'-11"	24'-1"	21'-10"	20'-5"	18'-11"	
	NI-90x	24'-3"	22'-6"	21'-3"	19'-7"	24'-8"	22'-7"	21'-3"	19'-7"	
	NI-40x	24'-2"	21'-5"	19'-6"	17'-5"	24'-2"	21'-5"	19'-6"	17'-5"	
	NI-60	24'-9"	22'-5"	21'-0"	19'-6"	24'-9"	22'-5"	21'-0"	19'-6"	
14"	NI-70	26'-1"	24'-3"	22'-9"	21'-0"	26'-8"	24'-3"	22' - 9"	21'-0"	
	NI-80	26'-6"	24'-7"	23'-3"	21'-6"	27'-1"	24'-10"	23'-3"	21'-6"	
	NI-90x	27'-3"	25'-4"	24'-1"	22'-4"	27'-9"	25'-10"	24'-3"	22'-4"	
	NI-60	27'-3"	24'-11"	23'-5"	21'-7"	27'-6"	24'-11"	23'-5"	21'-7"	
16"	NI-70	28'-8"	26'-8"	25'-3"	23'-4"	29'-3"	26'-11"	25'-3"	23'-4"	
10	NI-80	29'-1"	27'-0"	25' - 9"	23'-10"	29'-8"	27'-6"	25'-10"	23'-10"	
	NI-90x	29'-11"	27'-10"	26'-6"	24'-10"	30'-6"	28'-5"	26'-11"	24'-10"	

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 30 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.
 Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.


^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

ENGINEERED WOOD

NSTALLATION GUIDE

FOR RESIDENTIAL FLOORS

Distributed by:

N-C301 / November 2014

SAFETY AND CONSTRUCTION PRECAUTIONS

WARNING

braced and sheathed.

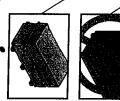
Hoists are not stable until completely installed, and will not carry any load until fully

braced, or serious injuuntil fully fastened and Do not walk on I-joists ries can result

concentrated loads from Once sheathed, do not over-stress I-joist with building materials. materials over unsheathed I-joists. Never stack building

When the building is completed, the floor sheathing will provide lateral support for the top flanges of the I-joists. Until this sheathing is applied,

Avoid Accidents by Following these Important Guidelines: Brace and nail each Hoist as it is installed, using hangers, blocking panels, rim board, and/or cross-bridging at joist ends. When Hoists are applied continuous blocking will be required at the interior support. over interior supports and a load-bearing wall is planned at that location,



- Or, sheathing (temporary or permanent) can be nailed to the top flange of the first 4 feet of Lipists at the end of the bay. bracing over at least two I-joists.
- 3. For cantilevered I-joists, brace top and bottom flanges, and brace ends with closure panels, rim board, or cross-bridging.
- Install and fully nail permanent sheathing to each I-joist before placing loads on the floor system. Then, stack building materials over beams or walls only.
- Never install a damaged I-joist.

Improper storage or installation, failure to follow applicable building codes, failure to follow span ratings for Nordic I-joists, failure to follow allowable hole sizes and locations, or failure to use web stiffeners when required can result in serious acadents. Follow these installation guidelines carefully.

STORAGE AND HANDLING GUIDELINES

- 1. Bundle wrap can be slippery when wet. Avoid walking on wrapped
- 2. Store, stack, and handle I-joists vertically and level only.
- 3. Always stack and handle Lioists in the upright position only.
- . Do not store I-joists in direct contact with the ground and/or flatwise
- Protect i-joists from weather, and use spacers to separate bundles.
- Bundled units should be kept intact until time of installation.
- 7. When handling I-joists with a crane on the job site, take a few to your work crew. simple precautions to prevent damage to the I-joists and injury
- Pick 1-joists in bundles as shipped by the supplier.
- ■Orient the bundles so that the webs of the I-joists are vertical.
- Pick the bundles at the 5th points, using a spreader bar if necessary,
- 8. Do not handle I-joists in a horizontal orientation.
- 9. NEVER USE OR TRY TO REPAIR A DAMAGED I-JOIST.

MAXIMUM FLOOR SPANS

- Maximum clear spans applicable to simple-span or or more of the adjacent span. multiple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate For multiple-span applications, the end spans shall be 40% for floor vibration and a live load deflection limit of L/480 limit states are based on the factored loads of 1.50L + .25D. The serviceability limit states include the consideration
- Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less, or 3/4 inch for joist spacing of 24 inches. Adhesive shall meet the requirements given in CGBS-71.26 of gypsum and/or a row of blocking at mid-span. assumed. Increased spans may be achieved with the used Standard. No concrete topping or bridging element was
- Minimum bearing length shall be 1-3/4 inches for the end bearings, and 3-1/2 inches for the intermediate bearings.
- 4. Bearing stiffeners are not required when I-joists are used required for hangers. with the spans and spacings given in this table, except as
- 5. This span chart is based on uniform loads. For applications with other than uniform loads, an engineering analysis may be required based on the use of the design properties.
- 6. Tables are based on Limit States Design per CAN/CSA O86-09 Standard, and NBC 2010.
- 7. SI units conversion: 1 inch = 25.4 mm 1 foot = 0.305 m

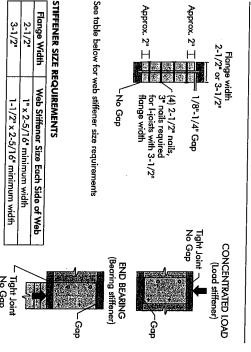
SIMPLE AND MULTIPLE SPANS MAXIMUM FLOOR SPANS FOR NORDIC I-JOISTS

Joist Jo Depth Se							8	
Simple : On centre	102	15:4 16:15 16:3		18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	2007	2018	2018* 2119* 2211	22.8 22.9
9			7.6.5 4.7					
) / "								
le spans e spacing								
1. 1. 1.								

CCMC EVALUATION REPORT 13032-R

I-JOIST HANGERS

- Hangers shown illustrate the three to support I-joists. most commonly used metal hangers
- 2. All nailing must meet the hanger manutacturer's recommendations.
- Hangers should be selected based and load capacity based on the on the loist depth, tlange width maximum spans.
- Web stiffeners are required when the sides of the hangers do not laterally brace the top flange of the I-joist.


WEB STIFFENERS

RECOMMENDATIONS:

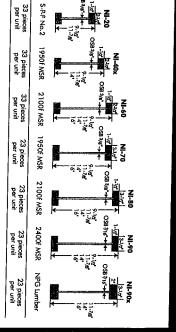

- the stiffener and the flange is at the top. I-joist properties table found of the I-joist Construction Guide (C101). The gap between engineered applications with factored A bearing stiffener is required in all reactions greater than shown in the
- stiffener and flange is at the top. support, the top flange. The gap between the sides of the hanger do not extend up to, and the I-joist is supported in a hanger and the A bearing stiffener is required when
- and the flange is at the bottom. by the code. The gap between the stiffener adjusted for other load durations as permitted standard term load duration, and may be tip and the support. These values are for cantilever, anywhere between the cantilever A load stiffener is required at locations between supports, or in the case of a than 2,370 lbs is applied to the top flange where a factored concentrated load greater
- SI units conversion: 1 inch = 25.4 mm

FIGURE 2

WEB STIFFENER INSTALLATION DETAILS

NORDIC I-JOIST SERIES

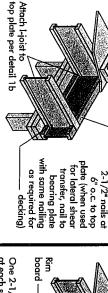
products to adhere to strict quality control procedures throughout the Chantiers Chibougamau Ltd. harvests its own trees, which enables Nortic finished product, reflects our commitment to quality. manutacturing process. Every phase of the operation, from forest to the

Nordic Engineered Wood I-joists use only finger-jointed back spruce longer span carrying capacity lumber in their flanges, ensuring consistent quality, superior strength Juno.

20191941 ത

INSTALLING NORDIC I-JOISTS

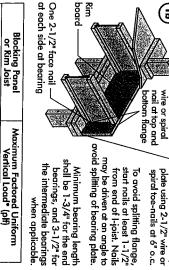
- 1. Before laying out floor system components, verify that I-joist flange widths match hanger widths. If not, contact your
- 2. Except for cutting to length, 1-joist flanges should never be cut, drilled, or notched.
- 3. Install Lioists so that top and bottom flanges are within 1/2 inch of true vertical alignment.
- 4. I-joists must be anchored securely to supports before floor sheathing is attached, and supports for multiple அளில்க்கராயர
- 5. Minimum bearing lengths: 1-3/4 inches for end bearings and 3-1/2 inches for intermediate bearings 20イラウル 16
- 6. When using hangers, seat I-joists firmly in hanger bottoms to minimize settlement
- 7. Leave a 1/16-inch gap between the 1-joist end and a header.
- 8. Concentrated loads greater than those that can normally be expected in residential construction should only be applied to the top surface of the top flange. Normal concentrated loads include track lighting fixtures, audio equipment and security cameras. Never suspend unusual or heavy loads from the Ljoist's bottom flange. Whenever possible, suspend all concentrated loads from the top of the I-joist. Or, attach the load to blocking that has been securely fastened to the
- 9. Never install Lioists where they will be permanently exposed to weather, or where they will remain in direct contact with concrete or masonry.
- 10. Restrain ends of floor joists to prevent rollover. Use rim board, rim joists or I-joist blocking panels
- 11. For I-joists installed over and beneath bearing walls, use full depth blocking panels, rim board, or squash blocks (cripple members) to transfer gravity loads through the floor system to the wall or foundation below.
- 12. Due to shrinkage, common framing lumber set on edge **may never** be used as blocking or rim boards. I-joist blocking panels or other engineered wood products – such as rim board – must be cut to fit between the i-joists, and an i-joist-compatible depth selected.
- 13. Provide permanent lateral support of the bottom flange of all Ljoists at interior supports of multiple-span joists. Similarly, structure, the gypsum wallboard ceiling provides this lateral support. Until the final finished ceiling is applied, temporary support the bottom flange of all cantilevered I-joists at the end support next to the cantilever extension. In the completed bracing or struts must be used
- 14. If square-edge panels are used, edges must be supported between I-joists with 2x4 blocking. Glue panels to blocking to minimize squeaks. Blocking is not required under structural finish flooring, such as wood strip flooring, or if a separate underlayment layer is installed
- 15. Nail spacing: Space nails installed to the flange's top face in accordance with the applicable building code requirements or approved building plans


One 2-1/2" Attach rim board to top

Attach rim joist to floor joist wi

(E)

panel NI blocking

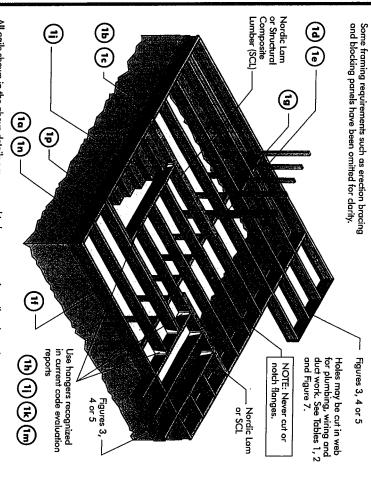

(†

NI Joists	Blocking Panel or Rim Joist
3,300	Maximum Factored Uniform Vertical Load* (plf)

Attach I-joist to

It shall not be used in the design of a bending member, such as joist, header, or ratter. For concentrated vertical inches or less and is based on standard term load duration. The uniform vertical load is limited to a joist depth of 16

or less and is based on standard term load duration. It shall not be *The uniform vertical load is limited to a rim board depth of 16 inches used in the design of a bending member, such as joist, header, or


1-1/8" Rim Board Plus

8,090

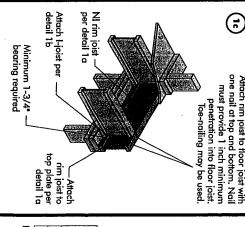
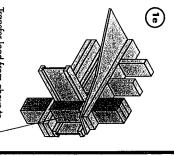
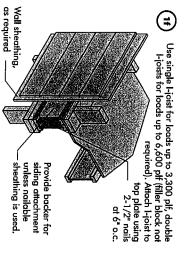

or Rim Joist

FIGURE 1

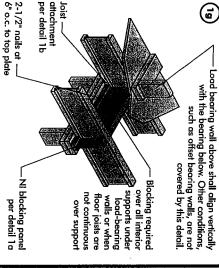
TYPICAL NORDIC I-JOIST FLOOR FRAMING AND CONSTRUCTION DETAILS

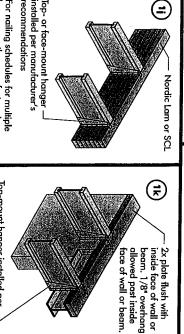


All nails shown in the above details are assumed to be common wire nails unless otherwise noted. 3" (0.122" dia.) common spiral nails may be substituted for 2-1/2" (0.128" dia.) common wire nails. Framing lumber assumed to be Spruce-Pine-Fir No. 2 or better. Individual components not shown to scale for clarify



Ω	₫ ₹	5 9	-		· 3 및 3
1-1/8" Rim Board Plus	2x Lumber		Pair of Squash Blocks	Squash block	NI or rim board blocking panel per detail 1a
4,300	5,500	3-1/2" wide	Maximum Factored Vertical per Pair of Squash Blocks (lbs)		`
6,600	8,500	5-1/2" wide	red Vertical per h Blocks (lbs)		1/16" for 'squash blocks


70
7
¥
굨.
Æ
_
later
ᄚ
5
₫
7
ĭ
ö
≌.
ᇩ
œ
ď
ŏ
detail
≌.
Ω.
_
_
õ
٦.
=
Ę,
익
_
7

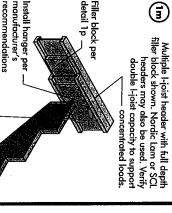


to post above bearing below. Install squash blocks per detail 1d. Match bearing area of blocks below Transfer load from above to

carried to the foundation. required when rim board is used. Bracing per code shall be Rim board may be used in lieu of I-joists. Backer is not

Top-mount hanger installed per -manutacturer's recommendations

Note: Unless hanger sides laterally support the top flange, bearing Note: Unless hanger sides laterally stitteners shall be used


support the top flange, bearing

beams, see the manutacturer's

recommendations.

recommendations installed per manufacturer's Top- or face-mount hanger

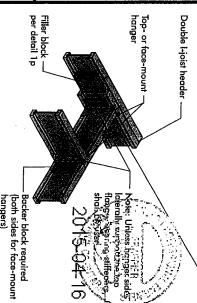
stiffeners shall be used

detail 1p

Maximum support capacity = 1,620 lbs clinch when possible. Backer block attached per — detail 1h. Nail with twelve 3" nails,

> 1-joist per detail 1b at bearing for lateral support, not shown

Do not bevel-cut tace of wall . joist beyond inside


(1)

Attach

tor clarity Note: Blocking required

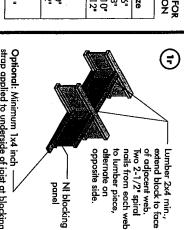
> \bigcirc backer block will fit. Clinch. Install backer tight to top flange.
> Use twelve 3" nails, clinched when possible. Maximum factored Before installing a backer block to a double I-joist, drive three Backer block (use if hanger load exceeds 360 lbs) additional 3" nails through the webs and filler block where the

resistance for hanger for this detail = 1,620 lbs.

For hanger capacity see hanger manufacturer's recommendations. Verify double I-joist capacity to support concentrated loads.

BACKER BLOCKS (Blocks must be long enough to permit required nailing without splitting)

Flange Width	Material Thickness Required*	Minimum Depth**
2-1/2"	J"	5-1/2"
3-1/2"	1-1/2"	7-1/4"

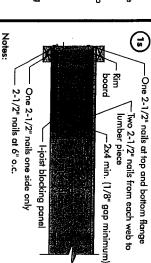

- better for solid sawn lumber and wood structural panels conforming Minimum grade for backer block material shall be S-P-F No. 2 or to CAN/CSA-O325 or CAN/CSA-O437 Standard
- ** For face-mount hangers use net joist depth minus 3-1/4" for joists with 1-1/2" thick flanges. For 2" thick flanges use net depth minus 4-1/4"

1. Support back of I-joist web during nailing to FILLER BLOCK REQUIREMENTS FOR DOUBLE I-JOIST CONSTRUCTION

(

Filler block

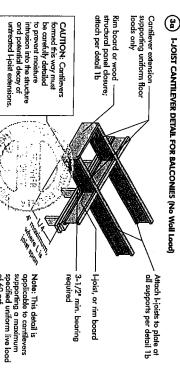
3" x 11"	16"		applied to one side of the double joist	9
3" × 9"	14"	2 C	5. The maximum factored load that may be	Ü
3" × 7"	11-7/8"	3-1/2"	are required.	
3" × 12"	16"		can be clinched, only two nails per foot	
3" × 10"	14"	1-1/2"	Total of four nails per foot required. If nails	
ယူ × ဇာ	11-7/8"	3-1/2"×	possible) on each side of the double Ligiet	
3" × 6"	9-1/2"		nails at 12 inches o.c. (clinched when	:
2-1/8" x 12"	16"		4 Notificiate together with two roun of 2"	4
2-1/8" × 10"	14"	1-1/2"	full length of span.	
2-1/8" x 8"	11-7/8"	2-1/2"×	 Filler block is required between joists for 	ω
2-1/8" × 6"	9-1/2"		flange.	
Block Size	Depth	Size	of filler block and bottom of top 1-joist	!
Filler	Joist	Flange	leave a 1/8 to 1/4 inch can between the	s
COCCE I-SOISI CONSINOCHON	20131	0000	prevent damage to web/flange connection.	



attached to underside of joists strap applied to underside of joist at blocking line or 1/2 inch minimum gypsum ceiling

—1/8" to 1/4" gap between top flange and filler block

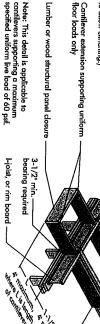
using this detail is 860 lbf/ft. Verify double


 Offset nails from opposite face by 6"

the starter joist. Where required, see local code requirements the first joist space (or first and second joist space) next to In some local codes, blocking is prescriptively required in for spacing of the blocking

All nails are common spiral in this detail

CANTILEVER DETAILS FOR BALCONIES (NO WALL LOAD)



288 min. Nail to backer block and joist with 2 rows of - 3" nails at 6" o.c. and clinch. (Carnilever nails may be used to attach backer block if length of nail is sufficient to allow clinching.) Full depth backer block with 1/8" gap between block and top flange of Lioist. See detail 1h. Nail with 2 rows of 3" nails at 6" o.c. and clinch. per detail 1b Attach I-joists to plate at all supports

Cantilever extension supporting uniform floor loads only

Lumber or wood structural panel closure

CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD)

FIGURE 4 (continued)

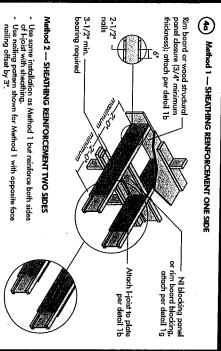
Roof truss _ span

21-0" cantilever

Girder All IIII

Roof trussspan

For hip roofs with the jack trusses running parallel to the cantilevered floor joists, the I-joist reinforcement requirements for a span of 26 ft. shall be permitted to be used.


Roof trusses

____13'-0" maximum ام Jack trusses ا 12-0

P.00440

of 60 psf.

intrusion into the structure and potential decay of untreated L-joist extensions.

Notes: Canadian softwood plywood steathing or equivalent (minimum thickness 3/4") required on sides of joist. Depth shall match the full height of the joist. Nail with 2-1/2" nails at 6" o.c., top and bottom thange. Install with face grain horizontal. Attach Hjoist to plate at all supports per detail 1b. Verify reinforced Hjoist capacity.

(3/4" minimum thickness); attach per detail 1b min. bearing required all supports per detail 1b, 3-1/2" to top plate at Attach I-joists wood structural Rim board, or panel dosure • Alternate Method 2 — DOUBLE I-JOIST , QA Face nail two rows of 3" nails at 12" o.c. each side through one Ljoist web and the filler block to other Ljoist web. Offset nails NI blocking panel or rim board blocking, attach per detail 1g from opposite face by 6". Clinch if possible (tour nails per foot two nails per foat required, except

Block Lipists together with filler blocks for the full length of the reinforcement. For Lipist flange widths greater than 3 inches place an additional row of 3" nails along the centreline of the reinforcing panel from each side. Clinch when possible.

CANTILEVER REINFORCEMENT METHODS ALLOWED

cantilever. reinforcement requirements at below for NI See table

	Ŧ	11778	9 71	(in.) TISIOL
10 00 4 00 00 00 00 00 00 00 00 00 00 00		86 2 3 5 6 6	. J. C. S.	ROOF TRUSS SPAN (ff)
ZZZZZZZZ	22222222 34769	2222722 23		LL =
Z7Z/2Z/27/2/	2777272	222222		30 psf, DL
				L = 15 psf NG (in.) 19.2 24
**************************************				ROO L
ZZZZZZZZ			gove-e	FLOADING L = 40 psf JOIST SPA
22.727.22		22 22	es salvisio	3 (UNFACT DL = 15 p CING (in.)
	7775 <u>-</u>	Section .		ORED) Isf 24
				LL = 50 p JOIST :
				psf, DL = 1 SPACING (
ANNUN E	A LOCAL COLOR		****	15 ps in.)

- N = No reinforcement required.
 N reinforced with 3/4" wood structural
- panel on one side only.

 2 NI reinforced with 9/4 wood structural panel on both sides, or double I-joist.

 X = Try a deeper joist or closer spacing.

 2. Movinum design load shall be: 19 psf roof dead load, 55 psf floor to
 - For larger openings, or multiple 3'-0" width openings spaced less than 6'-0" o.c., additional joists beneath the opening's cripple
- stude may be required.

 3. Table applies to joists 12* to 24* o.c. that meet the floor span requirements for a design live load of 40 pet and dead load of 15 pet, and a live load of 440. Use 12* o.c. requirements for lesser spacing.
 - For conventional roof construction using a ridge beam, the Roof Truss Span column the supporting wall and the ridge beam.
 When the roof is framed using a ridge board,
 the Roof Truss Span is equivalent to the
 distance between the supporting walls as if a nt to the distance between
- truss is used 5. Cantilevered Cantilevered joists supporting girder trusses or roof beams may require additional

RULES FOR CUTTING HOLES AND DUCT CHASE OPENINGS:

- The distance between the inside edge of the support and the centreline of any Table 1 or 2, respectively. hole or duct chase opening shall be in compliance with the requirements of
- I-joist top and bottom flanges must NEVER be cut, notched, or otherwise modified
- Whenever possible, field-cut holes should be centred on the middle of the web.
- 4. The maximum size hole or the maximum depth of a duct chase opening that can between the top or bottom of the hole or opening and the adjacent I-joist flange. the I-joist minus 1/4 inch. A minimum of 1/8 inch should always be maintained be cut into an I-joist web shall equal the clear distance between the flanges of
- Ċı The sides of square holes or longest sides of rectangular holes should not exceed 3/4 of the diameter of the maximum round hole permitted at that location.
- ٥. Where more than one hole is necessary, the distance between adjacent hole opening shall be sized and located in compliance with the requirements of longest rectangular hole or duct chase opening) and each hole and duct chase size of the largest square hole (or twice the length of the longest side of the Tables 1 and 2, respectively edges shall exceed twice the diameter of the largest round hole or twice the
- 7. A knockout is not considered a hole, may be utilized anywhere it occurs, and and/or duct chase openings. may be ignored for purposes of calculating minimum distances between holes
- œ Holes measuring 1-1/2 inches or smaller shall be permitted anywhere in a cantilevered section of a joist. Holes of greater size may be permitted subject to
- 10. All holes and duct chase openings shall be cut in a workman-like manner in 9. A 1-1/2 inch hole or smaller can be placed anywhere in the web provided that it meets the requirements of rule number 6 above.
- 11. Limit three maximum size holes per span, of which one may be a duct chase accordance with the restrictions listed above and as illustrated in Figure 7.
- 12. A group of round holes at approximately the same location shall be permitted if they meet the requirements for a single round hole circumscribed around them.

Simple or Multiple Span for Dead Loads up to 15 psf and Live Loads up to 40 psf LOCATION OF CIRCULAR HOLES IN JOIST WEBS

Joist Depth	Joist Series
	(a)
	1.1
	1:1:1:
	tala)
	i)eje
	(2)a

- North state into you used for I-plast spacing of 24 inches on centre or less.
 Hole location distance is measured from inside face of supports to centre of hole
 Distances in this chart are based on uniformly loaded joists.

OPTIONAL:

The above table is based on the I-joists used at their maximum span. If the I-joists are placed at less than their full maximum span (see Maximum ficer Spans), the minimum distance from the centreline of the hole to the face of any support (D) as given above may be reduced as follows:

Where: Dreduced = Lactual x D Dreduced

Lactual Lacture Distance from the inside face of any support to centre of hole, reduced for less-than-maximum span applications shall not be less than 6 inches from the face of the support to edge of the hole.

awns (fi). The reduced

501点947~

ρ₹

The actual measured span distance between the inside faces of supports (ff)

Span Adjustment Factor given in this table.

The minimum distance from the inside face of any support to centre of hole from this table Lactual is greater than 1, use 1 in the above calculation for Lactual.

SAF

Knockouts are prescored holes provided

spaced 15 inches on centre along the length of the I-joist. Where possible, it is preferable to use knockouts instead of for the contractor's convenience to install electrical or small plumbing lines. They /2 inches in diameter, and are Never drill, cut or

bearing

distance from

hole

diameter, length or hole whichever is

from bearing)

field-cut holes

for minimum See Table 1

2x diameter of larger

2x duct chase

Duct chase opening minimum distance (see Table 2 for

FIELD-CUT HOLE LOCATOR

FIGURE 7

2

notch the flange, or over-cut the web

sharp saw. should be cut with a Holes in webs

the comers, as this can cause unnecessary stress concentrations. Slightly rounding the corners is recommended. Starting the rectangular hole by drilling a 1-inch the holes is another good method to and then making the cuts between diameter hole in each of the four corners For rectangular holes, avoid over-cutting ninimize damage to the I-joist

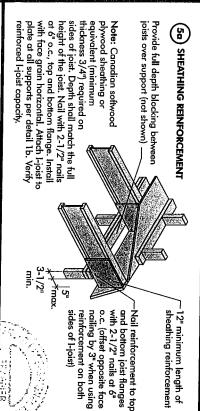
DUCT CHASE OPENING SIZES AND LOCATIONS - Simple Span Only

		Minimu	m distanc	e from in	side face	of any s		contro		
Depth	Series				Duct ch	ase leng	th (in.)			
Section of the sectio		8	10	12	14	16	18	20	22	24
					ž					
							,		5).	
					į.		ik K			le)
		T.						100 C		
))					1	
		-1								15)
				1.			-			
			J.				8		200	
						1	i.) - -
					10-7/4				Ţ	
		i.		· ·		S		11272		
				Á				7		
		+	N.						i Io	
		i								

- Above table may be used for Hoist spacing of 24 inches on centre or less.

 Duct chase opening location distance is measured from inside face of supports to centre of opening.

 The above table is based an simple-span joists only. For other applications, contact your local distributor, in the local distributor, in the local of the property of the span requirements for a design live local of 40 psf and dead local of 15 psf, and a live local deflection limit of L/480. For other applications, contact your local distributor.


and may be ignored for purposes of calculating minimum distances A knockout is **NOT** considered a hole, may be utilized wherever it occurs between holes.

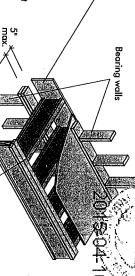
Knockouts

See rule 12

all duct chase openings and holes between top and bottom flange -Maintain minimum 1/8" space

BRICK CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD)

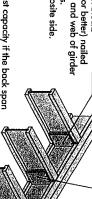
SET-BACK DETAIL


(5E)

attach per detail 1b. structural panel closure (3/4" minimum thickness), Rim board or wood

- Provide full depth blocking between joists over support (not shown for clarity)
- Attach I-joist to plate at all supports per detail 1b.
- 3-1/2" minimum I-joist bearing required.

girder joist per detail 5c.


Attach joists to

50 SET-BACK CONNECTION

through joist web and web of girder using 2-1/2" nails. Alternate for opposite side. (2x6 S-P-F No. 2 or better) nailed Vertical solid sawn blocks

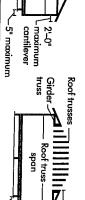
> bottom flanges. nails, toe-nail at top and Nail joist end using 3"

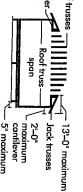
used in lieu of

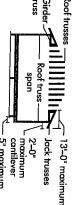
solid sawn blocks Hanger may be

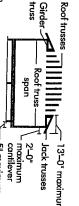
- N = No reinforcement required.
 1 = NI reinforced with 3/4" wood structural panel on one side only.
 2 = NI reinforced with 3/4" wood structural panel on both sides, or double I-joist.
- X = Try a deeper joist or closer spacing.

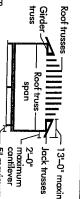
 Maximum design load shall be: 15 psf roof dead load, 55 psf floor total load, and 80 pff wall load. Wall load is based on 3:0" maximum width window or door openings.

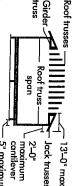

For larger openings, or multiple 3'-0" width openings spaced less than 6'-0" o.c., additional joists beneath the opening's cripple studs may be required.


the floor span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of L/480. Use Table applies to joists 12" to 24" o.c. that meet 12" o.c. requirements for lesser spacing.


 For conventional roof construction using a ridge beam, the Roof Truss Span column the supporting wall and the ridge beam. When the roof is framed using a ridge board, the Roof Truss Span is equivalent to the above is equivalent to the distance between truss is used distance between the supporting walls as if a


Cantilevered joists supporting girder trusses or roof beams may require additional reinforcing.


FIGURE 5 (continued) cantilever. requirements at reinforcement See table below for NI Roof truss span . 일 -- maximum cantilever



____13'-0" maximum 5" maximum

For hip roofs with the jack trusses running parallel to the cantilevered floor joists, requirements for a span of 26 ft. shall be permitted to the I-joist reinforcement be used.

BRICK CANTILEVER REINFORCEMENT METHODS ALLOWED

JOIST DEPTH (in.)	ROOF TRUSS SPAN (ft)	LL = 30 JOIST 12 1 ₀	psf, DL = 1 SPACING (5 19.2	15 psf (in.) 24	ROOF LC LL = JO	ADING (L 40 psf, DI IST SPACII	in.)	ORED)	TS1OL	osf, D	s sf
	26 75 00 87 87	11 gains			34.2 22.2 32.2 32.2 32.2 32.2 32.2 32.2						24
		# 1 1 2 X X 2 2 2 2 2 X X X X X X X X X X			3.82						
	* 120000 * 200000 * 2000000 * 2000000000000				7-2-22	12 40 m pr					
100 1100	176 a. 3. 2. 2. 3. 3. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		×××××××××××××××××××××××××××××××××××××××								
N = No re	inforcement re	equired.	STATE	or larger one	nings or m	dialogion.	A. C.	X X			X

INSTALLING THE GLUED FLOOR SYSTEM

- 1. Wipe any mud, dirt, water, or ice from Ljoist flanges before gluing.
- 2. Snap a chalk line across the I-joists four feet in from the wall for panel edge alignment and as a
- 3. Spread only enough glue to lay one or two panels at a time, or follow specific recommendations from the glue manufacturer.
- 4. Lay the first panel with tongue side to the wall, and nail in place. This protects the tongue of the next panel from damage when tapped into place with a block and sledgehammer.
- 5. Apply a continuous line of glue (about 1/4-inch diameter) to the top flange of a single I-joist. Apply give in a winding pattern on wide areas, such as with double I-joists.
- 6. Apply two lines of glue on I-joists where panel ends butt to assure proper gluing of each end
- 7. After the first row of panels is in place, spread glue in the groove of one or two panels at a time before laying the next row. Glue line may be continuous or spaced, but avoid squeeze-out by applying a thinner line (1/8 inch) than used on I-joist flanges.
- 8. Tap the second row of panels into place, using a block to protect groove edges
- 9. Stagger end joints in each succeeding row of panels. A 1/8-inch space between all end joints and nail to assure accurate and consistent spacing.) 1/8-inch at all edges, including T&G edges, is recommended. (Use a spacer tool or an 2-1/2" common
- 10. Complete all nailing of each panel before glue sets. Check the manufacturer's recommendations for cure time. (Warm weather accelerates glue setting.) Use 2" ring- or screw-shank nails for panels 3/4-inch thick or less, and 2-1/2" ring- or screw-shank nails for thicker panels. Space nails per the table below. Closer nail spacing may be required by some codes, or for diaphragm construction. The finished deck can be walked on right away and will carry construction loads without damage to the

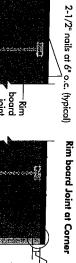
FASTENERS FOR SHEATHING AND SUBFLOORING(1)

24 3/4	20 5/8	16 5/8	Maximum Minimum Joist Panel Spacing Thickness (in.) (in.)
2.	22	2"	Common Wire or Spiral Nails
1-3/4"	1-3/4*	1-3/4"	ail Size and Ty Ring Thread Nails or Screws
2"	2*	2"	pe Siaples
6"	6	6.	Maximun of Fas Edges
12"	12"	12"	n Spacing Heners Interm, Supports

- 1. Fasteners of sheathing and subflooring shall conform to the above table.
- 2. Staples shall not be less than 1/16-inch in diameter or thickness, with not less than a 3/8-inch crown driven with the crown parallel to framing.
- 3. Flooring screws shall not be less than 1/8-inch in diameter
- 4. Special conditions may impose heavy traffic and concentrated loads that require construction in excess of the minimums shown.
- 5. Use only adhesives conforming to CAN/CGSB-71.26 Standard, Adhesives for Field-Gluing Plywood to Lumber Framing for Floor System, applied in accordance with the manufacturer's recommendations. If OSB panels with sealed surfaces and edges are to be used, use only solvent-based glues; check with panel manufacturer.

Ref.: NRC-CNRC, National Building Code of Canada 2010, Table 9.23.3.5

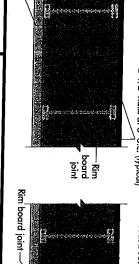
IMPORTANT NOTE:

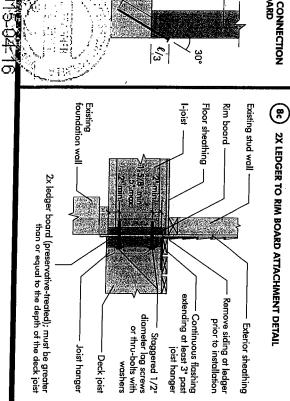

Floor sheathing must be field glued to the I-joist flanges in order to achieve the maximum spans shown in this document. If sheathing is nailed only, I-joist spans must be verified with your local distributor.

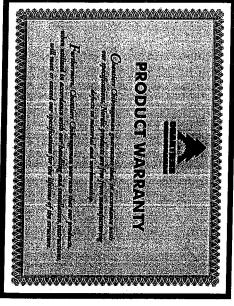
RIM BOARD INSTALLATION DETAILS

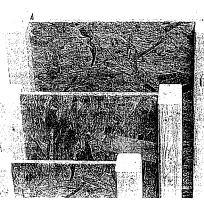
(8a) ATTACHMENT DETAILS WHERE RIM BOARDS ABUT

Rim board Joint Between Floor Joists

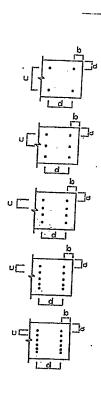



<u>-</u>1-1/2"


2-1/2" toe-nails at 6" o.c. (typical) —


-1-1/2

(F iop or sole plate Rim board TOE-NAIL CONNECTION AT RIM BOARD e/3 ဗ္ပ


· MICRO CITY

Engineering services inc.

TEL: (519) 287 - 2242

R.R. #1, P.O. BOX 61, GLENCOE, ONTARIO, NOL 1M0

	TWI HEAT	ER AND CONVENTIONAL		
	LUME	SER NAILING	NVENTIONAL DETAILS	
	DETAIL NUMBER	NUMBER OF ROWS	SPACING (INCHES o/c	
	. A	2,	1 12	
	B	2	8	
	С	2	6	
	D	2	4	
	1A	3	12	
	1B	3	8	
ĺ	1C	3	. 6	
	1D	. 3:	4	
	2A	4	. 12	
	2B	4	8 .	
	2C	4	6	
	2D	4	4	
-	3A	5	12	
L	3B	5	. 8	
L	3C	5	. 6	
L	3D	5	4	
L	4A	6 .	12	
Ŀ	4B	6	8	
Ŀ	4C	6	6 4	
Ŀ	4D	6	4	

NOTES:

- (1) MINIMUM LUMBER EDGE DISTANCE "a" = 1"
- (2) MINIMUM LUMBER END DISTANCE "b" = 2"
- (3) MINIMUM NAIL ROW SPACING "c" = 2"
- (4) STAGGER NAILS "d/2" BETWEEN PLIES FOR MULTI-PLY MEMBERS (3 PLY OR MORE)
- (5) ALL NAILS ARE 3-1/2" ARDOX SPIRAL NAILS
- (6) DO NOT USE AIR-DRIVEN NAILS

BUG NO TAMPLOOT. 14

STRUCTURAL

GOMPONENT ONLY

TO BE USED ONLY

WITH BEAM CALCS

BEARING THE

STAMP BEZOWS

PROVICE NATLING
DETAIL № × SEE
ONO #TAMN1001-14