Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information	1					
Building number, street na					Unit no.	Lot/con.
Municipality		Destal sada	Dian number/ other des	a minutio n		
Municipality		Postal code	Plan number/ other des	scription		
VAUGHAN (WOODBRIDGE)			1 1 4 14			
B. Individual who revi	ews and takes	responsibility f				
Name MICHAEL O'ROURKE			Firm HVAC DESIGNS LTD.			
Street address			ITVAO DEGIGITO ETD.	Unit no.		Lot/con.
375 FINLEY AVE				202		N/A
Municipality		Postal code	Province	E-mail		<u> </u>
AJAX		L1S 2E2	ONTARIO	info@hvacde	signs.ca	
Telephone number		Fax number		Cell number		
(905) 619-2300		(905) 619-2375		()		
C. Design activities ur	ndertaken by in	dividual identif	ied in Section B. [Buil	lding Code Ta	ble 3.5.2.1 OF Div	rision C]
☐ House		⊠ HVAC	C – House		Building Structur	
☐ Small Buildings			ng Services		Plumbing - Hous	se
☐ Large Buildings			tion, Lighting and Po		Plumbing – All B	
Complex Building Description of designer's v		☐ Fire P	rotection Model:		On-site Sewage	Systems
HEAT LOSS / GAIN CALC DUCT SIZING RESIDENTIAL MECHANI RESIDENTIAL SYSTEM I D. Declaration of Desi	CAL VENTILATION		MARY Project:	PINE VALLEY 8	& TESTON	
IMICHAEL	O'ROURKE (pr	int name)		_ declare ti	hat (choose one as a	ppropriate):
	ne Building Code.		on behalf of a firm registed the firm is registered, in		ection 3.2.4.of appropriate	
	vidual BCIN:					
	ke responsibility for der subsection 3.2		am qualified in the appropon C, of the Building Cod		s an "other	
	vidual BCIN: is for exemption f	19669 rom registration ar	nd qualification:	O.B.C SEN	ITENCE 3.2.4.1	(4)_
☐ The design word Basis for exem		from the registra ation and qualificat	tion and qualification requ	irements of the	Building Code.	
I certify that:						
	ation contained mitted this applica		dule is true to the best of r ledge and consent of the			
June 29, 20	20			Mheha	1 Oxombe	
Date		•			Signature of De	signer
						<u>-</u>

NOTE

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

SITE NAME: I																			Jun-20)						ANGE RATE 0.398				ΔT °F. 76		CSA-F28	
BUILDER: (GOLD	PARK H	IOMES					TYPE:	4009					GFA:				LO#	86411				UMMER			ANGE RATE 0.134			GAIN	ΔT °F. 13	SB-12	2 PACKAG	E A1
ROOM USE				MBR			ENS		1				BED-2			BED-3			BED-4	ı		BATH		LOF	Г			ENS-2	2				
EXP. WALL				36			9						14			12			39			7		16				13					
CLG. HT.				10		l	10						10			9		1	9		1	9		9				10					
	FACTO	-																															
	LOSS	GAIN		360			90						140			108			351			63		144				130					
GLAZING				LOSS	GAIN									GAIN			GAIN		LOSS				GAIN		GAIN			LOSS					
NORTH	21.3	16.0	0	0	0	32	681	511				21	447	335	17	362	272	0	0	0	8	170	128	0 0	0		8	170	128				
EAST	21.3	41.6	0	0	0	0	0	0				0	0	0	0	0	0	40	851	1662	0	0	0	0 0	0		0	0	0				
SOUTH	21.3	24.9	0	0	0	0	0	0				0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0	0	0				
	21.3	41.6	43	915	1787	0	0	0				0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0	0	0				
SKYLT.	37.2	57.1	0	0	0	0	0	0				0	0	0	0	0	0	0	0	0	0	0	0	16 596	913		0	0	0				
DOORS	25.2	4.3	0	0	0	0	0	0				0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0	0	0				
NET EXPOSED WALL	4.5	0.8	317	1415	238	58	259	44				119	531	89	91	406	68	311	1388	234	55	245	41	144 643	108		122	544	92				
NET EXPOSED BSMT WALL ABOVE GR	3.6	0.6	0	0	0	0	0	0				0	0	0	0	0	0	0	0	0	0	0	0	0 0	0		0	0	0				
EXPOSED CLG	1.3	0.6	320	411	188	153	196	90				0	0	0	204	262	120	216	277	127	91	117	53	288 370	169		0	0	0				
NO ATTIC EXPOSED CLG	2.7	1.3	0	0	0	0	0	0				0	0	0	0	0	0	67	184	84	0	0	0	0 0	0		0	0	0				
EXPOSED FLOOR	2.6	0.4	0	0	0	0	0	0				0	0	0	0	0	0	270	689	116	0	0	0	35 89	15		0	0	0				
BASEMENT/CRAWL HEAT LOSS				0			0						0			0			0			0		0				0					
SLAB ON GRADE HEAT LOSS				0			0						0			0			0			0		0 1697	,			•					
SUBTOTAL HT LOSS SUB TOTAL HT GAIN				2740	2213		1136	645					978	425		1030	460		3389	2223		532	223	1697	1206			715	219				
LEVEL FACTOR / MULTIPLIER			0.30	0.36	2213	0.30	0.36	045				0.30	0.36	420	0.20	0.78	400	0.20	0.78	2223	0.20	0.78	223	0.20 0.78	1200		0.30	0.36	219				
AIR CHANGE HEAT LOSS			0.30	994		0.30	412					0.30	355		0.20	0.76 805		0.20	2651		0.20	416		1328			0.30	259					
AIR CHANGE HEAT GAIN				334	191		412	56					333	37		003	40		2001	192		410	19	1320	104			200	19				
DUCT LOSS				0	191		0	30					0	31		0	40		604	192		0	19	302	104			0	19				
DUCT GAIN				U	0		U	0					U	0		U	0		004	352		U	0	302	217			U	0				
HEAT GAIN PEOPLE	240		2		480	0		0				1		240	1		240	1		240	0		0	0	0		0		0				
HEAT GAIN APPLIANCES/LIGHTS	240		-		861	ľ		0				•		861	•		861			861			ō	•	861				0				
TOTAL HT LOSS BTU/H				3734	001		1548	٠					1333			1835	001		6644	001		949	Ů	3327				974	۰				
TOTAL HT GAIN x 1.3 BTU/H				0.0.	4869			910						2031			2081		••••	5028		0.0	314		3105			•	310				
																		·									l		1				
ROOM USE							GRT			KT/DT						M/L			W/R			FOY										BAS	
EXP. WALL							36			46						19			12			43										212	
CLG. HT.							10			10						11			10			19										10	
GRS.WALL AREA	FACTO									460									400			047										1484	
GRS.WALL AREA	LUSS	GAIN					360 LOSS	CAIN		460 LOSS	CAIN					209	GAIN		120 LOSS	GAIN		817 LOSS	CAIN									LOSS (- 4181
	24.2	400				0	0	GAIN 0	0						•	LOSS 0	GAIN 0		0	GAIN 0	0	0	0										
NORTH EAST	21.3 21.3	16.0 41.6				0	0	0	0	0	0				0	0	0	0	0	0	63		2618								9	192 0	144 0
SOUTH	21.3	24.9				42	894	1046	_	1362	1594				0	0	0	9	192	224	0	0	0								3	-	75
	21.3	41.6				103	2192	4280	0	0	0				0	0	0	0	192	0	0	0	0								3		125
SKYLT.	37.2	57.1				0	0	0	0	0	0				0	0	0	0	0	0	0	0	0								0	0	0
DOORS	25.2	4.3				0	0	0	0	0	0				20	505	85	0	0	0	40	1010	170								20	-	85
NET EXPOSED WALL	4.5	0.8				215	959	162		1767	298				189	843	142	111	495	83	714	3186	537								0	0	0
NET EXPOSED BSMT WALL ABOVE GR	3.6	0.6				0	0	0	0	0	0				0	0	0	0	0	0	0	0	0								636	-	385
EXPOSED CLG	1.3	0.6				331	425	195	335	430	197				0	0	0	0	0	0	152	195	89								0	0	0
NO ATTIC EXPOSED CLG	2.7	1.3				0	0	0	0	0	0				0	0	0	o	0	0	50	137	63								o	0	0
EXPOSED FLOOR	2.6	0.4				0	0	0	0	0	0				0	0	0	0	0	0	0	0	0								0	0	0
							0			0						0			0			0										7336	
BASEMENT/CRAWL HEAT LOSS			1			1	0			0						0		1	0		1	0											
BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS																1348			687			5869										10449	
							4470			3559										308			3477										
SLAB ON GRADE HEAT LOSS							4470	5682			2088						227				1												814
SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS						0.30	4470 0.36	5682	0.30		2088				0.30	0.36	227	0.30	0.36		0.30	0.36									0.50		814
SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN						0.30		5682	0.30		2088				0.30	0.36 489	227	0.30	0.36 249		0.30	0.36 2129									0.50		814
SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER						0.30	0.36	5682 491	0.30	0.36	2088				0.30		227	0.30		27	0.30		300								0.50	1.24	814 70
SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS						0.30	0.36		0.30	0.36					0.30			0.30		27	0.30		300								0.50	1.24	
SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN						0.30	0.36 1621		0.30	0.36 1291					0.30	489		0.30	249	27 0	0.30	2129	300 0								0.50	1.24 13000	
SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS	240					0.30	0.36 1621	491	0.30	0.36 1291	180				0.30	489	20	0.30	249	27 0 0	0.30	2129									0.50	1.24 13000	70
SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN	240						0.36 1621	491 0	0.30	0.36 1291	180					489	20		249	0		2129	0									1.24 13000 0	70 0
SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	240						0.36 1621	491 0 0	0.30	0.36 1291	180 0 0					489	20 0 0		249	0		2129	0									1.24 13000 0	70 0 0

STRUCTURAL HEAT LOSS: 65506 TOTAL HEAT GAIN BTU/H: 42306 TONS: 3.53 LOSS DUE TO VENTILATION LOAD BTU/H: 1631 TOTAL COMBINED HEAT LOSS BTU/H: 67138

Mehad Ofounde.

	1340 65,506 20.46 4th 0 0 ess note	3rd 0 0 d otherwi	COO TOTAL H IR FLOW F 2nd 6 3 se on layer	MES LING CFM EAT GAIN RATE CFM 1st 14 5	42,031		ple max	furr a/c coil vailable for enum pre s/a dif p	pressure pressure pressure r s/a & r/a ress. loss sssure s/a	0.2 0.35 0.18 0.02		grille pre	DATE: pressure ess. Loss ssure r/a			EL	ME		0 1080 1190		OUTPUT		88,000 85,600 1340 6 " E.S.P.	- _ °F
RUN# ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK	1 MBR 1.87 38 2.43 78 0.17 46 110 156 0.11 5 279 573 3X10 B	2 ENS 1.55 32 0.91 29 0.17 25 150 175 0.1 4 367 333 3X10 B	3 BED-4 2.21 45 1.68 53 0.17 39 140 179 0.1 5 330 389 3X10 D	4 BED-2 1.33 27 2.03 65 0.17 13 150 163 0.11 5 198 477 3X10 B	5 BED-3 1.83 38 2.08 66 0.17 36 150 186 0.09 5 279 485 3X10 B	6 BED-4 2.21 45 1.68 53 0.17 32 120 152 0.11 5 330 389 3X10 D	7 BATH 0.95 19 0.31 10 0.17 29 130 159 0.11 4 218 115 3X10 D	8 LOFT 3.33 68 3.10 99 0.16 45 150 195 0.08 6 347 505 4X10 C	9 BED-4 2.21 45 1.68 53 0.17 38 130 168 0.1 5 330 389 3X10 D	10 MBR 1.87 38 2.43 78 0.17 50 160 210 0.08 6 194 398 4X10 A	11 ENS-2 0.97 20 0.31 10 0.17 5 130 135 0.13 4 229 115 3X10 D	12 GRT 2.03 42 3.05 97 0.16 57 150 207 0.08 6 214 495 4X10 A	13 GRT 2.03 42 3.05 97 0.16 67 150 217 0.07 6 214 495 4X10 A	14 KT/DT 2.43 50 2.03 65 0.17 49 120 169 0.1 5 367 477 3X10 A	15 KT/DT 2.43 50 2.03 65 0.17 40 110 150 0.11 5 367 477 3X10 B	16 GRT 2.03 42 3.05 97 0.16 53 130 183 0.09 6 214 495 4X10 A	17 M/L 1.84 38 1.44 46 0.17 10 170 180 0.1 4 436 528 3X10 D	18 W/R 0.94 19 1.55 50 0.17 39 130 169 0.1 5 140 367 3X10 C	19 FOY 4.00 82 2.46 78 0.16 52 150 202 0.08 6 418 398 4X10 C	20 FOY 4.00 82 2.46 78 0.16 40 0.1 6 418 398 4X10 C	21 BAS 4.69 96 0.45 14 0.16 59 140 199 0.08 6 489 71 4X10 A	22 BAS 4.69 96 0.45 14 0.16 32 170 202 0.08 6 489 71 4X10 A	23 BAS 4.69 96 0.45 14 0.16 29 130 159 0.1 6 489 71 4X10 B	24 BAS 4.69 96 0.45 14 0.16 31 150 181 0.09 6 489 71 4X10 C
RUN# ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK	25 BAS 4.69 96 0.45 14 0.16 62 140 202 0.08 6 489 71 4X10 C																							
SUPPLY AIR TRUNK SIZE																	RETURN A							
TRUNK A TRUNK B TRUNK C TRUNK D TRUNK E TRUNK F	TRUNK CFM 406 687 443 1342 0	STATIC PRESS. 0.07 0.07 0.08 0.07 0.00 0.00	ROUND DUCT 10.3 12.6 10.3 16.2 0	12 18 12 30 0	x x x x x	8 8 8 8 8	VELOCITY (ft/min) 609 687 665 805 0		TRUNK G TRUNK H TRUNK I TRUNK J TRUNK K TRUNK L	0 0 0	STATIC PRESS. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROUND DUCT 0 0 0 0 0 0	DUCT 0 0 0 0 0 0 0	x x x x x	8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0 0	TRUNK O TRUNK P TRUNK Q TRUNK R TRUNK S TRUNK T TRUNK U TRUNK U	TRUNK CFM 0 0 0 0 0 0 0 0 0	STATIC PRESS. 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0	ROUND DUCT 0 0 0 0 0 0 0 0 0 0	RECT DUCT 0 0 0 0 0 0 0	x x x x x x	8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RETURN AIR # AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE ROUND DUCT SIZE INLET GRILL SIZE INLET GRILL SIZE	1 0 85 0.15 50 205 255 0.06 6 8 X	2 0 95 0.15 42 175 217 0.07 6 8 X 14	3 0 95 0.15 42 180 222 0.07 6 8 X 14	4 0 245 0.15 58 235 293 0.05 9.3 8 X 30	5 0 150 0.15 54 205 259 0.06 7.4 8 X	6 0 135 0.15 37 235 272 0.05 7.5 8 X	7 0 85 0.15 47 175 222 0.07 5.8 8 X	8 0 245 0.15 38 230 268 0.06 8.9 8 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	205 0.15 16 145 161 0.09 7.5 8 X	TRUNK W TRUNK X TRUNK Y TRUNK Z DROP	0 1340 945 640 1340	0.05 0.05 0.05 0.05 0.05 0.05	17.6 15.4 13.3 17.6	28 28 20 24	x x x x	8 10 8 8 12	689 608 576 670

TYPE: 4009

PINE VALLEY & TESTON SITE NAME:

RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

86411

LO#

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL VENTILATION CAPACITY	9.32.3.5.
a)		Total Ventilation Capacity 169.6	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Ventil. Capacity 79.5	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Supplemental Capacity 90.1	cfm
d) Solid Fuel (including fireplaces)			
e) No Combustion Appliances		PRINCIPAL EXHAUST FAN CAPACITY	
		Model: VANEE 65H Location: BSMT	
HEATING SYSTEM			pproved
Forced Air Non Forced Air		PRINCIPAL EXHAUST HEAT LOSS CALCULATION CFM ΔΤ °F FACTOR %	LOSS
Electric Space Heat		1).25
Liectite opace rieat		SUPPLEMENTAL FANS PANASONIC	
HOUSE TYPE	9.32.1(2)		ones 0.3
HOUSE TIFE	9.32.1(2)	l	0.3
Type a) or b) appliance only, no solid fuel			0.3
II Type I except with solid fuel (including fireplaces)		W/R FV-05-11VK1 50 ✓ (0.3
Type I except with solid fact (including ineplaces)		HEAT RECOVERY VENTILATOR 9	.32.3.11.
III Any Type c) appliance		Model: VANEE 65H	
IV Type I, or II with electric space heat		155 cfm high64 cfr	n low
Other: Type I, II or IV no forced air		75 % Sensible Efficiency ✓ HVI A @ 32 deg F (0 deg C)	pproved
		LOCATION OF INSTALLATION	
SYSTEM DESIGN OPTIONS	O.N.H.W.P.		
		Lot: Concession	
1 Exhaust only/Forced Air System		Township Plan:	
2 HRV with Ducting/Forced Air System		Address	
HRV Simplified/connected to forced air system		Roll # Building Permit #	
4 HRV with Ducting/non forced air system			
Part 6 Design		BUILDER: GOLD PARK HOMES Name:	
TOTAL VENTILATION CAPACITY	9.32.3.3(1)		
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	cfm	City:	
Other Bedrooms <u>3</u> @ 10.6 cfm <u>31.8</u>	cfm	Telephone #: Fax #:	
Kitchen & Bathrooms 5 @ 10.6 cfm 53	cfm	INSTALLING CONTRACTOR	
Other Rooms <u>4</u> @ 10.6 cfm <u>42.4</u>	cfm	Name:	
Table 9.32.3.A. TOTAL 169.6	cfm	Address:	
	202244	City:	
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	Telephone #: Fax #:	
1 Bedroom 31.8	cfm		
2 Bedroom 47.7	cfm	DESIGNER CERTIFICATION I hereby certify that this ventilation system has been designed is provided by the Control Building Code.	
3 Bedroom 63.6	cfm	in accordance with the Ontario Building Code. Name: HVAC Designs Ltd.	
4 Bedroom 79.5	cfm	Signature: Mahan Kombe.	
5 Bedroom 95.4	cfm	HRAI# 001820	
TOTAL 79.5 cfm		Date: June-20	_
I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUALI	FIED IN THE AP	APPROPRIATE CATEGORY AS AN "OTHER DESIGNER" UNDER DIVISION C, 3.2.5 OF THE BUILDING CODE.	

			<u> </u>	nula Sheet (For Air Lea	ıkage / Ventiliation C	alculation)				
LO#: 864	11	Model: 4009		Builde	r: GOLD PARK HOMES				Date:	29/06/2020
		Volume Calcula	ion				Air Change & Delt	a T Data		
				-						
ise Volume	-1 (6:2)	T =1	(6.2)				TURAL AIR CHANG		0.398	
Level	Floor Area (ft²)	Floor Height (ft)	Volume (ft³)			SUMMER NA	ATURAL AIR CHANG	SE RATE	0.134	
Bsmt	1895 1895	10	18950							
First Second	1130	10	18950 10170				Design Te	mperature Diff	oronco	
Third	0	9	0				Tin °C	Tout °C	ΔT °C	ΔT °F
Fourth	0	9	0			Winter DTDh	22	-20	42	76
		Total:	48,070.0 ft ³	1		Summer DTDc	24	31	7	13
		Total:	1361.2 m³				<u> </u>			
		•	•							
	5.2.3	3.1 Heat Loss due to	Air Leakage			6.2.6	Sensible Gain due	to Air Leakage		
		V_{t}					V.			
	$HL_{airb} =$	$LR_{airh} \times \frac{V_b}{3.6} \times$	$DTD_h \times 1.2$		H	$IG_{salb} = LR_{airc}$	$\times \frac{v_b}{2c} \times DTD_c$	× 1.2		
0.398				= 7620 W	= 0.134		5.0		_ 1	431 W
0.396	x <u>378.11</u>	x 42 °C	X <u>1.2</u>	= 7620 W	= 0.154	X 3/0.11	_ x <u>7°C</u>	X	_ = !	451 W
				= 26000 Btu/h					=	1470 Btu/
				- 20000 Btu/II					-	1470 Btu/1
	5.2.3.2 He	at Loss due to Mech	anical Ventilation			6.2.7 Se	nsible heat Gain d	ue to Ventilatio	n	
	$HL_{vairb} =$	$PVC \times DTD_h >$	$1.08 \times (1-E)$		HL	$_{vairb} = PVC \times D$	$TD_h \times 1.08 \times$	(1 - E)		
80 CFM	x 76 °F	x 1.08	x 0.25	= 1631 Btu/h	80 CFM	x 13 °F	x 1.08	x 0.25	=	275 Btu/h
		<u> </u>	<u> </u>		·					
			5.2.3.3 Calcula	tion of Air Change Heat	Loss for Each Room (Flo	or Multiplier Section)				
				. /	`	,	``			
		H	$L_{airr} = Level Fact$	$tor \times HL_{airbv} \times \{(H_{airbv}) \times $	$(L_{agcr} + HL_{bgcr}) \div$	$(HL_{agclevel} + HL$	bgclevel)}			
				HLairve Air Leakage +						
		Level	Level Factor (LF)	Ventilation Heat Loss	Level Conductive Heat	_				
			` ´	(Btu/h)	Loss: (HL _{clevel})	HLairbv /	HLlevel)			
		1	0.5	(DAM/III	10,449	1.24	14			
		2	0.3		21,503	0.36	53			
		3	0.2	26,000	6,649	0.78	32			
		4	0		0	0.00	00			
		5	0		0	0.00	00			
		-		+ ventilation heat loss	•					

HEAT LOSS AND GAIN SUMMARY SHEET

		112/11 2000 / 1110 0/	90	
MODEL:	4009		BUILDER: GOLD PARK HOMES	
SFQT:	3025	LO# 86411	SITE: PINE VALLEY & TEST	ON
DESIGN A	ASSUMPTIONS			
HEATING		°F	COOLING	°F
_	R DESIGN TEMP.	-4	OUTDOOR DESIGN TEMP.	88
	DESIGN TEMP.	72	INDOOR DESIGN TEMP. (MAX 75°F)	75
			•	
BUILDING	G DATA			
ATTACHN	/IENT:	DETACHED	# OF STORIES (+BASEMENT):	3
FRONT FA	ACES:	EAST	ASSUMED (Y/N):	Υ
				·
AIR CHAN	IGES PER HOUR:	3.57	ASSUMED (Y/N):	Υ
AIR TIGHT	TNESS CATEGORY:	AVERAGE	ASSUMED (Y/N):	Υ
WIND EXI	POSURF:	SHELTERED	ASSUMED (Y/N):	Υ
VIII 2	. 050112.	SHEELENES	7.000 MED (17.14).	·
HOUSE V	OLUME (ft³):	48070.0	ASSUMED (Y/N):	Υ
INTERNA	L SHADING:	BLINDS/CURTAINS	ASSUMED OCCUPANTS:	5
INTERIOR	LIGHTING LOAD (Btu/h	/ft²): 1.75	DC BRUSHLESS MOTOR (Y/N):	Υ
MILMON	LIGITING LOAD (Blu/II	1.75	DC BROSHLESS MOTOR (17M).	ı
FOUNDAT	TION CONFIGURATION	BCIN_1	DEPTH BELOW GRADE:	7.0 ft
		_		
LENGTH:	73.0 ft	WIDTH: 33.0 ft	EXPOSED PERIMETER:	212.0 ft

2012 OBC - COMPLIANCE PACKAGE		
	Compliance	Package
Component	A	1
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22	17.03
Basement Walls Minimum RSI (R)-Value	20 ci	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	0.28	-
Skylights Maximum U-Value	0.49	-
Space Heating Equipment Minimum AFUE	0.96	-
HRV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	0.8	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

We	ather Stat	tion Description
Province:	Ontario	•
Region:	Vaughan	(Woodbridge)
	Site Do	escription
Soil Conductivity:	Normal c	onductivity: dry sand, loam, clay
Water Table:	Normal (7-10 m, 23-33 ft)
F	oundatio	n Dimensions
Floor Length (m):	22.3	
Floor Width (m):	10.1	
Exposed Perimeter (m):	0.0	
Wall Height (m):	3.0	
Depth Below Grade (m):	2.13	Insulation Configuration
Window Area (m²):	1.4	
Door Area (m²):	1.9	
	Radia	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desigr	n Months
Heating Month	1	
	Founda	tion Loads
Heating Load (Watts):		2149

TYPE: 4009 **LO#** 86411

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Statio	on Des	cript	ion		
Province:	Ontar	io			
Region:	Vaugl	nan (W	oodbri/	idge)	
Weather Station Location:	Open	flat te	rrain, g	grass	
Anemometer height (m):	10				
Local Sh	ieldin	g			
Building Site:	Subur	ban, f	orest		
Walls:	Heavy	/			
Flue:	Heavy	/			
Highest Ceiling Height (m):	8.84				
Building Co	nfigura	ation			
Type:	Detac	hed			
Number of Stories:	Two				
Foundation:	Full				
House Volume (m³):	1361.	2			
Air Leakage,	' Ventil	atior	1		
Air Tightness Type:	Prese	nt (19	61-) (3.	57 ACH	H)
Custom BDT Data:	ELA @	9 10 Pa	Э.		1814.5 cm ²
	3.57				ACH @ 50 Pa
Mechanical Ventilation (L/s):	To	tal Sup	ply		Total Exhaust
		37.5			37.5
Flue	Size				
Flue #:	#1	#2	#3	#4	
Diameter (mm):	0	0	0	0	
Natural Infilt	ration	Rate	:S		
Heating Air Leakage Rate (ACH/H):	;	C	.39	8	
Cooling Air Leakage Rate (ACH/H):		C).13	4	

TYPE: 4009 **LO#** 86411

BASEMENT PLAN,

 $\vec{\omega}$

.0.

HVAC LEGEND

4X10 SUPPLY GRILLE 14X8 RETURN GRILLE

¥ ¥

LOW WALL

9

RETURN DUCTWORK
EXHAUST FAN

30X8 RETURN GRILLE SUPPLY DUCTWORK

4X10 SUPPLY GRILLE 6"Ø BOOT

BASEMENT PLAN,

HEAT LOSS 67138 BTU/H # OF RUNS S/A R/A FANS	H/NT8	# OF RUNS	S/A	R/A	FANS
UNIT DATA		3RD FLOOR			
MAKE LENNOX			o	ω	_
MODEL		1			
EL196UH090XE48C		1ST FLOOR 14	14	5	Q
INPUT 88	MBTU/H	BASEMENT 5	5	_	0
OUTPUT 85.6	MBTU/H	ALL S/A DIFFUSERS 4 "x10"	SERS	4 "x10)" TI
cooling 3.5	SNOT	ON LAYOUT ALL S/A RUNS 5"Ø	, 	RUN	S 5"Ø
FAN SPEED	cfm @	ON LAYOUT UNDERCUT	NDER	CUT	

3/16"=1'-0" JUNE 2020

86411

AT LOSS 67138 BTU/H $ \#$ OF RUNS $$ S/A $$ R/A $$ FANS	# OF RUNS	S/A	R/A	FANS
UNIT DATA	3RD FLOOR			
LENNOX	2ND FLOOR 6	<u>б</u>	ω	_
EL EL 196UH090XE48C	1ST FLOOR 14 5	14	Q	Q

Project PINE VALLEY & TESTON Name VAUGHAN, ONTARIO

GOLD PARK HOMES

4009 3025 ft²

BASEMENT

BASEMENT

Checked AS By

Sheet No.

Web: \
Specializing in Resident

A DESIGNS LTD.

02 - Ajax, Ontario L1S 2E2 .420.5300 Fax 905.619.2375

NOTE:

INSTALLATION OF THE DUCT WORK & MECHANICAL SYSTEM TO MAINTAIN FIRE RATING PER OBC, LOCAL BYLAWS AND THE SPECIFIED RATINGS INDICATED ON THE ARCHITECTURAL DRAWINGS

I MICHAEL O'ROURKE HAVE ERVIEW AND TAKE BESPONSIBILITY FOR THE DESIGN WORK AND AM QUALIFIED UNDER DIVISION C, 3.2.3 OF THE BULLDING CODE. Michael O'Rourke, ECINE 19669 HIVAC DESIGNS LTD.	ALL S/A DIFFUSERS "4x10" UNLESS NOTED OTHERWISE ON LAYOUT. ALL S/A RUNS 5"Ø UNLESS NOTED OTHERWISE ON LAYOUT. UNDERCUT DOORS 1" min. FOR R/A	2	INSTALLATION TO COMPLY WITH THE LATEST ONTARIO BUILDING CODE. ALL SUPPLY BRANCH OUTLETS SHALL BE EQUIPPED WITH MANUAL BALANCING DAMPER. DUCTWORK WHICH PASSES THROUGH THE GARAGE OR UNHEATED SPACES SHALL BE ADEQUATELY INSULATED AND GAS-PROOFED	ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

HVAC LEGEND

4X10 SUPPLY GRILLE

14X8 RETURN GRILLE

4X10 SUPPLY GRILLE 6"Ø BOOT

30X8 RETURN GRILLE

M V \odot

LOW WALL

RETURN DUCTWORK
EXHAUST FAN

PART. GROUND FLOOR PLAN, ELEV. ď,

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.® AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

PART. GROUND FLOOR PLAN,

NOTE: INSTALLATION OF THE DUCT WORK & MECHANICAL SYSTEM TO MAINTAIN FIRE RATING PER OBC, LOCAL BYLAWS AND THE SPECIFIED RATINGS INDICATED ON THE ARCHITECTURAL DRAWINGS

> INSTALLATION TO COMPLY WITH THE LATEST ONTARIO BUILDING CODE. ALL SUPPLY BRANCH OUTLETS SHALL BE EQUIPPED WITH MANUAL BALANCING DAMPER. DUCTWORK WHICH PASSES THROUGH THE GARAGE OR UNHEATED SPACES SHALL BE ADEQUATELY INSULATED AND GAS-PROOFED 1 ISSUED FOR PERMIT ALL S/A DIFFUSERS "4x10"
> UNLESS NOTED OTHERWISE
> ON LAYOUT. ALL S/A RUNS 5"Ø
> UNLESS NOTED OTHERWISE
> ON LAYOUT. UNDERCUT
> DOORS 1" min. FOR R/A SB-12 PACKAGE EL O'ROURKE HAVE REVIEW AND TAKE RESPONSIBILITY PO O'UALIFIED UNDER DIVISION C. 3.2.5 OF THE BUILDING CO

LA DESIGNS IT. 02 - Ajax, Ontario L1S 2E2 420.5300 Fax 905.619.2375

Specializing in Res **GOLD PARK HOMES** w.hvacdesigns.ca tial Mechanical Design Services

Project PINE VALLEY & TESTON Name VAUGHAN, ONTARIO **4009** 3025 ft² FIRST FLOOR Checked AS By

3/16"=1'-0" JUNE 2020 86411 2

ယ