## **Schedule 1: Designer Information**

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

| A. Project li               | nformation                                                                        |                              |                                                  |        |                                   |                                |                |
|-----------------------------|-----------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|--------|-----------------------------------|--------------------------------|----------------|
| Building number             | er, street name                                                                   |                              |                                                  |        | U                                 | Init no.                       | Lot/con.       |
| Municipality                |                                                                                   | Postal code                  | Plan number/ other                               | desci  | ription                           |                                |                |
| VAUGHAN (WOO                | DDBRIDGE)                                                                         |                              |                                                  |        |                                   |                                |                |
| B. Individua                | I who reviews and takes                                                           | responsibility t             | for design activities                            | s      |                                   |                                |                |
| Name                        |                                                                                   |                              | Firm                                             |        |                                   |                                |                |
| MICHAEL O'R                 | OURKE                                                                             |                              | HVAC DESIGNS L                                   | TD.    |                                   |                                |                |
| Street address              |                                                                                   |                              |                                                  |        | Unit no.                          |                                | Lot/con.       |
| 375 FINLEY A                | VE                                                                                | In                           | In :                                             |        | 202                               |                                | N/A            |
| Municipality<br><b>AJAX</b> |                                                                                   | Postal code<br>L1S 2E2       | Province<br>ONTARIO                              |        | E-mail<br>i <b>nfo@hvacdesi</b> g | ine ca                         |                |
| Telephone nun               | nher                                                                              | Fax number                   | ONTARIO                                          |        | Cell number                       | J113.Ca                        |                |
| (905) 619-230               |                                                                                   | (905) 619-2375               |                                                  |        |                                   |                                |                |
| C. Design ac                | ctivities undertaken by i                                                         | <u>r</u><br>ndividual identi | fied in Section B. [I                            | Build  | ing Code Tabl                     | e 3.5.2.1 OF D                 | Division C]    |
| _                           |                                                                                   |                              |                                                  |        |                                   | _                              |                |
| ☐ House<br>☐ Small B        | uildinge                                                                          |                              | C – House<br>ng Services                         |        |                                   | uilding Struct<br>Iumbing – Ho |                |
| ☐ Large B                   | •                                                                                 |                              | tion, Lighting and                               | Pow    |                                   | lumbing – All                  |                |
| ☐ Complex                   | x Buildings                                                                       | ☐ Fire P                     | Protection                                       |        | <b>-</b> 0                        | n-site Sewag                   | e Systems      |
| •                           | designer's work                                                                   |                              | Mod                                              | el: 4  | 4202- ROSEDALE                    |                                |                |
|                             | GAIN CALCULATIONS                                                                 |                              |                                                  |        | OPT SERV STAIR                    | WOR                            |                |
| DUCT SIZING                 | MECHANICAL VENTU ATI                                                              | ON DECICAL CUM               | MADY                                             | ,      | OPI SERV STAIR                    | - WOB                          |                |
|                             | MECHANICAL VENTILATI SYSTEM DESIGN per CSA                                        |                              | Proje                                            | ect:   | PINE VALLEY & T                   | ESTON                          |                |
|                             | on of Designer                                                                    |                              |                                                  |        |                                   |                                |                |
|                             | MICHAEL O'ROURKE                                                                  |                              |                                                  |        | doclare that                      | (choose one as                 | annrapriata):  |
| <u> </u>                    |                                                                                   | orint name)                  |                                                  |        | ueciale illai                     | . (Crioose one as              | з арргорпате). |
| Div                         | view and take responsibility<br>ision C, of the Building Code<br>sses/categories. |                              |                                                  |        |                                   | tion 3.2.4.of<br>appropriate   |                |
|                             | Individual BCIN:<br>Firm BCIN:                                                    |                              |                                                  |        |                                   |                                |                |
|                             | view and take responsibility signer" under subsection 3                           |                              | am qualified in the appiion C, of the Building ( |        |                                   | n "other                       |                |
|                             | Individual BCIN:                                                                  | 19669                        |                                                  |        |                                   |                                |                |
|                             |                                                                                   |                              | nd qualification:                                |        | O.B.C SENTE                       | NCE 3.2.4.1                    | (4)            |
|                             | e design work is exempt<br>sis for exemption from regist                          |                              | ation and qualification lation:                  | requir | ements of the Bu                  | ilding Code.                   |                |
| I certify that:             |                                                                                   |                              |                                                  |        |                                   |                                |                |
| 1.<br>2.                    | The information contained I have submitted this applic                            |                              | dule is true to the best<br>Medge and consent of |        |                                   |                                |                |
| Fe                          | ebruary 25, 2020                                                                  |                              |                                                  |        | Michael                           | Ofound                         | e .            |
|                             | Date                                                                              |                              |                                                  | -      |                                   | Signature of I                 | Designer       |
|                             |                                                                                   |                              |                                                  |        |                                   |                                |                |
|                             |                                                                                   |                              |                                                  |        |                                   |                                |                |

### NOTE

<sup>1.</sup> For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

<sup>2.</sup> Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.



| SITE NAME:<br>BUILDER:                                                                                                                                                                                                                                                                                          |                                                                 |                                                                  |                                                   |                                                                                |                                                    |          | 1      |      | OPT SEI<br>4202- R                                   |                                                                                                  |                                                                     | В    |       | GFA: | 3700                                            |                                                                                 |                                                                | DA TE: I                                         |                                                                                                |                                                            |                                                   |                                                                                   |                                                         |                                                   |                                                                           | IR CHA                                                 |                                                   |                                                                            |                                                        |          | T LOSS |                                               |                                                                              |                                                         |                                                         | CSA-F280                                                                                           |                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|----------|--------|------|------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------|-------|------|-------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|----------|--------|-----------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| ROOM USE                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                  |                                                   | MBR                                                                            | $\neg \tau$                                        |          | ENS    |      |                                                      | HERS                                                                                             |                                                                     |      | BED-2 |      |                                                 | BED-3                                                                           |                                                                |                                                  | BED-4                                                                                          |                                                            |                                                   | ENS-2                                                                             |                                                         |                                                   | LOFT                                                                      | T                                                      |                                                   | ENS-3                                                                      |                                                        | ENS      |        |                                               |                                                                              |                                                         | T                                                       |                                                                                                    | $\overline{}$                                                |
| EXP. WALL                                                                                                                                                                                                                                                                                                       |                                                                 |                                                                  | i                                                 | 47                                                                             |                                                    |          | 34     |      |                                                      | 7                                                                                                |                                                                     |      | 18    |      |                                                 | 36                                                                              |                                                                |                                                  | 12                                                                                             |                                                            |                                                   | 0                                                                                 |                                                         |                                                   | 38                                                                        |                                                        |                                                   | 9                                                                          |                                                        | 11       |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| CLG. HT.                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                  | i                                                 | 10                                                                             |                                                    |          | 9      |      |                                                      | 9                                                                                                |                                                                     |      | 9     |      |                                                 | 9                                                                               |                                                                |                                                  | 9                                                                                              |                                                            |                                                   | 9                                                                                 |                                                         |                                                   | 9                                                                         |                                                        |                                                   | 9                                                                          |                                                        | 9        |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
|                                                                                                                                                                                                                                                                                                                 | FACTO                                                           | )RS                                                              | i                                                 |                                                                                |                                                    |          |        |      |                                                      |                                                                                                  |                                                                     |      |       |      |                                                 |                                                                                 |                                                                |                                                  |                                                                                                |                                                            |                                                   |                                                                                   |                                                         |                                                   |                                                                           |                                                        |                                                   |                                                                            |                                                        |          |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| GRS.WALL AREA                                                                                                                                                                                                                                                                                                   |                                                                 | GAIN                                                             | i                                                 | 470                                                                            |                                                    |          | 306    |      |                                                      | 63                                                                                               |                                                                     |      | 162   |      |                                                 | 324                                                                             |                                                                |                                                  | 108                                                                                            |                                                            |                                                   | 0                                                                                 |                                                         |                                                   | 342                                                                       |                                                        |                                                   | 81                                                                         |                                                        | 99       |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| GLAZING                                                                                                                                                                                                                                                                                                         |                                                                 | O/till                                                           | i                                                 | LOSS                                                                           | GAIN                                               |          | LOSS G | GAIN |                                                      |                                                                                                  | SAIN                                                                |      | LOSS  | GAIN |                                                 | LOSS                                                                            | GAIN                                                           |                                                  |                                                                                                | GAIN                                                       |                                                   | LOSS                                                                              | MIA                                                     |                                                   | LOSS                                                                      | GAIN                                                   |                                                   | LOSS                                                                       | GAIN                                                   |          | S GAIN |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| NORTH                                                                                                                                                                                                                                                                                                           | 21.3                                                            | 16.0                                                             | ٥                                                 | 0                                                                              | 0                                                  | 0        | 0      | 0    | 0                                                    | 0                                                                                                | 0                                                                   | 18   | 383   | 288  | 0                                               | 0                                                                               | 0                                                              | 0                                                | 0                                                                                              | 0                                                          | 0                                                 | 0                                                                                 | 0                                                       | 0                                                 | 0                                                                         | 0                                                      | 9                                                 | 192                                                                        | 144                                                    | 0 0      |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| EAST                                                                                                                                                                                                                                                                                                            | 21.3                                                            | 41.6                                                             | ٥                                                 | 0                                                                              | ŏ                                                  | 0        | 0      | 0    | 0                                                    | 0                                                                                                | 0                                                                   | 0    | 0     | 0    | 53                                              | 1128                                                                            | 2202                                                           | 0                                                | 0                                                                                              | ŏ                                                          | 0                                                 | 0                                                                                 | 0                                                       | 41                                                | 872                                                                       | 1704                                                   | 0                                                 | 0                                                                          | 0                                                      | 0 0      | ō      |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| SOUTH                                                                                                                                                                                                                                                                                                           | 21.3                                                            | 24.9                                                             | ٥                                                 | 0                                                                              | ő                                                  | 11       |        | 274  | 0                                                    | 0                                                                                                | 0                                                                   | 0    | 0     | 0    | 0                                               | 0                                                                               | 0                                                              | 18                                               | 383                                                                                            | 448                                                        | 0                                                 | 0                                                                                 | 0                                                       | 20                                                | 426                                                                       | 498                                                    | 0                                                 | 0                                                                          | 0                                                      | 9 19     |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| WEST                                                                                                                                                                                                                                                                                                            | 21.3                                                            | 41.6                                                             | 54                                                | 1149                                                                           | 2244                                               | 18       |        | 748  | 0                                                    | 0                                                                                                | 0                                                                   | 0    | 0     | 0    | 0                                               | 0                                                                               | 0                                                              | 0                                                | 0                                                                                              | 0                                                          | 0                                                 | 0                                                                                 | 0                                                       | 0                                                 | 0                                                                         | 0                                                      | 0                                                 | 0                                                                          | 0                                                      | 0 0      | 0      |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| SKYLT.                                                                                                                                                                                                                                                                                                          | 37.2                                                            | 101.5                                                            | 0                                                 | 0                                                                              | 0                                                  | 0        | 0      | 0    | 0                                                    | 0                                                                                                | 0                                                                   | 0    | 0     | 0    | 0                                               | 0                                                                               | 0                                                              | 0                                                | 0                                                                                              | ١                                                          | 0                                                 | 0                                                                                 | 0                                                       | 0                                                 | 0                                                                         | ١؞                                                     | 0                                                 | 0                                                                          | 0                                                      | 0 0      | 0      |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| DOORS                                                                                                                                                                                                                                                                                                           | 25.2                                                            | 4.3                                                              | ١٥                                                | 0                                                                              | 0                                                  | 0        | 0      | 0    | 0                                                    | 0                                                                                                | 0                                                                   | 0    | 0     | 0    | 0                                               | 0                                                                               | 0                                                              | 0                                                | 0                                                                                              | ő                                                          | 0                                                 | 0                                                                                 | 0                                                       | 0                                                 | 0                                                                         | ŏ                                                      | 0                                                 | 0                                                                          | 0                                                      | 0 0      | 0      |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| NET EXPOSED WALL                                                                                                                                                                                                                                                                                                | 4.5                                                             | 0.8                                                              | 416                                               | 1856                                                                           | -                                                  |          | -      | 208  | -                                                    | 281                                                                                              | 47                                                                  | 144  | 643   | -    | 271                                             | 1209                                                                            | 204                                                            | -                                                | 402                                                                                            | 68                                                         | 0                                                 | 0                                                                                 | 0                                                       | -                                                 | 1254                                                                      | 211                                                    | -                                                 | 321                                                                        |                                                        | 90 40    |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
|                                                                                                                                                                                                                                                                                                                 |                                                                 | 1                                                                |                                                   |                                                                                |                                                    | 277<br>0 |        |      |                                                      |                                                                                                  |                                                                     | 0    | 0     | 108  | 0                                               |                                                                                 |                                                                | 90                                               |                                                                                                |                                                            |                                                   | 0                                                                                 |                                                         |                                                   |                                                                           | - 1                                                    | 72                                                |                                                                            | 04                                                     | 0 0      | 0      |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| NET EXPOSED BSMT WALL ABOVE GR                                                                                                                                                                                                                                                                                  | 3.6                                                             | 0.6                                                              | 0                                                 | 0                                                                              | 0                                                  | -        | 0      | 0    | 0                                                    | 0                                                                                                | 0                                                                   | -    |       | 0    | -                                               | 0                                                                               | 0                                                              | 0                                                | 0                                                                                              | 0<br>99                                                    | 0                                                 | -                                                                                 | 0                                                       | 0                                                 | 0                                                                         | 0                                                      | 0                                                 | 0                                                                          | 0                                                      |          | - 1    |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| EXPOSED CLG                                                                                                                                                                                                                                                                                                     | 1.3                                                             | 0.6                                                              | 480                                               | 616                                                                            | 282                                                | 168      | 216    | 99   | 98                                                   | 126                                                                                              | 58                                                                  | 324  | 416   | 190  | 280                                             | 359                                                                             | 165                                                            | 168                                              | 216                                                                                            |                                                            | 45                                                | 58                                                                                | 26                                                      | 276                                               | 354                                                                       | 162                                                    | 45                                                | 58                                                                         | 26                                                     | 66 85    |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| NO A TTIC EXPOSED CLG                                                                                                                                                                                                                                                                                           | 2.7                                                             | 1.3                                                              | 0                                                 | 0                                                                              | 0                                                  | 0        | 0      | 0    | 0                                                    | 0                                                                                                | 0                                                                   | 0    | 0     | 0    | 0                                               | 0                                                                               | 0                                                              | 0                                                | 0                                                                                              | 0                                                          | 0                                                 | 0                                                                                 | 0                                                       | 30                                                | 82                                                                        | 38                                                     | 0                                                 | 0                                                                          | 0                                                      | 0 0      | 0      |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| EXPOSED FLOOR                                                                                                                                                                                                                                                                                                   | 2.6                                                             | 0.4                                                              | 0                                                 | 0                                                                              | 0                                                  | 0        | 0      | 0    | 0                                                    | 0                                                                                                | 0                                                                   | 144  | 367   | 62   | 280                                             | 714                                                                             | 120                                                            | 0                                                | 0                                                                                              | ٥                                                          | 40                                                | 102                                                                               | 17                                                      | 50                                                | 128                                                                       | 21                                                     | 45                                                | 115                                                                        | 19                                                     | 0 0      | 0      |                                               |                                                                              |                                                         | 1                                                       |                                                                                                    |                                                              |
| BASEMENT/CRAWL HEAT LOSS                                                                                                                                                                                                                                                                                        |                                                                 |                                                                  | i                                                 | 0                                                                              |                                                    |          | 0      |      |                                                      | 0                                                                                                |                                                                     |      | 0     |      |                                                 | 0                                                                               |                                                                |                                                  | 0                                                                                              |                                                            |                                                   | 0                                                                                 |                                                         |                                                   | 0                                                                         |                                                        |                                                   | 0                                                                          |                                                        | 0        |        |                                               |                                                                              |                                                         | l                                                       |                                                                                                    |                                                              |
| SLAB ON GRADE HEAT LOSS                                                                                                                                                                                                                                                                                         | 1                                                               |                                                                  | i                                                 | 0                                                                              | l                                                  |          | 0      |      |                                                      | 0                                                                                                |                                                                     |      | 0     |      |                                                 | 0                                                                               |                                                                |                                                  | 0                                                                                              |                                                            |                                                   | 0                                                                                 |                                                         |                                                   | 0                                                                         |                                                        |                                                   | 0                                                                          |                                                        | 0        |        |                                               |                                                                              |                                                         | 1                                                       |                                                                                                    |                                                              |
| SUBTO TAL HT LOSS                                                                                                                                                                                                                                                                                               |                                                                 |                                                                  | i                                                 | 3622                                                                           |                                                    |          | 2069   |      |                                                      | 407                                                                                              |                                                                     |      | 1809  |      |                                                 | 3411                                                                            |                                                                |                                                  | 1000                                                                                           |                                                            |                                                   | 160                                                                               |                                                         |                                                   | 3116                                                                      |                                                        |                                                   | 685                                                                        |                                                        | 67       |        |                                               |                                                                              |                                                         | l                                                       |                                                                                                    |                                                              |
| SUB TOTAL HT GAIN                                                                                                                                                                                                                                                                                               | 1                                                               |                                                                  | l                                                 |                                                                                | 2839                                               |          |        | 1329 |                                                      |                                                                                                  | 105                                                                 |      |       | 648  |                                                 |                                                                                 | 2691                                                           |                                                  |                                                                                                | 615                                                        |                                                   |                                                                                   | 44                                                      |                                                   |                                                                           | 2634                                                   |                                                   |                                                                            | 244                                                    |          | 331    |                                               |                                                                              |                                                         | 1                                                       |                                                                                                    |                                                              |
| LEVEL FACTOR / MULTIPLIER                                                                                                                                                                                                                                                                                       | 1                                                               |                                                                  | 0.20                                              |                                                                                | l                                                  | 0.20     |        |      | 0.20                                                 | 0.33                                                                                             |                                                                     | 0.20 | 0.33  |      | 0.20                                            | 0.33                                                                            |                                                                | 0.20                                             | 0.33                                                                                           |                                                            | 0.20                                              | 0.33                                                                              |                                                         |                                                   | 0.33                                                                      |                                                        | 0.20                                              | 0.33                                                                       |                                                        | 0.20 0.3 |        |                                               |                                                                              |                                                         | 1                                                       |                                                                                                    |                                                              |
| AIR CHANGE HEAT LOSS                                                                                                                                                                                                                                                                                            |                                                                 |                                                                  | i                                                 | 1210                                                                           |                                                    |          | 691    |      |                                                      | 136                                                                                              |                                                                     |      | 604   |      |                                                 | 1140                                                                            |                                                                |                                                  | 334                                                                                            |                                                            |                                                   | 53                                                                                |                                                         |                                                   | 1041                                                                      |                                                        |                                                   | 229                                                                        |                                                        | 22       |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| AIR CHANGE HEAT GAIN                                                                                                                                                                                                                                                                                            |                                                                 |                                                                  | i                                                 |                                                                                | 244                                                |          |        | 114  |                                                      |                                                                                                  | 9                                                                   |      |       | 56   |                                                 |                                                                                 | 232                                                            |                                                  |                                                                                                | 53                                                         |                                                   |                                                                                   | 4                                                       |                                                   |                                                                           | 227                                                    |                                                   |                                                                            | 21                                                     |          | 28     |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| DUCTLOSS                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                  | i                                                 | 0                                                                              |                                                    |          | 0      |      |                                                      | 0                                                                                                |                                                                     |      | 241   |      |                                                 | 455                                                                             |                                                                |                                                  | 0                                                                                              |                                                            |                                                   | 21                                                                                |                                                         |                                                   | 416                                                                       |                                                        |                                                   | 91                                                                         |                                                        | 0        |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| DUCT GAIN                                                                                                                                                                                                                                                                                                       |                                                                 |                                                                  | i                                                 |                                                                                | 0                                                  |          |        | 0    |                                                      |                                                                                                  | 0                                                                   |      |       | 163  |                                                 |                                                                                 | 384                                                            |                                                  |                                                                                                | 0                                                          |                                                   |                                                                                   | 5                                                       |                                                   |                                                                           | 354                                                    |                                                   |                                                                            | 26                                                     |          | 0      |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| HEAT GAIN PEOPLE                                                                                                                                                                                                                                                                                                | 240                                                             |                                                                  | 2                                                 |                                                                                | 480                                                | 0        |        | 0    | 0                                                    |                                                                                                  | 0                                                                   | 1    |       | 240  | 1                                               |                                                                                 | 240                                                            | 1                                                |                                                                                                | 240                                                        | 0                                                 |                                                                                   | 0                                                       | 0                                                 |                                                                           | 0                                                      | 0                                                 |                                                                            | 0                                                      | 0        | 0      |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| HEAT GAIN APPLIANCE S/LIGHTS                                                                                                                                                                                                                                                                                    |                                                                 |                                                                  | ı                                                 |                                                                                | 682                                                |          |        | 0    |                                                      |                                                                                                  | 0                                                                   |      |       | 682  |                                                 |                                                                                 | 682                                                            |                                                  |                                                                                                | 682                                                        |                                                   |                                                                                   | 0                                                       |                                                   |                                                                           | 682                                                    |                                                   |                                                                            | 0                                                      |          | 0      |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| TOTAL HT LOSS BTU/H                                                                                                                                                                                                                                                                                             |                                                                 |                                                                  | ı                                                 | 4832                                                                           |                                                    |          | 2760   |      |                                                      | 543                                                                                              |                                                                     |      | 2654  |      |                                                 | 5005                                                                            |                                                                |                                                  | 1334                                                                                           |                                                            |                                                   | 234                                                                               |                                                         |                                                   | 4573                                                                      |                                                        |                                                   | 1006                                                                       |                                                        | 90       | 4      |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| TOTAL HT GAIN x 1.3 BTU/H                                                                                                                                                                                                                                                                                       |                                                                 |                                                                  | i                                                 |                                                                                | 5518                                               |          |        | 1876 |                                                      |                                                                                                  | 148                                                                 |      |       | 2325 |                                                 |                                                                                 | 5497                                                           |                                                  |                                                                                                | 2066                                                       |                                                   |                                                                                   | 68                                                      |                                                   |                                                                           | 5066                                                   |                                                   |                                                                            | 378                                                    |          | 467    |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
|                                                                                                                                                                                                                                                                                                                 |                                                                 |                                                                  |                                                   |                                                                                |                                                    |          |        |      |                                                      |                                                                                                  |                                                                     |      |       |      |                                                 |                                                                                 |                                                                |                                                  |                                                                                                |                                                            |                                                   |                                                                                   |                                                         |                                                   |                                                                           |                                                        |                                                   |                                                                            |                                                        |          |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    |                                                              |
| ROOM USE                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                  | i —                                               | DIN                                                                            |                                                    |          |        |      | P                                                    | (T/GT                                                                                            |                                                                     |      |       |      |                                                 | LAUN                                                                            |                                                                |                                                  | PWD                                                                                            |                                                            |                                                   | FOY                                                                               |                                                         |                                                   | MUD                                                                       |                                                        |                                                   | HIS                                                                        |                                                        |          |        |                                               | WOB                                                                          | 3                                                       |                                                         | BAS                                                                                                |                                                              |
| EXP. WALL                                                                                                                                                                                                                                                                                                       |                                                                 |                                                                  | i                                                 | 17                                                                             |                                                    |          |        |      |                                                      | 100                                                                                              |                                                                     |      |       |      |                                                 | 0                                                                               |                                                                |                                                  | 16                                                                                             |                                                            |                                                   | 59                                                                                |                                                         |                                                   | 17                                                                        |                                                        |                                                   | 6                                                                          |                                                        |          |        |                                               | 43                                                                           |                                                         |                                                         | 159                                                                                                | - 1                                                          |
| CLG. HT.                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                  | ı                                                 | 11                                                                             |                                                    |          |        |      |                                                      | 11                                                                                               |                                                                     |      |       |      |                                                 | 9                                                                               |                                                                |                                                  | 12                                                                                             |                                                            |                                                   | 11                                                                                |                                                         |                                                   | 12                                                                        |                                                        |                                                   | 9                                                                          |                                                        |          |        |                                               | 10                                                                           |                                                         |                                                         | 10                                                                                                 | - 1                                                          |
|                                                                                                                                                                                                                                                                                                                 | FACTO                                                           | RS                                                               | ı                                                 |                                                                                |                                                    |          |        |      |                                                      |                                                                                                  |                                                                     |      |       |      |                                                 |                                                                                 |                                                                |                                                  |                                                                                                |                                                            |                                                   |                                                                                   |                                                         |                                                   |                                                                           |                                                        |                                                   |                                                                            |                                                        |          |        |                                               |                                                                              |                                                         |                                                         |                                                                                                    | - 1                                                          |
| GRS.WALL AREA                                                                                                                                                                                                                                                                                                   | LOSS                                                            | GAIN                                                             | ı                                                 | 187                                                                            |                                                    |          |        |      |                                                      | 1100                                                                                             |                                                                     |      |       |      |                                                 | 0                                                                               |                                                                |                                                  | 192                                                                                            |                                                            |                                                   | 649                                                                               |                                                         |                                                   | 204                                                                       |                                                        |                                                   | 54                                                                         |                                                        |          |        |                                               | 430                                                                          |                                                         |                                                         | 1113                                                                                               | - 1                                                          |
| GLAZING                                                                                                                                                                                                                                                                                                         |                                                                 |                                                                  | ı                                                 | LOSS                                                                           | GAIN                                               |          |        |      |                                                      | Loss                                                                                             | GAIN                                                                |      |       |      |                                                 |                                                                                 | GAIN                                                           |                                                  |                                                                                                |                                                            |                                                   |                                                                                   |                                                         |                                                   | 1055                                                                      | GAIN                                                   |                                                   | LOSS                                                                       | GAIN                                                   |          |        |                                               | LOSS                                                                         | GAIN                                                    |                                                         | LOSS G                                                                                             | MIA                                                          |
| NORTH                                                                                                                                                                                                                                                                                                           | 21.3                                                            |                                                                  |                                                   |                                                                                |                                                    |          |        |      |                                                      |                                                                                                  |                                                                     |      |       |      |                                                 | LOSS                                                                            | GAIN                                                           |                                                  | LOSS                                                                                           | GAIN                                                       |                                                   | LOSS                                                                              | <b>3AIN</b>                                             |                                                   |                                                                           |                                                        |                                                   |                                                                            |                                                        |          |        |                                               |                                                                              |                                                         | 0                                                       |                                                                                                    | o                                                            |
| EAST                                                                                                                                                                                                                                                                                                            |                                                                 | 16.0                                                             | 0                                                 | 0                                                                              | 0                                                  |          |        |      | 10                                                   | 213                                                                                              |                                                                     |      |       |      | 0                                               | 0                                                                               | O O                                                            | 0                                                | LOSS<br>0                                                                                      | GAIN<br>0                                                  | 0                                                 | LOSS                                                                              | O O                                                     | 0                                                 | 0                                                                         | 0                                                      | 0                                                 | 0                                                                          | 0                                                      |          |        | 26                                            |                                                                              | 415                                                     | U                                                       | 0                                                                                                  |                                                              |
|                                                                                                                                                                                                                                                                                                                 | 21.3                                                            | 16.0<br>41.6                                                     | ı                                                 | 0                                                                              | 0                                                  |          |        |      | 10<br>0                                              | 213<br>0                                                                                         | 160                                                                 |      |       |      | 0                                               |                                                                                 |                                                                |                                                  |                                                                                                | - 1                                                        |                                                   |                                                                                   |                                                         |                                                   |                                                                           |                                                        | 0                                                 | 0                                                                          | 0                                                      |          |        | 26<br>0                                       | 553<br>0                                                                     | 415<br>0                                                | 0                                                       | -                                                                                                  | 0                                                            |
| SOUTH                                                                                                                                                                                                                                                                                                           | 21.3<br>21.3                                                    |                                                                  | 0                                                 |                                                                                | - 1                                                |          |        |      | 0                                                    | 0                                                                                                | 160                                                                 |      |       |      | 0<br>0<br>0                                     | 0                                                                               | 0                                                              | 0                                                | 0                                                                                              | 0                                                          | 0                                                 | 0                                                                                 | 0                                                       | 0                                                 | 0                                                                         | 0                                                      |                                                   | -                                                                          | - 1                                                    |          |        |                                               | 553                                                                          |                                                         | _                                                       | 0                                                                                                  | - 1                                                          |
|                                                                                                                                                                                                                                                                                                                 | 21.3                                                            | 41.6                                                             | 0                                                 | 0                                                                              | 0                                                  |          |        |      | 0<br>29                                              | 0<br>617                                                                                         | 160<br>0<br>722                                                     |      |       |      | -                                               | 0                                                                               | 0<br>0                                                         | 0<br>0                                           | 0                                                                                              | 0                                                          | 0<br>0                                            | 0                                                                                 | 0                                                       | 0                                                 | 0                                                                         | 0                                                      | 0                                                 | 0                                                                          | 0                                                      |          |        | 0                                             | 553<br>0<br>0                                                                | 0                                                       | 0                                                       | 0                                                                                                  | 0                                                            |
| WEST<br>SKYLT.                                                                                                                                                                                                                                                                                                  | 21.3<br>21.3                                                    | 41.6<br>24.9                                                     | 0<br>0<br>34                                      | 0<br>724                                                                       | 0<br>847                                           |          |        |      | 0<br>29<br>123                                       | 0<br>617                                                                                         | 160<br>0                                                            |      |       |      | 0                                               | 0<br>0<br>0                                                                     | 0<br>0<br>0                                                    | 0<br>0<br>0                                      | 0<br>0<br>0                                                                                    | 0<br>0<br>0                                                | 0<br>0<br>0                                       | 0<br>0<br>0                                                                       | 0<br>0<br>0                                             | 0<br>0<br>0                                       | 0<br>0<br>0                                                               | 0                                                      | 0<br>0                                            | 0                                                                          | 0                                                      |          |        | 0<br>0<br>98                                  | 553<br>0                                                                     | 0                                                       | 0                                                       | 0 0                                                                                                | 0                                                            |
| WEST<br>SKYLT.                                                                                                                                                                                                                                                                                                  | 21.3<br>21.3<br>37.2                                            | 41.6<br>24.9<br>41.6                                             | 0<br>0<br>34<br>0                                 | 0<br>724<br>0                                                                  | 0<br>847<br>0                                      |          |        |      | 0<br>29<br>123<br>0                                  | 0<br>617<br>2617<br>0                                                                            | 160<br>0<br>722<br>5111<br>0                                        |      |       |      | 0                                               | 0<br>0<br>0                                                                     | 0<br>0<br>0                                                    | 0<br>0<br>0<br>0                                 | 0<br>0<br>0                                                                                    | 0<br>0<br>0<br>0                                           | 0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0                                                                  | 0<br>0<br>0                                             | 0<br>0<br>0<br>0                                  | 0<br>0<br>0                                                               | 0<br>0<br>0<br>0                                       | 0<br>0<br>0                                       | 0 0                                                                        | 0 0                                                    |          |        | 0<br>0<br>98<br>0                             | 553<br>0<br>0<br>2085                                                        | 0<br>0<br>4072<br>0                                     | 0 0 0                                                   | 0 0 0                                                                                              | 0 0 0                                                        |
| WEST<br>SKYLT.<br>DOORS                                                                                                                                                                                                                                                                                         | 21.3<br>21.3<br>37.2<br>25.2                                    | 41.6<br>24.9<br>41.6<br>101.5<br>4.3                             | 0<br>0<br>34<br>0<br>0                            | 0<br>724<br>0<br>0                                                             | 0<br>847<br>0<br>0                                 |          |        |      | 0<br>29<br>123<br>0<br>10                            | 0<br>617<br>2617<br>0<br>252                                                                     | 160<br>0<br>722<br>5111<br>0<br>43                                  |      |       |      | 0 0 0                                           | 0<br>0<br>0<br>0<br>0                                                           | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0                                                                               | 0<br>0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0<br>20                       | 0<br>0<br>0<br>0<br>0<br>505                                              | 0<br>0<br>0<br>0<br>0<br>85                            | 0<br>0<br>0<br>0                                  | 0 0 0 0                                                                    | 0 0 0 0                                                |          |        | 0<br>0<br>98<br>0<br>20                       | 553<br>0<br>0<br>2085<br>0<br>505                                            | 0<br>0<br>4072<br>0<br>85                               | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>505                                                                            | 0 0                                                          |
| WEST<br>SKYLT.<br>DOORS<br>NET EXPOSED WALL                                                                                                                                                                                                                                                                     | 21.3<br>21.3<br>37.2<br>25.2<br>4.5                             | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8                      | 0<br>0<br>34<br>0<br>0<br>0<br>153                | 0<br>724<br>0<br>0<br>0<br>0                                                   | 0<br>847<br>0<br>0<br>0<br>115                     |          |        |      | 0<br>29<br>123<br>0<br>10<br>928                     | 0<br>617<br>2617<br>0<br>252<br>4141                                                             | 160<br>0<br>722<br>5111<br>0<br>43<br>697                           |      |       |      | 0 0 0 0                                         | 0<br>0<br>0<br>0<br>0                                                           | 0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0<br>0<br>857                                                              | 0<br>0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0<br>57<br>592                | 0<br>0<br>0<br>0<br>0<br>0<br>1439<br>2642                                        | 0<br>0<br>0<br>0<br>0<br>242<br>445                     | 0<br>0<br>0<br>0<br>0<br>20                       | 0<br>0<br>0<br>0<br>0<br>505<br>821                                       | 0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0<br>54                       | 0<br>0<br>0<br>0<br>0<br>0<br>241                                          | 0<br>0<br>0<br>0<br>0<br>41                            |          |        | 0<br>0<br>98<br>0<br>20<br>286                | 553<br>0<br>0<br>2085<br>0                                                   | 0<br>0<br>4072<br>0<br>85<br>215                        | 0<br>0<br>0<br>0<br>0<br>20                             | 0<br>0<br>0<br>0<br>505                                                                            | 0<br>0<br>0<br>0<br>0<br>85                                  |
| WEST<br>SKYLT.<br>DOORS<br>NET EXPOSED WALL<br>NET EXPOSED BSMT WALL ABOVE GR                                                                                                                                                                                                                                   | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6                      | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6               | 0<br>0<br>34<br>0<br>0<br>0<br>153                | 0<br>724<br>0<br>0<br>0<br>0<br>683                                            | 0<br>847<br>0<br>0<br>0<br>115                     |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0                | 0<br>617<br>2617<br>0<br>252<br>4141                                                             | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0                      |      |       |      | 0 0 0 0 0                                       | 0<br>0<br>0<br>0<br>0<br>0                                                      | 0<br>0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0<br>0<br>192                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>857                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>144                          | 0<br>0<br>0<br>0<br>0<br>57<br>592                | 0<br>0<br>0<br>0<br>0<br>1439<br>2642                                             | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0                | 0<br>0<br>0<br>0<br>0<br>20<br>184                | 0<br>0<br>0<br>0<br>0<br>505<br>821                                       | 0<br>0<br>0<br>0<br>0<br>85<br>138                     | 0<br>0<br>0<br>0<br>0<br>54                       | 0<br>0<br>0<br>0<br>0<br>241                                               | 0<br>0<br>0<br>0<br>0<br>41                            |          |        | 0<br>0<br>98<br>0<br>20<br>286<br>0           | 553<br>0<br>0<br>2085<br>0<br>505                                            | 0<br>0<br>4072<br>0<br>85<br>215                        | 0<br>0<br>0<br>0<br>20<br>0<br>477                      | 0<br>0<br>0<br>0<br>0<br>505 8<br>0                                                                | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>289                      |
| WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE OR EXPOSED CLG                                                                                                                                                                                                                                    | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3               | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6        | 0<br>0<br>34<br>0<br>0<br>0<br>0<br>153<br>0      | 0<br>724<br>0<br>0<br>0<br>0<br>683<br>0                                       | 0<br>847<br>0<br>0<br>0<br>115<br>0                |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0                | 0<br>617<br>2617<br>0<br>252<br>4141<br>0                                                        | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0                      |      |       |      | 0<br>0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>192<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>857<br>0                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>144<br>0                | 0<br>0<br>0<br>0<br>0<br>57<br>592<br>0           | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0                                        | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0                | 0<br>0<br>0<br>0<br>0<br>20<br>184<br>0           | 0<br>0<br>0<br>0<br>0<br>505<br>821<br>0                                  | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0                | 0<br>0<br>0<br>0<br>0<br>54<br>0                  | 0<br>0<br>0<br>0<br>0<br>241<br>0                                          | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49                 |          |        | 0<br>0<br>98<br>0<br>20<br>286<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0                               | 0<br>0<br>4072<br>0<br>85<br>215<br>0                   | 0<br>0<br>0<br>0<br>20<br>0<br>477                      | 0<br>0<br>0<br>0<br>505 8<br>0<br>1716 2                                                           | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>289                      |
| WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG                                                                                                                                                                                                              | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7        | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0           | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0                                       | 0<br>847<br>0<br>0<br>0<br>115<br>0                |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0           | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0                                                   | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0<br>0                 |      |       |      | 0<br>0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>56                     | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>144<br>0                     | 0<br>0<br>0<br>0<br>57<br>592<br>0                | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0                                        | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0                | 0<br>0<br>0<br>0<br>0<br>20<br>184<br>0           | 0<br>0<br>0<br>0<br>0<br>505<br>821<br>0                                  | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0                | 0<br>0<br>0<br>0<br>0<br>54<br>0<br>84            | 0<br>0<br>0<br>0<br>0<br>0<br>241<br>0<br>108                              | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49                 |          |        | 0<br>98<br>0<br>20<br>286<br>0<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0                          | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>20<br>0<br>477<br>0            | 0<br>0<br>0<br>0<br>505 4<br>0<br>1716 2                                                           | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>289                      |
| WEST SKYLT.  DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG NO A TTIC EXPOSED CLG EXPOSED FLOOR                                                                                                                                                                                               | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3               | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6        | 0<br>0<br>34<br>0<br>0<br>0<br>0<br>153<br>0      | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0                                       | 0<br>847<br>0<br>0<br>0<br>115<br>0                |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0                | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0                                                   | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0                      |      |       |      | 0<br>0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123                                | 0<br>0<br>0<br>0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>192<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>144<br>0                | 0<br>0<br>0<br>0<br>0<br>57<br>592<br>0           | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0                | 0<br>0<br>0<br>0<br>0<br>20<br>184<br>0           | 0<br>0<br>0<br>0<br>0<br>505<br>821<br>0<br>0                             | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0                | 0<br>0<br>0<br>0<br>0<br>54<br>0                  | 0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0                              | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49                 |          |        | 0<br>0<br>98<br>0<br>20<br>286<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0                               | 0<br>0<br>4072<br>0<br>85<br>215<br>0                   | 0<br>0<br>0<br>0<br>20<br>0<br>477                      | 0<br>0<br>0<br>0<br>505 4<br>0<br>1716 2<br>0                                                      | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>289                      |
| WEST SKYLT.  DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED FLOOR EXPOSED FLOOR BA SEMENTICRAWL HEAT LOSS                                                                                                                                                                    | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7        | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0           | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0                                  | 0<br>847<br>0<br>0<br>0<br>115<br>0                |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0           | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0                                              | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0<br>0                 |      |       |      | 0<br>0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>56                     | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>144<br>0                     | 0<br>0<br>0<br>0<br>57<br>592<br>0                | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0                | 0<br>0<br>0<br>0<br>0<br>20<br>184<br>0           | 0<br>0<br>0<br>0<br>505<br>821<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0                | 0<br>0<br>0<br>0<br>0<br>54<br>0<br>84            | 0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214                       | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49                 |          |        | 0<br>98<br>0<br>20<br>286<br>0<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0                          | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>20<br>0<br>477<br>0            | 0<br>0<br>0<br>0<br>505 4<br>0<br>1716 2                                                           | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>289                      |
| WEST SKYLT. DOORTS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED CLOOR BA SEMENTICRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS                                                                                                                                              | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7        | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0           | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0<br>0                             | 0<br>847<br>0<br>0<br>0<br>115<br>0                |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0           | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0<br>0                                         | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0<br>0                 |      |       |      | 0<br>0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>56                     | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0                                               | 0<br>0<br>0<br>0<br>0<br>0<br>144<br>0                     | 0<br>0<br>0<br>0<br>57<br>592<br>0                | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0<br>0                              | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0                | 0<br>0<br>0<br>0<br>20<br>184<br>0<br>0           | 0<br>0<br>0<br>0<br>505<br>821<br>0<br>0<br>0                             | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0                | 0<br>0<br>0<br>0<br>0<br>54<br>0<br>84            | 0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214<br>0                  | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49                 |          |        | 0<br>98<br>0<br>20<br>286<br>0<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0<br>0                     | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>20<br>0<br>477<br>0            | 0<br>0<br>0<br>0<br>505 4<br>0<br>1716 2<br>0<br>0<br>0                                            | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>289                      |
| WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED FLOOR BA SEMENT/CRAWL HEA T LOSS SLAB ON GRADE HEA T LOSS SUBTOTAL HT LOSS                                                                                                                                        | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7        | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0           | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0                                  | 0<br>847<br>0<br>0<br>0<br>115<br>0<br>0           |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0           | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0<br>0<br>0                                    | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0<br>0                 |      |       |      | 0<br>0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>56<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>144<br>0<br>0                | 0<br>0<br>0<br>0<br>57<br>592<br>0                | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0<br>0           | 0<br>0<br>0<br>0<br>20<br>184<br>0<br>0           | 0<br>0<br>0<br>0<br>505<br>821<br>0<br>0                                  | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>54<br>0<br>84            | 0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214                       | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49<br>0<br>36      |          |        | 0<br>98<br>0<br>20<br>286<br>0<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0                          | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>20<br>0<br>477<br>0            | 0<br>0<br>0<br>0<br>505 4<br>0<br>1716 2<br>0<br>0<br>0<br>2560                                    | 0<br>0<br>0<br>0<br>85<br>0<br>289<br>0<br>0                 |
| WEST SKYLT.  DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG EXPOSED FLOOR BA SEMENTICRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN                                                                                                                                | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7        | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0<br>0      | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0<br>0<br>0                        | 0<br>847<br>0<br>0<br>0<br>115<br>0                |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0<br>0      | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0<br>0<br>0                                    | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0<br>0                 |      |       |      | 0<br>0<br>0<br>0<br>0<br>0<br>96<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>56                     | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0<br>0<br>144<br>0                     | 0<br>0<br>0<br>0<br>57<br>592<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0<br>0<br>0<br>0<br>4081            | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0                | 0<br>0<br>0<br>0<br>20<br>184<br>0<br>0           | 0<br>0<br>0<br>0<br>505<br>821<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>54<br>0<br>84<br>0<br>84      | 0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214<br>0<br>0<br>563      | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49                 |          |        | 0<br>98<br>0<br>20<br>286<br>0<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0<br>0                     | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0              | 0<br>0<br>0<br>0<br>20<br>0<br>477<br>0<br>0            | 0 0 0 0 0 505 4 0 0 0 0 0 0 0 0 0 0 0 0                                                            | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>289                      |
| WEST SKYLT.  DOORS NET EXPOSED WALL NET EXPOSED EMM WALL ABOVE GR EXPOSED CLG ON A TTIC EXPOSED FLOOR BA SEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER                                                                                                              | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7        | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0           | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0<br>0<br>0<br>1406                | 0<br>847<br>0<br>0<br>0<br>115<br>0<br>0           |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0<br>0      | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0<br>0<br>0<br>0<br>7841                       | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0<br>0                 |      |       |      | 0<br>0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>56<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0<br>0<br>0<br>0<br>857                         | 0<br>0<br>0<br>0<br>0<br>0<br>144<br>0<br>0                | 0<br>0<br>0<br>0<br>57<br>592<br>0                | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0<br>0<br>0<br>0<br>4081            | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0<br>0           | 0<br>0<br>0<br>0<br>20<br>184<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>505<br>821<br>0<br>0<br>0<br>0<br>0<br>0<br>1326 | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>54<br>0<br>84            | 0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214<br>0<br>0<br>563      | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49<br>0<br>36      |          |        | 0<br>98<br>0<br>20<br>286<br>0<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0<br>0                     | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0              | 0<br>0<br>0<br>0<br>20<br>0<br>477<br>0<br>0            | 0<br>0<br>0<br>0<br>505 8<br>0<br>1716 2<br>0<br>0<br>0<br>2560                                    | 0<br>0<br>0<br>0<br>85<br>0<br>289<br>0<br>0                 |
| WEST SKYLT.  DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE OR EXPOSED CLG NO A TTIL EXPOSED CLO EXPOSED CLO BA SEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULT IPLIER AIR CHANGE HEAT LOSS                                                             | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7        | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0<br>0      | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0<br>0<br>0                        | 0<br>847<br>0<br>0<br>0<br>115<br>0<br>0<br>0      |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0<br>0      | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0<br>0<br>0                                    | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0<br>0<br>0            |      |       |      | 0<br>0<br>0<br>0<br>0<br>0<br>96<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>56<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>0<br>0<br>0<br>144<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>57<br>592<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0<br>0<br>0<br>0<br>4081            | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>20<br>184<br>0<br>0           | 0<br>0<br>0<br>0<br>505<br>821<br>0<br>0<br>0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>54<br>0<br>84<br>0<br>84      | 0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214<br>0<br>0<br>563      | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49<br>0<br>36      |          |        | 0<br>98<br>0<br>20<br>286<br>0<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0<br>0                     | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0              | 0<br>0<br>0<br>0<br>20<br>0<br>477<br>0<br>0            | 0<br>0<br>0<br>0<br>505 4<br>0<br>1716 2<br>0<br>0<br>0<br>0<br>2560<br>4782<br>3<br>1.51          | 0<br>0<br>0<br>0<br>85<br>0<br>289<br>0<br>0<br>0            |
| WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BMIT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLOG EXPOSED CLOOR BA SEMENTICRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN                                                       | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7        | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0<br>0      | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0<br>0<br>0<br>0<br>1406           | 0<br>847<br>0<br>0<br>0<br>115<br>0<br>0           |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0<br>0      | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0<br>0<br>0<br>0<br>7841                       | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0<br>0                 |      |       |      | 0<br>0<br>0<br>0<br>0<br>0<br>96<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0<br>0<br>0<br>123               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>56<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0<br>0<br>857                                   | 0<br>0<br>0<br>0<br>0<br>0<br>144<br>0<br>0                | 0<br>0<br>0<br>0<br>57<br>592<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0<br>0<br>0<br>4081                 | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0<br>0           | 0<br>0<br>0<br>0<br>20<br>184<br>0<br>0           | 0<br>0<br>0<br>0<br>505<br>821<br>0<br>0<br>0<br>0<br>1326                | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>54<br>0<br>84<br>0<br>84      | 0<br>0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214<br>0<br>0<br>563 | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49<br>0<br>36      |          |        | 0<br>98<br>0<br>20<br>286<br>0<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0<br>0                     | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0              | 0<br>0<br>0<br>0<br>20<br>0<br>477<br>0<br>0            | 0<br>0<br>0<br>0<br>505 4<br>0<br>1716 2<br>0<br>0<br>0<br>0<br>2560<br>4782<br>3<br>1.51<br>14737 | 0<br>0<br>0<br>0<br>85<br>0<br>289<br>0<br>0                 |
| WEST SKYLT.  DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG ON A TTIC EXPOSED FLOOR BA SEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS                                        | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7        | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0<br>0      | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0<br>0<br>0<br>1406                | 0<br>847<br>0<br>0<br>0<br>115<br>0<br>0<br>0<br>0 |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0<br>0      | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0<br>0<br>0<br>0<br>7841                       | 160<br>0<br>722<br>51111<br>0<br>43<br>697<br>0<br>0<br>0<br>0      |      |       |      | 0<br>0<br>0<br>0<br>0<br>0<br>96<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>56<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0<br>0<br>0<br>0<br>857                         | 0<br>0<br>0<br>0<br>0<br>0<br>144<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>57<br>592<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0<br>0<br>0<br>0<br>4081            | 0<br>0<br>0<br>0<br>0<br>242<br>445<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>20<br>184<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>505<br>821<br>0<br>0<br>0<br>0<br>0<br>0<br>1326 | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>54<br>0<br>84<br>0<br>84      | 0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214<br>0<br>0<br>563      | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49<br>0<br>36      |          |        | 0<br>98<br>0<br>20<br>286<br>0<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0<br>0                     | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0              | 0<br>0<br>0<br>0<br>20<br>0<br>477<br>0<br>0            | 0<br>0<br>0<br>0<br>505 4<br>0<br>1716 2<br>0<br>0<br>2560<br>4782<br>3<br>1.51<br>14737           | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>0<br>289<br>0<br>0<br>0  |
| WEST SKYLT.  DOORS NET EXPOSED WALL NET EXPOSED EMM WALL ABOVE GR EXPOSED CLG ON A TTIC EXPOSED FLOOR BA SEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN                                                | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7<br>2.6 | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0<br>0<br>0 | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0<br>0<br>0<br>0<br>1406           | 0<br>847<br>0<br>0<br>0<br>115<br>0<br>0<br>0      |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0<br>0<br>0 | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0<br>0<br>0<br>0<br>7841                       | 160<br>0<br>722<br>5111<br>0<br>43<br>697<br>0<br>0<br>0            |      |       |      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>96<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0<br>0<br>0<br>123               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>56<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0<br>0<br>857                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>144<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>57<br>592<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0<br>0<br>0<br>4081                 | 0<br>0<br>0<br>0<br>242<br>445<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>20<br>184<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>505<br>821<br>0<br>0<br>0<br>0<br>1326                | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>54<br>0<br>84<br>0<br>84 | 0<br>0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214<br>0<br>0<br>563 | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49<br>0<br>36      |          |        | 0<br>0<br>98<br>0<br>20<br>286<br>0<br>0<br>0 | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0<br>0                     | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0<br>0         | 0<br>0<br>0<br>0<br>20<br>0<br>477<br>0<br>0            | 0<br>0<br>0<br>0<br>505 4<br>0<br>1716 2<br>0<br>0<br>2560<br>4782<br>3<br>1.51<br>14737           | 0<br>0<br>0<br>0<br>85<br>0<br>289<br>0<br>0<br>0            |
| WEST SKYLT.  DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE OR EXPOSED CLG NO A TTIC EXPOSED CLG EXPOSED FLOOR BA SEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULT IPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7        | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0<br>0      | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0<br>0<br>0<br>0<br>1406           | 962<br>83                                          |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0<br>0      | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0<br>0<br>0<br>0<br>7841                       | 160<br>0<br>722<br>51111<br>0<br>43<br>697<br>0<br>0<br>0<br>0<br>0 |      |       |      | 0<br>0<br>0<br>0<br>0<br>0<br>96<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0<br>0<br>0<br>123               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>56<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0<br>0<br>857                                   | 0<br>0<br>0<br>0<br>0<br>0<br>144<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>57<br>592<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0<br>0<br>0<br>4081                 | 0<br>0<br>0<br>0<br>242<br>445<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>20<br>184<br>0<br>0           | 0<br>0<br>0<br>0<br>505<br>821<br>0<br>0<br>0<br>0<br>1326                | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>54<br>0<br>84<br>0<br>84      | 0<br>0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214<br>0<br>0<br>563 | 0<br>0<br>0<br>0<br>0<br>0<br>41<br>0<br>49<br>0<br>36 |          |        | 0<br>98<br>0<br>20<br>286<br>0<br>0           | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0<br>0                     | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0<br>0<br>4787 | 0<br>0<br>0<br>0<br>20<br>0<br>477<br>0<br>0            | 0<br>0<br>0<br>0<br>505 8<br>0<br>1716 2<br>0<br>0<br>0<br>2560<br>4782<br>3<br>1.51<br>14737<br>4 | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>0<br>2289<br>0<br>0<br>0 |
| WEST SKYLT.  DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG EXPOSED FLOOR BA SEMENTICRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCE SLIGHTS                | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7<br>2.6 | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0<br>0<br>0 | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0<br>0<br>0<br>1406<br>0.57<br>802 | 0<br>847<br>0<br>0<br>0<br>115<br>0<br>0<br>0<br>0 |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0<br>0      | 0<br>617<br>2617<br>0<br>252<br>4141<br>0<br>0<br>0<br>0<br>0<br>0<br>7841<br>0.57<br>4470       | 160<br>0<br>722<br>51111<br>0<br>43<br>697<br>0<br>0<br>0<br>0      |      |       |      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>96<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0<br>0<br>0<br>123<br>0.33<br>41 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>56<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0<br>0<br>857<br>488 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>144<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>57<br>592<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0<br>0<br>0<br>4081<br>0.57<br>2326 | 0<br>0<br>0<br>0<br>242<br>445<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>20<br>184<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>505<br>821<br>0<br>0<br>0<br>0<br>1326           | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>54<br>0<br>84<br>0<br>84 | 0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214<br>0<br>0<br>563      | 0<br>0<br>0<br>0<br>0<br>41<br>0<br>49<br>0<br>36      |          |        | 0<br>0<br>98<br>0<br>20<br>286<br>0<br>0<br>0 | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0<br>0<br>0<br>552<br>4972 | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0<br>20<br>0<br>4777<br>0<br>0<br>0 | 0 0 0 0 0 505 4 0 0 0 0 0 0 0 0 0 0 0 0                                                            | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>0<br>289<br>0<br>0<br>0  |
| WEST SKYLT.  DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG NO A TTIL EXPOSED FLOOR BA SEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULT IPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT CAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE             | 21.3<br>21.3<br>37.2<br>25.2<br>4.5<br>3.6<br>1.3<br>2.7<br>2.6 | 41.6<br>24.9<br>41.6<br>101.5<br>4.3<br>0.8<br>0.6<br>0.6<br>1.3 | 0<br>0<br>34<br>0<br>0<br>0<br>153<br>0<br>0<br>0 | 0<br>724<br>0<br>0<br>0<br>683<br>0<br>0<br>0<br>0<br>0<br>0<br>1406           | 962<br>83                                          |          |        |      | 0<br>29<br>123<br>0<br>10<br>928<br>0<br>0<br>0      | 0<br>617<br>2617<br>0<br>252<br>24141<br>0<br>0<br>0<br>0<br>0<br>0<br>7841<br>0<br>0.57<br>4470 | 160<br>0<br>722<br>51111<br>0<br>43<br>697<br>0<br>0<br>0<br>0<br>0 |      |       |      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>96<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>123<br>0<br>0<br>0<br>123               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>56<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>192<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>857<br>0<br>0<br>0<br>0<br>857                                   | 0<br>0<br>0<br>0<br>0<br>0<br>144<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>57<br>592<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>1439<br>2642<br>0<br>0<br>0<br>0<br>4081                 | 0<br>0<br>0<br>0<br>242<br>445<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>20<br>184<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>505<br>821<br>0<br>0<br>0<br>0<br>1326                | 0<br>0<br>0<br>0<br>0<br>85<br>138<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>54<br>0<br>84<br>0<br>84 | 0<br>0<br>0<br>0<br>0<br>0<br>241<br>0<br>108<br>0<br>214<br>0<br>0<br>563 | 0<br>0<br>0<br>0<br>0<br>0<br>41<br>0<br>49<br>0<br>36 |          |        | 0<br>0<br>98<br>0<br>20<br>286<br>0<br>0<br>0 | 553<br>0<br>0<br>2085<br>0<br>505<br>1276<br>0<br>0<br>0                     | 0<br>0<br>4072<br>0<br>85<br>215<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0<br>20<br>0<br>4777<br>0<br>0<br>0 | 0 0 0 0 0 505 1 0 0 0 0 0 0 0 0 0 0 0 0                                                            | 0<br>0<br>0<br>0<br>0<br>85<br>0<br>0<br>2289<br>0<br>0<br>0 |

TOTAL HEAT GAIN BTU/H:

48295

TONS: 4.02

LOSS DUE TO VENTILATION LOAD BTU/H: 3181

STRUCTURAL HEAT LOSS: 74232

TOTAL COMBINED HEAT LOSS BTU/H: 77413

Mehad Oxombe - INDIVIDUAL BCIN: 1969 MICHAEL O'ROURKE



|                                                                                                                                  |                                                   | PINE VA                                                  |                                                     |                                                        |                                                          |                                                          |                                                          |                                   | OPT SER<br>4202- RC                           | SEDAL                                  |                                   |                                        | DATE:                                  | Feb-20                                 |                                        |                                              | GFA:                  | 3700             | LO#          | 85450       |             |                                  |              |                   |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|-----------------------|------------------|--------------|-------------|-------------|----------------------------------|--------------|-------------------|
| HEATING CFM<br>TOTAL HEAT LOSS<br>AIR FLOW RATE CFM                                                                              | 74,232                                            | A                                                        | TOTAL H                                             | OLING CFM<br>HEAT GAIN<br>RATE CFM                     | 47,760                                                   |                                                          | а                                                        | furr<br>a/c coil<br>vailable      | pressure<br>pressure<br>pressure<br>s/a & r/a | 0.6<br>0.05<br>0.2<br>0.35             |                                   |                                        |                                        |                                        |                                        | EL                                           | <b>296UH09</b><br>FAN |                  |              | x           |             | AFUE =<br>(BTU/H) =<br>(BTU/H) = | 88,000       |                   |
| RUN COUNT                                                                                                                        | 4th                                               | 3rd                                                      | 2nd                                                 | 1st                                                    | Bas                                                      | į                                                        |                                                          |                                   |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       | DLOW             | 0            |             | DESI        | GN CFM =                         |              | - 7               |
| S/A<br>R/A                                                                                                                       | 0                                                 | 0                                                        | 17<br>5                                             | 9                                                      | 6                                                        |                                                          |                                                          |                                   | ssure s/a<br>ress. loss                       | 0.18                                   | r/s                               |                                        | pressure<br>ess. Loss                  | 0.17                                   |                                        |                                              |                       | MEDIUM<br>M HIGH | 1105<br>1255 |             |             | CFM @ .6                         | " E.S.P.     |                   |
| All S/A diffusers 4"x10" unl                                                                                                     |                                                   |                                                          |                                                     |                                                        |                                                          |                                                          |                                                          |                                   | ssure s/a                                     | 0.16                                   |                                   |                                        | ssure r/a                              |                                        |                                        |                                              | WILDIO                | HIGH             | 1525         | T           | EMPERAT     | URE RISE                         | 52           | °F                |
| All S/A runs 5"Ø unless not                                                                                                      | ted other                                         | wise on la                                               | ayout.                                              |                                                        |                                                          |                                                          | C.                                                       |                                   |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             | -                                |              | 33                |
| RUN#                                                                                                                             | 1                                                 | 2                                                        | 3                                                   | 4                                                      | 5                                                        | 6                                                        | 7                                                        | 8                                 | 9                                             | 10                                     | 11                                | 12                                     | 13                                     | 14                                     | 15                                     | 16                                           | 17                    | 18               | 19           | 20          | 21          | 22                               | 23           | 24                |
| ROOM NAME<br>RM LOSS MBH.                                                                                                        | MBR<br>2.42                                       | ENS<br>1.38                                              | ENS<br>1.38                                         | BED-2<br>2.65                                          | BED-3<br>1.67                                            | BED-4<br>1.33                                            | ENS-2<br>0.23                                            | LOFT<br>2.29                      | ENS-3<br>1.01                                 | MBR<br>2.42                            | ENS-4<br>0.90                     | DIN<br>2.21                            | KT/GT<br>3.08                          | KT/GT<br>3.08                          | KT/GT<br>3.08                          | KT/GT<br>3.08                                | 0.16                  | PWD<br>1.35      | FOY<br>3.20  | MUD<br>2.08 | BAS<br>4.17 | BAS<br>4.17                      | BAS<br>4.17  | BAS<br>4.17       |
| CFM PER RUN HEAT                                                                                                                 | 50                                                | 28                                                       | 28                                                  | 55                                                     | 34                                                       | 27                                                       | 5                                                        | 47                                | 21                                            | 50                                     | 19                                | 45                                     | 63                                     | 63                                     | 63                                     | 63                                           | 3                     | 28               | 66           | 43          | 86          | 86                               | 86           | 86                |
| RM GAIN MBH.                                                                                                                     | 2.76                                              | 0.94                                                     | 0.94                                                | 2.32                                                   | 1.83                                                     | 2.07                                                     | 0.07                                                     | 2.53                              | 0.38                                          | 2.76                                   | 0.47                              | 2.24                                   | 2.60                                   | 2.60                                   | 2.60                                   | 2.60                                         | 0.97                  | 0.20             | 0.49         | 1.20        | 1.36        | 1.36                             | 1.36         | 1.36              |
| CFM PER RUN COOLING                                                                                                              | 88                                                | 30                                                       | 30                                                  | 74                                                     | 59                                                       | 66                                                       | 2                                                        | 81                                | 12                                            | 88                                     | 15                                | 72                                     | 83                                     | 83                                     | 83                                     | 83                                           | 31                    | 7                | 15           | 38          | 44          | 44                               | 44           | 44                |
| ADJUSTED PRESSURE                                                                                                                | 0.16                                              | 0.17                                                     | 0.17                                                | 0.17                                                   | 0.17                                                     | 0.17                                                     | 0.17                                                     | 0.16                              | 0.17                                          | 0.16                                   | 0.17                              | 0.17                                   | 0.16                                   | 0.16                                   | 0.16                                   | 0.16                                         | 0.17                  | 0.17             | 0.17         | 0.17        | 0.16        | 0.16                             | 0.16         | 0.16              |
| ACTUAL DUCT LGH.                                                                                                                 | 62                                                | 53                                                       | 61                                                  | 60                                                     | 49                                                       | 25                                                       | 48                                                       | 55                                | 48                                            | 67                                     | 39                                | 10                                     | 43                                     | 47                                     | 46                                     | 57                                           | 52                    | 22               | 42           | 24          | 45          | 65                               | 13           | 36                |
| EQUIVALENT LENGTH                                                                                                                | 160                                               | 150                                                      | 130                                                 | 190                                                    | 150                                                      | 140                                                      | 190                                                      | 190                               | 160                                           | 180                                    | 140                               | 150                                    | 130                                    | 130                                    | 130                                    | 130                                          | 190                   | 160              | 150          | 110         | 170         | 140                              | 120          | 130               |
| TOTAL EFFECTIVE LENGTH                                                                                                           | 222                                               | 203                                                      | 191                                                 | 250                                                    | 199                                                      | 165                                                      | 238                                                      | 245                               | 208                                           | 247                                    | 179                               | 160                                    | 173                                    | 177                                    | 176                                    | 187                                          | 242                   | 182              | 192          | 134         | 215         | 205                              | 133          | 166               |
| ADJUSTED PRESSURE<br>ROUND DUCT SIZE                                                                                             | 0.07<br><b>6</b>                                  | 0.08                                                     | 0.09                                                | 0.07                                                   | 0.09                                                     | 0.1<br>5                                                 | 0.07                                                     | 0.07<br><b>6</b>                  | 0.08                                          | 0.07                                   | 0.1                               | 0.11                                   | 0.09                                   | 0.09                                   | 0.09                                   | 0.09                                         | 0.07                  | 0.09             | 0.09         | 0.13        | 0.08<br>6   | 0.08                             | 0.12         | 0.1               |
| HEATING VELOCITY (ft/min)                                                                                                        | 255                                               | 321                                                      | 321                                                 | 404                                                    | 250                                                      | 198                                                      | 57                                                       | 240                               | 241                                           | 255                                    | 218                               | 330                                    | 463                                    | 463                                    | 463                                    | 463                                          | 34                    | 321              | 485          | 493         | 438         | 438                              | 631          | 631               |
| COOLING VELOCITY (ft/min)                                                                                                        | 449                                               | 344                                                      | 344                                                 | 543                                                    | 433                                                      | 485                                                      | 23                                                       | 413                               | 138                                           | 449                                    | 172                               | 529                                    | 609                                    | 609                                    | 609                                    | 609                                          | 356                   | 80               | 110          | 436         | 224         | 224                              | 323          | 323               |
| OUTLET GRILL SIZE                                                                                                                | 4X10                                              | 3X10                                                     | 3X10                                                | 3X10                                                   | 3X10                                                     | 3X10                                                     | 3X10                                                     | 4X10                              | 3X10                                          | 4X10                                   | 3X10                              | 3X10                                   | 3X10                                   | 3X10                                   | 3X10                                   | 3X10                                         | 3X10                  | 3X10             | 3X10         | 3X10        | 4X10        | 4X10                             | 3X10         | 3X10              |
| TRUNK                                                                                                                            | С                                                 | Α                                                        | Α                                                   | E                                                      | E                                                        | С                                                        | E                                                        | D                                 | E                                             | С                                      | С                                 | С                                      | Α                                      | Α                                      | В                                      | В                                            | В                     | E                | D            | С           | Α           | В                                | С            | D                 |
| DUN #                                                                                                                            | 25                                                | 26                                                       | 27                                                  | 28                                                     | 29                                                       | 30                                                       | 21                                                       | 22                                |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| RUN #<br>ROOM NAME                                                                                                               | BED-3                                             | 26<br>LOFT                                               | 27<br>BAS                                           | FOY                                                    | HERS                                                     | HIS                                                      | 31<br>BED-3                                              | 32<br>BAS                         |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| RM LOSS MBH.                                                                                                                     | 1.67                                              | 2.29                                                     | 4.17                                                | 3.20                                                   | 0.54                                                     | 0.83                                                     | 1.67                                                     | 4.17                              |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| CFM PER RUN HEAT                                                                                                                 | 34                                                | 47                                                       | 86                                                  | 66                                                     | 11                                                       | 17                                                       | 34                                                       | 86                                |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| RM GAIN MBH.                                                                                                                     | 1.83                                              | 2.53                                                     | 1.36                                                | 0.49                                                   | 0.15                                                     | 0.20                                                     | 1.83                                                     | 1.36                              |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| CFM PER RUN COOLING                                                                                                              | 59                                                | 81                                                       | 44                                                  | 15                                                     | 5                                                        | 6                                                        | 59                                                       | 44                                |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| ADJUSTED PRESSURE                                                                                                                | 0.17<br>45                                        | 0.16<br>57                                               | 0.16<br>33                                          | 0.17                                                   | 0.17<br>50                                               | 0.17<br>53                                               | 0.17<br>58                                               | 0.16                              |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| ACTUAL DUCT LGH.<br>EQUIVALENT LENGTH                                                                                            | 140                                               | 150                                                      | 180                                                 | 150                                                    | 180                                                      | 180                                                      | 160                                                      | 120                               |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| TOTAL EFFECTIVE LENGTH                                                                                                           | 185                                               | 207                                                      | 213                                                 | 190                                                    | 230                                                      | 233                                                      | 218                                                      | 142                               |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| ADJUSTED PRESSURE                                                                                                                | 0.09                                              | 0.08                                                     | 0.08                                                | 0.09                                                   | 0.07                                                     | 0.07                                                     | 0.08                                                     | 0.11                              |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| ROUND DUCT SIZE                                                                                                                  | 5                                                 | 5                                                        | 6                                                   | 5                                                      | 4                                                        | 4                                                        | 5                                                        | 5                                 |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| HEATING VELOCITY (ft/min)                                                                                                        | 250                                               | 345                                                      | 438                                                 | 485                                                    | 126                                                      | 195                                                      | 250                                                      | 631                               |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| COOLING VELOCITY (ft/min)                                                                                                        | 433                                               | 595                                                      | 224                                                 | 110                                                    | 57                                                       | 69                                                       | 433                                                      | 323                               |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| OUTLET GRILL SIZE<br>TRUNK                                                                                                       | 3X10<br>E                                         | 3X10                                                     | 4X10                                                | 3X10<br>D                                              | 3X10<br>B                                                | 3X10<br>C                                                | 3X10<br>E                                                | 3X10<br>C                         |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| IRUNK                                                                                                                            |                                                   |                                                          | - 10                                                |                                                        |                                                          |                                                          |                                                          |                                   |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              |                       |                  |              |             |             |                                  |              |                   |
| SUPPLY AIR TRUNK SIZE                                                                                                            |                                                   | 10.000.000.0                                             |                                                     | 1000000000                                             |                                                          |                                                          | 14 to #1000000000000000000000000000000000000             |                                   |                                               |                                        | 100000000                         |                                        | 110000000                              |                                        |                                        | 2022 - 102 - 1                               | RETURN A              | IR TRUNK         | K SIZE       | 70/90/5-0   |             |                                  |              | 9.000             |
|                                                                                                                                  | TRUNK                                             | STATIC                                                   | ROUND                                               | RECT                                                   |                                                          |                                                          | VELOCITY                                                 |                                   |                                               | TRUNK                                  | STATIC                            | ROUND                                  | RECT                                   |                                        |                                        | VELOCITY                                     |                       | TRUNK            | STATIC       | ROUND       | RECT        |                                  |              | VELOCITY          |
| ** <u>222</u> -00-0000                                                                                                           | CFM                                               | PRESS.                                                   | DUCT                                                | DUCT                                                   |                                                          |                                                          | (ft/min)                                                 |                                   | TOUR                                          | CFM                                    | PRESS.                            | DUCT                                   | DUCT                                   |                                        | •                                      | (ft/min)                                     | TO. 11                | CFM              | PRESS.       | DUCT        | DUCT        |                                  |              | (ft/min)          |
| TRUNK A<br>TRUNK B                                                                                                               | 268<br>226                                        | 0.08                                                     | 8.6<br>8.3                                          | 8                                                      | ×                                                        | 8                                                        | 603<br>509                                               |                                   | TRUNK G                                       | 0                                      | 0.00                              | 0                                      | 0                                      | ×                                      | 8                                      | 0                                            | TRUNK O               | 0                | 0.06         | 0           | 0           | ×                                | 8            | 0                 |
| TRUNK C                                                                                                                          |                                                   | 0.07                                                     | 14                                                  | 22                                                     | ×                                                        | 8                                                        | 750                                                      |                                   | TRUNK I                                       | 0                                      | 0.00                              | 0                                      | 0                                      | ×                                      | 8                                      | 0                                            | TRUNK Q               | 0                | 0.06         | 0           | 0           | ×                                | 8            | 0                 |
| TRUNK D                                                                                                                          |                                                   | 0.07                                                     | 10.3                                                | 12                                                     | x                                                        | 8                                                        | 597                                                      |                                   | TRUNK J                                       | o                                      | 0.00                              | o                                      | Ö                                      | x                                      | 8                                      | 0                                            | TRUNK R               | Ö                | 0.06         | o           | o           | x                                | 8            | Ö                 |
| TRUNK E                                                                                                                          | 609                                               | 0.07                                                     | 12                                                  | 16                                                     | ×                                                        | 8                                                        | 685                                                      |                                   | TRUNK K                                       | 0                                      | 0.00                              | 0                                      | 0                                      | ×                                      | 8                                      | 0                                            | TRUNK S               | 0                | 0.06         | 0           | 0           | ×                                | 8            | 0                 |
|                                                                                                                                  | 0                                                 | 0.00                                                     | 0                                                   | 0                                                      | x                                                        | 8                                                        | 0                                                        |                                   | TRUNK L                                       | 0                                      | 0.00                              | 0                                      | 0                                      | x                                      | 8                                      | 0                                            | TRUNKT                | 0                | 0.06         | 0           | 0           | ×                                | 8            | 0                 |
| TRUNK F                                                                                                                          |                                                   |                                                          |                                                     |                                                        |                                                          |                                                          |                                                          |                                   |                                               |                                        |                                   |                                        |                                        |                                        |                                        |                                              | TRUNK U               | 0                | 0.06         | 0           | 0           | ×                                | 8            | 0                 |
| TRUNK F                                                                                                                          |                                                   |                                                          |                                                     |                                                        |                                                          |                                                          |                                                          |                                   |                                               |                                        |                                   |                                        |                                        |                                        |                                        | BR                                           | TRUNK W               | Ö                | 0.06         | 0           | 0           | ×                                | 8            | 0                 |
| TRUNK F                                                                                                                          | 1                                                 | 2                                                        | 3                                                   | 4                                                      | 5                                                        | 6                                                        | 7                                                        |                                   |                                               |                                        | •                                 | 0                                      |                                        | 0                                      | 0                                      | (                                            | TRUNK X               |                  |              |             | 0.500       |                                  |              |                   |
|                                                                                                                                  | 1 0                                               | 2                                                        | 3                                                   | 4 0                                                    | 5<br>0                                                   | 0                                                        | 0                                                        | 0                                 | 0                                             | 0                                      | 0                                 | U                                      | 0                                      | 0                                      | 0                                      |                                              |                       | 1525             | 0.06         | 17.7        | 32          | ×                                | 10           | 686               |
| RETURN AIR # AIR VOLUME                                                                                                          | 0<br>130                                          | 0<br>125                                                 | 0<br>130                                            | 0<br>130                                               | 0<br>365                                                 | 0<br>300                                                 | 0<br>130                                                 | 0                                 | 0                                             | 0                                      | 0                                 | 0                                      | 0                                      | 0                                      | 0                                      | 215                                          | TRUNK Y               | 430              | 0.06         | 11          | 14          | x<br>x                           | 10           | 686<br>553        |
| RETURN AIR # AIR VOLUME PLENUM PRESSURE                                                                                          | 0<br>130<br>0.15                                  | 0<br>125<br>0.15                                         | 0<br>130<br>0.15                                    | 0<br>130<br>0.15                                       | 0<br>365<br>0.15                                         | 0<br>300<br>0.15                                         | 0<br>130<br>0.15                                         | 0<br>0.15                         | 0<br>0.15                                     | 0<br>0.15                              |                                   | 0<br>0.15                              | 0<br>0.15                              | 0<br>0.15                              | 0<br>0.15                              | 0.15                                         | TRUNK Y<br>TRUNK Z    | 430<br>925       | 0.06<br>0.06 | 11<br>14.6  | 14<br>24    | x<br>x<br>x                      | 10<br>8<br>8 | 686<br>553<br>694 |
| RETURN AIR # AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH.                                                                         | 0<br>130<br>0.15<br>61                            | 0<br>125<br>0.15<br>69                                   | 0<br>130<br>0.15<br>49                              | 0<br>130<br>0.15<br>53                                 | 0<br>365<br>0.15<br>30                                   | 0<br>300<br>0.15<br>52                                   | 0<br>130<br>0.15<br>56                                   | 0<br>0.15<br>1                    | 0<br>0.15<br>1                                | 0<br>0.15<br>1                         | 0<br>0.15<br>1                    | 0<br>0.15<br>1                         | 0<br>0.15<br>1                         | 0<br>0.15<br>1                         | 0<br>0.15<br>1                         | 0.15<br>14                                   | TRUNK Y               | 430              | 0.06         | 11          | 14          | x<br>x                           | 10           | 686<br>553        |
| RETURN AIR #  AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH                                                      | 0<br>130<br>0.15<br>61<br>175                     | 0<br>125<br>0.15<br>69<br>165                            | 0<br>130<br>0.15<br>49<br>145                       | 0<br>130<br>0.15<br>53<br>185                          | 0<br>365<br>0.15<br>30<br>185                            | 0<br>300<br>0.15<br>52<br>140                            | 0<br>130<br>0.15<br>56<br>150                            | 0<br>0.15<br>1<br>0               | 0<br>0.15                                     | 0<br>0.15                              | 0                                 | 0<br>0.15<br>1<br>0                    | 0<br>0.15                              | 0<br>0.15                              | 0<br>0.15<br>1<br>0                    | 0.15<br>14<br>145                            | TRUNK Y<br>TRUNK Z    | 430<br>925       | 0.06<br>0.06 | 11<br>14.6  | 14<br>24    | x<br>x<br>x                      | 10<br>8<br>8 | 686<br>553<br>694 |
| RETURN AIR #  AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH                                   | 0<br>130<br>0.15<br>61<br>175<br>236              | 0<br>125<br>0.15<br>69<br>165<br>234                     | 0<br>130<br>0.15<br>49<br>145<br>194                | 0<br>130<br>0.15<br>53<br>185<br>238                   | 0<br>365<br>0.15<br>30<br>185<br>215                     | 0<br>300<br>0.15<br>52<br>140<br>192                     | 0<br>130<br>0.15<br>56<br>150<br>206                     | 0<br>0.15<br>1<br>0               | 0<br>0.15<br>1<br>0<br>1                      | 0<br>0.15<br>1<br>0                    | 0<br>0.15<br>1<br>0               | 0<br>0.15<br>1<br>0                    | 0<br>0.15<br>1<br>0                    | 0<br>0.15<br>1<br>0                    | 0<br>0.15<br>1<br>0                    | 0.15<br>14<br>145<br>159                     | TRUNK Y<br>TRUNK Z    | 430<br>925       | 0.06<br>0.06 | 11<br>14.6  | 14<br>24    | x<br>x<br>x                      | 10<br>8<br>8 | 686<br>553<br>694 |
| RETURN AIR #  AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH                                                      | 0<br>130<br>0.15<br>61<br>175                     | 0<br>125<br>0.15<br>69<br>165                            | 0<br>130<br>0.15<br>49<br>145                       | 0<br>130<br>0.15<br>53<br>185                          | 0<br>365<br>0.15<br>30<br>185                            | 0<br>300<br>0.15<br>52<br>140                            | 0<br>130<br>0.15<br>56<br>150                            | 0<br>0.15<br>1<br>0               | 0<br>0.15<br>1                                | 0<br>0.15<br>1                         | 0<br>0.15<br>1                    | 0<br>0.15<br>1<br>0                    | 0<br>0.15<br>1                         | 0<br>0.15<br>1                         | 0<br>0.15<br>1<br>0                    | 0.15<br>14<br>145                            | TRUNK Y<br>TRUNK Z    | 430<br>925       | 0.06<br>0.06 | 11<br>14.6  | 14<br>24    | x<br>x<br>x                      | 10<br>8<br>8 | 686<br>553<br>694 |
| RETURN AIR #  AIR YOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE                 | 0<br>130<br>0.15<br>61<br>175<br>236<br>0.06      | 0<br>125<br>0.15<br>69<br>165<br>234<br>0.06<br>6.9<br>8 | 0<br>130<br>0.15<br>49<br>145<br>194<br>0.08        | 0<br>130<br>0.15<br>53<br>185<br>238<br>0.06<br>7<br>8 | 0<br>365<br>0.15<br>30<br>185<br>215<br>0.07<br>9.9<br>8 | 0<br>300<br>0.15<br>52<br>140<br>192<br>0.08<br>8.9<br>8 | 0<br>130<br>0.15<br>56<br>150<br>206<br>0.07<br>6.8<br>8 | 0<br>0.15<br>1<br>0<br>1<br>14.80 | 0<br>0.15<br>1<br>0<br>1<br>14.80<br>0        | 0<br>0.15<br>1<br>0<br>1<br>14.80<br>0 | 0<br>0.15<br>1<br>0<br>1<br>14.80 | 0<br>0.15<br>1<br>0<br>1<br>14.80<br>0 | 0<br>0.15<br>1<br>0<br>1<br>14.80<br>0 | 0<br>0.15<br>1<br>0<br>1<br>14.80<br>0 | 0<br>0.15<br>1<br>0<br>1<br>14.80<br>0 | 0.15<br>14<br>145<br>159<br>0.09<br>7.7<br>8 | TRUNK Y<br>TRUNK Z    | 430<br>925       | 0.06<br>0.06 | 11<br>14.6  | 14<br>24    | x<br>x<br>x                      | 10<br>8<br>8 | 686<br>553<br>694 |
| RETURN AIR #  AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE ROUND DUCT SIZE | 0<br>130<br>0.15<br>61<br>175<br>236<br>0.06<br>7 | 0<br>125<br>0.15<br>69<br>165<br>234<br>0.06<br>6.9      | 0<br>130<br>0.15<br>49<br>145<br>194<br>0.08<br>6.5 | 0<br>130<br>0.15<br>53<br>185<br>238<br>0.06<br>7      | 0<br>365<br>0.15<br>30<br>185<br>215<br>0.07<br>9.9      | 0<br>300<br>0.15<br>52<br>140<br>192<br>0.08<br>8.9      | 0<br>130<br>0.15<br>56<br>150<br>206<br>0.07<br>6.8      | 0<br>0.15<br>1<br>0<br>1<br>14.80 | 0<br>0.15<br>1<br>0<br>1<br>14.80             | 0<br>0.15<br>1<br>0<br>1<br>14.80<br>0 | 0<br>0.15<br>1<br>0<br>1<br>14.80 | 0<br>0.15<br>1<br>0<br>1<br>14.80<br>0 | 0<br>0.15<br>1<br>0<br>1<br>14.80      | 0<br>0.15<br>1<br>0<br>1<br>14.80      | 0<br>0.15<br>1<br>0<br>1<br>14.80      | 0.15<br>14<br>145<br>159<br>0.09<br>7.7      | TRUNK Y<br>TRUNK Z    | 430<br>925       | 0.06<br>0.06 | 11<br>14.6  | 14<br>24    | x<br>x<br>x                      | 10<br>8<br>8 | 686<br>553<br>694 |





TYPE: 4202- ROSEDALE

SITE NAME: PINE VALLEY & TESTON OPT SERV STAIR - WOB

### RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

85450

LO#

| COMBUSTION APPLIANCES                                           | 9.32.3.1(1)      | SUPPLEMENTAL VENTILATION CAPACITY                                                                             | 9.32.3.5.      |
|-----------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------|----------------|
| a)                                                              |                  | Total Ventilation Capacity                                                                                    | cfm            |
| b) Positive venting induced draft (except fireplaces)           |                  | Less Principal Ventil. Capacity                                                                               | cfm            |
| c) Natural draft, B-vent or induced draft gas fireplace         |                  | Required Supplemental Capacity 67.6                                                                           | cfm            |
| d) Solid Fuel (including fireplaces)                            |                  | DDINGIDAL EVHALIST FAN CADACITY                                                                               |                |
| e) No Combustion Appliances                                     |                  | PRINCIPAL EXHAUST FAN CAPACITY  Model: VANEE 65H Location:                                                    | BSMT           |
| HEATING SYSTEM                                                  | $\overline{}$    | 155.0 cfm 3.0 sones                                                                                           | HVI Approved   |
| Forced Air Non Forced Air                                       |                  | PRINCIPAL EXHAUST HEAT LOSS CALCULATION                                                                       |                |
|                                                                 |                  | CFM ΔT *F FACTOR 155.0 CFM X 76 F X 1.08 X                                                                    | % LOSS<br>0.25 |
| Electric Space Heat                                             |                  | SUPPLEMENTAL FANS NUTONE                                                                                      |                |
|                                                                 |                  | Location Model cfm HVI                                                                                        | Sones          |
| HOUSE TYPE                                                      | 9.32.1(2)        |                                                                                                               | 0.3            |
|                                                                 |                  | ENS-2 QTXEN050C 50 ✓                                                                                          | 0.3            |
| Type a) or b) appliance only, no solid fuel                     |                  | ENS-4 QTXEN050C 50 ✓                                                                                          | 0.3            |
|                                                                 | ,                | PWD QTXEN050C 50 ✓                                                                                            | 0.3            |
| II Type I except with solid fuel (including fireplaces          | 5)               | HEAT RECOVERY VENTILATOR                                                                                      | 9.32.3.11.     |
| III Any Type c) appliance                                       |                  | Model: VANEE 65H                                                                                              | 3.32.3.11.     |
| m yany nype oyappılance                                         |                  | 155 cfm high 64                                                                                               | cfm low        |
| IV Type I, or II with electric space heat                       |                  |                                                                                                               | <u> </u>       |
| Other: Type I, II or IV no forced air                           |                  | 75 % Sensible Efficiency   @ 32 deg F ( 0 deg C)                                                              | HVI Approved   |
|                                                                 |                  |                                                                                                               |                |
| CVCTEM DECION ORTIONS                                           | 0 11 11 11 11    | LOCATION OF INSTALLATION                                                                                      |                |
| SYSTEM DESIGN OPTIONS                                           | O.N.H.W.P.       | Lot: Concession                                                                                               |                |
| 1 Exhaust only/Forced Air System                                |                  | Lot: Concession                                                                                               |                |
|                                                                 |                  | Township Plan:                                                                                                |                |
| 2 HRV with Ducting/Forced Air System                            |                  | Address                                                                                                       |                |
| HRV Simplified/connected to forced air system                   |                  | Roll # Building Permit #                                                                                      |                |
| 4 HRV with Ducting/non forced air system                        |                  | BUILDER: GOLD PARK HOMES                                                                                      |                |
| Part 6 Design                                                   |                  | Name:                                                                                                         |                |
| TOTAL VENTILATION CAPACITY                                      | 9.32.3.3(1)      | Address:                                                                                                      |                |
| Basement + Master Bedroom 2 @ 21.2 cfm 42.4                     | cfm              | City:                                                                                                         |                |
| Other Bedrooms <u>3</u> @ 10.6 cfm <u>31.8</u>                  | cfm              | Telephone #: Fax #:                                                                                           |                |
| Kitchen & Bathrooms6@ 10.6 cfm63.6                              | cfm              | INSTALLING CONTRACTOR                                                                                         |                |
| Other Rooms 8 @ 10.6 cfm 84.8                                   | cfm              | Name:                                                                                                         |                |
| Table 9.32.3.A. TOTAL <u>222.6</u>                              | cfm              | Address:                                                                                                      |                |
|                                                                 |                  | City:                                                                                                         |                |
| PRINCIPAL VENTILATION CAPACITY REQUIRED                         | 9.32.3.4.(1)     |                                                                                                               |                |
| 1 Bedroom 31.8                                                  | cfm              | Telephone #: Fax #:                                                                                           |                |
| . 550,550                                                       | J.               | DESIGNER CERTIFICATION                                                                                        |                |
| 2 Bedroom 47.7                                                  | cfm              | I hereby certify that this ventilation system has been designed in accordance with the Ontario Building Code. |                |
| 3 Bedroom 63.6                                                  | cfm              | Name: HVAC Designs Ltd.                                                                                       |                |
| 4 Bedroom 79.5                                                  | cfm              | Signature: Mehan Knuhe.                                                                                       |                |
| 5 Bedroom 95.4                                                  | cfm              | HRAI # 001820                                                                                                 |                |
| TOTAL 79.5 cfm                                                  |                  | Date: February-20                                                                                             |                |
| I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUAL | LIFIED IN THE AP | PPROPRIATE CATEGORY AS AN "OTHER DESIGNER" UNDER DIVISION C. 3.2.5 OF THE BUILDING                            | CODE.          |



|               |                          |                                             | Forn                     | nula Sheet (For Air Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ikage / ventiliation C        | aiculation)                    |                             |                                         |        |             |
|---------------|--------------------------|---------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|-----------------------------|-----------------------------------------|--------|-------------|
| LO#: 85       | 5450                     | Model: 4202- ROSEI                          | ALE                      | Builde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r: GOLD PARK HOMES            |                                |                             |                                         | Date   | : 2/25/2020 |
|               |                          | Volume Calculatio                           | n                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                | Air Change & Delt           | a T Data                                |        | YE O        |
|               |                          |                                             |                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                |                             |                                         |        | 7           |
| se Volume     | F1 A (6.2)               | I = 5111-1-1-1-(6)                          | 1/-1 //-31               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                | TURAL AIR CHANG             | T / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / | 0.407  |             |
| Level<br>Bsmt | Floor Area (ft²)<br>1647 | Floor Height (ft)<br>10                     | Volume (ft³)<br>16470    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | SUMINER INF                    | TURAL AIR CHANG             | DE KATE                                 | 0.137  |             |
| First         | 1647                     | 11                                          | 18117                    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                |                             |                                         |        |             |
| Second        | 2076                     | 9                                           | 18684                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                | Design Te                   | mperature Diffe                         | erence |             |
| Third         | 0                        | 9                                           | 0                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                | Tin °C                      | Tout °C                                 | ΔT°C   | ΔT °F       |
| Fourth        | 0                        | 9                                           | 0                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | Winter DTDh                    | 22                          | -20                                     | 42     | 76          |
|               |                          | Total:                                      | 53,271.0 ft <sup>3</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | Summer DTDc                    | 24                          | 31                                      | 7      | 13          |
|               |                          | Total:                                      | 1508.5 m³                | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                |                             | ***                                     |        |             |
|               | F 2 2                    | 1 Hant Land due to A                        | - Laskara                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                             | 6366                           | ansible Cain due            | An Air Lonkono                          |        |             |
|               | 5.2.3                    | .1 Heat Loss due to Ai                      | Leakage                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | 0.2.0                          | Sensible Gain due           | to Air Leakage                          |        |             |
|               | ***                      | $V_b$                                       | .mp                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                | $V_b$                       |                                         |        |             |
|               | $HL_{airb} =$            | $LR_{airh} \times \frac{V_b}{3.6} \times L$ | $DTD_h \times 1.2$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H                             | $HG_{salb} = LR_{airc} \times$ | $\frac{1}{36} \times DTD_c$ | × 1.2                                   |        |             |
| 0.407         | x 419.02                 | x 42 °C                                     | x 1.2                    | = 8638 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 0.137                       | x 419.02                       | x 7°C                       | x 1.2                                   | =      | 488 W       |
|               |                          | - U                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                | -                           |                                         | 1      | 120         |
|               |                          |                                             |                          | = 29473 Btu/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                             |                                |                             |                                         | =      | 1665 Btu/   |
|               |                          |                                             |                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                |                             |                                         |        |             |
|               | 5.2.3.2 Hea              | at Loss due to Mechan                       | ical Ventilation         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | 6.2.7 Ser                      | nsible heat Gain d          | ue to Ventilatio                        | n      |             |
|               |                          |                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                |                             | 5 6                                     |        |             |
|               | $HL_{vairb} =$           | $PVC \times DTD_h \times 1$                 | $1.08 \times (1 - E)$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HL                            | $_{vairb} = PVC \times D$      | $TD_h \times 1.08 \times$   | (1-E)                                   |        |             |
|               |                          |                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                |                             |                                         |        |             |
| 155 CFM       | x76 °F                   | x 1.08                                      | x 0.25                   | = 3181 Btu/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 155 CFM                       | x13 °F                         | x1.08                       | x0.25                                   | =      | 536 Btu/    |
|               |                          |                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140 00 00 000                 |                                |                             |                                         |        |             |
|               |                          |                                             | 5.2.3.3 Calcula          | tion of Air Change Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Loss for Each Room (Flo       | or Multiplier Section)         |                             |                                         |        |             |
|               |                          | 111                                         | I amal Fran              | v III v ((1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | (111 ) 111                     | . )2                        |                                         |        |             |
|               |                          | $HL_a$                                      | $_{irr} = LevelFact$     | $or \times HL_{airbv} \times \{(H_{airbv}) \times \{$ | $L_{agcr} + HL_{bgcr}) +$     | $(HL_{agclevel} + HL)$         | bgclevel)}                  |                                         |        |             |
|               |                          |                                             |                          | HLairve Air Leakage +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level Conductive Heat         | Air Leakage Heat Los           | s Multiplier (LF v          |                                         |        |             |
|               |                          | Level                                       | Level Factor (LF)        | Ventilation Heat Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Loss: (HL <sub>clevel</sub> ) | HLairby / H                    |                             |                                         |        |             |
|               |                          |                                             |                          | (Btu/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 2                              | i i                         |                                         |        |             |
|               |                          | 1                                           | 0.5                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9,753                         | 1.51                           | No.                         |                                         |        |             |
|               |                          | 2                                           | 0.3                      | V 1953 (9535)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15,512                        | 0.57                           |                             |                                         |        |             |
|               |                          | 3                                           | 0.2                      | 29,473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17,643                        | 0.33                           |                             |                                         |        |             |
|               |                          | 4                                           | 0                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                             | 0.00                           |                             |                                         |        |             |
|               |                          | 5                                           | 0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                             | 0.00                           | 0                           |                                         |        |             |







### **HEAT LOSS AND GAIN SUMMARY SHEET**

| MODEL:   | 4202- ROSEDALE                 |          | OPT SERV STAIR - W | VOB BUILDER: GOLD PARK HOMES                                      |                |
|----------|--------------------------------|----------|--------------------|-------------------------------------------------------------------|----------------|
| SFQT:    | 3700                           | LO#      | 85450              | SITE: PINE VALLEY & TESTON                                        |                |
| DESIGN A | ASSUMPTIONS                    |          |                    |                                                                   |                |
|          | R DESIGN TEMP.<br>DESIGN TEMP. |          | °F<br>-4<br>72     | COOLING<br>OUTDOOR DESIGN TEMP.<br>INDOOR DESIGN TEMP. (MAX 75°F) | °F<br>88<br>75 |
| BUILDING | G DATA                         |          |                    |                                                                   |                |
| ATTACHN  | ΛENT:                          |          | DETACHED           | # OF STORIES (+BASEMENT):                                         | 3              |
| FRONT FA | ACES:                          |          | EAST               | ASSUMED (Y/N):                                                    | Y              |
| AIR CHAN | IGES PER HOUR:                 |          | 3.57               | ASSUMED (Y/N):                                                    | Υ              |
| AIR TIGH | TNESS CATEGORY:                |          | AVERAGE            | ASSUMED (Y/N):                                                    | Υ              |
| WIND EXI | POSURE:                        |          | SHELTERED          | ASSUMED (Y/N):                                                    | Υ              |
| HOUSE V  | OLUME (ft³):                   |          | 53271.0            | ASSUMED (Y/N):                                                    | Υ              |
| INTERNA  | L SHADING:                     | BLINDS   | /CURTAINS          | ASSUMED OCCUPANTS:                                                | 5              |
| INTERIOR | LIGHTING LOAD (Btu/            | /h/ft²): | 1.27               | DC BRUSHLESS MOTOR (Y/N):                                         | Υ              |
| FOUNDA   | TION CONFIGURATION             |          | BCIN_1             | DEPTH BELOW GRADE:                                                | 7.0 ft         |
| LENGTH:  | 68.0 ft                        | WIDTH:   | 33.0 ft            | EXPOSED PERIMETER:                                                | 159.0 ft       |
| WOBINS   | ULATION CONFIGURAT             | ΓΙΟΝ     | SCB_9              | WOB EXPOSED PERIMETER                                             | 43.0 ft        |

| 2012 OBC - COMPLIANCE PACKAGE                                              |          |           |
|----------------------------------------------------------------------------|----------|-----------|
|                                                                            | Complian | e Package |
| Component                                                                  |          | A1        |
|                                                                            | Nominal  | Min. Eff. |
| Ceiling with Attic Space Minimum RSI (R)-Value                             | 60       | 59.22     |
| Ceiling Without Attic Space Minimum RSI (R)-Value                          | 31       | 27.65     |
| Exposed Floor Minimum RSI (R)-Value                                        | 31       | 29.80     |
| Walls Above Grade Minimum RSI (R)-Value                                    | 22       | 17.03     |
| Basement Walls Minimum RSI (R)-Value                                       | 20 ci    | 21.12     |
| Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value | -        | -         |
| Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value        | 10       | 10        |
| Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value             | 10       | 11.13     |
| Windows and Sliding Glass Doors Maximum U-Value                            | 0.28     | -         |
| Skylights Maximum U-Value                                                  | 0.49     | -         |
| Space Heating Equipment Minimum AFUE                                       | 0.96     | -         |
| HRV Minimum Efficiency                                                     | 75%      | -         |
| Domestic Hot Water Heater Minimum EF                                       | 0.8      | -         |

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE





# **Residential Foundation Thermal Load Calculator**

Supplemental tool for CAN/CSA-F280

| We                           | eather Sta | tion Description                   |
|------------------------------|------------|------------------------------------|
| Province:                    | Ontario    | ·                                  |
| Region:                      | Vaughan    | (Woodbridge)                       |
|                              | Site D     | escription                         |
| Soil Conductivity:           | Normal     | conductivity: dry sand, loam, clay |
| Water Table:                 | Normal     | (7-10 m, 23-33 ft)                 |
| F                            | oundatio   | n Dimensions                       |
| Floor Length (m):            | 4.6        |                                    |
| Floor Width (m):             | 10.1       |                                    |
| Exposed Perimeter (m):       | 48.5       |                                    |
| Wall Height (m):             | 3.0        |                                    |
| Depth Below Grade (m):       | 1.79       | Insulation Configuration           |
| Window Area (m²):            | 0.0        |                                    |
| Door Area (m²):              | 1.9        |                                    |
|                              | Radi       | ant Slab                           |
| Heated Fraction of the Slab: | 0          |                                    |
| Fluid Temperature (°C):      | 33         |                                    |
|                              | Desig      | n Months                           |
| Heating Month                | 1          |                                    |
|                              | Founda     | ation Loads                        |
| Heating Load (Watts):        |            | 750                                |

TYPE: 4202- ROSEDALE

**LO#** 85450

**OPT SERV STAIR - WOB** 



# **Residential Foundation Thermal Load Calculator**

Supplemental tool for CAN/CSA-F280

| Wea                          | ther Sta  | tion Description                  |
|------------------------------|-----------|-----------------------------------|
| Province:                    | Ontario   | -                                 |
| Region:                      | Vaughan   | (Woodbridge)                      |
|                              | Site D    | escription                        |
| Soil Conductivity:           | Normal co | onductivity: dry sand, loam, clay |
| Water Table:                 | Normal (7 | 7-10 m, 23-33 ft)                 |
| Fo                           | oundatio  | n Dimensions                      |
| Length (m):                  | 1.5       |                                   |
| Width (m):                   | 10.1      | 0.6m ↓                            |
| Exposed Perimeter (m):       | 13.1      | Insulation Configuration          |
|                              | Radi      | ant Slab                          |
| Heated Fraction of the Slab: | 0         |                                   |
| Fluid Temperature (°C):      | 33        |                                   |
|                              | Desig     | n Months                          |
| Heating Month                | 1         |                                   |
|                              | Re        | esults                            |
| Heating Load (Watts):        |           | 162                               |

TYPE: 4202- ROSEDALE OPT SERV STAIR - WOB

**LO#** 85450



# **Air Infiltration Residential Load Calculator**

Supplemental tool for CAN/CSA-F280

| Weather Statio                    | n Des  | cripti  | ion      |       |                        |
|-----------------------------------|--------|---------|----------|-------|------------------------|
| Province:                         | Ontar  | io      |          |       |                        |
| Region:                           | Vaugl  | nan (W  | oodbr/   | idge) |                        |
| Weather Station Location:         | Open   | flat te | rrain, g | grass |                        |
| Anemometer height (m):            | 10     |         |          |       |                        |
| Local Sh                          | ieldin | g       |          |       |                        |
| Building Site:                    | Subur  | ban, f  | orest    |       |                        |
| Walls:                            | Heavy  | /       |          |       |                        |
| Flue:                             | Heavy  | /       |          |       |                        |
| Highest Ceiling Height (m):       | 9.14   |         |          |       |                        |
| Building Cor                      | figura | ation   |          |       |                        |
| Type:                             | Detac  | hed     |          |       |                        |
| Number of Stories:                | Two    |         |          |       |                        |
| Foundation:                       | Full   |         |          |       |                        |
| House Volume (m³):                | 1508.  | 5       |          |       |                        |
| Air Leakage/                      | Ventil | atior   | 1        |       |                        |
| Air Tightness Type:               | Prese  | nt (196 | 61-) (3. | 57 AC | H)                     |
| Custom BDT Data:                  | ELA @  | 9 10 Pa | Э.       |       | 2010.8 cm <sup>2</sup> |
|                                   | 3.57   |         |          |       | ACH @ 50 Pa            |
| Mechanical Ventilation (L/s):     | To     | tal Sup | ply      |       | Total Exhaust          |
|                                   |        | 73.2    |          |       | 73.2                   |
| Flue S                            | Size   |         |          |       |                        |
| Flue #:                           | #1     | #2      | #3       | #4    |                        |
| Diameter (mm):                    | 0      | 0       | 0        | 0     |                        |
| Natural Infiltr                   | ation  | Rate    | es.      |       |                        |
| Heating Air Leakage Rate (ACH/H): |        | C       | .40      | 7     |                        |
| Cooling Air Leakage Rate (ACH/H): |        | C       | ).13     | 7     |                        |

TYPE: 4202- ROSEDALE

**LO#** 85450

**OPT SERV STAIR - WOB** 



## **GOLD PARK HOMES**

Proiect Name

4202

PINE VALLEY & TESTON VAUGHAN, ONTARIO **OPT SERV STAIR ROSEDALE - WOB** 

3700 sqft

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper.

Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

| HEAT LOSS 7741     | -         | # OF RUNS     | S/A   | R/A    | FANS   | She  |
|--------------------|-----------|---------------|-------|--------|--------|------|
| UN <b>I</b> T DATA | 4         | 3RD FLOOR     |       |        |        |      |
| MAKE               |           |               |       |        |        |      |
| LENNOX             |           | 2ND FLOOR     | 17    | 5      | 6      |      |
| MODEL              |           |               |       |        |        |      |
| EL296UH090XE       | 48C       | 1ST FLOOR     | 9     | 2      | 2      |      |
| INPUT              | MBTU/H    | DACEMENT      |       | 4      |        | Date |
| 88                 | WID TO/TT | BASEMENT      | 6     | 1      | 0      |      |
| OUTPUT             | MBTU/H    | ALL S/A DIFFU | SERS  | 4 "x10 | <br>)" | Sca  |
| 85                 |           | UNLESS NOTE   |       |        |        |      |
| COOLING            | TONS      | ON LAYOUT. A  |       |        |        |      |
| 4.0                |           | UNLESS NOTE   | D OTH | HERW   | ISE    |      |

ON LAYOUT. UNDERCUT

DOORS 1" min. FOR R/A

FAN SPEED

1525

| IS | Sheet Title |               |  |  |  |  |  |  |  |  |  |
|----|-------------|---------------|--|--|--|--|--|--|--|--|--|
| _  | В           | ASEMENT       |  |  |  |  |  |  |  |  |  |
|    | ŀ           | HEATING       |  |  |  |  |  |  |  |  |  |
|    |             | LAYOUT        |  |  |  |  |  |  |  |  |  |
|    | Date        | FEB/2018      |  |  |  |  |  |  |  |  |  |
|    | Scale       | 3/16" = 1'-0" |  |  |  |  |  |  |  |  |  |
| Ø  | E           | BCIN# 19669   |  |  |  |  |  |  |  |  |  |
|    | LO#         | 85450         |  |  |  |  |  |  |  |  |  |



USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

# **GOLD PARK HOMES**

Project Name

4202

PINE VALLEY & TESTON VAUGHAN, ONTARIO **OPT SERV STAIR ROSEDALE - WOB** 

3700 sqft

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services Installation to comply with the latest Ontario Building Code. All supply

branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR **HEATING LAYOUT** FEB/2018

3/16" = 1'-0" BCIN# 19669

85450 LO#



USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

## **GOLD PARK HOMES**

Project Name

4202

PINE VALLEY & TESTON VAUGHAN, ONTARIO OPT SERV STAIR **ROSEDALE - WOB** 

3700 sqft

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR **HEATING LAYOUT** 

FEB/2018 3/16" = 1'-0"

BCIN# 19669

85450