

ALPA ROOF TRUSSES INC AND WILL BE RETRACTED BY ALPA ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER PURPOSE.

202

Plan Log: 95233

10/7/2021

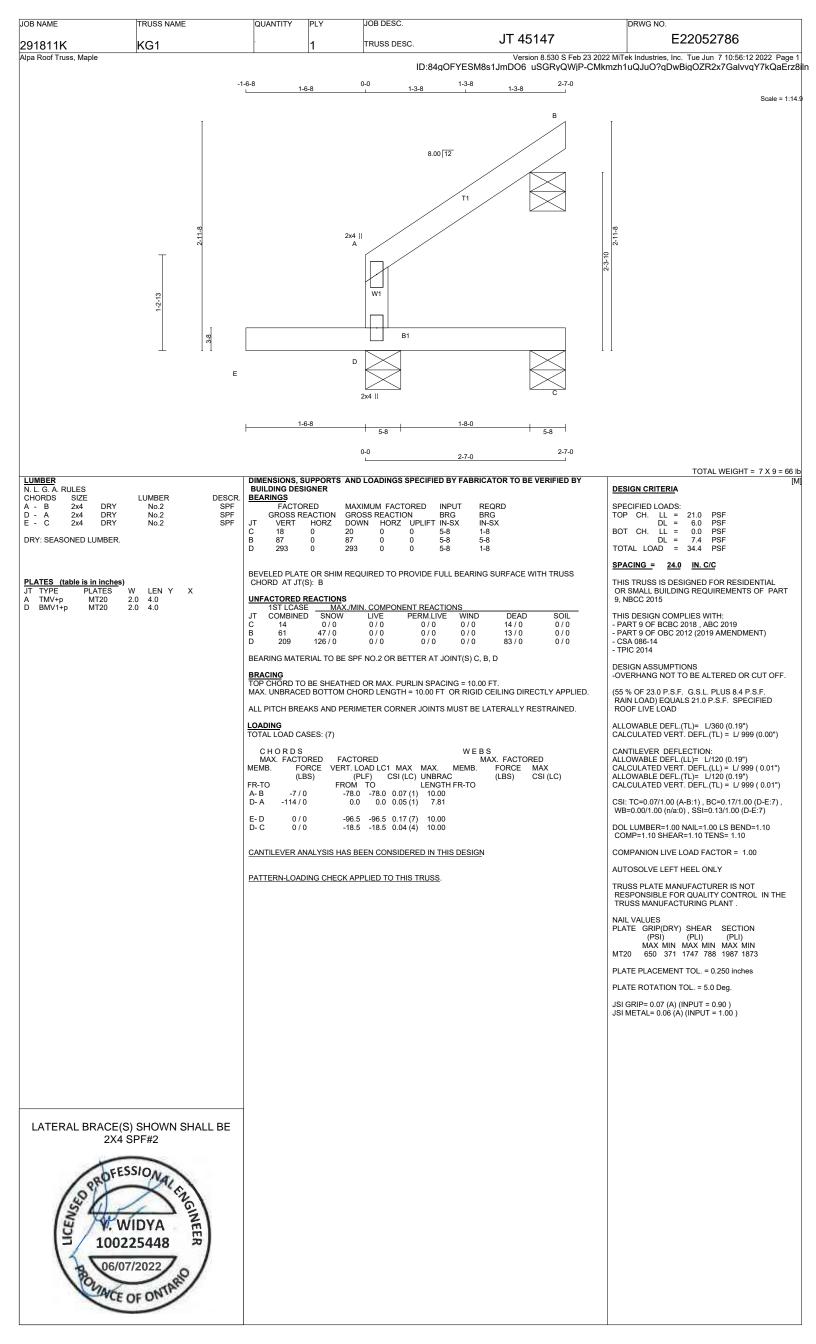
Designer: AMANDA

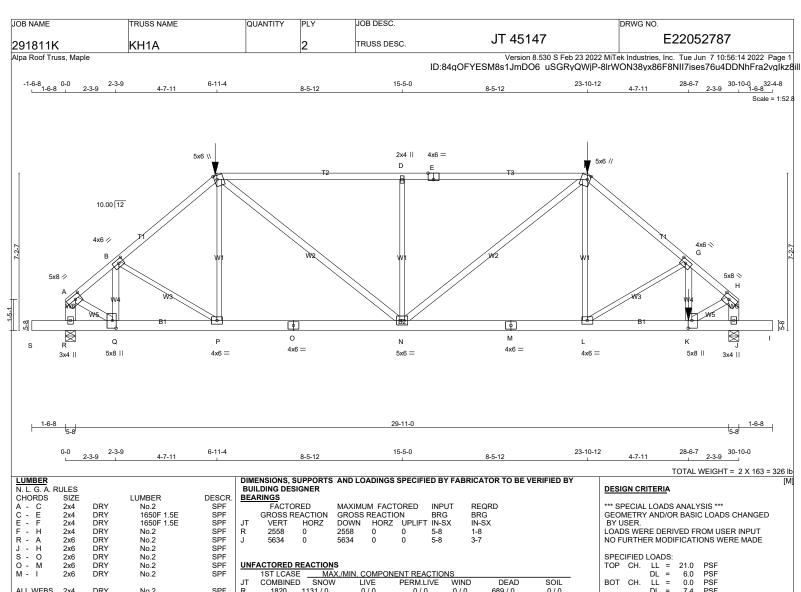
EWP DESIGN INC.

(905) 832-2250

FAX (905) 832-0286

RESPONSIBILITIES AND SPECIFICATIONS


RESPONSIBILITIES


- 1. EWP DESIGN INC. is responsible for the design of trusses as individual components.
- It is the responsibility of others to ascertain that the design loads utilized on each
 drawing meet or exceed the actual dead load imposed by the structure, the live load
 imposed by the intended use and the snow load imposed by local building code or
 authorities with jurisdictions.
- 3. All dimensions are to be verified by the owner, contractor, architect or other authorities with jurisdictions before truss fabrication.
- 4. EWP DESIGN INC. bears no responsibility for the erection of trusses. Persons erecting trusses are cautioned to seek professional advice regarding the temporary and permanent bracing for the system. Bracing shown on EWP DESIGN INC. drawing is specified for the truss as a component only and forms an integral part of the truss design.
- 5. It is the truss manufacturer's responsibility to ensure that trusses are manufactured in conformance with specifications of EWP DESIGN INC. as outlined below.

SPECIFICATIONS

- 1. Trusses designed by EWP DESIGN INC. conform to the relevant section of the Ontario Building Code of Canada (Part 9 or Part 4) or to the Canadian code for farm buildings, whichever applies to the building type, as indicated on the EWP DESIGN INC. drawings, and conform to the design procedures established by the Truss Plate Institute of Canada. Unit stresses used for truss designs are as per the edition of CSA-O86 shown on EWP DESIGN INC. drawings.
- Lumber is to be the size, species and grade as specified on EWP DESIGN INC. drawings.
- 3. Moisture content of lumber shall not exceed 19% in service unless specified otherwise.
- 4. Metal connector plates shall be applied to both faces of truss at each joint and shall be positioned as specified.
- 5. Top chords of trusses are assumed to be continuously braced laterally by roof sheathing or by purlins at intervals not exceeding 12.5 times the thickness of top chord member.
- 6. Bottom chords shall be laterally braced at intervals not exceeding 3M (10') o.c., where rigid ceiling is not applied directly to the underside of chords.

THESE DRAWINGS CONSTITUTE THE PROPERTY OF EWP DESIGN INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY THE ALPA LUMBER GROUP, AND WILL BE RETRACTED BY EWP DESIGN INC. IF UTILIZED FOR ANY OTHER PURPOSE.

ALL WEBS EXCEPT B - P P - C L - F SPF DRY No.2 2x3 2x3 2x3 DRY DRY DRY No.2 No.2 No.2 SPF SPF

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)
TOP CH	HORDS: (0.1	22"X3") SPIRAI	NAILS
A- C	1 `	12 ′	SIDE(61.0)
C-E	1	12	SIDE(47.5)
E-F	1	12	SIDE(47.5)
F- H	1	12	SIDE(61.0)
R- A	2	12	TOP
J- H	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SF	PIRAL NAILS
S- 0	2	12	SIDE(4.9)
O- M	2	12	SIDE(4.9)
M-I	2	12	SIDE(160.1)
WEBS:	(0.122"X3")	SPIRAL NAILS	, ,
P- C	` 1	6	SIDE(38.1)
L- F	1	6	SIDE(38.1)
2x3	1	6	, ,
G- K	2	3	SIDE(686.0)
2x4	1	6	, ,
l			

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL	PLATES (table is in inches)						
JT	TYPE	PLATES	W	LEN	Υ	X	
Α	TMVW-t	MT20	5.0	8.0	2.25	3.25	
В	TMWW-t	MT20	4.0	6.0	2.00	2.75	
С	TTWW+m	MT20	5.0	6.0	2.25	1.50	
D	TMW+w	MT20	2.0	4.0			
Е	TS-t	MT20	4.0	6.0	Edge	3.00	
F	TTWW+m	MT20	5.0	6.0	2.25	1.50	
G	TMWW-t	MT20	4.0	6.0	2.00	2.75	
Н	TMVW-t	MT20	5.0	8.0	2.25	3.25	
J	BMV1+p	MT20	3.0	4.0			

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
R	1820	1131 / 0	0/0	0/0	0/0	689 / 0	0/0
J	3963	2722 / 0	0/0	0/0	0/0	1241 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.08 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	CHORDS					WEBS			
N	IAX. FACTORE	D FACTO	RED				MAX. FACT	ORED	
MEM									
	(LBS)	(P	LF) (CSI (LC)	UNBRA	С	(LBS)	CSI (LC)
FR-T	0	FROM	TO		LENGT	H FR-TO			
A-B	-2346 / 0	-78.0	-78.0	0.13(1)	5.73	Q-B	-767 / 0	0.06	(1)
B- C	-2766 / 0	-78.0	-78.0	0.16(1)	5.36	B- P	0 / 320	0.04	(1)
C- D	-3306 / 0	-115.1	-115.1	0.82(1)	4.58	P- C	0 / 166	0.03	(4)
D- E	-3307 / 0	-115.1	-115.1	0.82(1)	4.58	L-F	0 / 1088	0.13	(1)
E-F	-3307 / 0	-115.1	-115.1	0.82(1)	4.58	L- G	-1546 / 0	0.41	(1)
F- G	-3577 / 0	-78.0	-78.0	0.19(1)	4.82	K- G	0 / 1397	0.12	(1)
G- H	-5226 / 0	-198.2	-198.2	0.19(1)	4.08	A- Q	0 / 2000	0.18	(1)
R- A	-2355 / 0	0.0	0.0	0.08(1)	7.81	K- H	0 / 4413	0.39	(1)
J- H	-5304 / 0	0.0	0.0	0.19(1)	6.35	N- F	0 / 722	0.06	(1)
				, ,		C-N	0 / 1540	0.14	(1)
S-R	0/0	-96.5	-96.5	0.04(1)	10.00	N- D	-1197 / 0	0.52	(1)
R- Q	0/0	-27.3	-27.3	0.02(1)	10.00				
Q-P	0 / 183	3 -27.3	-27.3	0.17(1)	10.00				
P- 0	0 / 210	6 -27.3	-27.3	0.19(1)	10.00				
O- N	0 / 210	6 -27.3	-27.3	0.19(1)	10.00				
N- N	0 / 274	4 -27.3	-27.3	0.24(1)	10.00				
M- L	0 / 274	4 -27.3	-27.3	0.24(1)	10.00				
L- K	0 / 404	4 -27.3	-27.3	0.36(1)	10.00				
K- J	0/0	-55.8	-55.8	0.10(1)	10.00				
J- I	0/0	-96.5	-96.5	0.04(1)	10.00				
FAC	TORED CONCE	ENTRATED L	OADS (L	BS)					
JT	LOC.	LC1 MAX-	MAX	+ F	ACE	DIR.	TYPE	HEEL	CONN.
С	6-11-4 -	217 -217	-	FR	ONT V	ERT	TOTAL		C1
F	23-10-12 -	217 -217	-	FR	ONT V	ERT	TOTAL		C1
K	28-6-6 -3	243 -3243	-	FR	ONT V	ERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

21.0 6.0 0.0 7.4 34.4

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

GIRDER TYPE: CPrimeHip
SIDE SETBACK = 0-0
END SETBACK = 8-2-0
END WALL WIDTH = 0-0
CONNER FRAMING TYPE: CONVENTIONAL
END JACK TYPE: CONVENTIONAL
APPLIED TO FRONT SIDE
- ADDT'L LOADS BASED ON 55 % OF GSL.
LOADS APPLIED TO FIRST 2-4-0 OF SPAN
MEASURED FROM THE RIGHT.

GIRDER TYPE: CPrimeHip SIDE SETBACK = 6-11-4 END SETBACK = 3-10-14 END WALL WIDTH = 0-0 CORNER FRAMING TYPE: CONVENTIONAL END JACK TYPE: CONVENTIONAL APPLIED TO FRONT SIDE - ADDT'L LOADS BASED ON 55 % OF GSL.

*** NON STANDARD GIRDER *** ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL)= L/999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/999 (0.11")

CANTILEVER DEFLECTION:
ALLOWABLE DEFL.(LL)= L/120 (0.19")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL) = L/120 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.82/1.00 (D-F:1) , BC=0.36/1.00 (K-L:1) , WB=0.52/1.00 (D-N:1) , SSI=0.26/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT .

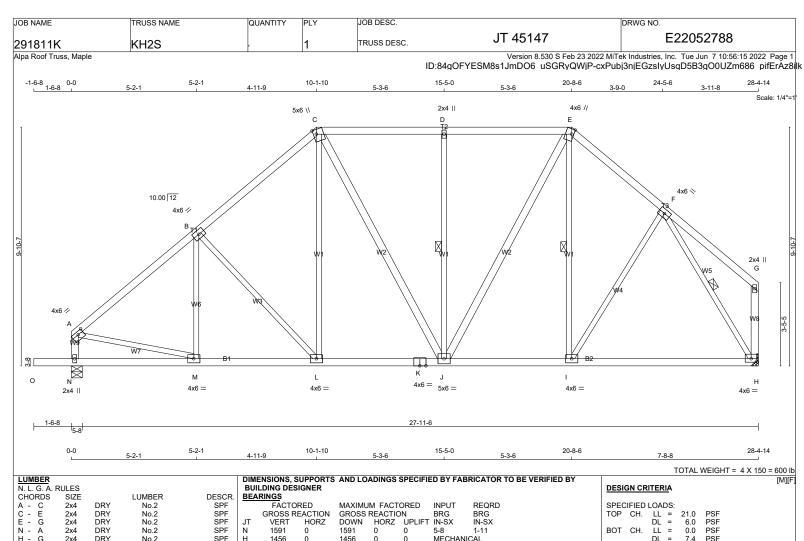
NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION

(PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN

650 371 1747 788 1987 1873


PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.88 (R) (INPUT = 0.90) JSI METAL= 0.73 (K) (INPUT = 1.00)

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.		DRWG NO.
291811K	KH1A		2	TRUSS DESC.	JT 45147	E22052787(2)
Alpa Roof Truss, Maple	I W I I I				Version 8.530 S Feb 23 20	22 MiTek Industries, Inc. Tue Jun 7 10:56:14 2022 Page 2 P-8IrWON38yx86F8NII7ises76u4DDNhFra2vglkz
					יטו:84g∪⊢YESM8s1JmDU6_uSGRyQWjF	∕-oii vv∪ทวชухชbFชNiI / ises / 6u4DDNhFra2vglkz │ │
PLATES (table is in inches)						
PLATES (table is in inches) JT TYPE PLATES K BMWW+t MT20 L BMWW-t MT20 M BS-t MT20	W LEN Y X 5.0 8.0 4.25 2.00					
L BMWW-t MT20 M BS-t MT20	4.0 6.0 4.0 6.0					
O BS-t MT20	5.0 6.0 4.0 6.0					
P BMWW-t MT20	4.0 6.0 5.0 8.0 4.25 2.00					
R BMV1+p MT20	3.0 4.0					
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD	CE CORNER OF PLATE					
10001120 2502 01 0110112						
LATERAL BRACE(S	S) SHOWN SHALL BE					
2X4 S	SPF#2					
FES	SSION					
PROFE	SIONAL					
W. W. 1002	VIDYA EE 25448					
1 8 H	/IDYA					
2 1000	25//0					
1 2 06/07	7/2022					
Com	OF ONTARIO					
ACE	OF ON					

ill

N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
N - A	2x4	DRY	No.2	SPF
H - G	2x4	DRY	No.2	SPF
0 - K	2x4	DRY	No.2	SPF
K - H	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
C - J	2x4	DRY	No.2	SPF
J - E	2x4	DRY	No.2	SPF
DRY: SEAS	ONEDII	IMRER		

PL	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	X			
Α	TMVW-t	MT20	4.0	6.0	1.50	2.75			
В	TMWW-t	MT20	4.0	6.0					
С	TTWW+m	MT20	5.0	6.0	2.25	1.50			
D	TMW+w	MT20	2.0	4.0					
Е	TTWW+m	MT20	4.0	6.0	Edge	1.00			
F	TMWW-t	MT20	4.0	6.0					
G	TMV+p	MT20	2.0	4.0					
Н	BMVW1-t	MT20	4.0	6.0	1.75	3.00			
I, L,	, M								
1	BMWW-t	MT20	4.0	6.0					
J	BMWWW-t	MT20	5.0	6.0					
K	BS-t	MT20	4.0	6.0					
N	BMV1+p	MT20	2.0	4.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

BEA	RINGS						
	FACTOR	RED	MAXIMUN	/ FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
١	1591	0	1591	0	0	5-8	1-11
1	1456	0	1456	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 1-9.

UNF	UNFACTORED REACTIONS							
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
N	1141	661 / 0	0/0	0/0	0/0	480 / 0	0/0	
Н	1046	596 / 0	0/0	0/0	0/0	449 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) N

BRACING
FOR SECTION C-E, MAX. PURLIN SPACING = 2.00 FT.
FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.02 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-J, E-I, F-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS K. FACTORED	FACTO	RFD			WE	BS MAX. FACTO	ORED
MEMB.					MAX.	MEMB		MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO					LENGTH			
A- B	-1526 / 0	-78.0					-150 / 9	0.07 (1)
B- C	-1353 / 0	-78.0			5.27		-265 / 0	0.29 (1)
	-1138 / 0		-93.0	0.35(1)	2.00	L- C	0 / 293	0.07 (1)
D- E	-1138 / 0	-93.0	-93.0	0.35(1)	2.00	C- J	0 / 251	0.04(1)
E-F	-1179 / 0	-78.0	-78.0	0.16(1)	5.72	J- D	-599 / 0	0.39(1)
F- G	0 / 22	-78.0	-78.0	0.18(1)	10.00	J- E	0 / 521	0.08(1)
N- A	-1402 / 0	0.0	0.0	0.15(1)	6.88	I- E	-18 / 46	0.02(4)
H- G	-117 / 0	0.0	0.0	0.02(1)	7.81	I- F	0 / 196	0.05 (4)
						A- M	0 / 1221	0.27(1)
O- N	0/0	-96.5	-96.5	0.16(1)	10.00	F- H	-1500 / 0	0.54(1)
N- M	0/0	-18.5	-18.5	0.11 (4)	10.00			
M- L	0 / 1195	-18.5	-18.5	0.25(1)	10.00			
L- K	0 / 1017	-18.5	-18.5	0.22(1)	10.00			
K- J	0 / 1017	-18.5	-18.5	0.22(1)	10.00			
J- I	0 / 886	-18.5	-18.5	0.34(4)	10.00			
I- H	0 / 783	-18.5	-18.5	0.32 (4)	10.00			

21.0 6.0 0.0 7.4 34.4 LL = DL = LL = DL = AD = DL TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD LOAD OF 6.0 P.S.F.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.95")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.95")
CALCULATED VERT. DEFL.(TL) = L/999 (0.13")

CANTILEVER DEFLECTION:
ALLOWABLE DEFL.(LL)= L/120 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/120 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

CSI: TC=0.35/1.00 (C-D:1) , BC=0.34/1.00 (I-J:4) , WB=0.54/1.00 (F-H:1) , SSI=0.24/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

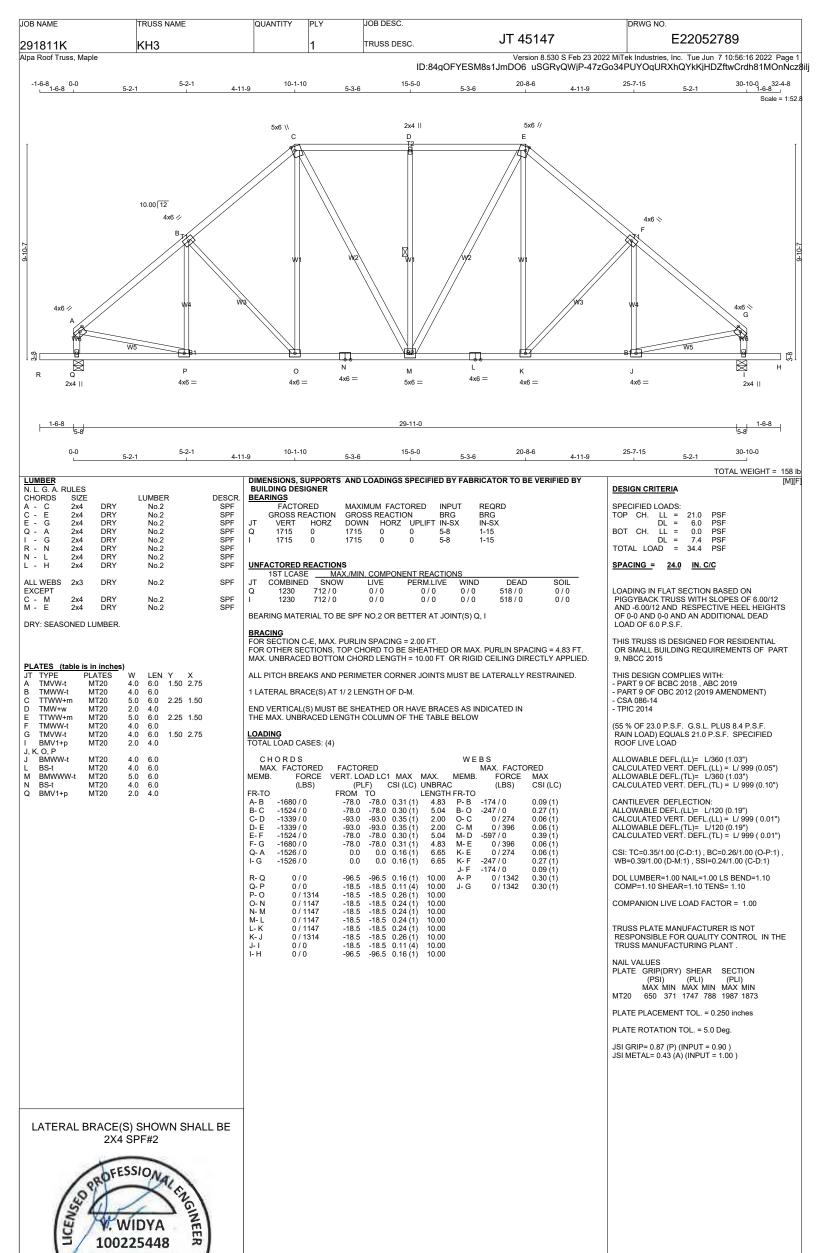
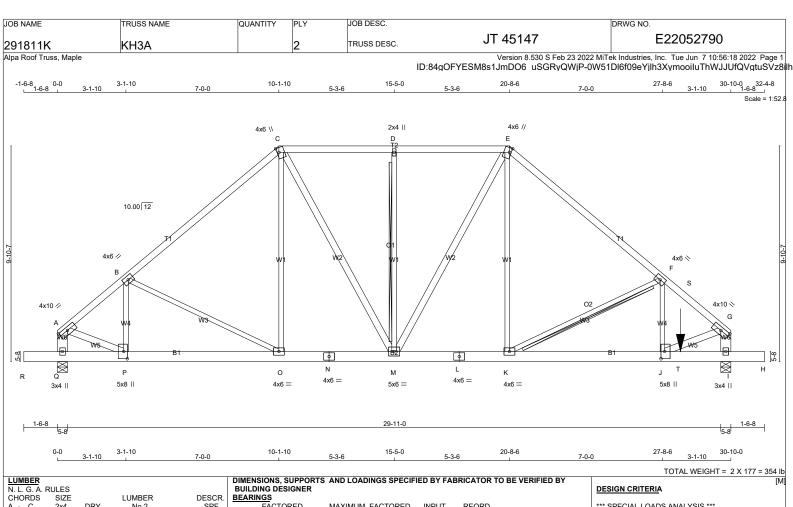

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (F) (INPUT = 0.90) JSI METAL= 0.39 (A) (INPUT = 1.00)

06/07/2022

LUMBER
N. L. G. A
CHORDS
A - C
C - E
E - G
Q - A DESCR SPF SPF SPF SPF SPF SPF SPF SPF SIZE 2x4 2x4 2x4 2x6 2x6 2x6 DRY DRY DRY DRY DRY DRY CEGAGN No.2 No.2 L H WEBS M E P G

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	HORDS: (0.1	22"X3") SPIRAL NAILS	
A- C	1 `	12	TOP
C-E	1	12	TOP
E- G	1	12	SIDE(46.2)
Q- A	2	12	TOP \
I- G	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
R- N	2	12	TOP
N- L	2	12	TOP
L- H	2	12	SIDE(16.0)
WEBS:	(0.122"X3")	SPIRAL NAILS	, ,
2x3	` 1	6	
2x4	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL/	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	X			
Α	TMVW-t	MT20	4.0	10.0	1.75	5.00			
В	TMWW-t	MT20	4.0	6.0					
С	TTWW+m	MT20	4.0	6.0	Edge	1.00			
D	TMW+w	MT20	2.0	4.0					
Ε	TTWW+m	MT20	4.0	6.0	Edge	1.00			
F	TMWW-t	MT20	4.0	6.0					
G	TMVW-t	MT20	4.0	10.0	1.75	5.00			
1	BMV1+p	MT20	3.0	4.0					
J	BMWW+t	MT20	5.0	8.0	4.00	2.00			
K	BMWW-t	MT20	4.0	6.0					
L	BS-t	MT20	4.0	6.0					
M	BMWWW-t	MT20	5.0	6.0					
N	BS-t	MT20	4.0	6.0					
0	BMWW-t	MT20	4.0	6.0					
Р	RMWW+t	MT20	5.0	8.0	4 00	2 00			

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

<u> </u>	1111100						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS RI	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	1974	0	1974	0	0	5-8	1-8
1	5047	0	5047	0	0	5-8	2-11

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1410	847 / 0	0/0	0/0	0/0	563 / 0	0/0
1	3550	2436 / 0	0/0	0/0	0/0	1114 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, I

BRACING
FOR SECTION C-E, MAX. PURLIN SPACING = 2.00 FT.
FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.18 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x4 DRY SPF No.2 T-BRACE AT D-M, F-K

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHORDS					WEBS			
MAX	(. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	1 MAX	MAX.	MEMB	. FORCE	MAX
	(LBS)	(Pl	_F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	-1948 / 0	-78.0	-78.0	0.28 (1)	5.90	P-B	-404 / 0	0.05(1)
B- C	-1903 / 0	-78.0	-78.0	0.35(1)	5.96	B- O	-130 / 0	0.09(1)
C- D	-1772 / 0	-93.0	-93.0	0.26(1)	2.00	O- C	0 / 182	0.03(4)
D- E	-1772 / 0	-93.0	-93.0	0.26(1)	2.00	C- M	0 / 688	0.06(1)
E-F	-2252 / 0	-78.0	-78.0	0.40(1)	5.56	M- D	-594 / 0	0.29(1)
F-S	-4412 / 0	-78.0	-78.0	0.36(1)	4.18	M-E	0 / 124	0.02 (4)
S-G	-4412 / 0	-198.2	-198.2	0.36(1)	4.18	K-E	0 / 900	0.11 (1)
Q-A	-1800 / 0	0.0	0.0	0.06(1)	7.81	K-F	-1938 / 0	0.62(1)
I- G	-4136 / 0	0.0	0.0	0.15(1)	7.01	J- F	0 / 1645	0.20(1)
						A-P	0 / 1629	0.14 (1)
R- Q	0/0	-96.5	-96.5	0.04(1)	10.00	J- G	0 / 3600	0.32(1)
Q-P	0/0	-18.5	-18.5	0.03(4)	10.00			
P- 0	0 / 1551	-18.5	-18.5	0.13(1)	10.00			
O- N	0 / 1437	-18.5	-18.5	0.12(1)	10.00			
N- M	0 / 1437	-18.5	-18.5	0.12(1)	10.00			
M- L	0 / 1712	-18.5	-18.5	0.14(1)	10.00			
L- K	0 / 1712	-18.5	-18.5	0.14(1)	10.00			
K- J	0 / 3429	-18.5	-18.5	0.38(1)	10.00			
J- T	0/0	-18.5	-18.5	0.61 (1)	10.00			
T- I	0/0	-47.0	-47.0	0.61(1)	10.00			
I- H	0/0	-96.5	-96.5	0.04 (1)	10.00			
FACTO	FACTORED CONCENTRATED LOADS (LRS)							

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

*** SPECIAL LOADS ANALYSIS *** GEOMETRY AND/OR BASIC LOADS CHANGED BY USER. LOADS WERE DERIVED FROM USER INPUT

NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS: TOP CH. LL = 21.0 6.0 0.0 7.4 34.4

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD LOAD OF 6.0 P.S.F.

GIRDER TYPE: CPrimeHip
SIDE SETBACK = 0-0
END SETBACK = 8-2-0
END WALL WIDTH = 0-0
CONNER FRAMING TYPE: CONVENTIONAL
END JACK TYPE: CONVENTIONAL
APPLIED TO FRONT SIDE
-ADDT'L LOADS BASED ON 55 % OF GSL.
LOADS APPLIED TO FIRST 2-4-0 OF SPAN
MEASURED FROM THE RIGHT.

*** NON STANDARD GIRDER *** ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , ABC 2019
PART 9 OF OBC 2012 (2019 AMENDMENT)
CSA 086-14
TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

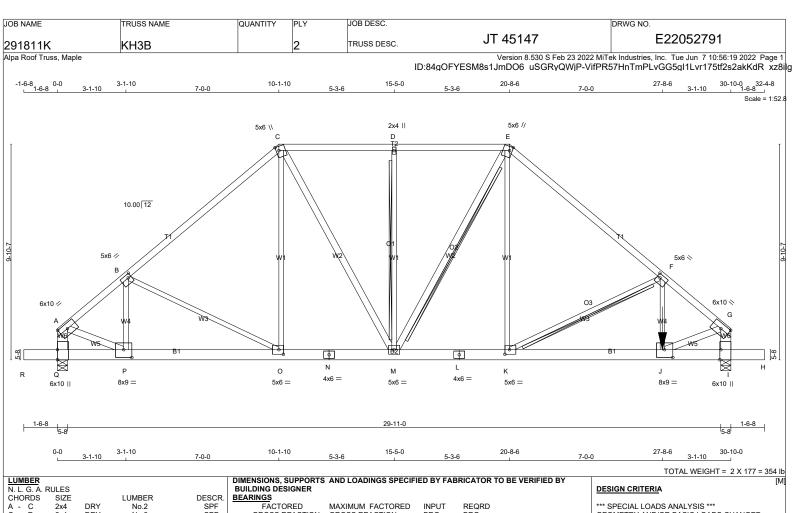
ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL)= L/999 (0.07")

CANTILEVER DEFLECTION: ALLOWABLE DEFL.(LL)= L/120 (0.19") CALCULATED VERT. DEFL.(LL)= L/999 (0.00") ALLOWABLE DEFL.(TL)= L/120 (0.19") CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.40/1.00 (E-F:1) , BC=0.61/1.00 (I-J:1) , WB=0.62/1.00 (F-K:1) , SSI=0.86/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00


AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.82 (E) (INPUT = 0.90) JSI METAL= 0.62 (P) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
Q - A	2x6	DRY	No.2	SPF
I - G	2x6	DRY	No.2	SPF
R - N	2x6	DRY	No.2	SPF
N - L	2x6	DRY	No.2	SPF
L - H	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
C - M	2x4	DRY	No.2	SPF
M - E	2x4	DRY	No.2	SPF
A - P	2x4	DRY	No.2	SPF
J - G	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS SEPARA 1 FOLLOWS

CHORDS	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (
TOP CH	ORDS: (0.1	122"X3") SPIR	AL NAILS
A- C	1	12	TOP
C-E	1	12	TOP
E- G	1	12	TOP
Q- A	2	12	TOP
I- G	2	12	TOP
BOTTON	A CHORDS	: (0.122"X3")	SPIRAL NAILS
R- N	2	12	TOP
N- L	2	12	TOP
L- H	2	2	SIDE(1256.2)
WEBS:	(0.122"X3")	SPIRAL NAIL	s i
F-J	` 1	3	SIDE(484.9)
2x3	1	6	, ,
2x4	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL	ATES (table	is in inches	s)			
JT	TYPE	PLATES	W	LEN	Υ	Χ
Α	TMVW-t	MT20	6.0	10.0	2.75	4.75
В	TMWW-t	MT20	5.0	6.0	2.00	1.75
С	TTWW+m	MT20	5.0	6.0	2.25	1.50
D	TMW+w	MT20	2.0	4.0		
E	TTWW+m	MT20	5.0	6.0	2.25	1.50
F	TMWW-t	MT20	5.0	6.0	2.00	1.75
G	TMVW-t	MT20	6.0	10.0	2.75	4.75
1	BMV1+t	MT20	6.0	10.0	Edge	0.50
J	BMWW-t	MT20	8.0	9.0	4.25	4.50
K	BMWW-t	MT20	5.0	6.0	2.50	2.50
L	BS-t	MT20	4.0	6.0		
M	BMWWW-t	MT20	5.0	6.0		
N	BS-t	MT20	4.0	6.0		
0	BMWW-t	MT20	5.0	6.0	2.50	2.50

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

<u> </u>	1111100						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS RI	EACTION	GROSS	REACTIO	N	BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	2438	0	2438	0	0	5-8	1-8
1	8694	0	8694	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINE	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1733	1087 / 0	0/0	0/0	0/0	646 / 0	0/0
1	6098	4284 / 0	0/0	0/0	0/0	1814 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, I BEARING SIZE FACTOR = 1.15 AT JNT(S) I (BASED ON SUPPORT DEPTH = 1-8)

BRACING
FOR SECTION C-E, MAX. PURLIN SPACING = 2.00 FT.
FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.89 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x4 DRY SPF No.2 T-BRACE AT D-M 2x6 DRY SPF No.2 T-BRACE AT E-M, F-K

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3"
COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

MAX. FACTORED FACTORED MAX. FACTOR	RED MAX						
	MAX						
MEMB. FORCE VERT. LOAD LC1 MAX MAX. MEMB. FORCE							
(LBS) (PLF) CSI (LC) UNBRAC (LBS)	CSI (LC)						
FR-TO FROM TO LENGTH FR-TO							
	0.07(1)						
B- C -2553 / 0 -78.0 -78.0 0.41 (1) 5.31 B- O -18 / 0	0.01(1)						
C- D -2523 / 0 -93.0 -93.0 0.27 (1) 2.00 O- C 0 / 143	0.03(4)						
D- E -2523 / 0 -93.0 -93.0 0.27 (1) 2.00 C- M 0 / 1207	0.11(1)						
E- F -3575 / 0 -78.0 -78.0 0.52 (1) 4.62 M- D -587 / 0	0.29(1)						
	0.08(1)						
	0.28 (1)						
	0.93 (1)						
	0.61 (1)						
	0.18 (1)						
	0.63 (1)						
P-O 0 / 1950 -18.5 -18.5 0.16 (1) 10.00							
O- N 0 / 1935 -18.5 -18.5 0.15 (1) 10.00							
N- M 0 / 1935 -18.5 -18.5 0.15 (1) 10.00							
M-L 0 / 2746 -18.5 -18.5 0.22 (1) 10.00							
L- K 0 / 2746 -18.5 -18.5 0.22 (1) 10.00							
K-J 0 / 6776 -18.5 -18.5 0.54 (1) 10.00							
J-I 0 / 0 -396.3 -396.3 0.23 (1) 10.00							
I- H 0 / 0 -96.5 -96.5 0.04 (1) 10.00							
FACTORED CONCENTRATED LOADS (LBS)							

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED
BY USER. LOADS WERE DERIVED FROM USER INPUT

NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS: TOP CH. LL = 21.0 6.0 0.0 7.4 34.4

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD LOAD OF 6.0 P.S.F.

GIRDER TYPE: CStdGirder GIRDER 1 YPE: CStaGirder
START DISTANCE = 27-8-7
START SPAN CARRIED = 17-8-0
END DISTANCE = 30-10-0
END SPAN CARRIED = 17-8-0
END WALL WIDTH = 0-0
APPLIED TO FRONT SIDE OF BOTTOM CHORD.
- ADDT'L LOADS BASED ON 55 % OF GSL.

*** NON STANDARD GIRDER *** ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , ABC 2019
PART 9 OF OBC 2012 (2019 AMENDMENT)
CSA 086-14
TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL)= L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/999 (0.14")

CANTILEVER DEFLECTION CANNILEVER DEFLECTION
ALLOWABLE DEFL.(LL) = 1/120 (0.19")
CALCULATED VERT. DEFL.(LL) = 1/999 (0.00")
ALLOWABLE DEFL.(TL) = 1/120 (0.19")
CALCULATED VERT. DEFL.(TL) = 1/999 (0.00")

CSI: TC=0.53/1.00 (F-G:1) , BC=0.54/1.00 (J-K:1) , WB=0.93/1.00 (F-K:1) , SSI=0.23/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT .

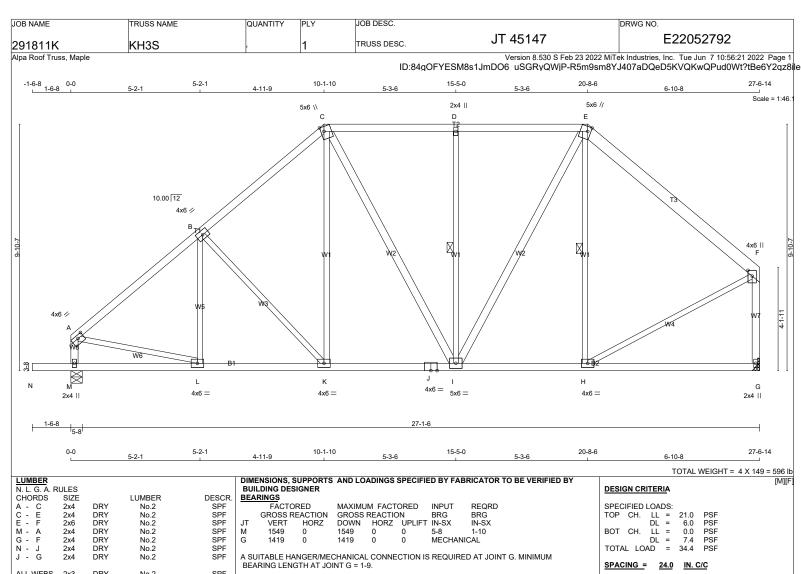

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (G) (INPUT = 0.90) JSI METAL= 0.67 (G) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.		DRWG NO.
291811K	КН3В		2	TRUSS DESC.	JT 45147	E22052791(2)
Alpa Roof Truss, Maple	<u></u>				Version 8.530 S Feb 23 2022 N	niTek Industries, Inc. Tue Jun 7 10:56:19 2022 Page 2 PR57HnTmPLvGG5gI1Lvr175tf2s2akKdR_xz8ilg
					ID.049OF I ESINOS IJIIIDOO_USGKYQWJP-VIIF	NOTHER LYGGOGITEVI ITOUZSZAKKOK XZ8IIG
PLATES (table is in inches) JT TYPE PLATES V P BMWW-t MT20 8	V IEN V V					
P BMWW-t MT20 8	V LEN Y X 0.0 9.0 4.25 4.50 0.0 10.0 Edge					
Edge - INDICATES REFERENC TOUCHES EDGE OF CHORD.	E CORNER OF PLATE					
LATERAL BRACE(S)	SHOWN SHALL BE					
LATERAL BRACE(S) 2X4 S						
ROFES	SIONALCHO					
1002	~ 2					
154	7 5					
W W.W	IDYA 📶					
1002	25448 🖫					
11						
18 00/01	OF ONTARIO					
MACEC	OF ONTA					

N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
E - F	2x6	DRY	No.2	SPF
M - A	2x4	DRY	No.2	SPF
G - F	2x4	DRY	No.2	SPF
N - J	2x4	DRY	No.2	SPF
J - G	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
C - I	2x4	DRY	No.2	SPF
I - E	2x4	DRY	No.2	SPF
DRY: SEASO	ONED LU	JMBER.		

PL	PLATES (table is in inches)											
JT												
Α	TMVW-t	MT20	4.0	6.0	1.50	2.75						
В	TMWW-t	MT20	4.0	6.0								
С	TTWW+m	MT20	5.0	6.0	2.25	1.50						
D	TMW+w	MT20	2.0	4.0								
Ε	TTWW+m	MT20	5.0	6.0	2.25	1.50						
F	TMVW+p	MT20	4.0	6.0	2.75	2.00						
G	BMV1+p	MT20	2.0	4.0								
H, I	K, L											
Н	BMWW-t	MT20	4.0	6.0								
1	BMWWW-t	MT20	5.0	6.0								
J	BS-t	MT20	4.0	6.0								
B 4	DM///1 i n	MATOO	2.0	4.0								

UNFACTORED REACTIONS

45T 104SE MAY /MINI COMPONENT REACTIONS

	1ST LCASE	NAX./I	MAX./MIN. COMPONENT REACTIONS					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
M	1110	643 / 0	0/0	0/0	0/0	467 / 0	0/0	
G	1019	579 / 0	0/0	0/0	0/0	440 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) $\ensuremath{\mathsf{M}}$

BRACING
FOR SECTION C-E, MAX. PURLIN SPACING = 2.00 FT.
FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.10 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-I, E-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS	FACTO	WEBS FACTORED MAX. FACTORED					
MEMB.								
IVILIVID.								
	(LBS)						(LBS)	CSI (LC)
FR-TO					LENGTH			
A- B	-1473 / 0	-78.0	-78.0	0.30(1)	5.10	L- B	-141 / 13	0.07(1)
B- C	-1294 / 0	-78.0	-78.0	0.28(1)	5.37	B- K	-272 / 0	0.29 (1)
C- D	-1069 / 0	-93.0	-93.0	0.34(1)	2.00	K-C	0 / 297	0.07 (1)
D- E	-1069 / 0	-93.0	-93.0	0.34 (1)	2.00	C-I	0 / 204	0.03 (1)
E-F	-1046 / 0	-78.0	-78.0	0.24 (1)	6.25	I- D	-589 / 0	0.39 (1)
M- A	-1359 / 0	0.0	0.0	0.14(1)	6.96	I- E	0 / 563	0.09 (1)
G-F	-1366 / 0	0.0	0.0	0.35 (1)	6.94	H-E	-287 / 0	0.19 (1)
				` '		A- L	0 / 1179	0.27 (1)
N- M	0/0	-96.5	-96.5	0.16(1)	10.00	H-F	0 / 904	0.20 (1)
M- L	0/0	-18.5	-18.5	0.11 (4)	10.00			. ,
L- K	0 / 1154	-18.5	-18.5	0.24(1)	10.00			
K- J	0 / 971	-18.5	-18.5	0.21(1)	10.00			
J- I	0 / 971	-18.5	-18.5	0.21(1)	10.00			
I- H	0 / 796	-18.5	-18.5	0.29 (4)	10.00			
H- G	0/0	-18.5	-18.5	0.20 (4)	10.00			

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD LOAD OF 6.0 P.S.F.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.92")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.92")
CALCULATED VERT. DEFL.(TL) = L/999 (0.08")

CANTILEVER DEFLECTION:
ALLOWABLE DEFL.(LL)= L/120 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/120 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

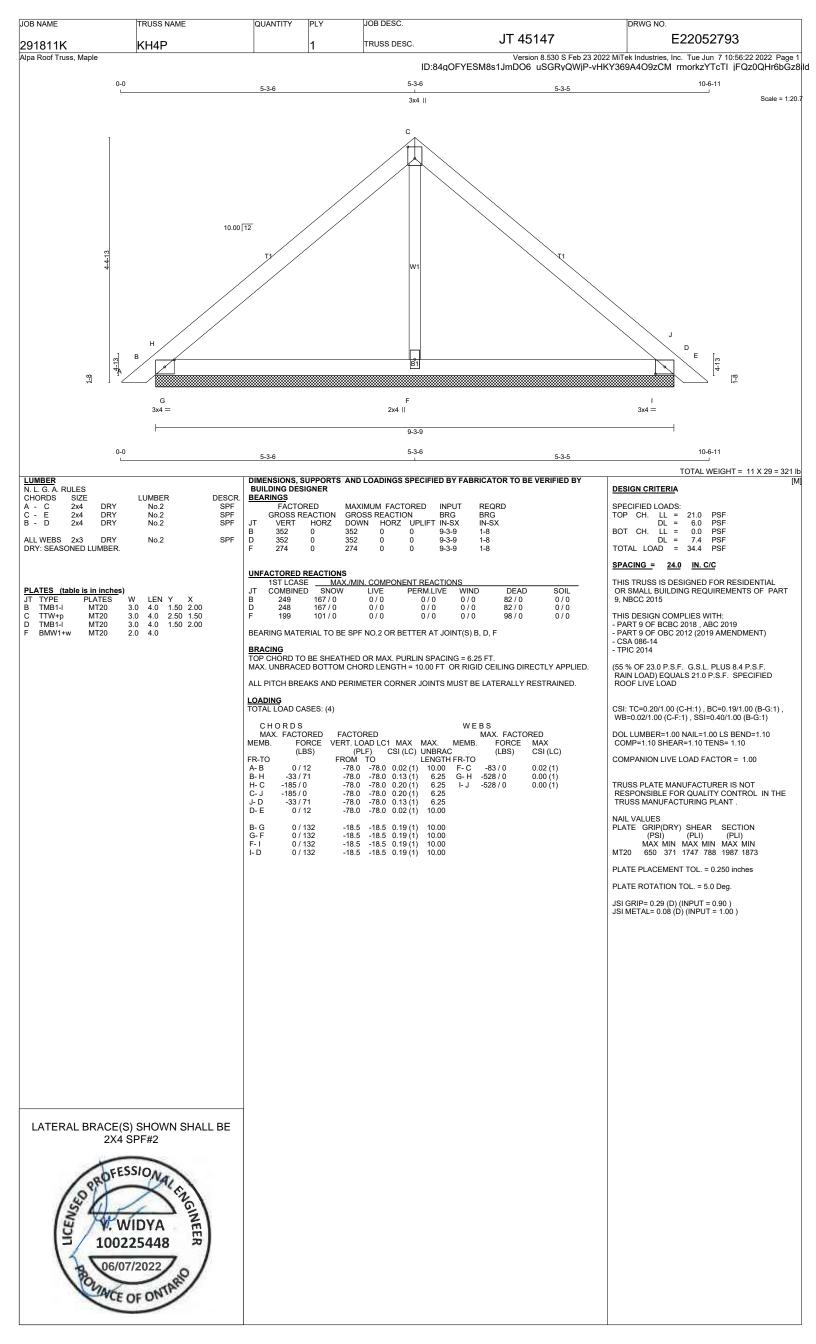
CSI: TC=0.35/1.00 (F-G:1) , BC=0.29/1.00 (H-I:4) , WB=0.39/1.00 (D-I:1) , SSI=0.24/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES


PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

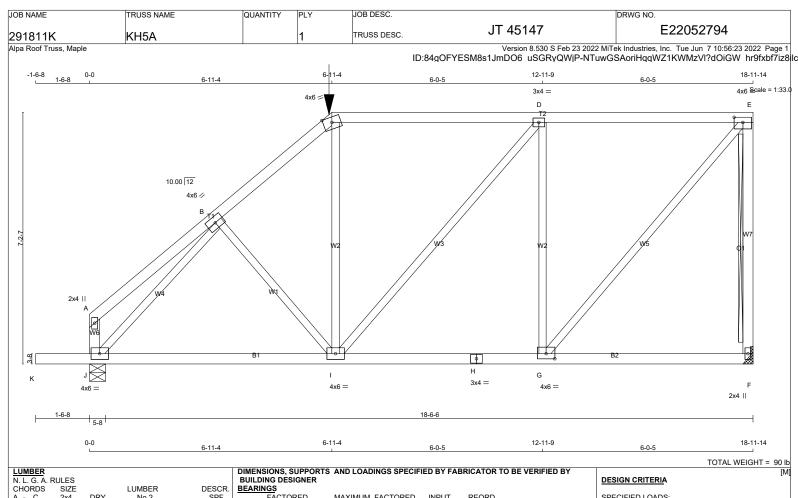

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (F) (INPUT = 0.90) JSI METAL= 0.51 (F) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
F - E	2x4	DRY	No.2	SPF
J - A	2x4	DRY	No.2	SPF
K - H	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Χ				
Α	TMV+p	MT20	2.0	4.0						
В	TMWW-t	MT20	4.0	6.0						
С	TTW-m	MT20	4.0	6.0	Edge					
D	TMWW-t	MT20	3.0	4.0						
Ε	TMVW-t	MT20	4.0	6.0	1.75	3.00				
F	BMV1+p	MT20	2.0	4.0						
G	BMWW-t	MT20	4.0	6.0	1.75	3.00				
Н	BS-t	MT20	3.0	4.0						
1	BMWWW-t	MT20	4.0	6.0						
J	BMVW1-t	MT20	4.0	6.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

<u>BEA</u>	<u>RINGS</u>						
	FACTOR	RED	MAXIMUN	M FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
-	1385	0	1385	0	0	MECHANIC	CAL
ı	1428	0	1428	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8.

UNF	UNFACTORED REACTIONS									
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTIO	NS					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
F	987	606 / 0	0/0	0/0	0/0	381 / 0	0/0			
J	1020	614 / 0	0/0	0/0	0/0	406 / 0	0/0			
l										

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.61 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x3 DRY SPF No.2 T-BRACE AT E-F

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

C H O R D S MAX. FACTORED FACTORED				WEBS MAX. FACTORED					
MEMB.						MEMB	. FORCE		
	(LBS)	(Pl	_F) (CSI (LC)	UNBRAG	0	(LBS)	CSI (LC)	
FR-TO	` ,	FROM	ΤΌ	, ,	LENGTH	FR-TO	` ,	, ,	
A-B	0 / 18	-78.0	-78.0	0.15(1)	10.00	B- I	-32 / 27	0.02(1)	
B- C	-1241 / 0	-78.0	-78.0	0.18(1)	5.54	I- C	0 / 200	0.07(4)	
C- D	-938 / 0	-115.1	-115.1	0.83(1)	4.61	I- D	0 / 31	0.01 (4)	
D- E	-919 / 0	-115.1	-115.1	0.83(1)	4.66	G- D	-883 / 0	0.81 (1)	
F-E	-1316 / 0	0.0	0.0	0.76(1)	7.81	G-E	0 / 1398	0.35(1)	
J- A	-110 / 0	0.0	0.0	0.01 (1)	7.81	J- B	-1450 / 0	0.70 (1)	
K- J	0/0	-96.5	-96.5	0.17 (1)	10.00				
J- I	0 / 956			0.41(4)					
i- H	0 / 919			0.41(4)					
H- G	0 / 919	-27.3	-27.3	0.41 (4)	10.00				
G-F	0/0	-27.3	-27.3	0.23 (4)	10.00				
FACTORED CONCENTRATED LOADS (LBS)									

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

MAX+

MAX--217

21.0 6.0 0.0 7.4 34.4 LL = DL = LL = DL = AD = вот сн. DL TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

GIRDER TYPE: CPrimeHip LEFT SETBACK = 6-11-4 LEFT SETBACK = 6-11-4
RIGHT SETBACK = 0-0
END SETBACK = 3-10-14
END WALL WIDTH = 0-0
CORNER FRAMING TYPE: CONVENTIONAL
END JACK TYPE: CONVENTIONAL
APPLIED TO FRONT SIDE
- ADDT'L LOADS BASED ON 55 % OF GSL.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086.14

- TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.63")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.63")
CALCULATED VERT. DEFL.(TL)= L/999 (0.13")

CANTILEVER DEFLECTION:
ALLOWABLE DEFL.(LL) = L/120 (0.19")
CALCULATED VERT. DEFL.(LL) = L/1999 (0.01")
ALLOWABLE DEFL.(TL) = L/120 (0.19")
CALCULATED VERT. DEFL.(TL) = L/1999 (0.01")

CSI: TC=0.83/1.00 (C-D:1) , BC=0.41/1.00 (G-I:4) , WB=0.81/1.00 (D-G:1) , SSI=0.37/1.00 (D-E:1)

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

HEEL

CONN.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN

650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (B) (INPUT = 0.90) JSI METAL= 0.33 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC DRWG NO. E22052795 JT 45147 291811K KH6S TRUSS DESC Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Tue Jun 7 10:56:25 2022 Page 1
ID:84g0FYESM8s1JmD06 uSGRyQWiP-Js0gh8B2NJXY3qiPSx0RbA568WzcSf0S6F4mBbz8ila na Roof Truss Manle -1-6-8 0-0 _____1-6-8 5-2-1 14-6-4 18-11-14 2x4 || 3x4 = 10.00 12 **A**[4x6 = 4x6 = 2x4 || 3x4 = 1-6-8 18-6-6 5-8 10-1-10 8-10-4

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS
BEARINGS TOTAL WEIGHT = 3 X 105 = 316 lb [M][F]

LUMBER
N. L. G. A.
CHORDS
A - C
C - E
F - E DESCR. SPF SPF SPF SPF SPF SPF SIZE 2x4 2x4 2x4 2x4 2x4 DRY DRY DRY DRY DRY DRY No.2 ALL WEBS EXCEPT G - D D - F 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER

PL/	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Χ
Α	TMVW-t	MT20	4.0	6.0	1.50	2.75
В	TMWW-t	MT20	3.0	4.0	1.50	1.25
С	TTW+m	MT20	3.0	4.0	2.00	1.25
D	TMWW-t	MT20	3.0	4.0	1.50	1.75
Ε	TMV+p	MT20	2.0	4.0		
F	BMVW1-t	MT20	3.0	4.0	1.50	1.75
G	BMWWW-t	MT20	4.0	6.0		
Н	BS-t	MT20	4.0	6.0		
1	BMWW-t	MT20	4.0	6.0		
	DMM /4	MATOO	0.0	4.0		

BEAL	<u>rings</u>						
	FACTOR	ED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	1018	0	1018	0	0	MECHANIC	CAL
J	1096	0	1096	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8.

UNFACTORED REACTIONS

45T 1 CASE MAY /MIN COMPONENT REACT

	1ST LCASE	MAX./	MIN. COMPO				
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	735	399 / 0	0/0	0/0	0/0	336 / 0	0/0
J	784	463 / 0	0/0	0/0	0/0	321 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

BRACING
FOR SECTION C-E, MAX. PURLIN SPACING = 2.00 FT.
FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.15 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-F, D-F.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHO	DRDS					WE	BS	
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	0	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	-904 / 0	-78.0	-78.0	0.27(1)	6.15	I- B	-73 / 27	0.04(1)
B- C	-678 / 0	-78.0	-78.0	0.26(1)	6.25	B- G	-324 / 0	0.35(1)
C- D	-497 / 0	-93.0	-93.0	0.24(1)	2.00	G-C	0 / 116	0.04(4)
D- E	0/0	-93.0	-93.0	0.30(1)	10.00	G- D	0/311	0.05(1)
F-E	-158 / 0	0.0	0.0	0.07(1)	6.25	D-F	-876 / 0	0.51(1)
J- A	-903 / 0	0.0	0.0	0.09(1)	7.81	A-I	0 / 733	0.16(1)
K- J	0/0	-96.5	-96.5	0.16(1)	10.00			
J-I	0/0	-18.5	-18.5	0.12(4)	10.00			
I- H	0 / 718	-18.5	-18.5	0.37 (4)	10.00			
H- G	0 / 718	-18.5	-18.5	0.37 (4)	10.00			
G-F	0 / 370	-18.5	-18.5	0.34(4)	10.00			

DESIGN CRITERIA

21.0 6.0 0.0 7.4 34.4 LL = DL = LL = DL = AD = BOT CH. DL TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD LOAD OF 6.0 P.S.F.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.63")
CALCULATED VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.63")
CALCULATED VERT. DEFL.(TL) = L/999 (0.17")

CANTILEVER DEFLECTION:
ALLOWABLE DEFL.(LL)= L/120 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/120 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

CSI: TC=0.30/1.00 (D-E:1) , BC=0.37/1.00 (G-I:4) , WB=0.51/1.00 (D-F:1) , SSI=0.20/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

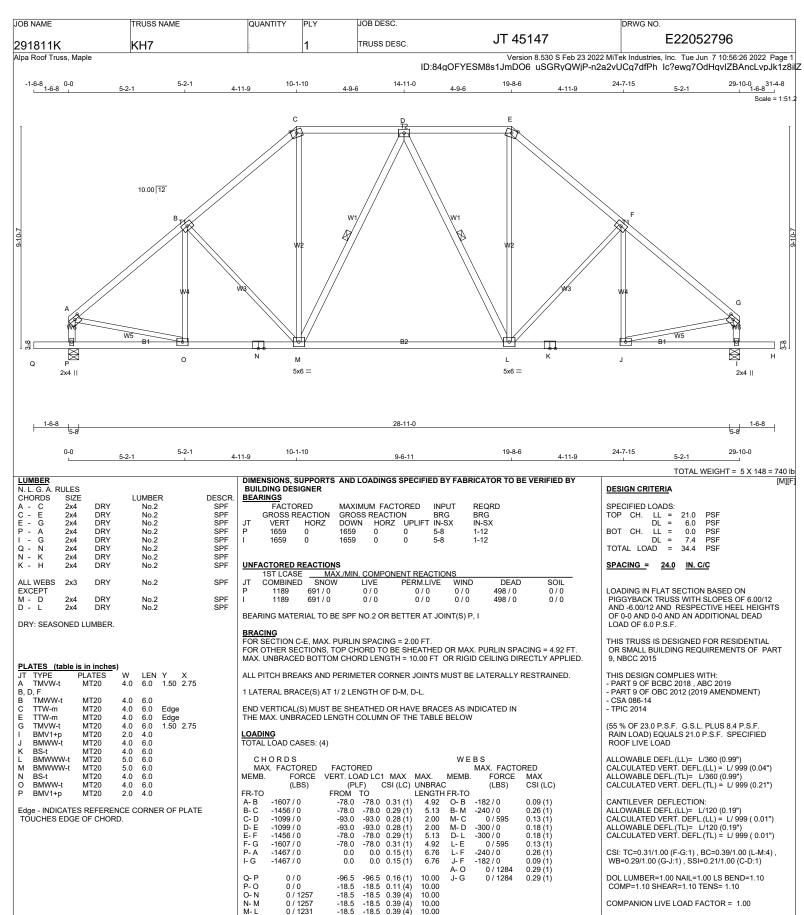

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (C) (INPUT = 0.90) JSI METAL= 0.28 (H) (INPUT = 1.00)

FR-TO A- B B- C C- D D- E E- F F- G P- A I- G -1607 / 0 -1467 / 0 -1467 / 0 0 / 0 0 / 0 0 / 1257 0 / 1257 0 / 1231 0 / 1257 0 / 1257 0 / 0 -96.5 0.16 (1) -18.5 0.39 (4) -18.5 0.39 (4) -18.5 0.39 (4) -18.5 0.39 (4) -18.5 0.39 (4) -18.5 0.39 (4) -18.5 0.11 (4) -96.5 0.16 (1) Q- P P- O O- N N- M M- L 10.00 10.00 10.00 10.00 10.00 10.00 10.00 -96.5 -18.5 -18.5 -18.5 -18.5 -18.5 L- K K- J

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

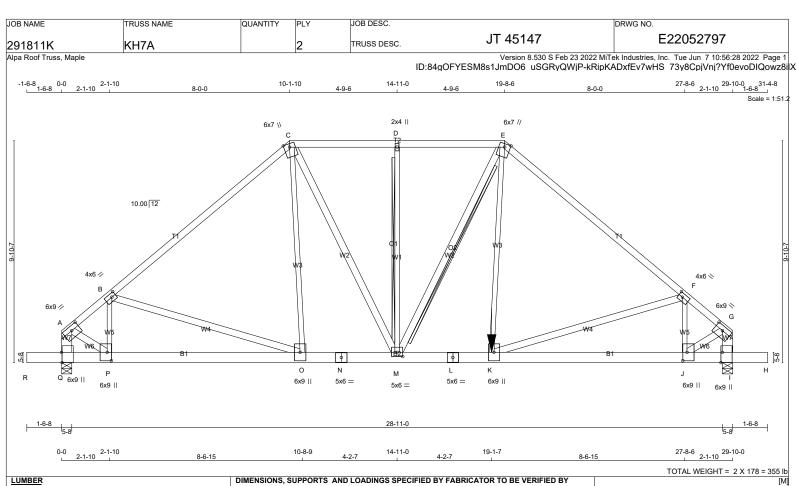

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.83 (O) (INPUT = 0.90) JSI METAL= 0.41 (A) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	1650F 1.5E	SPF
C - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	1650F 1.5E	SPF
Q - A	2x6	DRY	No.2	SPF
I - G	2x6	DRY	No.2	SPF
R - N	2x6	DRY	No.2	SPF
N - L	2x6	DRY	No.2	SPF
L - H	2x6	DRY	No.2	SPF
ALL WEBS	2x4	DRY	No.2	SPF
EXCEPT				
P - B	2x3	DRY	No.2	SPF
C - O	2x3	DRY	No.2	SPF
M - D	2x3	DRY	No.2	SPF
K - E	2x3	DRY	No.2	SPF
J - F	2x3	DRY	No.2	SPF

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (I	
TOP CH	ORDS : (0.1	22"X3") SPIR	
A- C	1 `	12	TOP
C-E	1	12	TOP
E- G	1	12	TOP
Q- A	2	12	TOP
I- G	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") §	SPIRAL NAILS
R- N	2	12	TOP
N- L	2	12	TOP
L- H	2	12	SIDE(169.4)
WEBS:	(0.122"X3")	SPIRAL NAILS	8
K-E	1	6	SIDE(914.5)
2x3	1	6	· · · · · ·
2x4	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL/	ATES	(table	is	in	inches)
IT	TYPE		Р	ΙΔ	TES

JΤ	TYPE	PLATES	W	LEN	Υ	X
Α	TMVW-t	MT20	6.0	9.0	2.25	4.25
В	TMWW-t	MT20	4.0	6.0	2.00	2.25
С	TTWW+m	MT20	6.0	7.0	Edge	
D	TMW+w	MT20	2.0	4.0		
Е	TTWW+m	MT20	6.0	7.0	Edge	
F	TMWW-t	MT20	4.0	6.0	2.00	2.25
G	TMVW-t	MT20	6.0	9.0	2.25	4.25
1	BMV1+p	MT20	6.0	9.0	Edge	0.75
J	BMWW+t	MT20	6.0	9.0	4.50	2.25
K	BMWW+t	MT20	6.0	9.0		
L	BS-t	MT20	5.0	6.0		
M	BMWWW-t	MT20	5.0	6.0	2.25	3.00
N	BS-t	MT20	5.0	6.0		

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTOR	RED	MAXIMUN	M FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	3216	0	3216	0	0	5-8	1-11
1	4620	0	4620	0	0	5-8	2-7

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	2272	1504 / 0	0/0	0/0	0/0	767 / 0	0/0
I	3252	2222 / 0	0/0	0/0	0/0	1030 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, I

BRACING
FOR SECTION C-E, MAX. PURLIN SPACING = 2.00 FT.
FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.38 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x4 DRY SPF No.2 T-BRACE AT D-M 2x6 DRY SPF No.2 T-BRACE AT E-M

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS	FACTORED			WE	BS MAX. FACT	OPED	
MEMB.		VERT. LOAD I		MAY	MEMB			
IVILIVID.	(LBS)	(PLF)) UNBRA		(LBS)		
FR-TO	(LDS)	FROM TO	COI (LC	LENGT			COI	LC)
	-2997 / 0		0 0 32 (-1090 / 0	0.10	(1)
	-3636 / 0		3.0 0.56 (1			0 / 363		
	-3692 / 0		3.0 0.25 (1			0 / 130	0.03	
	-3692 / 0		3.0 0.25 (1			-514 / 0	0.02	
	-5332 / 0	-78.0 -78				0 / 4213		
F- G	-4479 / 0		3.0 0.79 (1 3.0 0.32 (1			0 / 541	0.05	
	-3002 / 0	0.0				-1277 / 0	0.03	
I- G		0.0 0				0 / 2667		
1- G	-4400 / 0	0.0 0	0.16 () 0.79		0 / 3919		
R- Q	0/0	-96.5 -96	5.5 0.04 (1) 10.00		0 / 2069	0.33	
Q-P	0/0		3.5 0.04 (1 3.5 0.05 (4			-1400 / 0		
P- 0	0 / 2414		3.5 0.03 (2 3.5 0.20 (1		IVI- E	-1400 / 0	0.25	(1)
0- N	0 / 2761	-18.5 -18						
N- M	0 / 2761		3.5 0.22 (1					
M- L	0 / 4323		3.5 0.31 (1					
L-K			3.5 0.31 (1					
K-J	0 / 3547	-53.7 -53						
J- I	0/0		3.7 0.10 (1					
I- H	0/0	-96.5 -96	5.5 0.04 (1) 10.00				
FACTO	DED CONCENT	TDATED LOAD	C (LDC)					
		TRATED LOADS		- ^ C E	DID	TVDE	HEEL	CONN
JT	LOC. LC				DIR.	TYPE	HEEL	CONN.
K	19-1-7 -414	0 -4140	FI	RONT V	ERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED
BY USER. LOADS WERE DERIVED FROM USER INPUT

NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS: TOP CH. LL =

21.0 6.0 0.0 7.4 34.4 TOP CH. LL = DL = BOT CH. LL = DL = TOTAL LOAD =

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD LOAD OF 6.0 P.S.F.

GIRDER TYPE: CStdGirder
START DISTANCE = 19-1-7
START SPAN CARRIED = 3-5-8
END DISTANCE = 29-10-0
END SPAN CARRIED = 3-5-8
END WALL WIDTH = 0-0
APPLIED TO FRONT SIDE OF BOTTOM CHORD.
- ADDT'L LOADS BASED ON 55 % OF GSL.

*** NON STANDARD GIRDER *** ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , ABC 2019
PART 9 OF OBC 2012 (2019 AMENDMENT)
CSA 086-14
TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.99")
CALCULATED VERT. DEFL.(LL)= L/999 (0.09")
ALLOWABLE DEFL.(TL)= L/360 (0.99")
CALCULATED VERT. DEFL.(TL) = L/999 (0.16")

CANTILEVER DEFLECTION:
ALLOWABLE DEFL.(IL.)= L/120 (0.19")
CALCULATED VERT. DEFL.(IL.)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL.)= L/120 (0.19")
CALCULATED VERT. DEFL.(TL.)= L/ 759 (0.02")

CSI: TC=0.79/1.00 (E-F:1) , BC=0.36/1.00 (J-K:1) , WB=0.52/1.00 (E-K:1) , SSI=0.12/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

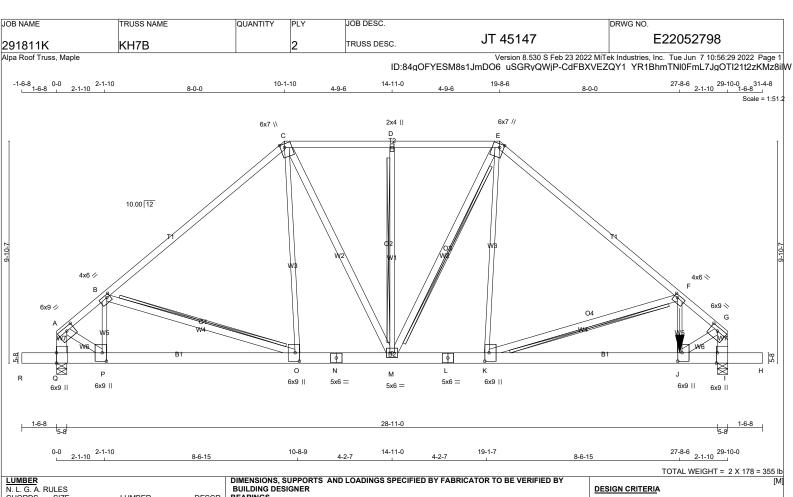

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.80 (M) (INPUT = 0.90) JSI METAL= 0.53 (P) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.		DRWG NO.
291811K	KH7A		2	TRUSS DESC.	JT 45147	E22052797(2)
Alpa Roof Truss, Maple	KIIIA		<u></u>		Version 8.530 S Feb 23 2022 M ID:84g0FYESM8s1JmD06_uSGRyQWjP-kŖip	
					ID:84gOFYESM8s1JmDO6_uSGRyQWjP-kRip	KADxtEv7wHS_73y8CpjVnj?Yf0evoDIQowz8
PLATES (table is in inches)						
PLATES (table is in inches) JT TYPE PLATES V	V LEN Y X 5.0 9.0					
P BMWW+t MT20 6	6.0 9.0 4.50 2.25 6.0 9.0 Edge 0.25					
Edge - INDICATES REFERENC TOUCHES EDGE OF CHORD.						
TOUCHES EDGE OF CHORD.						
	011011111111111111111111111111111111111					
LATERAL BRACE(S) 2X4 S	SHOWN SHALL BE					
2X4 S	DI F#4					
PROFES W. W. W. 1002:	SION					
OROFES	MAL					
18	12					
18 4	10/4					
3 /W.W	IDYA EE 25448					
1002	25448 ≈					
110100000000000000000000000000000000000						
180	OF ONTARIO					
ACE C	OF ON I					

X

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	1650F 1.5E	SPF
C - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	1650F 1.5E	SPF
Q - A	2x6	DRY	No.2	SPF
I - G	2x6	DRY	No.2	SPF
R - N	2x6	DRY	No.2	SPF
N - L	2x6	DRY	No.2	SPF
L - H	2x6	DRY	No.2	SPF
ALL WEBS	2x4	DRY	No.2	SPF
EXCEPT				
P - B	2x3	DRY	No.2	SPF
C - O	2x3	DRY	No.2	SPF
M - D	2x3	DRY	No.2	SPF
K - E	2x3	DRY	No.2	SPF
J - F	2x3	DRY	No.2	SPF

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (I	N)
TOP CH	IORDS: (0.1	22"X3") SPIR	AĹ NAILS
A- C	1 `	12	TOP
C-E	1	12	TOP
E- G	1	12	TOP
Q- A	2	12	TOP
I- G	2	12	TOP
вотто	M CHORDS	: (0.122"X3") \$	SPIRAL NAILS
R- N	2	12	TOP
N- L	2	12	TOP
L- H	2	2	SIDE(1404.0)
WEBS :	(0.122"X3")	SPIRAL NAIL	
F-J	1	4	SIDE(296.0)
2x3	1	6	0.52(200.0)
2x4	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Χ			
Α	TMVW-t	MT20	6.0	9.0	2.00	4.00			
В	TMWW-t	MT20	4.0	6.0	1.50	1.75			
С	TTWW+m	MT20	6.0	7.0	2.00	2.25			
D	TMW+w	MT20	2.0	4.0					
Е	TTWW+m	MT20	6.0	7.0	2.00	2.25			
F	TMWW-t	MT20	4.0	6.0	1.50	1.75			
G	TMVW-t	MT20	6.0	9.0	2.00	4.00			
1	BMV1+t	MT20	6.0	9.0	Edge	0.50			
J, Ł	(, O, P								
J	BMWW+t	MT20	6.0	9.0	4.50	2.25			
L	BS-t	MT20	5.0	6.0					
M	BMWWW-t	MT20	5.0	6.0					
N	BS-t	MT20	5.0	6.0					

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

BEA	RINGS						
	FACTOR	RED	MAXIMUI	M FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	2126	0	2126	0	0	5-8	1-8
1	7710	0	7710	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
Q	1513	937 / 0	0/0	0/0	0/0	577 / 0	0/0			
1	5392	3877 / 0	0/0	0/0	0/0	1515 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, I BEARING SIZE FACTOR = 1.15 AT JNT(S) I (BASED ON SUPPORT DEPTH = 1-8)

BRACING
FOR SECTION C-E, MAX. PURLIN SPACING = 2.00 FT.
FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.81 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x4 DRY SPF No.2 T-BRACE AT B-O, D-M 2x6 DRY SPF No.2 T-BRACE AT F-K, E-M

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3"
COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					WE	BS		
MAX	X. FACTORED	FACTO	RED				MAX. FACT	FORED	
MEMB.	FORCE	VERT. LC	AD LC	1 MAX	MAX.	MEMB	. FORCE	MAX	(
	(LBS)	(PL	_F)	CSI (LC)	UNBRA	.C	(LBS)	CSI	(LC)
FR-TO	` ,	FROM				H FR-TO			` '
A- B	-1917 / 0	-78.0	-78.0	0.31(1)	6.25	P-B	-692 / 0	0.07	(1)
B- C	-2108 / 0	-78.0	-78.0	0.41(1)	6.25	B- O	0/3	0.00	(4)
C- D	-1970 / 0	-93.0	-93.0	0.21 (1)	2.00	C- O	0 / 161	0.03	(4)
D- E	-1970 / 0	-93.0	-93.0	0.21 (1)	2.00	M- D	-531 / 0	0.26	
E-F	-2628 / 0	-78.0	-78.0	0.42(1)	5.84	K-E	0 / 1446	0.18	(1)
F- G	-7321 / 0	-78.0	-78.0	0.36(1)	3.81	K-F	-3928 / 0	0.52	(1)
Q-A	-1920 / 0	0.0	0.0	0.07(1)	7.81	J- F	0 / 3663	0.45	(1)
I- G	-7338 / 0	0.0	0.0	0.26(1)	5.53	A-P	0 / 1751	0.15	(1)
						J- G	0 / 6326	0.56	(1)
R- Q	0/0	-96.5	-96.5	0.04(1)	10.00	C- M	0 / 829	0.07	(1)
Q-P	0/0	-18.5	-18.5	0.05(4)	10.00	M-E	-242 / 0	0.04	(1)
P- 0	0 / 1585	-18.5	-18.5	0.14(1)					
O- N	0 / 1597	-18.5	-18.5	0.14(1)	10.00				
N- M	0 / 1597			0.14(1)					
M- L	0 / 2079			0.21(1)					
L- K	0 / 2079			0.21(1)					
K- J		-18.5							
J- I		-18.5							
I- H	0/0	-96.5	-96.5	0.04 (1)	10.00				
FACTO	DED CONCENT	TDATEDIO	NDC (DC)					
	RED CONCENT				۸.	DID	TVDE	ueei	CONIN

LC1 -6517 LOC. 27-8-7 MAX--6517 FACE DIR. FRONT VERT TYPE

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED
BY USER. LOADS WERE DERIVED FROM USER INPUT

NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS: TOP CH. LL = TOP CH. LL = DL = BOT CH. LL = DL = TOTAL LOAD =

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD LOAD OF 6.0 P.S.F.

*** NON STANDARD GIRDER *** ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.99")
CALCULATED VERT. DEFL.(LL)= L/999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (0.99")
CALCULATED VERT. DEFL.(TL) = L/999 (0.12")

CANTILEVER DEFLECTION: CANTILEVER DEFLECTION:
ALLOWABLE DEFL.(IL) = 1/120 (0.19")
CALCULATED VERT. DEFL.(IL) = 1/580 (0.03")
ALLOWABLE DEFL.(TL) = 1/120 (0.19")
CALCULATED VERT. DEFL.(TL) = 1/349 (0.05")

 $\label{eq:csi:TC=0.42/1.00 (E-F:1) , BC=0.49/1.00 (J-K:1) , WB=0.56/1.00 (G-J:1) , SSI=0.12/1.00 (B-C:1) }$

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

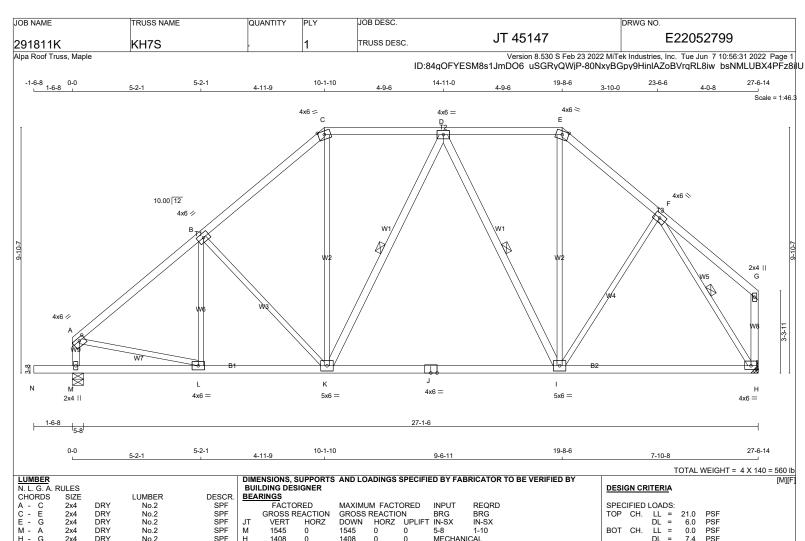

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (F) (INPUT = 0.90) JSI METAL= 0.86 (P) (INPUT = 1.00)

CONTINUED ON PAGE 2

N. L. G. A. R	N. L. G. A. RULES									
CHORDS	SIZE		LUMBER	DESCR.						
A - C	2x4	DRY	No.2	SPF						
C - E	2x4	DRY	No.2	SPF						
E - G	2x4	DRY	No.2	SPF						
M - A	2x4	DRY	No.2	SPF						
H - G	2x4	DRY	No.2	SPF						
N - J	2x4	DRY	No.2	SPF						
J - H	2x4	DRY	No.2	SPF						
ALL WEBS	2x3	DRY	No.2	SPF						
EXCEPT										
K - D	2x4	DRY	No.2	SPF						
D - I	2x4	DRY	No.2	SPF						
DRY: SEASO	ONEDII	IMPED								

PL	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Χ			
Α	TMVW-t	MT20	4.0	6.0	1.50	2.75			
В, [D, F								
В	TMWW-t	MT20	4.0	6.0					
С	TTW-m	MT20	4.0	6.0	Edge				
Ε	TTW-m	MT20	4.0	6.0	Edge				
G	TMV+p	MT20	2.0	4.0					
Н	BMVW1-t	MT20	4.0	6.0	1.75	3.00			
1	BMWWW-t	MT20	5.0	6.0					
J	BS-t	MT20	4.0	6.0					
K	BMWWW-t	MT20	5.0	6.0					
L	BMWW-t	MT20	4.0	6.0					
M	BMV1+p	MT20	2.0	4.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

<u>BEA</u>	RINGS						
	FACTOR	RED	MAXIMUI	M FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Л	1545	0	1545	0	0	5-8	1-10
1	1408	0	1408	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 1-8.

UNFACTORED REACTIONS

45T LOASE MAY MINI COMPONENT REACTION

	1ST LCASE	NAX./I	MIN. COMPO				
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
M	1107	643 / 0	0/0	0/0	0/0	463 / 0	0/0
Н	1010	579 / 0	0/0	0/0	0/0	432 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) $\ensuremath{\mathsf{M}}$

BRACING
FOR SECTION C-E, MAX. PURLIN SPACING = 2.00 FT.
FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.11 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-K, D-I, F-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS	RED	WEBS MAX. FACTORED					
MEMB.								
							(LBS)	
FR-TO	` '				LENGTH			- (- /
A-B	-1464 / 0							0.08(1)
B- C	-1295 / 0	-78.0	-78.0	0.28(1)	5.36	B-K	-260 / 0	0.28 (1)
C- D	-974 / 0	-93.0	-93.0	0.28(1)	2.00	K-C	0 / 493	0.11 (1)
D- E	-867 / 0	-93.0	-93.0	0.28(1)	2.00	K- D	-179 / 0	0.11 (1)
E-F	-1148 / 0	-78.0	-78.0	0.16(1)	5.77	D- I	-424 / 0	0.26 (1)
F- G	0 / 22	-78.0	-78.0	0.19(1)	10.00	I- E	0 / 433	0.10 (1)
M- A	-1353 / 0	0.0	0.0	0.14(1)	6.97	I- F	0 / 157	0.04 (4)
H- G	-120 / 0	0.0	0.0	0.02(1)	7.81	A- L	0 / 1173	0.26 (1)
						F- H	-1457 / 0	0.52(1)
N- M	0/0	-96.5	-96.5	0.16(1)	10.00			, ,
M- L	0/0	-18.5	-18.5	0.11(4)	10.00			
L- K	0 / 1148	-18.5	-18.5	0.35(4)	10.00			
K- J	0 / 1053	-18.5	-18.5	0.46(4)	10.00			
J- I	0 / 1053	-18.5	-18.5	0.46(4)	10.00			
I- H	0 / 778	-18.5	-18.5	0.43(4)	10.00			

21.0 6.0 0.0 7.4 34.4 TOP CH. LL = DL = BOT CH. LL = DL = TOTAL LOAD =

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD LOAD OF 6.0 P.S.F.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

CSA 086-1 TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.92")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.92")
CALCULATED VERT. DEFL.(TL) = L/999 (0.17")

CANTILEVER DEFLECTION:
ALLOWABLE DEFL.(LL)= L/120 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/120 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

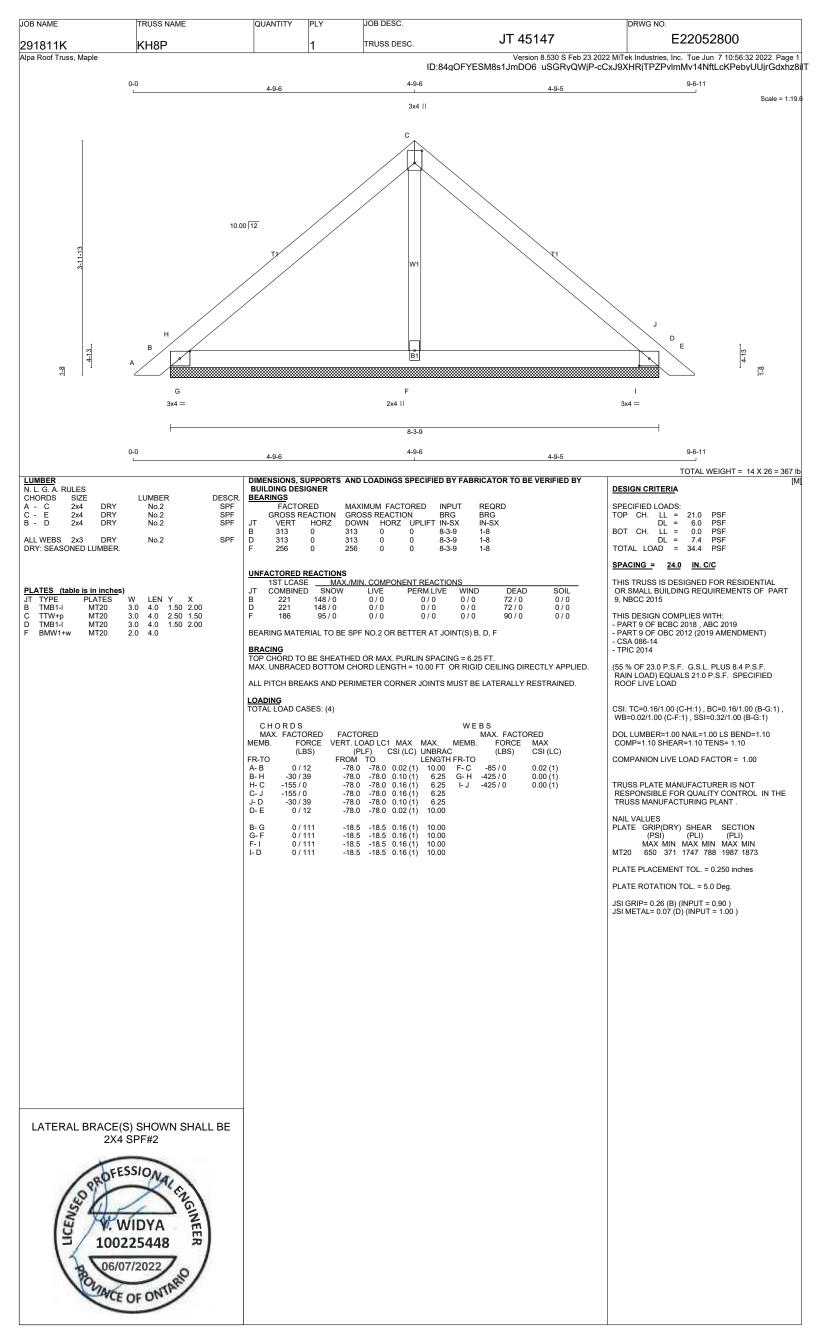
CSI: TC=0.30/1.00 (A-B:1) , BC=0.46/1.00 (I-K:4) , WB=0.52/1.00 (F-H:1) , SSI=0.21/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES


PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

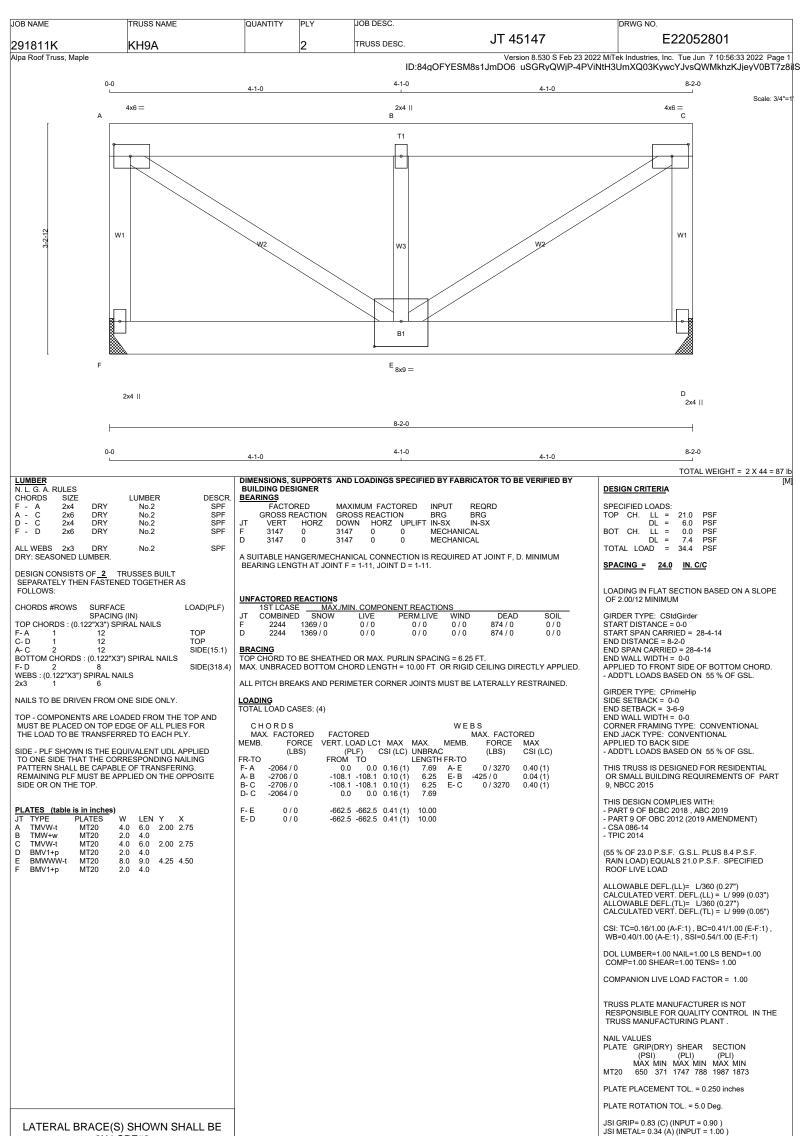
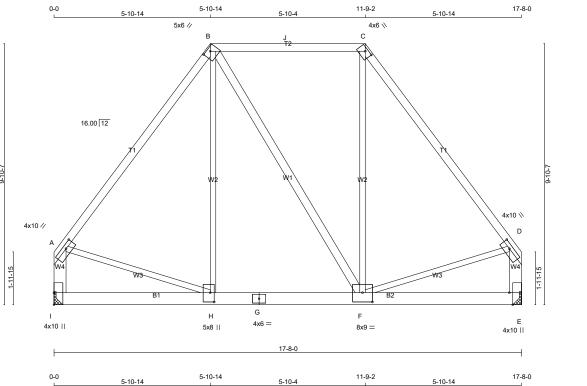

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.86 (F) (INPUT = 0.90) JSI METAL= 0.39 (J) (INPUT = 1.00)



JOB NAME TRUSS NAME QUANTITY PLY JOB DESC DRWG NO. JT 45147 E22052802 291811K KH10A TRUSS DESC Version 8.530 S Feb 23 2022 MTrek Industries, Inc. Tue Jun 7 10:56:34 2022 Page 1 ID:84gOFYESM8s1JmDO6 uSGRyQWiP-Yb34aDlhF4fGeDv8TK3YS4zXe8uL3mqnA9lk0az8iR na Roof Truss Manle

LUMBER				
N. L. G. A. RI	JLES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
I - A	2x6	DRY	No.2	SPF
E - D	2x6	DRY	No.2	SPF
I - G	2x6	DRY	No.2	SPF
G - E	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
B - F	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (I	١)
TOP CH	HORDS: (0.1	122"X3") SPIR	
A- B	1 `	12	TOP
B- C	1	12	TOP
C-D	1	12	TOP
I- A	2	12	TOP
E- D	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") S	PIRAL NAILS
I- G	2	8	SIDE(308.4)
G-E	2	8	SIDE(308.4)
WEBS:	(0.122"X3")	SPIRAL NAILS	
2x3	` 1 '	6	
2x4	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN	Y X	
Α	TMVW-t	MT20	4.0	10.0	1.50 4.	.00
В	TTWW-h	MT20	5.0	6.0	1.50 3.	.00
С	TTW-h	MT20	4.0	6.0	1.25 3.	.00
D	TMVW-t	MT20	4.0	10.0	1.50 4.	.00
Е	BMV1+t	MT20	4.0	10.0	Edge 1.	50
F	BMWWW-t	MT20	8.0	9.0	4.25 4.	50
G	BS-t	MT20	4.0	6.0		
Н	BMWW+t	MT20	5.0	8.0	4.25 1.	75
1	BMV1+t	MT20	4.0	10.0	5.50	

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	<u>RINGS</u>						
	FACTOR	ED	MAXIMUN	/ FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
1	6344	0	6344	0	0	MECHANIC	CAL
E	6344	0	6344	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I, E. MINIMUM BEARING LENGTH AT JOINT I = 4-0, JOINT E = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	: <u>MAX./N</u>	<u>иім. СОМРО</u>	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
1	4527	2742 / 0	0/0	0/0	0/0	1785 / 0	0/0
E	4527	2742 / 0	0/0	0/0	0/0	1785 / 0	0/0

BRACING
FOR SECTION B-C, MAX. PURLIN SPACING = 2.00 FT.
FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.05 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

СН	ORDS				WEBS			
MAX	K. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	OAD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	LF) (CSI (LC)	UNBRAG	0	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	-4760 / 0	-78.0	-78.0	0.83(1)	4.06	H- B	0 / 3291	0.41 (1)
B- J	-2896 / 0	-93.0	-93.0	0.37 (1)	2.00	B- F	0 / 28	0.00(1)
J- C	-2896 / 0	-93.0		0.37 (1)		F- C	0 / 3333	0.41 (1)
C- D	-4784 / 0	-78.0	-78.0	0.83(1)	4.05	A- H	0 / 2935	0.36(1)
I- A	-4768 / 0	0.0	0.0	0.19(1)	6.63	F- D	0 / 2949	0.37(1)
E- D	-4790 / 0	0.0	0.0	0.19(1)	6.62			
I- H	0/0	-635.2	-635.2	0.74(1)	10.00			
H- G	0 / 2881	-635.2	-635.2	0.97 (1)	10.00			
G-F	0 / 2881	-635.2	-635.2	0.97(1)	10.00			
F-E	0/0	-635.2	-635.2	0.79(1)	10.00			

TOTAL WEIGHT = 2 X 104 = 208 lb [M] **DESIGN CRITERIA**

SPEC	IFIED	LOAI	DS:		
TOP	CH.	LL	=	21.0	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.4	PS
TOTA	1 10	۸D	_	211	DCI

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD LOAD OF 6.0 P.S.F.

GIRDER TYPE: CStdGirder
START DISTANCE = 0-0
START SPAN CARRIED = 27-6-14
END DISTANCE = 17-8-0
END SPAN CARRIED = 27-6-14
END WALL WIDTH = 0-0
APPLIED TO FRONT SIDE OF BOTTOM CHORD.
- ADDT'L LOADS BASED ON 55 % OF GSL.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

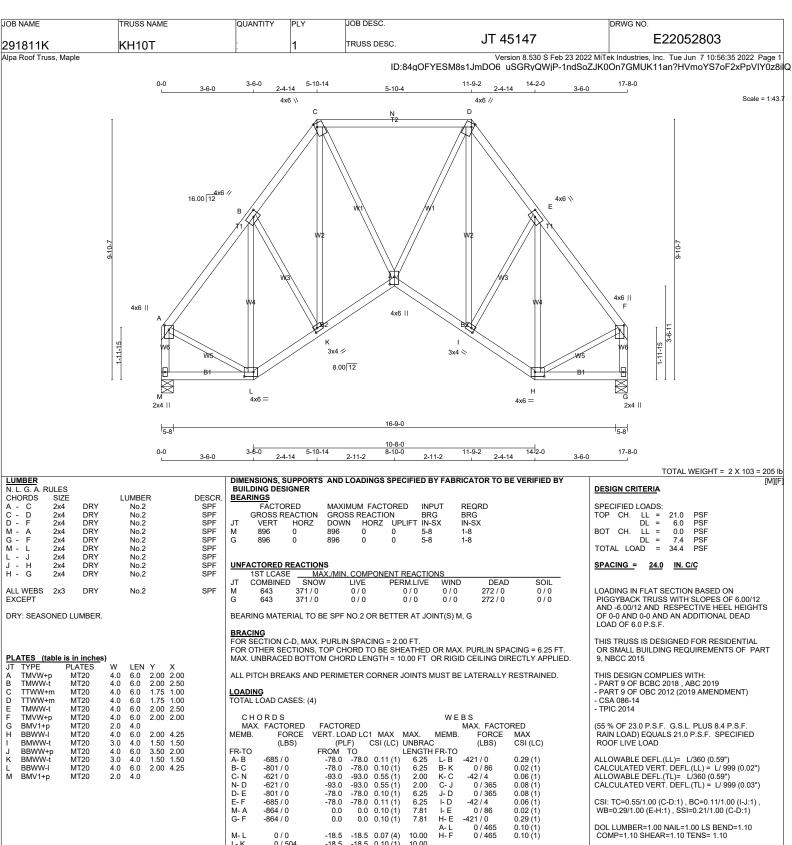
(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL)= L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/999 (0.21")

CSI: TC=0.83/1.00 (C-D:1) , BC=0.97/1.00 (F-H:1) , WB=0.41/1.00 (C-F:1) , SSI=0.75/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00


AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

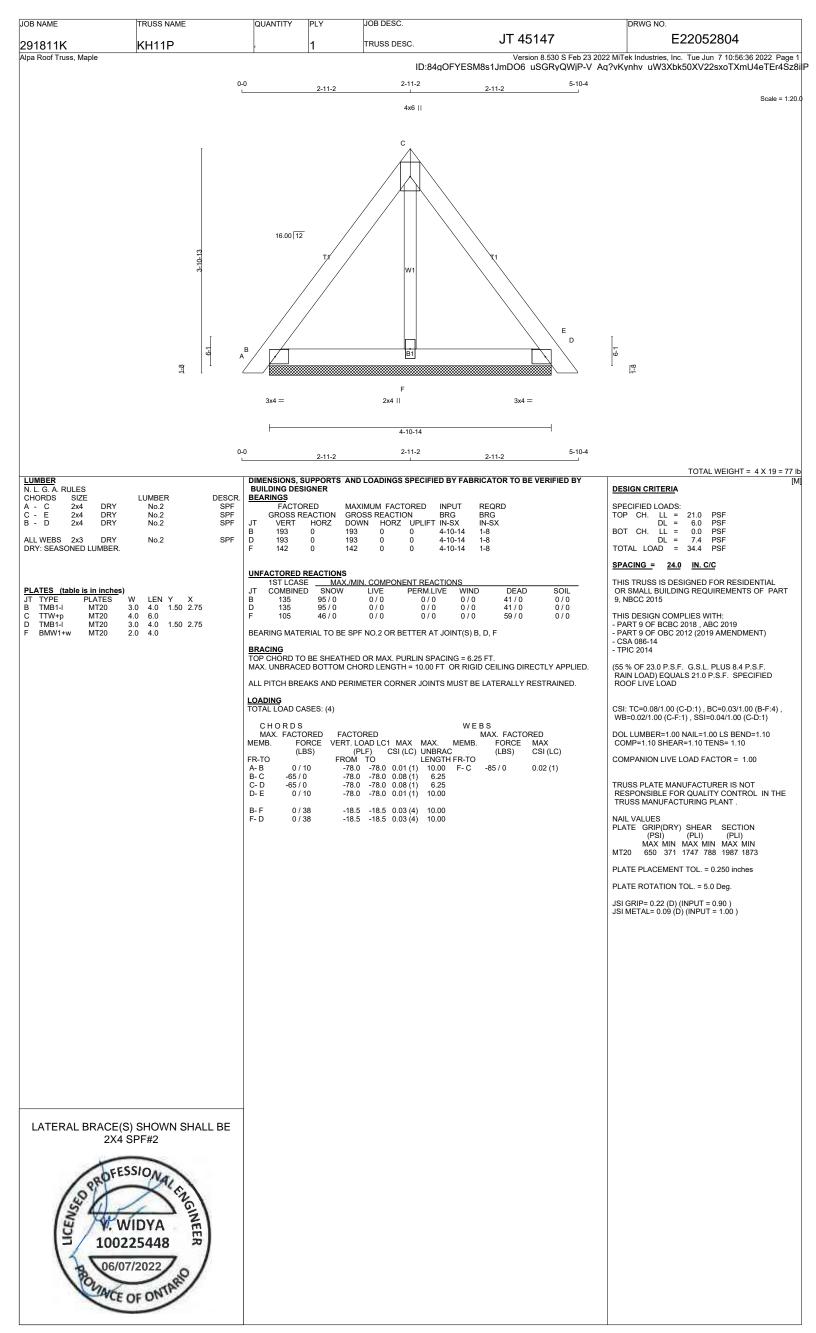
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (H) (INPUT = 0.90) JSI METAL= 0.58 (C) (INPUT = 1.00)

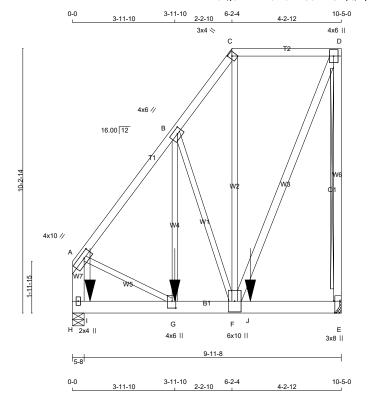
21 MAX MAX. MEMb.
CSI (LC) UNBRAC
LENGTH FR-TO
.0 0.11 (1) 6.25 L- B
.10 0.10 (1) 6.25 B- K
3.0 0.55 (1) 2.00 C-J
8.0 0.10 (1) 6.25 J- D
8.0 0.10 (1) 6.25 J- D
0 0.10 (1) 7.81 J- E
210 (1) 7.81 H- E
A-I
-200 H--421/0 0/86 -42/4 0/365 0/365 -42/4 0/86 -421/0 0/465 0/465 A- B B- C C- N N- D D- E E- F M- A G- F -621 / 0 -621 / 0 -801 / 0 -685 / 0 -864 / 0 0 / 0 0 / 504 0 / 549 0 / 549 0 / 504 0 / 0 -18.5 0.07 (4) -18.5 0.10 (1) -18.5 0.11 (1) -18.5 0.11 (1) -18.5 0.10 (1) -18.5 0.07 (4) -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 10.00 10.00 10.00 10.00 10.00 10.00 M- L L- K K- J

JSI GRIP= 0.89 (K) (INPUT = 0.90) JSI METAL= 0.25 (A) (INPUT = 1.00)


DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

COMPANION LIVE LOAD FACTOR = 1.00


PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg

na Roof Truss Manle

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Tue Jun 7 10:56:37 2022 Page 1 nD06 uSGRyQWiP-zAkCCFKaY?1rVgej9ScF4ia7CL2HG1nDt7 Ocvz8ilO ID:84gOFYESM8s1JmDO6

TOTAL WEIGHT = 2 X 83 = 166 lb

LUMBER							
N. L. G. A. R	ULES						
CHORDS	SIZE		LUMBER	DESCR.			
A - C	2x4	DRY	No.2	SPF			
C - D	2x4	DRY	No.2	SPF			
E - D	2x4	DRY	No.2	SPF			
H - A	2x6	DRY	No.2	SPF			
H - E	2x6	DRY	No.2	SPF			
ALL WEBS	2x3	DRY	No.2	SPF			
EXCEPT							
F - D	2x4	DRY	No.2	SPF			
DDV: SEASONED LUMBED							

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	HORDS: (0.1	122"X3") SPIRAĹ NAILS	
A- C	1 `	12	TOP
C-D	1	12	TOP
D-E	1	12	TOP
H- A	2	4	SIDE(142.1)
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	, ,
H-E	2	12	SIDE(205.0)
WEBS:	(0.122"X3")	SPIRAL NAILS	(/
B- G	` 1	6	SIDE(339.3)
2x3	1	6	()
214	4	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN	Y >	(
Α	TMVW-t	MT20	4.0	10.0	2.00 4	.00		
В	TMWW-t	MT20	4.0	6.0	2.00 2	2.50		
С	TTW+h	MT20	3.0	4.0	1.75 1	.25		
D	TMVW+p	MT20	4.0	6.0				
Е	BMV1+t	MT20	3.0	8.0	Edge 0	.50		
F	BMWWW+t	MT20	6.0	10.0	-			
G	BMWW+t	MT20	4.0	6.0	3.25 1	.75		
н	BMV1+n	MT20	2.0	4 0				

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	EARINGS									
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD			
	GROSS R	GROSS REACTION			BRG	BRG				
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX			
Ε	4033	0	4033	0	0	MECHANI	CAL			
Н	4127	0	4127	0	0	5-8	2-4			

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 3-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	<u>MIN. COMPO</u>	<u>NENT REACTIO</u>	NS			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
Е	2876	1755 / 0	0/0	0/0	0/0	1120 / 0	0/0	
Н	2942	1796 / 0	0/0	0/0	0/0	1146 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.29 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x6 DRY SPF No.2 T-BRACE AT D-E

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS				WEBS				
MAX	K. FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB	. FORCE	MAX	
	(LBS)	(Pl	_F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	-2905 / 0	-78.0	-78.0	0.15(1)	5.29	G-B	0 / 1796	0.22(1)	
B- C	-2142 / 0	-78.0	-78.0	0.07(1)	6.00	B- F	-1537 / 0	0.78(1)	
C- D	-1272 / 0	-78.0	-78.0	0.14(1)	6.25	F- C	0 / 1469	0.18 (1)	
E- D	-3190 / 0	0.0	0.0	0.49(1)	7.81	F- D	0 / 3295	0.29(1)	
H- A	-3144 / 0	0.0	0.0	0.13(1)	7.78	A- G	0 / 1876	0.23 (1)	
H- I	0/0			0.27 (1)					
I- G	0/0	-249.6	-249.6	0.27(1)	10.00				
G-F	0 / 1752	-659.6	-659.6	0.45(1)	10.00				
F- J	0/0	-659.6	-659.6	0.33(1)	10.00				
J- E	0/0	-452.6	-452.6	0.33 (1)	10.00				
E40T0	DED CONCENT	EDATED I	A DO (1	DO)					

17101	NOTONED CONCENTIVITED ECINDO (EDC)										
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.		
G	3-11-10						TOTAL		C1		
1	8-4	-804	-804		FRONT	VERT	TOTAL		C1		
J	6-10-12	-804	-804		FRONT	VERT	TOTAL		C1		

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED
BY USER.

LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS:

TOP	CH.	LL	=	21.0	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	L LO	AD	=	34.4	PS

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

GIRDER TYPE: CStdGirder
START DISTANCE = 8-4
START SPAN CARRIED = 11-7-0
END DISTANCE = 6-10-12
END SPAN CARRIED = 11-7-0
END WALL WIDTH = 0-0
APPLIED TO FRONT SIDE OF BOTTOM CHORD.
- ADDT'L LOADS BASED ON 55 % OF GSL.

GIRDER TYPE: CStdGirde GIRDER TYPE: CStdGirder
START DISTANCE = 6-10-12
START SPAN CARRIED = 3-0-0
END DISTANCE = 10-5-0
END SPAN CARRIED = 3-0-0
END WALL WIDTH = 0-0
APPLIED TO FRONT SIDE OF BOTTOM CHORD.
- ADDT'L LOADS BASED ON 55 % OF GSL.

GIRDER TYPE: CStdGird GIRDER TYPE: CStdGirder
START DISTANCE = 3-11-10
START SPAN CARRIED = 19-0-0
END DISTANCE = 10-5-0
END SPAN CARRIED = 19-0-0
END WALL WIDTH = 0-0
APPLIED TO BACK SIDE OF BOTTOM CHORD.
- ADDT'L LOADS BASED ON 55 % OF GSL.

*** NON STANDARD GIRDER ***
ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 **TPIC 2014**

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.35")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.35")
CALCULATED VERT. DEFL.(TL)= L/999 (0.06")

CSI: TC=0.49/1.00 (D-E:1) , BC=0.45/1.00 (F-G:1) , WB=0.78/1.00 (B-F:1) , SSI=0.65/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 P=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT .

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (H) (INPUT = 0.90) JSI METAL= 0.39 (G) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. DRWG NO. JT 45147 E22052806 291811K KH22 TRUSS DESC Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Tue Jun 7 10:56:38 2022 Page 1 ID:84g0FYESM8s1JmD06 uSGRyQWjP-RMIbQaLCJJAi7qDvi97Ucw7E3ISs?cJN5njy9Lz8ilN Roof Truss Manle 0-0 8-4-7 11-7-0 1-6-8 13-1-8 4x6 \\ 18.35 12 4x6 || 8-10-15 2x4 \\ 9x6 II W7

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
I - A	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
I - F	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
J - K	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PI A	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
A	TMVW+p	MT20	4.0	6.0	1.75	2.00				
В	TTWW+m	MT20	4.0	6.0	Edge	0.75				
С	TTW+m	MT20	3.0	4.0	Edge	0.75				
D	TMVW-t	MT20	4.0	6.0	2.00	1.50				
Е	TWM-I	MT20	2.0	4.0	1.00	1.75				
F	BMV1+p	MT20	2.0	4.0						
G	BMWWW-t	MT20	4.0	6.0						
Н	BMWW-t	MT20	3.0	4.0						
1	BMV1+p	MT20	2.0	4.0						
J	VMW*-I	MT20	5.0	6.0	2.50					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS

4x6 =

5-8

3EA	RINGS						
	FACTOR	RED	MAXIMUN	M FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	803	0	803	0	0	MECHANIC	CAL
	898	0	898	0	0	5-8	1-8

11-1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 1-8.

3x4 =

UNF	UNFACTORED REACTIONS											
-	1ST LCASE	MAX./	MIN. COMPO	NENT REACTIO	NS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
1	573	347 / 0	0/0	0/0	0/0	225 / 0	0/0					
F	639	399 / 0	0/0	0/0	0/0	240 / 0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

2x4 ||

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

MAX. UNBRACED INTERIOR CHORD LENGTH = 10.00 FT

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x3 DRY SPF No.2 T-BRACE AT B-H, C-G

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB I ENICTU OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHO	ORDS					WE	BS		
MAX	. FACTORE	D FACTO	RED				MAX. FACT	TORED	
MEMB.	FORC	E VERT. LO	DAD LC1	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(P	LF) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	-413 / 0	-78.0	-78.0	0.12(1)	6.25	H- B	-194 / 16	0.25	(1)
B- C	-239 / 0	-114.5	-114.5	0.67(1)	6.25	B- G	0 / 32	0.01	(1)
C- D	-469 / 0	-78.0	-78.0	0.16(1)	6.25	G-C	-140 / 40	0.18	(1)
D- E	0 / 25			0.16(1)			0 / 395		
I- A		0.0	0.0	0.31(1)	7.81	G- D	0 / 335	0.08	(1)
F- J	-866 / 0	0.0						0.00	(1)
J- D	-866 / 0	0.0	0.0	0.17 (1)	7.81	E-K	0/0	0.00	(1)
I- H	0/0	-27.2	-27.2	0.14 (4)	10.00				
H- G	0 / 221	-27.2	-27.2	0.17(4)	10.00				
G-F	0 / 13	-27.2	-27.2	0.14 (4)	10.00				
FACTOR	RED CONCE	ENTRATED LO	OADS (L	BS)					
JT	LOC. I	_C1 MAX-	MAX	+ F/	ACE D	DIR.	TYPE	HEEL	CON

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 75 = 151 lb DESIGN CRITERIA

21.0 6.0 0.0 7.4 34.4 TOP CH. LL = DL = DL = DL = TOTAL LOAD =

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

GIRDER TYPE: CPrimeHip LEFT SETBACK = 2-9-9 LEFT SETBACK = 2-9-9
RIGHT SETBACK = 3-2-9
END SETBACK = 3-10-8
END WALL WIDTH = 0-0
CORNER FRAMING TYPE: CONVENTIONAL
END JACK TYPE: CONVENTIONAL
APPLIED TO FRONT SIDE
- ADDT'L LOADS BASED ON 55 % OF GSL.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086.14

- TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.39")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.39")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.03")

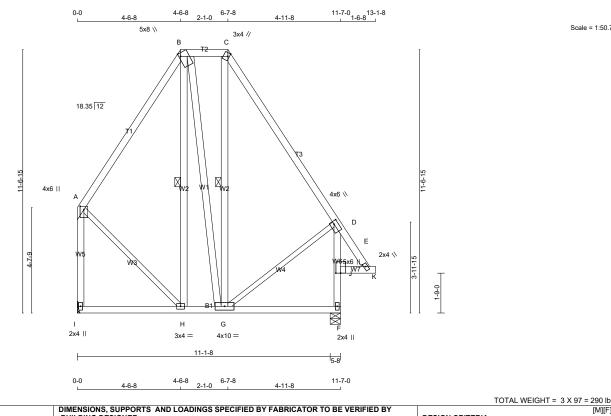
CSI: TC=0.67/1.00 (B-C:1) , BC=0.17/1.00 (G-H:4) , WB=0.25/1.00 (B-H:1) , SSI=0.27/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.69 (H) (INPUT = 0.90) JSI METAL= 0.18 (F) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. DRWG NO. JT 45147 E22052807 291811K KH23 TRUSS DESC

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Tue Jun 7 10:56:40 2022 Page 1 ID:84gOFYESM8s1JmDO6 uSGRyQWiP-NIQLrGNSqwQQM8MIqaAyiLChOZ9DTZ5gZ5C3DDz8 IIL

LUMBER
N. L. G. A.
CHORDS
A - B
B - C
C - E
I - A
F - D
I - F DESCR. SPF SPF SPF SPF SPF SPF SIZE 2x4 2x4 2x4 2x4 2x4 DRY DRY DRY DRY DRY DRY 2x4 2x4 No.2 ALL WEBS EXCEPT A - H G - D 2x4 DRY No.2 SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)

na Roof Truss Manle

JT	TYPE	PLATES	W	LEN	Υ	Χ
Α	TMVW+p	MT20	4.0	6.0	1.75	2.0
В	TTWW+m	MT20	5.0	8.0	Edge	0.7
С	TTW+m	MT20	3.0	4.0	Edge	0.7
D	TMVW-t	MT20	4.0	6.0	2.00	1.5
Е	TWM-I	MT20	2.0	4.0	1.00	1.7
F	BMV1+p	MT20	2.0	4.0		

MT20 MT20 MT20 MT20 MT20 2.50

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

BEA	RINGS						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
1	554	0	554	0	0	MECHAN	IICAL
F	657	0	657	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 1-8.

UNFACTORED REACTIONS

45T LOASE MAY /MINI COMPONENT REACTION

	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
1	395	241 / 0	0/0	0/0	0/0	154 / 0	0/0
F	466	296 / 0	0/0	0/0	0/0	170 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

MAX. UNBRACED INTERIOR CHORD LENGTH = 10.00 FT

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF B-H, C-G.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

RDS			WEBS					
FACTORED	FACTO	RED				MAX. FACTO	RED	
FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
(LBS)	(PL	.F) (CSI (LC)	UNBRA	C	(LBS)	CSI (LC)	
	FROM	TO		LENGTH	FR-TO			
-256 / 0	-78.0	-78.0	0.21(1)	6.25	H- B	-62 / 18	0.04(1)	
-142 / 0	-78.0	-78.0	0.04(1)	6.25	B- G	0 / 18	0.00(4)	
-294 / 0	-78.0	-78.0	0.24(1)	6.25	G-C	-16 / 39	0.01(1)	
-4 / 0	-78.0	-78.0	0.21(1)	10.00	A- H	0 / 187	0.04(1)	
-517 / 0	0.0	0.0	0.20(1)	7.81	G- D	0 / 125	0.03(1)	
-618 / 0	0.0	0.0	0.03(1)	7.81	J- E	0 / 78	0.01(1)	
-618 / 0	0.0	0.0	0.03(1)	7.81	E-K	0/0	0.00(1)	
0/0	-18.5	-18.5	0.08(4)	10.00				
0 / 139	-18.5	-18.5	0.11 (4)	10.00				
0 / 40	-18.5	-18.5	0.10 (4)	10.00				
	(LBS) -256 / 0 -142 / 0 -294 / 0 -4 / 0 -517 / 0 -618 / 0 -618 / 0 0 / 0 0 / 139	FACTORED FORCE (LBS) (PL FROM -78.0	FACTORED FACTORED FORCE (LBS) (PLF)	FACTORED FACTORED FOR TO THE PROOF FOR THE P	FACTORED FACTORED FACTORED FORCE (LBS) (PLF) CSI (LC) UNBRAI (LBGT) -78.0 -78.0 0.24 (1) 6.25 (-78.0 -78.0 0.24 (1) 6.25 (-78.0 -78.0 0.24 (1) 6.25 (-78.0 -78.0 0.24 (1) 6.25 (1) 6.25 (1	FACTORED FORCE FORCE (LBS) FACTORED VERT. LOAD LCT MAX (LBS) MAX. MEMB. VERMS (LBS) MAX. VERMS (LBS) <	FACTORED FORCE (LBS) FACTORED VERT. LOAD LC1 MAX (PLF) MAX. CSI (LC) MBAX. UNBRAC UNBRAC LENGTH FR.TO MAX. FORCE (LBS) -256 / 0 -78.0 -78.0 0.21 (1) 6.25 B- G 0/18 -142 / 0 -78.0 -78.0 0.04 (1) 6.25 B- G 0/18 -294 / 0 -78.0 -78.0 0.24 (1) 6.25 B- G 0/18 -4 / 0 -78.0 -78.0 0.24 (1) 6.25 B- G 0/18 -517 / 0 -78.0 -78.0 0.24 (1) 6.25 B- G 0/18 -517 / 0 -78.0 -78.0 0.24 (1) 6.25 B- G 0/183 -518 / 0 -8.0 -78.0 0.20 (1) 7.81 G- D 0/125 -618 / 0 0.0 0.0 0.03 (1) 7.81 J- E 0/78 -618 / 0 0.0 0.0 0.03 (1) 7.81 J- E 0/0 0 / 0 0.0 0.03 (1) 7.81 J- E 0/0 0 / 0	

DESIGN CRITERIA 21.0 6.0 0.0 7.4 34.4 LL = DL = LL = DL = AD = вот сн.

SPACING = 24.0 IN. C/C

DL TOTAL LOAD

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.39")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.39")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.24/1.00 (C-D:1) , BC=0.11/1.00 (G-H:4) , WB=0.04/1.00 (B-H:1) , SSI=0.10/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.31 (D) (INPUT = 0.90) JSI METAL= 0.13 (F) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC DRWG NO. JT 45147 E22052808 291811K TRUSS DESC KJ1 Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Tue Jun 7 10:56:41 2022 Page 1 ID:84gOFYESM8s1JmD06 uSGRyQWjP-rx j2cO4bEYH HxUOIhBEYItXyUJC0?pnlycmgz8 na Roof Truss Manle -1-6-8 0-0 3-10-14 1-6-8 16.00 12 1-11-15 8 2x4 || 1-6-8 3-3-14 5-8 1-8 LUMBER N. L. G. A. RULES CHORDS SI7F D - A TOTAL WEIGHT = 21 X 16 = 334 lb [M] DESIGN CRITERIA LUMBER No.2 No.2 No.2 SIZE 2x4 2x4 2x4 2x4 DRY DRY DRY D - A A - B E - C 21.0 6.0 0.0 7.4 34.4 TOP CH. LL = DL = DL = DL = TOTAL LOAD = DRY: SEASONED LUMBER SPACING = 24.0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) B , C PLATES (table is in inches)
JT TYPE PLATES THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 UNFACTORED REACTIONS TMV+p BMV1+p SNOW COMPONENT REACTIONS
LIVE PERM.LIVE WIND COMBINED DEAD THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF DBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014 158 / 0 70 / 0 0 / 0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 104 / 0 20 / 0 22 / 0 0/0 0/0 0/0 D B C 263 90 22 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. (55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. LOADING TOTAL LOAD CASES: (7) ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00") CHORDS MAX. FACTORED FACTORED
VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
LENGTH FR-TO
7.81 WEBS MAX. FACTORED CANTILEVER DEFLECTION: ALLOWABLE DEFL.(LL) = L/120 (0.19") CALCULATED VERT. DEFL.(LL) = L/999 (0.01") ALLOWABLE DEFL.(TL) = L/120 (0.19") CALCULATED VERT. DEFL.(TL) = L/999 (0.01") MEMB. MAX CSI (LC) (PLF) CSI (LC) UNBRA FROM TO LENGTI 0.0 0.0 0.12 (1) 7.81 -78.0 -78.0 0.15 (1) 6.25 (LBS) (LBS) FR-TO D- A A- B CSI: TC=0.15/1.00 (A-B:1) , BC=0.18/1.00 (D-E:7) , WB=0.00/1.00 (n/a:0) , SSI=0.14/1.00 (D-E:7) -96.5 -96.5 0.18 (7) 10.00 -18.5 -18.5 0.08 (4) 10.00 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN COMPANION LIVE LOAD FACTOR = 1.00 PATTERN-LOADING CHECK APPLIED TO THIS TRUSS. TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.15 (A) (INPUT = 0.90) JSI METAL= 0.08 (A) (INPUT = 1.00) LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

WIDYA REP

06/07/2022 ONTACE OF ONTARIO JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. DRWG NO. JT 45147 E22052809 291811K KJ1S TRUSS DESC Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Tue Jun 7 10:56:42 2022 Page 1 ID:84gOFYESM8s1JmDO6 uSGRyQWiP-J7Y5GyOjMXg8cRWhx?CRnml2UMrLxTFy0Ph9l6z8|JJ pa Roof Truss. Manle 16.00 12 2-6-10 С 2x4 || 3-4-6 1-8 3-5-14 TOTAL WEIGHT = 4 X 14 = 54 lb [M][F] LUMBER N. L. G. A. RULES CHORDS SIZE D - A DESIGN CRITERIA LUMBER No.2 No.2 No.2 SIZE 2x4 2x4 2x4 2x4 | MAXIMUM FACTORED | INPUT GROSS REACTION BRG | DOWN HORZ UPLIFT IN-SX 168 0 0 MECHA 125 0 0 1-8 43 0 0 1-8 | SPECIFIED LOADS: DRY DRY DRY D - A A - B D - C 21.0 6.0 0.0 7.4 34.4 TOP CH. LL = DL = BOT CH. LL = DL = TOTAL LOAD = 0 DRY: SEASONED LUMBER. 1-8 1-8 43 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8. SPACING = 24.0 IN. C/C PLATES (table is in inches)
JT TYPE PLATES THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 W LEN Y 2.0 4.0 2.0 4.0 TMV+p BMV1+p MT20 MT20 SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) B. C THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF DBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014
 UNFACTORED REACTIONS

 1ST LCASE JT COMBINED
 MAX/MIN. COMPONENT REACTIONS

 JT COMBINED
 SNOW
 LIVE
 PERMLIVE
 WIND

 D 120
 73/0
 0/0
 0/0
 0/0

 B 87
 67/0
 0/0
 0/0
 0/0

 C 33
 7/0
 0/0
 0/0
 0/0
 1ST LCASE COMBINED 120 87 33 DEAD 47 / 0 20 / 0 26 / 0 SOIL 0/0 0/0 0/0 (55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT. OR RIGID CEILING DIRECTLY APPLIED. ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. LOADING TOTAL LOAD CASES: (4) CSI: TC=0.14/1.00 (A-B:1) , BC=0.07/1.00 (C-D:4) , WB=0.00/1.00 (n/a:0) , SSI=0.07/1.00 (A-B:1) CHORDS MAX. FACTORED WEBS FACTORED

VERT. LOAD LC1 MAX MAX. MEMB.

(PLF) CSI (LC) UNBRAC

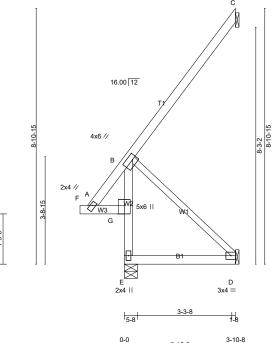
FROM TO LENGTH FR-TO

0.0 0.0 0.05 (1) 7.81

-78.0 -78.0 0.14 (1) 10.00 MAX. FACTORED
FORCE MA
(LBS) CSI DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 MEMB. FORCE (LBS) MAX CSI (LC) FR-TO D- A A- B COMPANION LIVE LOAD FACTOR = 1.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. D- C 0/0 -18.5 -18.5 0.07 (4) 10.00 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.12 (A) (INPUT = 0.90) JSI METAL= 0.07 (A) (INPUT = 1.00)

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

WIDYA REP


06/07/2022

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY DRWG NO. JT 45147 E22052810 291811K KJ3 TRUSS DESC pa Roof Truss, Maple

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Tue Jun 7 10:56:43 2022 Page 1 ID:84g0FYESM8s1JmD06 uSGRyQWjP-oK6UTIPL7ro?Db5tVijgJzqDrmAPgwE6F3RjqYz8ill

TOTAL WEIGHT = 4 X 24 = 95 lb [M][F]

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
E - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
E - D	2x4	DRY	No.2	SPF
ALL WEBS	2x4	DRY	No.2	SPF
EXCEPT				
B - D	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Χ						
Α	TWM-I	MT20	2.0	4.0	1.00	1.50						
В	TMVW-t	MT20	4.0	6.0	2.00	1.75						
D	BMW1-t	MT20	3.0	4.0		Edge						
Ε	BMV1+p	MT20	2.0	4.0								
G	VMW*-I	MT20	5.0	6.0	2.50							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS	AND LOADINGS	SPECIFIED BY	FABRICATOR	TO BE VERIFIED I	ВΥ
BUILDING DESIGNER					
REARINGS					

3EAI	RINGS						
	FACTOR	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS REACTION			BRG	BRG
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	294	0	294	0	0	5-8	1-8
)	121	0	124	0	0	1-8	1-8
)	51	0	60	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNF	ACTURED RE	EACTIONS										
	1ST LCASE	MAX./	MAX./MIN. COMPONENT REACTIONS									
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
Е	208	140 / 0	0/0	0/0	0/0	68 / 0	0/0					
С	84	67 / -2	0/0	0/0	0/0	19 / 0	0/0					
D	39	15 / -6	0/0	0/0	0/0	31 / 0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

MAX. UNBRACED INTERIOR CHORD LENGTH = 7.81 FT

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

	DRDS FACTORED	FACTO	RED			WE	BS MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO	, ,	LENGTH	FR-TO	, ,	
E- G	-260 / 0	0.0	0.0	0.04 (7)	7.81	F- A	0/0	0.00(1)
G-B	-260 / 0	0.0	0.0	0.04(7)	7.81	A- G	-19 / 60	0.01 (6)
A-B	-28 / 49	-78.0	-78.0	0.16(1)	6.25	B- D	-38 / 12	0.02 (6)
B- C	-24 / 0	-78.0	-78.0	0.13(1)	6.25			
E- D	-9 / 28	-18.5	-18.5	0.08(4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

DESIGN CRITERIA

21.0 6.0 0.0 7.4 34.4 LL = DL = LL = DL = AD = вот сн. DL TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.08/1.00 (D-E:4) , WB=0.02/1.00 (B-D:6) , SSI=0.08/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

 NAIL VALUES

 PLATE
 GRIP(DRY)
 SHEAR
 SECTION

 (PSI)
 (PLI)
 (PLI)

 MAX
 MIN
 MAX
 MIN
 MAX
 MIN

 MT20
 650
 371
 1747
 788
 1987
 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.13 (A) (INPUT = 0.90) JSI METAL= 0.05 (E) (INPUT = 1.00)

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY DRWG NO. JT 45147 E22052811 291811K KJ3S TRUSS DESC Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Tue Jun 7 10:56:44 2022 Page 1 ID:84gOFYESM8s1JmDO6 uSGRyQWjP-GWfsheQzu9wsrlg33QEvsBNOdAXvPNIFUjAGM?z8iH na Roof Truss Manle 16.00 12 C 3x4 = D 2x4 || 3-4-0 1-8 TOTAL WEIGHT = 4 X 20 = 78 lb [M][F] LUMBER
N. L. G. A.
CHORDS
D - A
A -. RULES SIZE 2x4 2x4 2x4 DESIGN CRITERIA LUMBER No.2 No.2 No.2 DESCR. SPF SPF SPF
 MAXIMUM FACTORED
 INPUT
 REG

 GROSS REACTION
 BRG
 BR

 DOWN
 HORZ
 UPLIFT
 IN-SX
 IN

 166
 0
 0
 MECHANICAL
 IN

 135
 0
 0
 1-8
 1-8
 35

 35
 0
 0
 1-8
 1-6
 1-8
 1-6
 DRY DRY DRY D - A A - B D - C 21.0 6.0 0.0 7.4 34.4 LL = DL = LL = DL = AD = вот сн. 0 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF 1-8 1-8 DL TOTAL LOAD 31

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 A
 TMVW+p
 MT20

 C
 BMW1-t
 MT20

 D
 BMV1+p
 MT20
 LEN 6.0 4.0 4.0 Y X 2.00 2.00

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) B. C

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS									
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
D	118	73 / 0	0/0	0/0	0/0	46 / 0	0/0					
В	93	73 / 0	0/0	0/0	0/0	21 / 0	0/0					
С	25	0/0	0/0	0 / 0	0/0	25 / 0	0/0					

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT. OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHO	DRDS					WEI	BS	
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRA	2	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
D- A	-135 / 0	0.0	0.0	0.04(1)	7.81	A- C	0/0	0.00(1)
A-B	0/0	-78.0	-78.0	0.16(1)	10.00			
D- C	0/0	-18.5	-18.5	0.06(4)	10.00			

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 23.0 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 21.0 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.06/1.00 (C-D:4) , WB=0.00/1.00 (A-C:1) , SSI=0.06/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

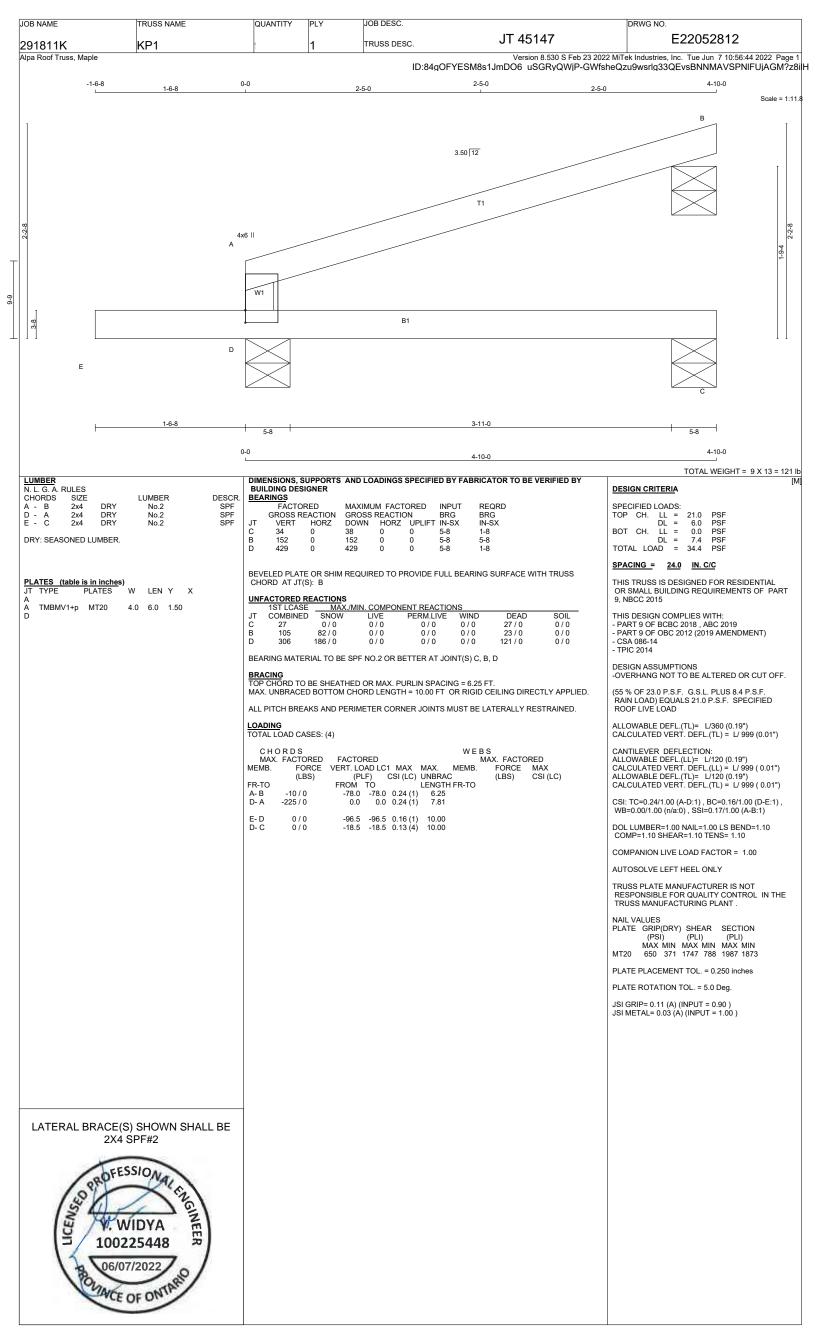
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

 NAIL VALUES

 PLATE
 GRIP(DRY)
 SHEAR
 SECTION

 (PSI)
 (PLI)
 (PLI)

 MAX
 MIN
 MAX
 MIN
 MAX
 MIN


 MT20
 650
 371
 1747
 788
 1987
 1873

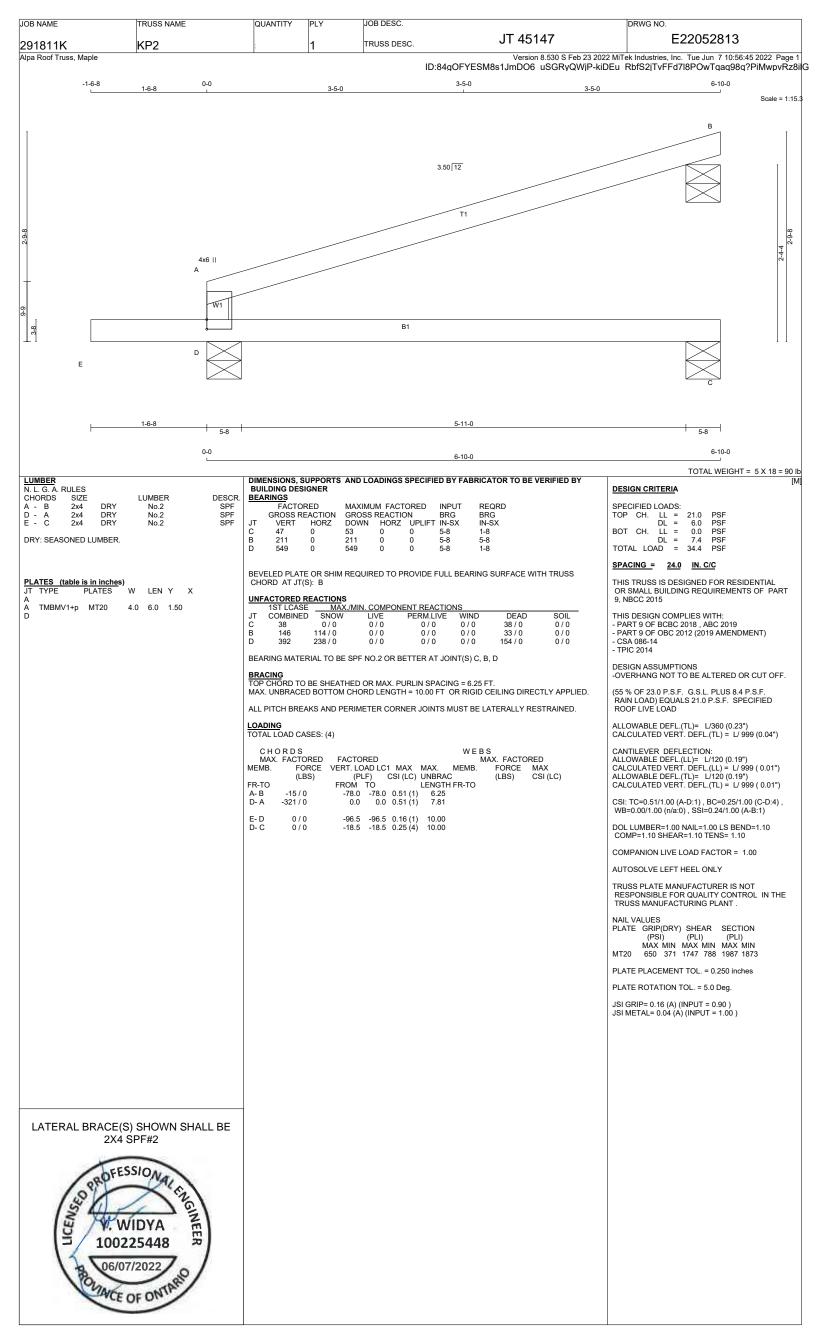

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.07 (A) (INPUT = 0.90) JSI METAL= 0.03 (A) (INPUT = 1.00)

LUS - Double Shear Joist Hangers

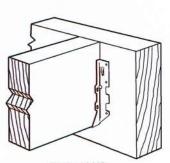
SIMPSON Strong-Tie

LUS28

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

Design:


- Factored resistances are in accordance with CSA O86-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

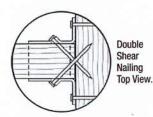
Installation:

- · Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

Options:

· These hangers cannot be modified

Typical LUS Installation


							accesses.v	Factored Resistance (lb.)				
Model No.		Dimensions (in.)				Faste	eners	D.F	ir-L	S-P-F		
	Ga.			_				Uplift	Normal	Uplift	Normal	
-1040		W	н	В	d _e ¹	Face	Joist	$(K_0=1.15)$	(K ₀ =1.00)	(K ₀ =1.15)	$(K_0 = 1.00)$	
LUS24	18	19/16	31/8	13/4	1 15/16	(4) 10d	(2) 10d	710	1630	645	1155	
LUS24-2	18	31/8	31/8	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435	
LUS26	18	19/16	43/4	13/4	35/8	(4) 10d	(4) 10d	1420	2170	1290	1630	
LUS26-2	18	31/8	41/8	2	4	(4) 16d	(4) 16d	1720	2595	1545	1920	
LUS26-3	18	45/8	43/16	2	31/4	(4) 16d	(4) 16d	1720	2595	1545	2340	
LUS28	18	19/16	6%	13/4	33/4	(6) 10d	(6) 10d	1420	2520	1290	1790	
LUS28-2	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575	
LUS28-3	18	45/8	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375	
LUS210	18	19/16	7 13/16	13/4	37/8	(8) 10d	(4) 10d	1420	2785	1290	2210	
LUS210-2	18	31/8	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195	
LUS210-3	18	45/8	83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375	

^{1.} d_{e} is the distance from the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECLUS20 3/20 exp. 6/22

(800) 999-5099 strongtie.com

HUS/LJS - Double Shear Joist Hangers

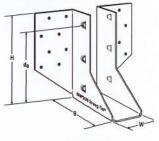
SIMPSON Strong-Tie

All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: See table Finish: G90 galvanized

Design:


- Factored resistances are in accordance with CSA O86 -14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

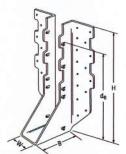

Installation:

Options:

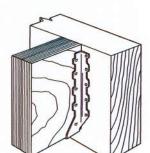
- · Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire
- · Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- · Not designed for welded or nailer applications

· See current catalogue for options

LJS26DS


0 0

0 0


0

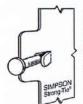
Typical LJS26DS

Installation

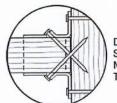
HUS210 (HUS26, HUS28, similar)

Typical HUS Installation

Typical HUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)


		Di	Dimensions (in.)				teners	Factored Resistance (lb.)					
Model No.					Ė			D.F	ir-L	S-P-F			
	Ga.	W	Н	В	d _e ¹	Face	Joist	Uplift (K ₀ =1.15)	Normal (K _D =1.00)	Uplift (K ₀ =1.15)	Normal (K ₀ =1.00)		
								lb.	lb.	lb.	lb.		
LJS26DS	18	19/16	5	31/2	45/8	(16) 16d	(6) 16d	2055	4265	1460	4115		
HUS26	16	15/8	53/8	3	315/16	(14) 16d	(6) 16d	2705	4940	2065	3875		
HUS28	16	15/8	73/32	3	63/32	(22) 16d	(8) 16d	3605	5365	2675	4345		
HUS210	16	15/8	93/32	3	731/32	(30) 16d	(10) 16d	4505	5795	4010	4740		
HUS1.81/10	16	113/16	9	3	8	(30) 16d	(10) 16d	4505	6450	4010	5200		

1. de is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab hack

Double Shear Nailing Top View.

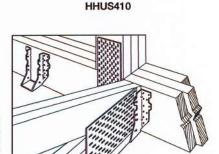
This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022 Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

HHUS - Double Shear Joist Hangers

SIMPSON Strong-Tie

All HHUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 14 gauge Finish: G90 galvanized


Design:

- Factored resistances are in accordance with CSA O86-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- · Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

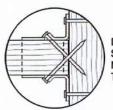
Typical HHUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

Options:

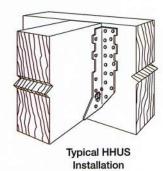
· See current catalogue for options

				/:- \		Facto		Factored Resistance (lb.)				
Model No.		U	imensio	ns (in.)		Faste	eners	D.F	ir-L	S-	S-P-F	
	Ga.		l	_		-		Uplift	Normal	Uplift	Normal	
		W	н	В	d _e ¹	Face	Joist	$(K_0=1.15)$	$(K_0=1.00)$	$(K_0=1.15)$	(K _D =1.00)	
HHUS26-2	14	35/16	5 13/16	3	3 15/16	(14) 16d	(6) 16d	2850	7335	2065	5205	
HHUS28-2	14	35/16	77/32	3	65/32	(22) 16d	(8) 16d	3765	8940	2675	6345	
HHUS210-2	14	35/16	93/32	3	8	(30) 16d	(10) 16d	4670	9660	4235	7000	
HHUS210-3	14	411/16	9	3	7 15/16	(30) 16d	(10) 16d	4670	9670	4235	6865	
HHUS210-4	14	61/8	8 29/32	3	7 27/32	(30) 16d	(10) 16d	4670	10155	4235	7210	
HHUS46	14	3%	5 13/32	3	3 15/16	(14) 16d	(6) 16d	2540	7335	2065	5205	
HHUS48	14	3%	71/8	3	61/8	(22) 16d	(8) 16d	3765	8940	2675	6345	
HHUS410	14	3%	9	3	8	(30) 16d	(10) 16d	4670	9855	4235	7000	
HHUS5.50/10	14	51/2	9	3	8	(30) 16d	(10) 16d	4670	10155	4235	7210	
HHUS7.25/10	14	71/4	9	35/16	7 29/32	(30) 16d	(10) 16d	4670	10155	3370	7210	

1. de is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHHUS20 3/20 exp. 6/22

(800) 999-5099 strongtie.com

HGUS - Double Shear Joist Hangers

SIMPSON Strong-Tie

All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA O86-14.
- Uplift resistances have been increased 15%.
 No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

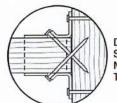
- · Use all specified fasteners
- Nails: 16d = 0.162" dia x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- · Not designed for welded or nailer applications

Options:

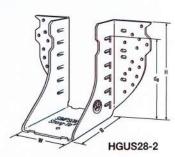
· See current catalogue for options

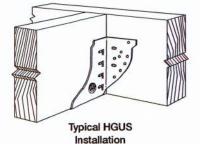
Model No.	Ga.	Dimensions (in.)				Fasteners		Factored Resistance (lb.)			
								D.Fir-L		S-P-F	
		w	н	В	d _e ¹	Face	Joist	Uplift (K _D =1.15)	Normal (K _D =1.00)	Uplift (K _D =1.15)	Normal (K _D =1.00)
HGUS26-2	12	35/16	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-3	12	4 15/16	51/2	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-4	12	6%	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS28	12	15%	71/8	5	61/8	(36) 16d	(12) 16d	3310	7675	3100	6900
HGUS28-2	12	35/16	73/16	4	61/8	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS28-3	12	4 15/16	71/4	4	6%	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS28-4	12	6%	73/16	4	61/8	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS210	12	15/8	91/8	5	71/8	(46) 16d	(16) 16d	3535	11070	2510	8090
HGUS210-2	12	35/16	93/16	4	81/8	(46) 16d	(16) 16d	6840	14015	4855	10270
HGUS210-3	12	4 15/16	91/4	4	8%	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS210-4	12	6%16	93/16	4	81/8	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS212-4	12	6%16	10%	4	101/8	(56) 16d	(20) 16d	7640	14995	5425	10645
HGUS214-4	12	6%	12%	4	111/8	(66) 16d	(22) 16d	10130	16400	7195	11645

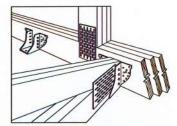
1. d_{e} is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).

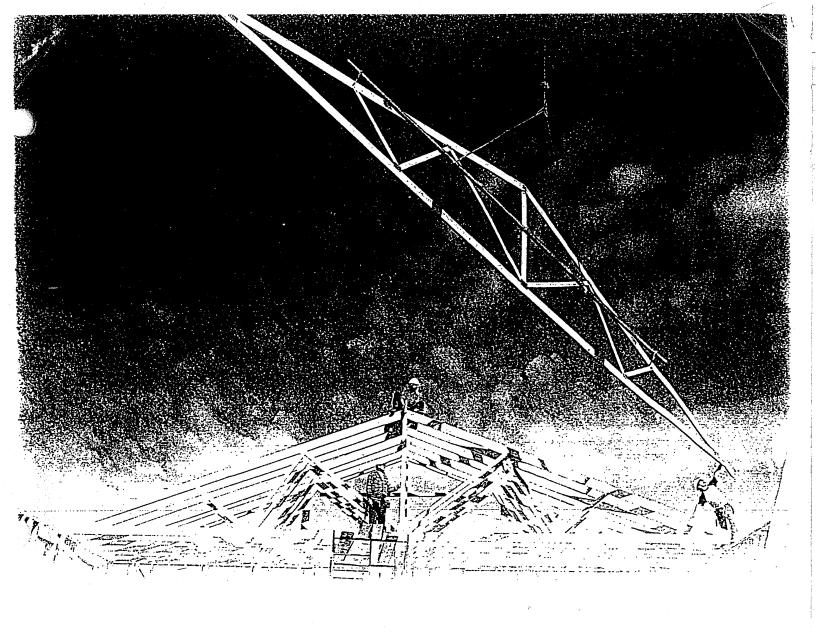

U.S. Patent 5,603,580




Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)



This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHGUS20 3/20 exp. 6/22

(800) 999-5099 strongtie.com

Wood Truss Installation

A Guide to proper handling, erecting and bracing metal plate connected wood trusses

Table of Content

War	ning	4
1	Unloading & Lifting	5
2	Job Site Handling	5
3	Hoisting	6
4	Beginning the Erection Process	
5	Erection Tolerance	8
6	Bracing	8
7	Bracing Requirements for 3 Planes of Roof	9
8	Stacking Materials	10
Caul	tion Notes	11

Warning W

General

Familiarity with the Construction Design Documents, the Truss Design Drawings, and Truss Placement Plans (if required by the Construction Design Documents) is required to properly erect, brace, and connect the trusses to the building system.

All of the care and quality involved in the design and manufacture of wood trusses can be jeopardized if the trusses are not properly handled, erected, and braced.

The consequences of improper handling, erecting, and bracing may be a collapse of the structure, which at best is a substantial loss of time and materials, and at worst is a loss of life. The majority of truss accidents occur during truss installation and not as a result of improper design or manufacture.

Prior to truss erection, the builder/erector shall meet with the erection crew for a safety and planning meeting, making sure each crew member understands his or her roles and responsibilities during the erection process.

Temporary Erection Bracing

Trusses are not marked in any way to identify the frequency, or location of temporary erection bracing.

All temporary bracing shall comply with the latest edition of *Commentary and Recommendations for Handling, Installing & Bracing Metal Plate Connected Wood Trusses* (HIB), published by the Truss Plate Institute, and/or as specified in the **Construction Design Documents** prepared by the building designer.

Permanent Truss Bracing

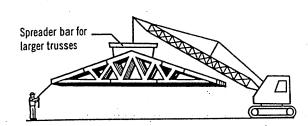
Permanent bracing for the roof or floor trusses is the responsibility of the building designer and should be shown on the **Construction Design Documents**. Permanent bracing locations for individual compression members of a wood truss are shown on the **Truss Design Drawings**, and shall be installed by the building or erection contractor. This bracing is needed for the proper performance of individual trusses within the roof or floor system. The design and connection of the bracing to the truss and then to the overall building system is the responsibility of the building designer, and is in addition to the permanent bracing plan, which is also specified by the building designer.

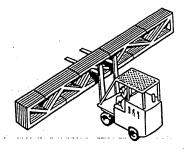
Special Design Requirements

Special design requirements, such as wind bracing, portal bracing, seismic bracing, diaphragms, shear walls, or other load transfer elements and their connections to wood trusses must be considered separately by the building designer, who shall determine size, location, and method of connections for all bracing as needed to resist these forces.

Unloading & Lifting

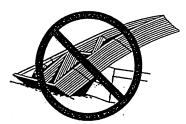
Never handle trusses flat


Beginning with the unloading process, and throughout all phases of construction, care must be taken to avoid lateral bending of trusses, which can cause damage to the lumber and metal connector plates at the joints.



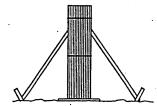
- Use special care in windy weather.
- If using a crane within 10 feet of an electric line, contact the local power company.
- If using a crane within 5 miles of an airport, contact the airport 30 days prior to erection to learn about any safety regulations that must be followed.

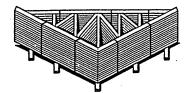
2


Job Site Handling

All trusses should be picked up at the top chords in a vertical position only

Proper banding and smooth ground allow for unloading of trusses without damage. This should be done as close to the building site as possible to minimize handling. **Do not** break banding until installation begins. Hand erection of trusses is allowed, provided excessive lateral bending is prevented.


Do not store unbraced bundles upright

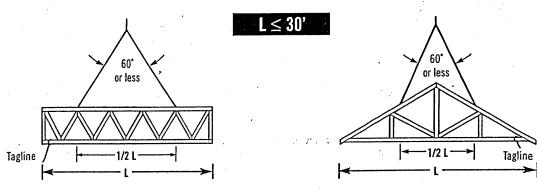

If trusses are stored vertically they shall be braced in a manner that will prevent tipping or topping. Generally cuting of the banding is done just prior to installation.

Do not store on uneven ground

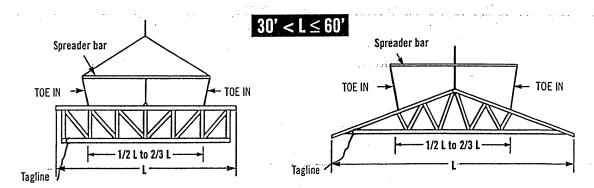
If trusses are stored horizontally, blocking should be used on eight to ten foot centers, or as required, to minimize lateral bending and moisture gain.

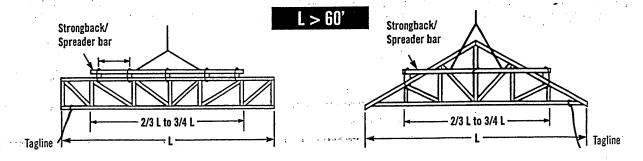
Care should be exercised when removing banding to avoid damaging trusses.

During long term storage, trusses shall be protected from the environment in a manner that provides for adequate ventilation of the trusses. If tarpaulins or other material is used, the ends shall be left open for ventilation. Plastic is not recommended, since it can trap moisture.


3

Hoisting


All trusses that are erected one at a time shall be held safely in position by the erection equipment until such time as all necessary bracing has been installed and the ends of the trusses are securely fastened to the building.

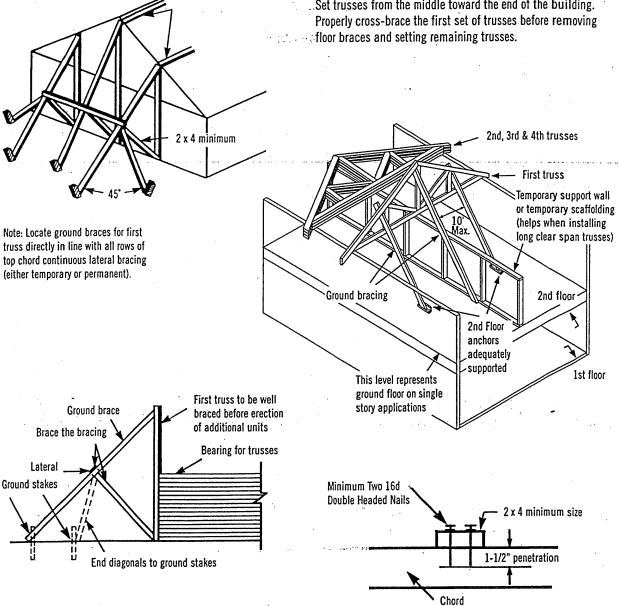

Avoid lateral bending

Truss sling is acceptable where these criteria are met.

Use spreader bar in all other cases. It should be noted that the lines from the ends of the spreader bar "TOE IN"; if these lines should "TOE OUT" the truss may fold in half.

For lifting trusses with spans in excess of 60 feet, it is recommended that a strongback/spreader bar be used as illustrated. The strongback/spreader bar should be attached to the top chord and web members at intervals of approximately 10 feet. Further, the strongback/spreader bar should be at or above the mid-height of the truss to prevent overturning. The strongback/spreader bar can be of any material with sufficient strength to safely carry the weight of the truss and sufficient rigidity to adequately resist bending of the truss.

Beginning the Erection Process

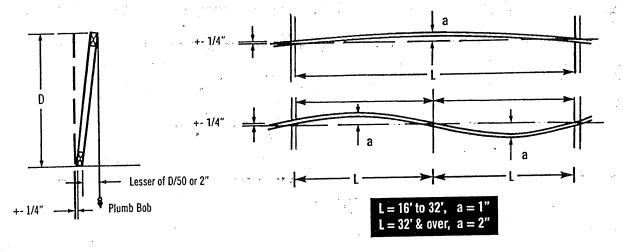

It is important for the builder or erection contractor to provide substantial bracing for the first truss erected. The two or more trusses making up the rest of the first set are tied to and rely upon the first truss for stability. Likewise, after this first set of trusses is adequately cross-braced, the remaining trusses installed rely upon this first set for stability. Thus, the performance of the truss bracing system depends to a great extent on how well the first group of trusses is braced.

Ground Brace - Exterior

One satisfactory method ties the first unit of trusses off to a series of braces that are attached to a stake driven into the ground and securely anchored. The ground brace itself should be supported as shown below or it is apt to buckle. Additional ground braces in the opposite direction, inside the building, are also recommended.

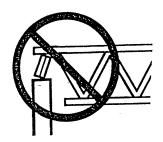
Ground Brace - Interior

Another satisfactory method where height of building or ground conditions prohibit bracing from the exterior is to tie the first truss rigidly in place from the interior at the floor level, provided the floor is substantially completed and capable of supporting the ground bracing forces. Securely fasten the first truss to the middle of the building. Brace the bracing similar to exterior ground bracing shown at left. Set trusses from the middle toward the end of the building. Properly cross-brace the first set of trusses before removing floor braces and setting remaining trusses.



Inadequate size of bracing material or inadequate fastening is a major cause of erection dominoing.

Erection Tolerance


Complying with erection tolerances is critical to achieving an acceptable roof or floor line, and to accomplishing effective bracing. Setting trusses within tolerance the first time will prevent the need for the hazardous practice of respacing or adjusting trusses when roof sheathing or roof purlins are installed. Trusses leaning or bowing can cause nails to miss the top chords when sheathing is applied, and create cumulative stresses on the bracing, which is a frequent cause of dominoing.

When sheathing, make sure nails are driven into the top chord of the trusses.



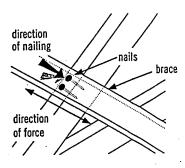
6

Bracing

Do not install trusses on temporarily connected supports

Nails in withdrawal (parallel to force)

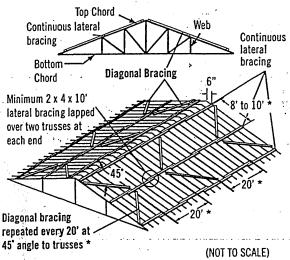
Do not walk on unbraced trusses


All anchors, hangers, tie-downs, seats, bearing ledgers, etc., that are part of the supporting structure shall be accurately and properly placed and permanently attached before truss installation begins. No trusses shall ever be installed on anchors or ties that have temporary connections to the supporting structure.

Nailing scabs to the end of the building to brace the first truss is not recommended.

All nailing of bracing should be done so that nails are driven perpendicular to the direction of force, as shown at right.

Do not walk on trusses or gable ends lying flat

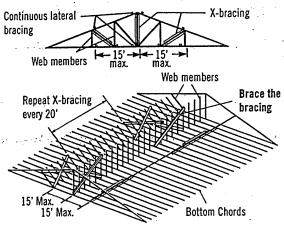

Well nailed (perpendicular to force)

Bracing Requirements for 3 Planes of Roof

Temporary erection bracing must be applied to three planes of the roof system to ensure stability. Plane 1) Top Chord (sheathing), Plane 2) Bottom Chord (ceiling plane), and Plane 3) Web Member plane or vertical plane perpendicular to trusses. See the trusses are the second contraction of the co

1) Top Chord Plane

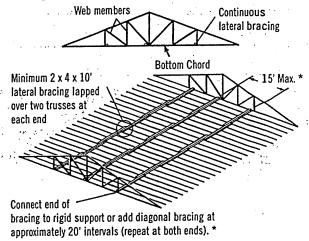
in the plane of the top chord. Truss top chords are susceptible - bracing is recommended on the top of the bottom chord. to lateral buckling before they are braced or sheathed.



Exact spacing between trusses should be maintained as bracing is installed to avoid the hazardous practice of removing bracing to adjust spacing. This act of "adjusting spacing" can cause trusses to topple if connections are removed at the wrong time.

3) Web Member Plane

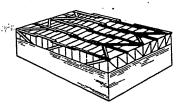
"X" bracing, as shown, is critical in preventing trusses from leaning or dominoing. Repeat as shown to create a succession of rigid units.


X-bracing should be installed on vertical web members wherever possible, at or near lateral bracing. Plywood or OSB may be substituted for X-bracing.

Note: Top chords and some web members are not shown, in order to make drawings more readable.

2) Bottom Chord Plane

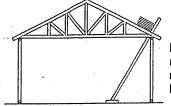
Most important to the builder or erection contractor is bracing almorder to hold proper spacing on the bottom chord, temporary



* Long spans, heavy loads or other spacing configurations may require closer spacing between lateral bracing and closer intervals between diagonals. Consult the building designer or HIB and DSB (Recommended Design Specification for Temporary Bracing of Metal-Plate Connected Wood Trusses) for details.

Diagonal or cross-bracing is very important!

Do not use short blocks to brace individual trusses without a specific bracing plan detailing their use


Bracing requirements using the same principles apply to parallel chord trusses

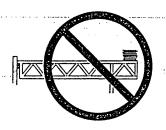
Stacking Materials

Do not proceed with building completion until all bracing is securely and properly in place

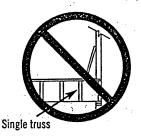
Never stack materials on unbraced or inadequately braced trusses

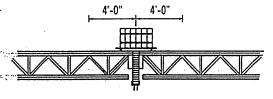
Platform must be rigidly braced

Proper distribution of construction materials is a must during construction.

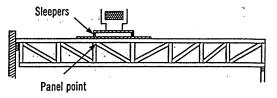

Never stack materials near a peak

Acceptable against outside load bearing wall


Acceptable over load bearing wall


Never stack materials on the cantilever of a truss

Always stack materials over two or more trusses.



Never overload small groups or single trusses. Position load over as many trusses as possible.

Roofing and mechanical contractors are cautioned to stack materials only along outside supporting members or directly over inside supporting members. Trusses are not designed for dynamic loads (i.e., moving vehicles). Extreme care should be taken when loading and stacking construction materials (rolled roofing, mechanical equipment, etc.) on the roof or floor system.

Never cut any structural member of a truss.

Sleepers for mechanical equipment should be located at panel points (joints) or over main supporting members, and only on trusses that have been designed for such loads.

Caution Notes

Errors in building lines and/or dimensions, or errors by others shall be corrected by the contractor or eresponsible construction trade subcontractor or supplier before erection of trusses begins.

Cutting of nonstructural overhangs is considered a part of normal erection and shall be done by the builder or erection contractor.

Any field modification that involves the cutting, drilling, or relocation of any structural truss member or connector plate shall not be done without the approval of the truss manufacturer or a licensed design professional.

The methods and procedures outlined are intended to ensure that the overall construction techniques employed will put floor and roof trusses safely in place in a completed structure. These recommendations for bracing wood trusses originate from the collective experience of leading technical personnel in the wood truss industry, but must, due to the nature of responsibilities involved, be presented only as a guide for use by a qualified building designer, builder, or erection contractor. Thus, the Wood Truss Council of America expressly disclaims any responsibility for damages arising from the use, application, or reliance on the recommendations and information contained herein.

[Selected text and figures referenced or reproduced from HIB and DSB by permission of the Truss Plate Institute, Madison, WI.]

THE CANADIAN WOOD TRUSS ASSOCIATION

L'ASSOCIATION CANADIENNE DES FABRICANTS DE FERMES DE BOIS

1400 Blair Place, Suite 210, Ottawa, ON K1J 9B8 Tel.: 613-747-5544 Fax: 613-747-6264

Wood Truss Council of America

One WTCA Center 6300 Enterprise Lane, Madison, Wi 53719-1140 Tel.: 608-274-4849 Fax: 608-274-3329 Wtca@woodtruss.com www.woodtruss.com