

Products								
PlotID	Length	Product	Plies	Net Qty				
J1	9-00-00	9 1/2" NI-20	1	4				
J2	18-00-00	11 7/8" NI-20	1	18				
J3	16-00-00	11 7/8" NI-20	1	35				
J4	16-00-00	11 7/8" NI-20	2	4				
J5	15-00-00	11· 7/8" NI-20	1	16				
J6	13-00-00	11 7/8" NI-20	1	5				
J7	12-00-00	11 7/8" NI-20	1	11				
J8	10-00-00	11 7/8" NI-20	1	14				
J9	7-00-00	11 7/8" NI-20	1	9				
J10	3-00-00	11 7/8" NI-20	1	1				
B11	9-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1				
B14	5-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	2				
B13	13-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2				
B12	9-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1				

RIMBOARD

1- 1/8" X 9 1/2" O.S.B. 1- 1/8" X 11 7/8" O.S.B.

SUBFLOOR - 3/4" NAILED & GLUED

APP - AS PER PLAN BBO - BEAM BY OTHERS

TOTAL 11 7/8" BLOCKING LENGTH: 103'

Ceramic tile application as per O.B.C. 9.30.6

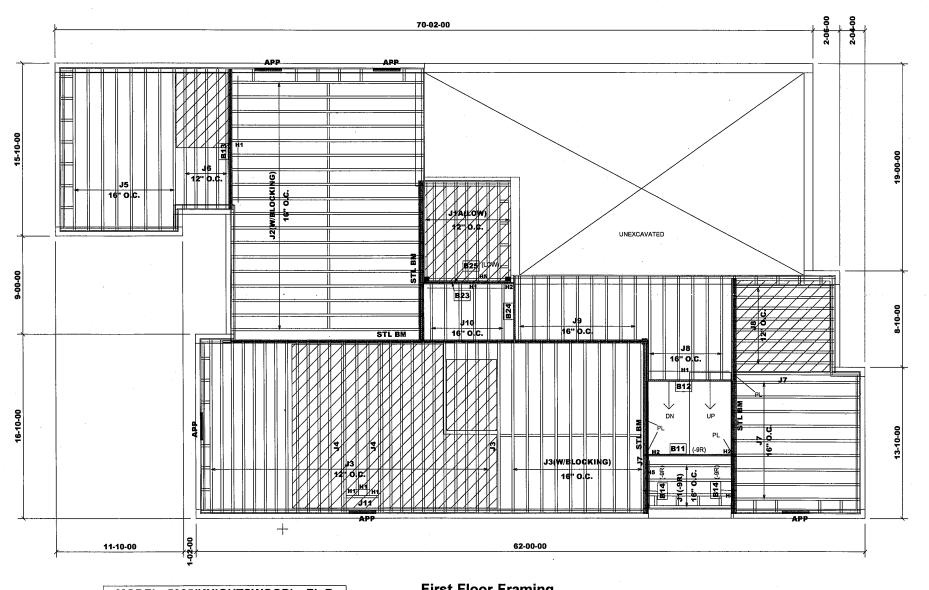
1-2X6 SPF#2 Squash Block req'd on one side of each joist under interior load bearing wall. Multiple Squash Blocks are req'd under concentrated loads.

102326/April 23,2019

JT/PL: 45147/100570 LI:3/8/5/8 (290684) Builder: Gold Park

Project: Pine Valley

Location: Vaughan


Date: November 9, 2018

Designer: NL

Sheet: 2 of 4

Alpa Roof Trusses Inc. Maple, Ontario Salesperson: Derek

Home Lumber

Products							
PlotID	Length	Product	Plies	Net Qty			
J1A	10-00-00	9 1/2" NI-20	1	9			
J1 .	9-00-00	9 1/2" NI-20	1	4			
J2	18-00-00	11 7/8" NI-20	1	18			
J3	16-00-00	11 7/8" NI-20	1	35			
J4	16-00-00	11 7/8" NI-20	2	4			
J5	15-00-00	11 7/8" NI-20	1	8			
J6	13-00-00	11 7/8" NI-20	1 .	5			
J7	12-00-00	11 7/8" NI-20	1	11			
J8	10-00-00	11 7/8" NI-20	1	14			
J9	7-00-00	11 7/8" NI-20	1	9			
J10	6-00-00	11 7/8" NI-20	1 .	6			
J11	3-00-00	11 7/8" NI-20	1	1			
B11	9-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			
B25	9-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			
B14	5-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	2			
B13	13-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2			
B12	9-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1			
B23	9-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1			
B24	7-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1			

HANGER SCHEDULE ----LT251188 (TM) --HUS1.81/10(FM) -----LT259(TM) TM -----TOP MOUNT HANGERS
FM-----FACE MOUNT HANGERS

RIMBOARD .

1- 1/8" X 9 1/2" O.S.B. 1- 1/8" X 11 7/8" O.S.B.

SUBFLOOR - 3/4" NAILED & GLUED

APP - AS PER PLAN BBO - BEAM BY OTHERS

TOTAL 11 7/8" BLOCKING LENGTH: 103'

Ceramic tile application as per O.B.C. 9.30.6

1-2X6 SPF#2 Squash Block req'd on one side of each joist under interior load bearing wall. Multiple Squash Blocks are reg'd under concentrated loads.

MODEL: 5005(KNIGHTSWOOD) - EL.B - LOT 93 & W.O.D.(W/SUNKEN)

First Floor Framing

Do not scale - refer to architectural plans for dimensions

102326

JT/PL: 45147/100570 LI:308358 (290684)

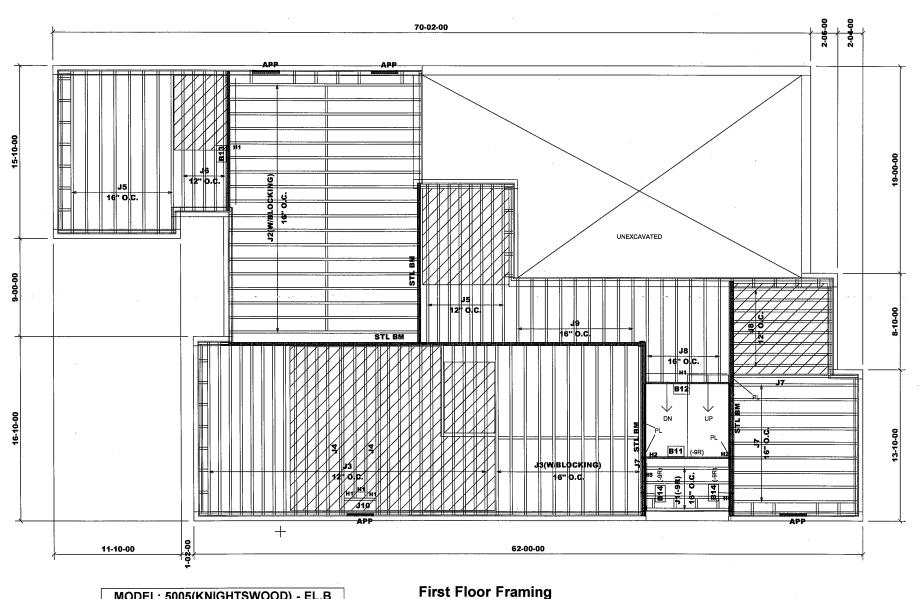
Builder: Gold Park

Project: Pine Valley

Location: Vaughan

Date: November 9, 2018

Designer: NL


Sheet: 3 of 4

Alpa Roof Trusses Inc.

Maple, Ontario

Salesperson: Derek

Home Lumber

*		Products		
PlotID	Length	Product	Plies	Net Qty
J1	9-00-00	9 1/2" NI-20	1	4
J2	18-00-00	11 7/8" NI-20	1	18
J3	16-00-00	11 7/8" NI-20	1	35
J4	16-00-00	11 7/8" NI-20	2	4
J5	15-00-00	11 7/8" NI-20	1	16
J6	13-00-00	11 7/8" NI-20	1	5
J7	12-00-00	11 7/8" NI-20	1	11
J8	10-00-00	11 7/8" NI-20	1	14
J9	7-00-00	11 7/8" NI-20	1	9
J10	3-00-00	11 7/8" NI-20	1	1
B11	9-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B14	5-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	2
B13	13-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	2	2
B12	9-00-00	1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP	1	1

RIMBOARD

1- 1/8" X 9 1/2" O.S.B. 1- 1/8" X 11 7/8" O.S.B.

SUBFLOOR - 3/4" NAILED & GLUED

APP - AS PER PLAN BBO - BEAM BY OTHERS

TOTAL 11 7/8" BLOCKING LENGTH: 103'

Ceramic tile application as per O.B.C. 9.30.6

1-2X6 SPF#2 Squash Block req'd on one side of each joist under interior load bearing wall. Multiple Squash Blocks are req'd under concentrated loads.

MODEL: 5005(KNIGHTSWOOD) - EL.B - LOT 93 (W/L.O.D. & W.O.B. COND.)

Do not scale - refer to architectural plans for dimensions

102326

JT/PL: 45147/100570 LI: 308358 (290684) Builder: Gold Park
Project: Pine Valley

Location: Vaughan

Date: November 9, 2018 Sheet: 4 of 4

Designer: NL Alpa Roof Trusses Inc.

Maple, Ontario

Salesperson: Derek

Home Lumber

PASSED

August 10, 2018 10:44:05

2nd Floor\Flush Beams\B16A(i4822)

BC CALC® Member Report

City, Province, Postal Code:

Build 6475

Job name: Address:

Customer:

Code reports:

45147(5005)

Pine Valley

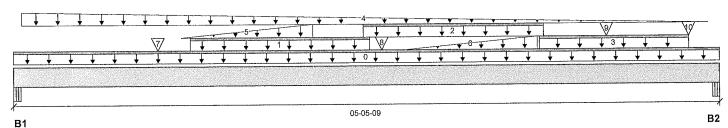
Vaughan, ON

Gold Park

CCMC 12472-R

Dry | 1 span | No cant.

300934-B-LOT 158.mmdl File name:


Wind

Description: 2nd Floor\Flush Beams\B16A(i4822)

Specifier:

Designer:

Alpa Roof Trusses Company:

Total Horizontal Product Length = 05-05-09

Reaction Summary (Down / Uplift) (lbs)

Bearing	Live	Dead	Snow
B1, 4-9/16"	466 / 0	604 / 0	319 / 0
B2, 4-1/2"	608 / 0	658 / 0	305 / 0

Los	ad Summary						Live	Dead	Snow	Wind	Tributary
Tag		Load Type	Ref.	Start	End	Loc.	1.00	0.65	1.00	1.15	
0	Self-Weight	Unf. Lin. (lb/ft)	L	00-00-00	05-05-09	Тор		6			00-00-00
1	E29(i4462)	Unf. Lin. (lb/ft)	L	01-04-06	02-09-02	Тор		165	95		n\a
2	E23(i4465)	Unf. Lin. (lb/ft)	L.	02-08-08	04-01-04	Top		164	95		n\a
3	E24(i4461)	Unf. Lin. (lb/ft)	L	04-00-14	05-02-11	Top		170	98		n\a
4	User Load	Trapezoidal (lb/ft)	L	00-00-12		Top		28	42		n\a
,		,			05-04-08			0	0		
5	FC1 Floor Material	Trapezoidal (lb/ft)	L	01-03-09		Тор	0				n\a
•		,			02-03-13		34				
6	FC1 Floor Material	Trapezoidal (lb/ft)	L	03-00-06		Top	0				n\a
•	T S T T S T T T T T T	,			04-00-11		34				
7	J5(i4831)	Conc. Pt. (lbs)	L	01-01-06	01-01-06	Тор	267	270	118		n\a
8	J4(i4830)	Conc. Pt. (lbs)	L	02-10-04	02-10-04	Тор	357	89			n\a
9	J3(i4798)	Conc. Pt. (lbs)	L	04-07-01	04-07-01	Тор	387	97			n\a
10	E24(i4461)	Conc. Pt. (lbs)	L	05-02-11	05-02-11	Тор		27	16		n\a

Controls Summary	Factored Demand	Factored Resistance	Demand/ Resistance	Case	Location
Pos. Moment	2,337 ft-lbs	17,696 ft-lbs	13.2 %	1	02-10-04
End Shear	1,519 lbs	7,232 lbs	21.0 %	1	01-04-07
Total Load Deflection	L/999 (0.015")	n\a	n\a	35	02-08-08
Live Load Deflection	L/999 (0.009")	n\a	n\a	51	02-09-02
Max Defl.	0.015"	n\a	n\a	35	02-08-08
Span / Depth	4.9				

Bearing	Supports	Dim. (LxW)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
B1	Beam	4-9/16" x 1-3/4"	1,773 lbs	36.1 %	18.2 %	Unspecified
B2	Beam	4-1/2" x 1-3/4"	2,039 lbs	42.2 %	21.3 %	Unspecified

Floor Beam\B01

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 09:14:48

BC CALC® Design Report

P 4 6080 Name:

Address:

45147 (5005)

Customer:

City, Province, Postal Code: Vaughan, ON Gold Park

Code reports:

Pine Valley

CCMC 12472-R

File Name: 290684.bcc

Description: Second Floor Framing

Specifier:

Designer:

Alpa Roof Trusses Company:

Misc:

		The control of the co
M	15-07-00	
B0		B1

Total Horizontal Product Length = 15-07-00

Reaction Summary (Down / Uplift) (lbs) Wind Dead Snow 2,708 / 0 1,448 / 0 B0, 3-1/2" 1,440 / 0 2,694 / 0 B1, 3"

Trib. Live Dead Snow Wind **Load Summary** 1.00 0.65 1.00 1.15 Load Type Ref. Start End Tag Description 08-08-00 15-07-00 40 20 Unf. Area (lb/ft^2) 00-00-00

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Moment	21,614 ft-lbs	35,392 ft-lbs	61.1%	1	07-09-12
E.id Shear	4,910 lbs	14,464 lbs	33.9%	1	01-03-06
Total Load Defl.	L/281 (0.648")	0.758"	85.5%	4	07-09-12
Live Load Defl.	L/431 (0.423")	0.506"	83.6%	5	07-09-12
Max Defl.	0.648"	1"	64.8%	4	07-09-12
Span / Depth	15.3	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bearii	ng Supports	Dim. (L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
B0	Wall/Plate	3-1/2" x 3-1/2"	5,873 lbs	77.9%	39.3%	Spruce Pine Fir
B1	Wall/Plate	3" x 3-1/2"	5,841 lbs	90.4%	45.6%	Spruce Pine Fir

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Nail one ply to another with 3 ½" spiral nails @ 91 o.c, staggered in 2 rows

Floor Beam\B02

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 09:15:44

Build 6080

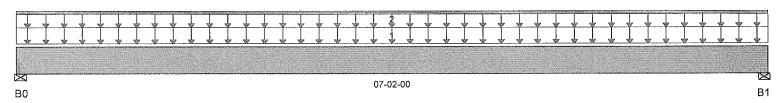
Name:

45147 (5005)

Auuress: City, Province, Postal Code: Vaughan, ON

Pine Valley

Customer: Code reports: Gold Park CCMC 12472-R File Name: 290684.bcc


Description: Second Floor Framing

Specifier:

Designer: NL

Company: Alpa Roof Trusses

Misc:

Total Horizontal Product Length = 07-02-00

Reaction Summary (Down / Uplift) (lbs) Dead Snow Wind Bearing Live B0, 3" 1,577 / 0 1,046 / 0 B1, 3" 1,577 / 0 1,046 / 0

Load Summary			L	ive	Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	End 1	.00	0.65	1.00 1.15	
1	Unf. Area (lb/ft^2)	L 00-00-00	07-02-00 4	10	20		11-00-00
2	Unf. Lin. (lb/ft)	L 00-00-00	07-02-00		60		n/a

atrols Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
,				Case	
Pos. Moment	5,910 ft-lbs	35,392 ft-lbs	16.7%	1	03-07-00
End Shear	2,402 lbs	14,464 lbs	16.6%	1	01-02-14
Total Load Defl.	L/999 (0.036")	n/a	n/a	4	03-07-00
Live Load Defl.	L/999 (0.022")	n/a	n/a	5	03-07-00
Max Defl.	0.036"	n/a	n/a	4	03-07-00
Span / Depth	6.9	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bearing Supports		Dim. (L x W)	Demand	Resistance Support	Resistance Member	Material
B0	Wall/Plate	3" x 3-1/2"	3,673 lbs	56.9%	28.7%	Spruce Pine Fir
B1	Wall/Plate	3" x 3-1/2"	3,673 lbs	56.9%	28.7%	Spruce Pine Fir

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Nail one ply to another with 3 ½" spiral nails @ **9**"

o.c, staggered in 2 rows

Floor Beam\B03

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 09:16:27

Build 6080

Name:

45147 (5005)

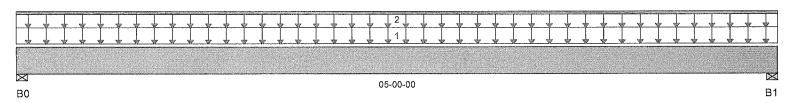
Audress: City, Province, Postal Code: Vaughan, ON

Pine Valley Gold Park

Customer: Code reports:

CCMC 12472-R

File Name: 290684.bcc


Description: Second Floor Framing

Specifier:

NLDesigner:

Company: Alpa Roof Trusses

Misc:

Total Horizontal Product Length = 05-00-00

Reaction Summary (Down / Uplift) (lbs)								
Bearing	Live	Dead	Snow	Wind				
B0, 3-1/2"	967 / 0	648 / 0						
B1, 3-1/2"	967 / 0	648 / 0						

Load Summary			Liv	ve Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	End 1.0	00 0.65	1.00 1.15	
1	Unf. Area (lb/ft^2)	L 00-00-00	05-00-00 40	0 20		09-08-00
2	Unf. Lin. (lb/ft)	L 00-00-00	05-00-00	60		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	2,331 ft-lbs	17,696 ft-lbs	13.2%	1	02-06-00
End Shear	1,102 lbs	7,232 lbs	15.2%	1	01-03-06
Total Load Defl.	L/999 (0.013")	n/a	n/a	4	02-06-00
Live Load Defl.	L/999 (0.008")	n/a	n/a	5	02-06-00
Max Defl.	0.013"	n/a	n/a	4	02-06-00
Span / Depth	4.6	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bear	ing Supports	Dim. (L x W)	Demand	Demand/ Resistance Support	Resistance Member	Material E
В0	Wall/Plate	3-1/2" x 1-3/4"	2,260 lbs	60%	30.3%	Spruce Pine Fir
B1	Wall/Plate	3-1/2" x 1-3/4"	2,260 lbs	60%	30.3%	Spruce Pine Fir

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™ ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood

Floor Beam\B04

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 16:49:11

Build 6080

Name:

45147 (5005)

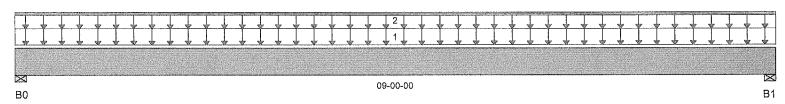
Augress: City, Province, Postal Code: Vaughan, ON

Pine Valley

Customer: Code reports: Gold Park

CCMC 12472-R

File Name: 290684.bcc


Description: Second Floor Framing

Specifier:

NL Designer:

Company: Alpa Roof Trusses

Misc:

Total Horizontal Product Length = 09-00-00

Reaction Summary (Down / Uplift) (lbs)									
Bearing	Live	Dead	Snow	Wind					
B0, 3-1/2"	1,350 / 0	803 / 0							
B1, 3-1/2"	1,350 / 0	803 / 0							

Load Summary			Live	Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	End 1.00	0.65	1.00 1.15	
1	Unf. Area (lb/ft^2)	L 00-00-00	09-00-00 40	15		07-06-00
2	Unf. Lin. (lb/ft)	L 00-00-00	09-00-00	60		n/a

ontrols Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	6,139 ft-lbs	17,696 ft-lbs	34.7%	1	04-06-00
End Shear	2,167 lbs	7,232 lbs	30%	1	01-03-06
Total Load Defl.	L/999 (0.117")	n/a	n/a	4	04-06-00
Live Load Defl.	L/999 (0.074")	n/a	n/a	5	04-06-00
Max Defl.	0.117"	n/a	n/a	4	04-06-00
Span / Depth	8.6	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bearin	ng Supports	Dim. (L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material	1 E
B0	Wall/Plate	3-1/2" x 1-3/4"	3,029 lbs	80.4%	40.5%	Spruce Pine Fir	<i>F</i>
B1	Wall/Plate	3-1/2" x 1-3/4"	3,029 lbs	80.4%	40.5%	Spruce Pine Fir	5

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Build 6080

Audress:

Name:

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP

Floor Beam\B05

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 09:17:55

BC CALC® Design Report

45147 (5005)

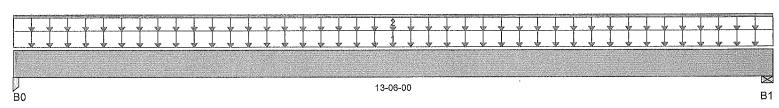
Pine Valley

Dry | 1 spail | 140 carmievers | 0/12 slope (de

File Name: 290684.bcc

Description: Second Floor Framing

Specifier:


Designer: NL

Company: Alpa Roof Trusses

Misc:

Customer: Gold Park
Code reports: CCMC 12472-R

City, Province, Postal Code: Vaughan, ON

Total Horizontal Product Length = 13-06-00

Reaction Summary (Down / Uplift) (lbs)								
Bearing	Live	Dead	Snow	Wind				
B0, 3"	2,961 / 0	1,965 / 0						
B1, 3-1/2"	2,979 / 0	1,977 / 0						

Load Summary			Liv	ve Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	End 1.0	0.65	1.00 1.15	
1	Unf. Area (lb/ft^2)	L 00-00-00	13-06-00 40	20		11-00-00
2	Unf. Lin. (lb/ft)	L 00-00-00	13-06-00	60		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	21,933 ft-lbs	35,392 ft-lbs	62%	1	06-08-12
End Shear	5,627 lbs	14,464 lbs	38.9%	1	01-02-14
Total Load Defl.	L/318 (0.494")	0.654"	75.5%	4	06-08-12
Live Load Defl.	L/529 (0.297")	0.436"	68.1%	5	06-08-12
Max Defl.	0.494"	1"	49.4%	4	06-08-12
Span / Depth	13.2	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bearir	ng Supports	Dim. (L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
B0	Post	3" x 3-1/2"	6,898 lbs	37.9%	53.8%	Spruce Pine Fir
B1	Wall/Plate	3-1/2" x 3-1/2"	6,940 lbs	92.1%	46.4%	Spruce Pine Fir

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Nail one ply to another with 3 ½" spiral nails @ 9 o.c, staggered in 2 rows

Floor Beam\B06

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 09:18:40

Build 6080

Name:

45147 (5005) Pine Valley

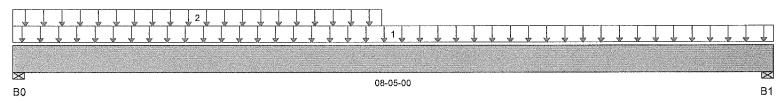
Aadress: City, Province, Postal Code: Vaughan, ON

Customer:

Gold Park

Code reports:

CCMC 12472-R


File Name: 290684 bcc

Description: Second Floor Framing

Specifier: Designer: NL

Company: Alpa Roof Trusses

Misc:

Total Horizontal Product Length = 08-05-00

Reaction Summary (Down / Uplift) (lbs)													
Bearing	Live	Dead	Snow	Wind									
B0, 3-1/2"	1,346 / 0	635 / 0											
B1, 3-1/2"	991 / 0	502 / 0											

Load Summary		Live	Dead	Snow Wind	Trib.	
Tag Description	Load Type	Ref. Start	End 1.00	0.65	1.00 1.15	
1	Unf. Area (lb/ft^2)	L 00-00-00	08-05-00 40	20		05-00-00
2	Unf. Area (lb/ft^2)	L 00-00-00	04-01-00 40	15		04-00-00

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	4,666 ft-lbs	17,696 ft-lbs	26.4%	1	03-08-13
End Shear	1,855 lbs	7,232 lbs	25.6%	1	01-03-06
Total Load Defl.	L/999 (0.076")	n/a	n/a	4	04-01-00
Live Load Defl.	L/999 (0.051")	n/a	n/a	5	04-01-00
Max Defl.	0.076"	n/a	n/a	4	04-01-00
Span / Depth	8	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bear	ing Supports	Dim. (L x W)	Demand	Resistance Support	Resistance Member	Material E
В0	Wall/Plate	3-1/2" x 1-3/4"	2,813 lbs	74.6%	37.6%	Spruce Pine Fir F
B1	Wall/Plate	3-1/2" x 1-3/4"	2,114 lbs	56.1%	28.3%	Spruce Pine Fir

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER® , AJS™ ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Build 6080

Name: Audress:

Double 1-3/4" x 11-7/8" VERSA-LAM® 2.0 3100 SP

Floor Beam\B07

November 28, 2017 09:20:49

BC CALC® Design Report

45147 (5005)

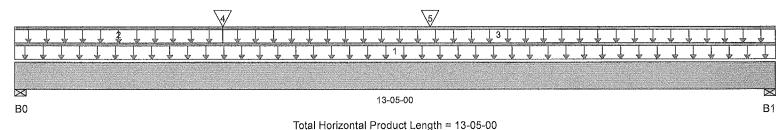
Pine Valley

Dry | 1 span | No cantilevers | 0/12 slope (deg)

File Name: 290684,bcc

Description: Second Floor Framing

Specifier:


Designer: NL

Company: Alpa Roof Trusses

Misc:

Gold Park Customer: CCMC 12472-R Code reports:

City, Province, Postal Code: Vaughan, ON

Total Horizontal	Product	Length =	13-05-00
------------------	---------	----------	----------

Reaction Summary (Down / Uplift) (lbs)													
Bearing	Live	Dead	Snow	Wind									
B0, 3-1/2"	2,610 / 0	1,776 / 0											
B1, 3-1/2"	2,340 / 0	1,542 / 0											

Load Summary					Live	Dead	Snow	Wind	Trib.
Tag Description	Load Type	R	ef. Start	End	1.00	0.65	1.00	1.15	
1	Unf. Lin. (lb/ft)	L	00-00-00	13-05-00	27	14			n/a
<i>7</i> .	Unf. Lin. (lb/ft)	L.	00-00-00	03-08-00		60			n/a
	Unf. Lin. (lb/ft)	L	03-08-00	13-05-00	27	14			n/a
4	Conc. Pt. (lbs)	L	03-08-00	03-08-00	1,346	635			n/a
5	Conc. Pt. (lbs)	L.	07-04-00	07-04-00	2,979	1,977			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	29,413 ft-lbs	35,392 ft-lbs	83.1%	1	07-04-00
End Shear	5,946 lbs	14,464 lbs	41.1%	1	01-03-06
Total Load Defl.	L/273 (0.57")	0.648"	87.9%	4	06-07-12
Live Load Defl.	L/450 (0.346")	0.432"	80%	5	06-07-12
Max Defl.	0.57"	1"	57%	4	06-07-12
Span / Depth	13.1	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bear	ing Supports	Dim. (L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
B0	Wall/Plate	3-1/2" x 3-1/2"	6,136 lbs	81.4%	41.1%	Spruce Pine Fir
B1	Wall/Plate	3-1/2" x 3-1/2"	5,437 lbs	72.1%	36.4%	Spruce Pine Fir

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

gn based on Dry Service Condition.

importance Factor : Normal Part code : Part 4

Nail one ply to another with 3 ½" spiral nails @ (ZU

o.c, staggered in 2 rows

Floor Beam\B11

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 10:25:19

BC CALC® Design Report Build 6080

45147 (5005)

Audress: Pine Valley City, Province, Postal Code: Vaughan, ON

Customer: Code reports:

Name:

Gold Park

CCMC 12472-R

File Name: 290684.bcc

Description: Second Floor Framing

Specifier:

Designer:

Alpa Roof Trusses Company:

Location

Misc:

		/		,			W		₩.		1	w.	*	Ţ	J	Ţ	V			W			-
×		 			270120000					Λ	8-08	۸۸		 				 		 	 	 	\times
В0										Ų	0-00	-00											B1

Total Horizontal Product Length = 08-08-00

Reaction Summary (Down / Uplift) (lbs) Dead Wind Live Snow B0, 3-1/2" 867 / 0 346 / 0 867 / 0 B1, 3-1/2" 346 / 0

Live Dead Snow Wind Trib. **Load Summary** Load Type 1.00 0.65 Tag Description Start End 1.15 Ref. 00-00-00 08-08-00 15 05-00-00 Unf. Area (lb/ft^2) 40

Domand /

	ractored	ractored	Demand /	Loau	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Moment	3,367 ft-lbs	11,610 ft-lbs	29%	1	04-04-00
Shear	1,299 lbs	5,785 lbs	22.5%	1	01-01-00
Total Load Defl.	L/999 (0.114")	n/a	n/a	4	04-04-00
Live Load Defl.	L/999 (0.082")	n/a	n/a	5	04-04-00
Max Defl.	0.114"	n/a	n/a	4	04-04-00
Span / Depth	10.4	n/a	n/a		00-00-00
Squash Blocks	Valid				

Engtard

Bearii	ng Supports	Dim. (L x W)	Demand	Resistance Support	Resistance Member	Material
B0	Wall/Plate	3-1/2" x 1-3/4"	1,732 lbs	46%	23.2%	Spruce Pine Fir
B1	Wall/Plate	3-1/2" x 1-3/4"	1,732 lbs	46%	23.2%	Spruce Pine Fir

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER® , AJS™ ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Design meets Code minimum (L/240) Total load deflection criteria.

Engtored

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA 086.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Floor Beam\B12

Dry | 1 span | No cantilevers | 0/12 slope (deg) BC CALC® Design Report

November 28, 2017 10:25:53

45147 (5005) Pine Valley

Address: City, Province, Postal Code: Vaughan, ON Customer:

Code reports:

Name:

B. ild 6080

Gold Park

CCMC 12472-R

File Name: 290684.bcc

Description: First Floor Framing

Specifier:

Designer: NL

Company: Alpa Roof Trusses

Misc:

	$\downarrow 1 \downarrow \downarrow$	
⊠ B0	08-08-00	N1

Total Horizontal Product Length = 08-08-00

Reaction Summary (Down / Uplift) (lbs)							
Bearing	Live	Dead	Snow	Wind			
B0, 3-1/2"	1,117 / 0	445 / 0					
B1. 3-1/2"	1.482 / 0	582 / 0					

Load Summary				Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	End 1.00	0.65	1.00 1.15	
1	Unf. Area (lb/ft^2)	L 00-00-00	04-04-00 40	15		05-06-00
2	Unf. Area (lb/ft^2)	L 04-04-00	08-08-00 40	15		09-06-00

Zinter of the Contract of the	Factored	Factored	Demand /	Load	Location
trols Summary	Demand	Resistance	Resistance	Case	
ിയം. Moment	5,106 ft-lbs	17,696 ft-lbs	28.9%	1	04-08-09
End Shear	1,983 lbs	7,232 lbs	27.4%	1	07-04-10
Total Load Defl.	L/999 (0.088")	n/a	n/a	4	04-05-02
Live Load Defl.	L/999 (0.063")	n/a	n/a	5	04-05-02
Max Defl.	0.088"	n/a	n/a	4	04-05-02
Span / Depth	8.3	n/a	n/a		00-00-00
Squash Blocks	Valid				

Ве	earing Supports	Dim. (L x W)	Demand	Resistance Support	Resistance Member	Material	
B0	Wall/Plate	3-1/2" x 1-3/4"	2,233 lbs	59.3%	29.9%	Spruce Pine	Fir
В1	Wall/Plate	3-1/2" x 1-3/4"	2,951 lbs	78.3%	39.5%	Spruce Pine	Fir

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

ALLJOIST® , BC RIM BOARD $^{\text{TM}}$, BCI® , BOISE GLULAM $^{\text{TM}}$, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

BC CALC®, BC FRAMER® , AJS™

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Floor Beam\B13

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 10:26:23

BC CALC® Design Report

Build 6080 Name:

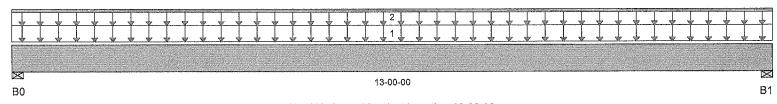
45147 (5005)

Address:

Pine Valley City, Province, Postal Code: Vaughan, ON

Customer: Code reports: Gold Park CCMC 12472-R

Description: First Floor Framing


Specifier:

Designer: NL

Company: Alpa Roof Trusses

File Name: 290684.bcc

Misc:

Total Horizontal Product Length = 13-00-00

Reaction Summary (Down / Uplift) (lbs)								
Bearing	Live	Dead	Snow	Wind				
B0, 3-1/2"	2,513 / 0	1,725 / 0						
B1, 3-1/2"	2,513 / 0	1,725 / 0						

Load Summary			Live	Live Dead Snow Wind		Trib.
Tag Description	Load Type	Ref. Start	End 1.00	0.65	1.00 1.15	
1	Unf. Area (lb/ft^2)	L 00-00-00	13-00-00 40	20		09-08-00
2	Unf. Lin. (lb/ft)	L 00-00-00	13-00-00	60		n/a

()	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	17,926 ft-lbs	35,392 ft-lbs	50.6%	1	06-06-00
End Shear	4,758 lbs	14,464 lbs	32.9%	1	01-03-06
Total Load Defl.	L/405 (0.372")	0.627"	59.3%	4	06-06-00
Live Load Defl.	L/683 (0.22")	0.418"	52.7%	5	06-06-00
Max Defl.	0.372"	1"	37.2%	4	06-06-00
Span / Depth	12.7	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bearing Supports		Dim. (L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material	
В0	Wall/Plate	3-1/2" x 3-1/2"	5,926 lbs	78.6%	39.7%	Spruce Pine Fir	
B1	Wall/Plate	3-1/2" x 3-1/2"	5,926 lbs	78.6%	39.7%	Spruce Pine Fir	

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Nail one ply to another with 3 ½" spiral nails @ 2 o.c, staggered in 2 rows

Floor Beam\B14

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 11:57:37

Build 6080

Name:

45147 (5005)

Aadress: Pine Valley City, Province, Postal Code: Vaughan, ON

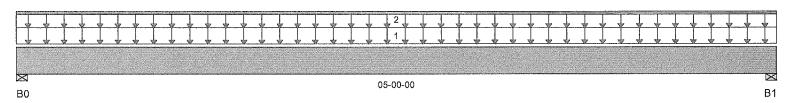
Customer:

Gold Park

Code reports:

CCMC 12472-R

File Name: 290684.bcc


Description: First Floor Framing

Specifier:

Designer: NL

Company: Alpa Roof Trusses

Misc:

Total Horizontal Product Length = 05-00-00

Reaction Summary (Down / Uplift) (lbs)								
Bearing	Live	Dead	Snow	Wind				
B0, 3-1/2"	867 / 0	637 / 0						
B1, 3-1/2"	867 / 0	637 / 0						

Load Summary					Live	Dead	Snow Wind	Trib.	
Tag Description	Load Type	Ref.	Start	End	1.00	0.65	1.00	1.15	
1	 Unf. Area (lb/ft^2)	L	00-00-00	05-00-00	40	15			08-08-00
2	Unf. Lin. (lb/ft)	L.	00-00-00	05-00-00		120			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	2,162 ft-lbs	11,610 ft-lbs	18.6%	1	02-06-00
End Shear	1,188 lbs	5,785 lbs	20.5%	1	01-01-00
Total Load Defl.	L/999 (0.023")	n/a	n/a	4	02-06-00
Live Load Defl.	L/999 (0.013")	n/a	n/a	5	02-06-00
Max Defl.	0.023"	n/a	n/a	4	02-06-00
Span / Depth Squash Blocks	5.7 Valid	n/a	n/a		00-00-00

Bear	ring Supports	Dim. (L x W)	Demand	Resistance Support	Resistance Member	Material
B0	Wall/Plate	3-1/2" x 1-3/4"	2,096 lbs	55.6%	28.1%	Spruce Pine Fir
B1	Wall/Plate	3-1/2" x 1-3/4"	2,096 lbs	55.6%	28.1%	Spruce Pine Fir

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™ ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Floor Beam\B15

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 13:12:43

Beild 6080

Aadress:

Name:

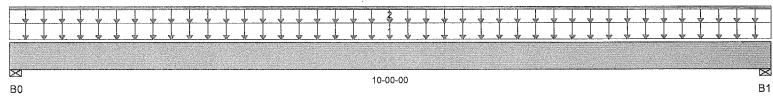
45147 (5005)

City, Province, Postal Code: Vaughan, ON Customer:

Pine Valley

Code reports:

Gold Park CCMC 12472-R File Name: 290684.bcc


Description: Second Floor Framing

Specifier:

Designer: NL

Company: Alpa Roof Trusses

Misc:

Total Horizontal Product Length = 10-00-00

Reaction Summary (Down / Uplift) (lbs)										
Bearing	Live	Dead	Snow	Wind						
B0, 3-1/2"	1,067 / 0	730 / 0								
B1, 3-1/2"	1,067 / 0	730 / 0								

Load Summary			Liv	ive Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	End 1.0	.00 0.65	1.00 1.15	
1	Unf. Area (lb/ft^2)	L 00-00-00	10-00-00 40	0 15		05-04-00
2	Unf. Lin. (lb/ft)	L 00-00-00	10-00-00	60		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	5,719 ft-lbs	17,696 ft-lbs	32.3%	1	05-00-00
End Shear	1,869 lbs	7,232 lbs	25.8%	1	01-03-06
Total Load Defl.	L/834 (0.137")	0.477"	28.8%	4	05-00-00
Live Load Defl.	L/999 (0.081")	n/a	n/a	5	05-00-00
Max Defl.	0.137"	1"	13.7%	4	05-00-00
Span / Depth	9.6	n/a	n/a		00-00-00
Squash Blocks	Valid				

Ве	earing Supports	Dim. (L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material	1 B
В0	Wall/Plate	3-1/2" x 1-3/4"	2,513 lbs	66.7%	33.6%	Spruce Pine Fir	. А В
В1	Wall/Plate	3-1/2" x 1-3/4"	2,513 lbs	66.7%	33.6%	Spruce Pine Fir	S

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER® , AJS™ ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood

Floor Beam\B23

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 14:52:37

BC CALC® Design Report

Build 6080 Name: 45147 (5005)

Audress: Pine Valley City, Province, Postal Code: Vaughan, ON Customer:

Code reports:

Gold Park

CCMC 12472-R

File Name: 290684.bcc

Description: First Floor Framing

Specifier:

Designer: NL

Company: Alpa Roof Trusses

Misc:

		7		T							Ť		1		l	Ī				1 2	ryingediscoson				Ī		l			T	T	Ĭ	Ī		ĺ	Ī		
	Ť	*		İ	W 2		Ĭ.	Ţ	Ţ	Ĭ	1	*		/S		<u> </u>	Ţ	Ţ	1	1				7	Ţ <u>`</u>						¥						I	
processing	and the same	AND DESCRIPTION OF THE PERSON	COPPOSITION OF THE	and the second		NOUT COLLEGE		MILE PROPERTY.	TOO TOO TOO TO	· CONTRACTOR		- Constitution of the	and the second	100000000	- Committee of the Comm		Total American	-	feet of colors		no-management	and the same	CONTRACTOR OF		contentation (and the contract of		 out to the second	CONTRACTOR OF THE PARTY OF THE	ZONO PROPERTY.	the state of the s	2000000000	rando structura pri	30000 PG 500	CONTRACTOR AND	de la companya de la		anomatica como de
> 3																				9-00																		E

Total Horizontal Product Length = 09-00-00

Reaction Summary (Down / Uplift) (lbs)											
Bearing	Live	Dead	Snow	Wind							
B0, 3-1/2"	540 / 0	500 / 0									
B1, 3-1/2"	540 / 0	500 / 0									

Load Summary		D 1 0(***)			ead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	End 1.	<u>.00 0.</u>	65	1.00 1.15	
1	Unf. Area (lb/ft^2)	L 00-00-00	09-00-00 40	0 1:	5		03-00-00
2	Unf. Lin. (lb/ft)	L 00-00-00	09-00-00	.60	0		n/a

ntrols Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	2,907 ft-lbs	17,696 ft-lbs	16.4%	1	04-06-00
End Shear	1,026 lbs	7,232 lbs	14.2%	1	01-03-06
Total Load Defl.	L/999 (0.057")	n/a	n/a	4	04-06-00
Live Load Defl.	L/999 (0.029")	n/a	n/a	5	04-06-00
Max Defl.	0.057"	n/a	n/a	4	04-06-00
Span / Depth	8.6	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bear	ring Supports	Dim. (L x W)	Demand	Resistance Support	Resistance Member	Material	i
B0 B1	Wall/Plate Wall/Plate	3-1/2" x 1-3/4" 3-1/2" x 1-3/4"	1,434 lbs 1,434 lbs	38.1% 38.1%	19.2% 19.2%	Spruce Pine Spruce Pine	
DΙ	vvali/Flate	3-1/2 X 1-3/4	1,454 108	QQ. 170	10.2.70	oprace i me	1 11

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™ ALLJOIST® , BC RIM BOARD $^{\text{TM}}$, BCI® , BOISE GLULAM $^{\text{TM}}$, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS® . VERSA-RIM®. VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Floor Beam\B24

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

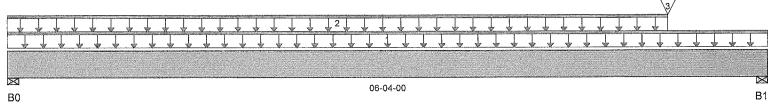
November 29, 2017 08:25:11

Build 6080

Name:

45147 (5005)

Audress: Pine Valley
City, Province, Postal Code: Vaughan, ON


Customer: Code reports: Gold Park CCMC 12472-R File Name: 290684.bcc

Description: First Floor Framing

Specifier: Designer: N

Company: Alpa Roof Trusses

Misc:

Total Horizontal Product Length = 06-04-00

Reaction Summary (Down / Uplift) (lbs)											
Bearing	Live	Dead	Snow	Wind							
B0, 3-1/2"	226 / 0	349 / 0									
B1, 3-1/2"	634 / 0	735 / 0									

Load Summary					Live	Dead	Snow	Wind	Trib.
Tag Description	Load Type	R	ef. Start	End	1.00	0.65	1.00	1.15	
1	Unf. Lin. (lb/ft)	L	00-00-00	06-04-00	27	74			n/a
<i>?</i> ~	Unf. Lin. (lb/ft)	L	00-00-00	05-06-00	27	14			n/a
	Conc. Pt. (lbs)	L	05-06-00	05-06-00	540	500			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	1,337 ft-lbs	17,696 ft-lbs	7.6%	1	03-10-08
End Shear	1,040 lbs	7,232 lbs	14.4%	1	05-00-10
Total Load Defl.	L/999 (0.013")	n/a	n/a	4	03-04-02
Live Load Defl.	L/999 (0.005")	n/a	n/a	5	03-04-02
Max Defl.	0.013"	n/a	n/a	4	03-04-02
Span / Depth	5.9	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bearii	ng Supports	Dim. (L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
B0	Wall/Plate	3-1/2" x 1-3/4"	774 lbs	20.5%	10.4%	Spruce Pine Fir
B1	Wall/Plate	3-1/2" x 1-3/4"	1,870 lbs	49.6%	25%	Spruce Pine Fir

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

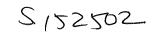
Calculations assume member is fully braced.

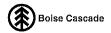
Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.


Importance Factor : Normal Part code : Part 4


Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood

Products L. C. Profession Cascade Wood Products L. C. Profession Cascade Wood Products L. C. Profession Cascade Wood Products L. F. C. F. F. C.
A TO ON THE D

Floor Beam\B25

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 15:57:57

BC CALC® Design Report

Build 6080

Name: Audress:

45147 (5005)

Pine Valley City, Province, Postal Code: Vaughan, ON

Customer: Code reports: Gold Park

CCMC 12472-R

File Name: 290684.bcc

Description: First Floor Framing

Specifier:

Designer:

Company: Alpa Roof Trusses

Misc:

Ţ	I	Ţ	I	Ţ	I	I	I	I		I	Ţ	Ţ	J	Ţ	Ţ	Ţ		I,			2	I	I	I	T	Ţ	Ţ,	Ţ	Ţ.	Ţ	I	T	- Tanana	Ţ	1	Ţ	Ţ	W.7	527	Ĺ	,]	Ţ
Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	1	Ţ	Ţ	Ţ		Ĭ	Ţ		Ţ	Ţ	Ĭ	, 4		Ţ	Ţ	Ĭ	I	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ĭ		Ţ			Ţ		Ţ	Ţ		T T		,]	,
	*87	369	397	-9/	39	w	W/																																			
					e College										·																			*								
																			•									*							•			,	· ·	,		
																					04-0																7			*		

Total Horizontal Product Length = 08-04-00

Reaction Summary	(Down / Uplift) (lbs)				
Bearing	Live	Dead	Snow	Wind	
B0, 3-1/2"	792 / 0	666 / 0			
B1. 3-1/2"	792 / 0	666 / 0			

Load Summary			Live	Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	End 1.00	0.65	1.00 1.15	
1	Unf. Area (lb/ft^2)	L 00-00-00	08-04-00 40	20		04-09-00
2	Unf. Lin. (lb/ft)	L 00-00-00	08-04-00	60		n/a

Domond

ntrols Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	3,758 ft-lbs	11,610 ft-lbs	32.4%	1	04-02-00
End Shear	1,495 lbs	5,785 lbs	25.8%	1	01-01-00
Total Load Defl.	L/999 (0.121")	n/a	n/a	4	04-02-00
Live Load Defl.	L/999 (0.066")	n/a	n/a	5	04-02-00
Max Defl.	0.121"	n/a	n/a	4	04-02-00
Span / Depth	9.9	n/a	n/a		00-00-00
Squash Blocks	Valid				

Beari	ng Supports	Dim. (L x W)	Demand	Resistance Support	Resistance Member	Material	!
В0	Wall/Plate	3-1/2" x 1-3/4"	2,020 lbs	53.6%	27%	Spruce Pine	Fir (
В1	Wall/Plate	3-1/2" x 1-3/4"	2,020 lbs	53.6%	27%	Spruce Pine	Fir ,

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER® , AJS™ ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS® , VERSA-RIM®. VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Floor Beam\B26

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 15:59:20

BC CALC® Design Report

45147 (5005)

Pine Valley

City, Province, Postal Code: Vaughan, ON Customer: Gold Park

Code reports:

Build 6080

Name: Audress:

CCMC 12472-R

File Name: 290684.bcc

Description: Second Floor Framing

Specifier: Designer: NL

Company: Alpa Roof Trusses

Misc:

×		×
B0	05-00-00	В1

Total Horizontal Product Length = 05-00-00

Reaction Summary (Dow	n / Uplift) (lbs)				
Bearing	Live	Dead	Snow	Wind	
B0, 3-1/2"	68 / 0	215 / 0			
B1, 3-1/2"	68 / 0	215 / 0			

Load Summary				Live	Dead	Snow	Wind	Trib.
Tag Description	Load Type	Ref. Start	End	1.00	0.65	1.00	1.15	
1	Unf. Lin. (lb/ft)	L 00-00-00	05-00-00	27	74			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
, Moment	311 ft-lbs	23,005 ft-lbs	1.3%	0	02-06-00
Shear	147 lbs	9,401 lbs	1.6%	0	01-03-06
Total Load Defl.	L/999 (0.001")	n/a	n/a	4	02-06-00
Live Load Defl.	L/999 (0")	n/a	n/a	5	02-06-00
Max Defl.	0.001"	n/a	n/a	4	02-06-00
Span / Depth	4.6	n/a	n/a		00-00-00
Squash Blocks	Valid				

Beari	ng Supports	Dim. (L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
В0	Wall/Plate	3-1/2" x 3-1/2"	301 lbs	6.1%	3.1%	Spruce Pine Fir
B1	Wall/Plate	3-1/2" x 3-1/2"	301 lbs	6.1%	3.1%	Spruce Pine Fir

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Nail one ply to another with 3 ½" spiral nails @ 12\ o.c. staggered in 2 rows

Floor Beam\B27

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 16:01:48

BC CALC® Design Report

Build 6080

Name:

45147 (5005) Pine Valley

Address: City, Province, Postal Code: Vaughan, ON

Customer: Code reports: Gold Park

CCMC 12472-R

File Name: 290684.bcc

Description: Second Floor Framing

Specifier:

Designer: NL

Company: Alpa Roof Trusses

Misc:

							 ~~					4/				
	ŢŢŢ	I I I	, []	ĮĮ,	2	Ţ	ŢŢ	ŢŢ	Ţ,	ŢŢ	Ţ	ŢŢ	, 🗼	Ţ,	V (
													,	3.		
				ŢŢ,			ŢŢ		Ţ,		Ţ	Ţ	, ,	Ţ.,		
≰.					05-08-0	0										12
30																В

Total Horizontal Product Length = 05-08-00

	•	TOTAL TIONEONICAL T	Todaot Eorigan Co	00 00							
Reaction Summary (Down / Uplift) (lbs)											
Bearing	Live	Dead	Snow	Wind							
B0, 3-1/2"	824 / 0	637 / 0									
B1, 3-1/2"	958 / 0	843 / 0									

Load Summary					Live	Dead	Snow	Wind	Trib.
Tag Description	Load Type	R	ef. Start	End	1.00	0.65	1.00	1.15	
<u> </u>	Unf. Area (lb/ft^2)	L	00-00-00	05-08-00	40	20			07-02-00
	Unf. Lin. (lb/ft)	L	00-00-00	05-08-00		60			n/a
3	Unf. Area (lb/ft^2)	L	04-10-00	05-08-00	40	20			02-08-00
4	Conc. Pt. (lbs)	L.	04-10-00	04-10-00	68	215			n/a

0 () 0	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	2,506 ft-lbs	35,392 ft-lbs	7.1%	1	02-11-03
End Shear	1,360 lbs	14,464 lbs	9.4%	1	04-04-10
Total Load Defl.	L/999 (0.009")	n/a	n/a	4	02-10-00
Live Load Defl.	L/999 (0.005")	n/a	n/a	5	02-10-00
Max Defl.	0.009"	n/a	n/a	4	02-10-00
Span / Depth	5.3	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bear	ing Supports	Dim. (L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
B0	Wall/Plate	3-1/2" x 3-1/2"	2,032 lbs	27%	13.6%	Spruce Pine Fir
B1	Wall/Plate	3-1/2" x 3-1/2"	2,490 lbs	33%	16.7%	Spruce Pine Fir

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

gn based on Dry Service Condition.

Importance Factor : Normal Part code : Part 4

Nail one ply to another with 3 ½" spiral nails @ اكلا)

o.c, staggered in 2 rows

Floor Beam\B28

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

November 28, 2017 16:48:59

Build 6080

Name:

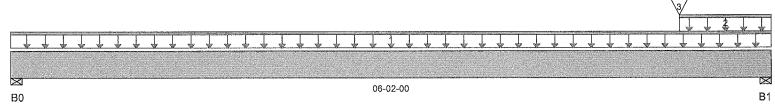
45147 (5005)

Audress: Pine Valley City, Province, Postal Code: Vaughan, ON

Customer:

Code reports:

Gold Park CCMC 12472-R File Name: 290684.bcc


Description: Second Floor Framing

Specifier:

Designer: NL

Company: Alpa Roof Trusses

Misc:

Total Horizontal Product Length = 06-02-00

Reaction Summary (Down / Uplift) (lbs)											
Bearing	Live	Dead	Snow	Wind							
B0, 3-1/2"	159 / 0	324 / 0									
B1, 3-1/2"	852 / 0	854 / 0									

Load Summary					Live	Dead	Snow	Wind	Trib.
Tag Description	Load Type	Re	f. Start	End	1.00	0.65	1.00	1.15	
1	Unf. Lin. (lb/ft)	L.	00-00-00	06-02-00	27	74			n/a
2000.	Unf. Lin. (lb/ft)	L	05-05-00	06-02-00	27	14			n/a
	Conc. Pt. (lbs)	L	05-05-00	05-05-00	824	637			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	1,255 ft-lbs	35,392 ft-lbs	3.5%	1	04-03-14
End Shear	1,048 lbs	14,464 lbs	7.2%	1	04-10-10
Total Load Defl.	L/999 (0.006")	n/a	n/a	4	03-03-11
Live Load Defl.	L/999 (0.002")	n/a	n/a	5	03-04-06
Max Defl.	0.006"	n/a	n/a	4	03-03-11
Span / Depth	5.8	n/a	n/a		00-00-00
Squash Blocks	Valid				

Beari	ing Supports	Dim. (L x W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material
B0	Wall/Plate	3-1/2" x 3-1/2"	453 lbs	9.3%	4.7%	Spruce Pine Fir
B1	Wall/Plate	3-1/2" x 3-1/2"	2,345 lbs	31.1%	15.7%	Spruce Pine Fir

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Nail one ply to another with 3 ½'' spiral nails @ (乙り

o.c, staggered in 2 rows

Floor Beam\B29

November 29, 2017 08:41:53

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

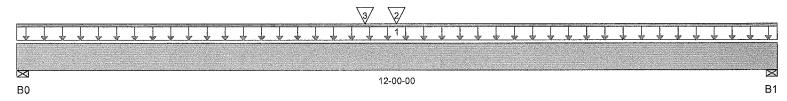
Build 6080

Name:

45147 (5005) Pine Valley

Auuress: City, Province, Postal Code: Vaughan, ON

Customer: Code reports: Gold Park CCMC 12472-R File Name: 290684.bcc


Description: First Floor Framing

Specifier:

Designer:

Company: Alpa Roof Trusses

Misc:

Total Horizontal Product Length = 12-00-00

Reaction Summary (Down / Uplift) (lbs)											
Bearing	Live	Dead	Snow	Wind							
B0, 3-1/2"	1,292 / 0	1,267 / 0									
B1, 3-1/2"	1,246 / 0	1,224 / 0									

Load Summary					Live	Dead	Snow	Wind	Trib.
Tag Description	Load Type	R	ef. Start	End	1.00	0.65	1.00	1.15	
1	Unf. Lin. (lb/ft)	L	00-00-00	12-00-00	54	87			n/a
2	Conc. Pt. (lbs)	L	06-00-00	06-00-00	1,350	803			n/a
3	Conc. Pt. (lbs)	L	05-06-00	05-06-00	540	500			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	15,932 ft-lbs	35,392 ft-lbs	45%	1	06-00-0
End Shear	3,260 lbs	14,464 lbs	22.5%	1	01-03-06
Total Load Defl.	L/570 (0.243")	0.577"	42.1%	4	06-00-00
Live Load Defl.	L/1,075 (0.129"	0.385"	33.5%	5	06-00-00
Max Defl.	0.243"	1"	24.3%	4	06-00-00
Span / Depth	11.7	n/a	n/a		00-00-00
Squash Blocks	Valid				

Bear	ing Supports	Dim. (L x W)	Demand	Resistance Support	Resistance Member	Material
B0	Wall/Plate	3-1/2" x 3-1/2"	3,523 lbs	46.7%	23.6%	Spruce Pine Fir
В1	Wall/Plate	3-1/2" x 3-1/2"	3,399 lbs	45.1%	22.7%	Spruce Pine Fir

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Design meets User specified (1") Maximum Total load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

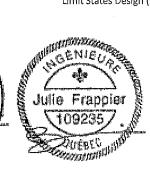
Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 4

Nail one ply to another with 3 ½" spiral nails @ 1乙」 o.c. staggered in 2 rows

Domand/

Domand/



Maximum Floor Spans

Live Load = 40 psf, Dead Load = 15 psf Simple Spans, L/360 Deflection Limit 3/4" OSB G&N Sheathing

			Ba	ire			1/2" Gyps	um Ceiling			
Depth	Series		On Centr	e Spacing			On Centre Spacing				
,		12"	16"	19.2"	24"	12"	16"	19.2"	24"		
	NI-20	15'-10"	15'-0"	14'-5"	13'-5"	16'-4"	15'-5"	14'-6"	13'-5"		
	NI-40x	17'-0"	16'-0"	15'-5"	14'-9"	17'-5"	16'-5"	15'-10"	15'-2"		
9-1/2"	NI-60	17'-2"	16'-2"	15'-7"	14'-11"	17'-6"	16'-7"	15'-11"	15'-3"		
	NI-70	18'-0"	16'-11"	16'-3"	15'-7"	18'-5"	17'-3"	16'-7"	15'-11"		
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'-5"	16'-9"	16'-1"		
	NI-20	17'-10"	1.6'-10"	1.6'-2"	15'-6"	18'-6"	17'-4"	16'-9"	16'-1"		
	NI-40x	19'-4"	17'-11"	17'-3"	16'-6"	19'-11"	18'-6"	17'-9"	17'-0"		
44.7/01	NI-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18'-9"	17'-11"	17'-2"		
11-7/8"	NI-70	20'-9"	. 19'-2"	18'-3"	17'-5"	21'-4"	19'-9"	18'-10"	17'-10"		
	NI-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"		
	NI-90x	21'-8"	20'-0"	19'- 1 "	18'-0"	22'-2"	20'-6"	19'-6"	18'-6"		
	NI-40x	21'-5"	19'-10"	18'-11"	17'-11"	22'-1"	20'-6"	19'-7"	18'-7"		
	NI-60	21'-10"	20'-2"	19'-3"	18'-2"	22'-5"	20'-10"	19'-11"	18'-10"		
14"	NI-70	23'-0"	21'-3"	20'-3"	19'-2"	23'-8"	21'-11"	20'-10"	19'-9"		
	NI-80	23'-5"	21'-7"	20'-7"	19'-5"	24'-0"	22'-3"	21'-2"	20'-0"		
	NI-90x	24'-1"	221-3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"		
National Control	NI-60	23'-9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"		
4.00	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25'-9"	23'-10"	22'-9"	21'-6"		
16"	NI-80	25'-6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23'-1"	21'-10"		
	NI-90x	26'-4"	24'-3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22'-5"		

	Mid-Span Blocking					Mid-Span Blocking and 1/2" Gypsum Celling					
Depth	Series	On Centre Spacing				On Centr	e Spacing				
		12"	16"	19.2"	24"	12"	16"	19.2"	24"		
	NI-20	17'-1"	15'-5"	14'-6"	13'-5"	17'-1"	15'-5"	14'-6"	13'-5"		
	N1-40x	18'-8"	17'-6"	16'-7"	15'-3"	19'-2"	17'-8"	16'-7"	15'-3"		
9-1/2"	NI-60	18'-11"	17'-8"	16'-10"	15'-7"	19'-4"	18'-0"	16'-10"	15'-7"		
	N1-70	20'-0"	18'-7"	17'-9"	17'-0"	20'-5"	19'-0"	18'-2"	17'-0"		
	NI-80	20'-3"	18'-10"	17'-11"	17'2"	20'-8"	19'-3"	18'-4"	17'-5"		
	N1-20	20'-2"	18'-8"	17'-6"	16'-2"	20'-7"	18'-8"	17'-6"	16'-2"		
11-7/8"	NI-40x	21'-10"	20'-4"	19'-5"	17'-8"	22¹-5"	20'-11"	19'-9"	17'-8"		
	NI-60	22'-1"	20'-7"	19'-7"	18'-7"	22'-8"	21'-2"	20'-3"	18'-8"		
	NI-70	23'-4"	21'-8"	20'-8"	19'-7"	23'-10"	22'-3"	21'-3"	20'-1"		
	NI-80	23'-7"	21'-11"	20'-11"	1.9'-9"	24'-1"	22'-6"	21'-5"	20'-4"		
	NI-90x	24'-3"	22'-6"	21'-6"	20'-4"	24'-8"	23'-0"	22'-0"	20'-9"		
	NI-40x	24'-5"	22'-9"	21'-8"	19'-5"	25'-1"	23'-6"	21'-9"	19'-5"		
	NI-60	24'-10"	23'-1"	22'-0"	20'-10"	25'-6"	23'-10"	22'-9"	21'-4"		
14"	NI-70	26'-1"	24'-3"	23'-2"	21'-10"	26'-8"	24'-11"	23'-9"	22'-6"		
	NI-80	26'-6"	24'-7"	23'-5"	22'-2"	27'-1"	25'-3"	24'-1,"	22'-9"		
	NI-90x	27'-3"	25'-4"	24'-1"	22'-9"	27'-9"	25'-11"	24'-8"	23'-4"		
	NI-60	27'-3"	25'-5"	24'-2"	22'-10"	28'-0"	26'-2"	25'-0"	23'-8"		
	NI-70	28'-8"	26'-8"	25'-4"	23'-11"	29'-3"	27'-4"	26'-1"	24'-8"		
16"	NI-80	29'-1"	27'-0"	25'-9"	24'-4"	29'-8"	27'-9"	26'-5"	25'-0"		
	NI-90x	29'-11"	27'-10"	26'-6"	25'-0"	30'-6"	28'-5"	27'-2"	25'-8"		

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/360 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

J. FRAPPIER

100108717

SAFETY AND CONSTRUCTION PRECAUTIONS

Never stack building unsheathed I-joists. ver-stress l-joist with acentrated loads from building materials.

WARNING

l-joists are not stable until completely instelled, and will not carry any load until fully braced and sheathed.

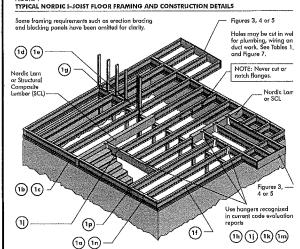
Avoid Accidents by Following these Important Guidelines:

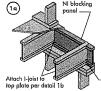
- Brace and nail each I-joist as it is installed, using hangers, blocking panels, rim board, and/or cross-bridging at joist ends. When I-joists are applied continuous over interior supports and a load-bearing wall is planned at that location, blocking will be required at the interior support.
- When the building is completed, the floor sheathing will provide lateral support for the top flanges of the I-joists. Until this sheathing is applied, temporary bracing, often called struts, or temporary sheathing must be applied to prevent I-joist rollover or buckling.
- Temporary bracing or struts must be 1x4 inch minimum, at least 8 feet long and spaced no more than 8 feet on contre, and must be secured with a minimum of two 2-1/21 nails fastered to the top surface of each I-joist. Nail the bracing to a lateral restraint at the end of each boy. Lap ends of adjoining bracing over at least two I-joists.
- Or, sheathing (temporary or permonent) can be nailed to the top flunge of the first 4 feet of I-joists at the end of the bay.
- For cantilevered t-joists, brace top and bottom flanges, and brace ends with closure panels, rim board, or cross-bridging.
- 4. Install and fully nail permanent sheathing to each I-joist before placing loads on the floor system. Then, stack building materials over beams or walls only.
- 5. Never install a damaged I-joist.

Improper storage or installation, failure to follow applicable building codes, failure to follow span ratings for Nordic Ljoists, failure to follow allowable hole sizes and locations, or failure to use web stiffeners when required can result in serious accidents. Failow these installation guidalines carefully.

STORAGE AND HANDLING GUIDELINES

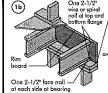
- 1. Bundle wrap can be slippery when wet. Avoid walking on wrapped
- 2. Store, stack, and handle I-joists vertically and level only. 3. Always stack and handle I-joists in the upright position only.
- 4. Do not store I-joists in direct contact with the ground and/or flatwise.
- 5. Protect I-joists from weather, and use spacers to separate bundles.
- 6. Bundled units should be kept intact until time of installation.
- When handling I-joists with a crane on the job site, take a few simple precautions to prevent damage to the I-joists and Injury to your work crew.
 - Pick I-joists in bundles as shipped by the supplier
 - Orient the bundles so that the webs of the I-joists are vertical.
 - Pick the bundles at the 5th points, using a spreader bar if necessary.
- 8. Do not handle I-joists in a horizontal orientation. 9. NEVER USE OR TRY TO REPAIR A DAMAGED I-JOIST.





INSTALLING NORDIC I-JOISTS

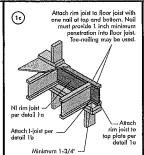
- 1. Before laying out floor system components, verify that I-joist flange widths match hanger widths. If not, continued
- 2. Except for cutting to length, I-joist flanges should never be cut, drilled, or notched.
- 3. Install I-joists so that top and bottom flanges are within 1/2 inch of true vertical alignment I-joists must be anchored securely to supports before floor sheathing is attached, and supports be level.
- 5. Minimum bearing lengths: 1-3/4 inches for end bearings and 3-1/2 inches for intermediate be
- 6. When using hangers, seat I-joists firmly in hanger bottoms to minimize settlement.
- 7. Leave a 1/16-inch gap between the I-joist end and a header.
- 8. Concentrated loads greater than those that can normally be expected in residential construction should only be applied to the lop surface of the top flange. Normal concentrated loads include track lighting fixtures, outlo equipment and security cameras. Never expend unsual or heavy loads from the i-joist's bollom flange. Whenever possible, suspend in concentrated loads from the top of the I-joist. Or, altach the load to blocking that has been securely fastened to the I-joist webs.
- 9. Never install 1-joists where they will be permanently exposed to weather, or where they will remain in direct contact with concrete or masonry.
- 10. Restrain ends of floor joists to prevent rollover. Use rim board, rim joists or I-joist blocking panels.
- 11. For I-joists installed over and beneath bearing walls, use full depth blacking panels, rim board, or squash blacks (cripple members) to transfer gravity loads through the floor system to the wall or foundation below.
- 12. Due to strinkage, common framing lumber set on edge may never be used as blocking or rim boards. I-joist blocking panels or other engineered wood products such as rim board must be cut to fit between the I-joists, and an I-joist-compatible depth selected.
- 13. Provide permanent lateral support of the bottom flange of all L-joists at interior supports of multiple-span joists. Similarly, support the bottom flange of all cantilevered L-joists at the end support next to the cantilever extension. In the completed structure, the gypsum wallboard ceiling provides this lateral support, Until the final finished ceiling is applied, temporary bracing or struts must be used.
- 14. If square-edge panels are used, edges must be supported between I-joists with 2x4 blocking. Glue panels to blocking to minimize squeaks. Blocking is not required under structural finish flooring, such as wood strip flooring, or if a separate underlayment layer is installed.
- 15. Nail spacing: Space nails installed to the flange's top face in accordance with the applicable building code requirements or approved building plans.

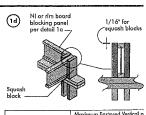

All nails shown in the above details are assumed to be common wire nails unless otherwise noted. 3' (0.122' dia.) common spiral nails may be substituted for 2-1/2' (0.128' dia.) common spiral nails may be substituted for 2-1/2' (0.128' dia.) common sit on the substitute of the property of the substitute of the substi

2-1/2" nails at 6" o.c. to top plate (when used for lateral shear transfer, nail to bearing plate with same nailing

Blocking Panel or Rim Joist Maximum Factored Uniform Vertical Load* (plf) NI Joists 3,300

*The uniform vertical load is limited to a joist depth of 16 inches or less and is based on standard term load duration it shall not be used in the design of a banding member, such as joist, hadder, or rafter. For concentrated vertical load transfer, see detail 1d.




-Attach rim board to top plate using 2-1/2" wire or spiral toe-nuils at 6" o.c.

To avoid splitting flange, start nails at least 1-1/2* from end of I-joist. Nails ay be driven at an angle to I splitting of bearing plate.

Minimum bearing length shall be 1-3/4" for the end bearings, and 3-1/2" for the intermediate bearings when applicable.

or Rim Joist	Vertical Load* (plf)
1-1/8° Rim Board Plus	8,090
or less and is based on stand used in the design of a bendi	niled to a rim board depth of 16 inches lard term load duration. It shall not be ing member, such as joist, header, or cal load transfer, see detail 1d.

Pair of Squash Blocks	Maximum Factored Vertical p Pair of Squash Blocks (lbs)				
	3-1/2" wide	5-1/2° wid			
2x Lumber	5,500	8,500			
1-1/B" Rim Board Plus	4,300	6,600			

www.nordicewp.com

lefer to the Installation Guide for Residential Floors for additional information. CCMC EVALUATION REPORT 13032-R

NI-90x 3-1/2* 2* OSB ₹16*→ 4-NI_AO NI-70 1-12' 1-1/2 CACHESSIA! 3-1-7 1 1-1<u>-7</u> 1-1/2 / 1 NI-40x 1-1<u>-1</u> OSB 3/8"→ 4-OSB 716"→ NI-20 OSB 3/6*. 1-1<u>12-0-1</u> 100108717 1950f MSR NPG Lumber 2100f MSR 1950f MSR 2100f MSR 2400f MSR 33 pieces 33 pieces 33 pieces 23 pieces 23 pieces 23 pieces 23 pieces per unit

WEB HOLE SPECIFICATIONS

RULES FOR CUTTING HOLES AND DUCT CHASE OPENINGS:

- 1. The distance between the inside edge of the support and the centreline of any hole or duct chase opening shall be in compliance with the requirements of Table 1 or 2, respectively.
 1-joist top and bottom flanges must NEVER be cut, notched, or otherwise madified.
- Whenever possible, field-cut holes should be centred on the middle of the web.
 The maximum size hole or the maximum depth of a duct chase opening that can be cut into an I-joist web shall equal the clear distance between the flanges of the I-joist minus 1/4 inch. A minimum of 1/8 inch should always be maintained between the top or bottom of the hole or opening and the adjacent I-joist flange.
- The sides of square holes or longest sides of rectangular holes should not exceed 3/4 of the diameter of the maximum round hole permitted at that location.
- 6. Where more than one hole is necessary, the distance between adjacent hole edges shall exceed twice the diameter of the largest round hole or twice the size of the largest square hole (or twice the length of the longest side of the longest rectangular hole or duct chase opening) and each hole and duct chase opening shall be sized and located in compliance with the requirements of Tables 1 and 2, respectively.
- A knockout is **not** considered a hole, may be utilized anywhere it occurs, and may be ignored for purposes of calculating minimum distances between holes and/or duct
- 8. Holes measuring 1-1/2 inches or smaller are permitted anywhere in a cantilevered section of a joist. Holes of greater size may be permitted subject to verification.
- A 1-1/2 inch hole or smaller can be placed anywhere in the we provided that it meets the requirements of rule number 6 above 10. All holes and duct chase openings shall be cut in a workman-li manner in accordance with the restrictions listed above and as
- illustrated in Figure 7. 11. Limit three maximum size holes per span, of which one may b
- a duct chase opening.

 12. A group of round holes at approximately the same location shall be permitted if they meet the requirements for a single round hole circumscribed around them.

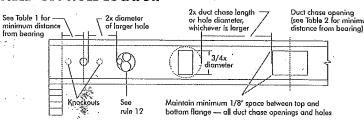
LOCATION OF CIRCULAR HOLES IN JOIST WEBS

Simple or Multiple Span for Dead Loads up to 15 psf and Live Loads up to 40 psf

Joist	Joist			linimun	ı Distar	ice fro	m Insid	e Face	of Any	Support	to Cer	ntre of	Hole (fr	- in.)		1
Depth	Series						Rou	nd Hole) Diame	eter (in.)	1					
Бори	VEITES	2	3	4	5	6	6-1/4	7	8	8-5/8	9	10	10-3/4	11	12	12-3/4
	NI-20	0'-7"	1'-6"	2'-10"	4'-3"	5'-8"	6'-0"									
	NI-40x	0'-7"	1'-6"	31-0"	4'-4"	6'-0"	6'-4"				•••				***	
9-1/2"	NI-60	1'-3"	2'-6"	4'-0"	5'-4"	7'-0"	7'-5"									
	NI-70	2'-0"	3'-4"	4'-9"	6'-3"	8'-0"	8'-4"	***								
	. NI-80	2'-3"	3'-6"	5'-0"	6'-6"	8'-2"	8'-8"		•••		***					
4.0	NI-20	0'-7"	0'-8"	1'-0"	2'-4"	3'-8"	4'-0*	5'-0"	6'-6"	7'-9"					***	
	NI-40x	0'-7"	0'-8"	1'-3"	2'-8"	4'-0"	4'-4"	5'-5"	7'-0"	8'-4"					***	
	NI-60	0'-7"	1'-8"	3'-0"	4'-3"	5'-9"	6'-0"	7'-3"	8'-10"	10'-0"				•		
11-7/8"	NI-70	1'-3"	2'-6"	4'-0"	5'-4"	6'-9"	7'-2"	8'-4"	10'-0"	11'-2"						
100	NI-80	1'-6"	2'-10°	4'-2"	5'-6"	7'-0"	7'-5"	8'-6"	10'-3"	11-4"						
, a 2	NI-90	0'-7"	0'-8"	1'-5"	3'-2"	4'-10"		6'-9"	8'-9"	10'-2"		***				
	NI-90x	0'-7"	0'-8"	0'-9"	2'-5"	4'-4"	4'-9"	6-3			`	***		***		
0.00	NI-40x	0'-7"	0'-8"	0'-8"	1'-0"	2'-4"	2'-9"	3'-9"	5'-2"	6'-0"	6'-6"	81-311	10'-2"			
	NI-60	0'-7"	0'-8"	1'-8"	3'-0"	4'-3"	4'-8"	5'-8"	7'-2" .	8'-0"	8'-8"	10'-4"	11'-9"			
14"	NI-70	0'-8"	1'-10"	3'-0"	4'-5"	5'-10"		7'-3"	8'-9"	9'-9"	10'-4"	12'-0"	13'-5"			
	NI-80	0'-101	2'-0"	3'-4"	4'-9"	6'-2"	6'-5"	7'-6"	9'-0"	10'-0"	10'-8"	12'-4"	13'-9"			
45.4	NI-90	Q1-7"	0'-8"	0'-10"	2'-5"	4'-0"	4'-5"	5'-9"	7'-5"	8'-8"	9'-4"	11'-4°	12'-11"			
	NI-90x	01-71	0'-8"	0'-8"	21-0"	31-9"	4'-2"	5'-5"	7'-3"	8'-5"	9'-2"					
11.0	NI-60	0'-7"	0'-8"	0'-8"	1'-6"	2'-10"		4'-2"	5'-6"	6'-4"	7'-0°	8'-5"	9'-8"	10'-2'	12'-2"	13'-9"
	NI-70	0'-7"	1'-0"	2'-3"	3'-6"	4'-10"	5'-3"	6'-3"	7'-8"	8'-6"	9'-2"	10'-8"	12'-0"	12'-4"	14'-0"	15'-6"
16"	NI-80	0'-7"	1'-3"	2-6"	3'-10"	5'-3"	5'-6"	6'-6"	8,-0,	9'-0"	9'-5"	11'-0"	12'-3"	12'-9"	14'-5"	16'-0"
	NI-90	0'-7"	0'-8"	0,-8,	1'-9"	31-3"	3'-8"	4'-9"	6'-5"	7'-5"	8'-0"	9'-10"	11'-3"		13'-9"	15'-4"
	NI-90x	0'-7"	0'-8"	0'-9"	2'-0"	3'-6"	4'-0"	5'-0"	61-91	7'-9"	8'-4"	10'-2"	111-6"	12'-0°		

- Above table may be used for I-joist spacing of 24 inches on centre or less.
 Hole lacation distance is measured from inside face of supports to centre of hole.
 Distances in this chart are based on uniformly loaded joists.
 The obove table is based on the I-joists being used at their maximum spans. The minimum distance as given above may be reduced for shorter spans; contact your local distributor.

TABLE 2


DUCT CHASE OPENING SIZES AND LOCATIONS

Simple Span Only

Joist	Joist	Minim	Minimum distance from inside face of supports to centre of opening (ft - in.)								
Depth	Series				Duct Ch	ase Leng	th (in.)				
		8	10	12	14	16	18	20	22	24	
,	NJ-20	4'-1"	4'-5"	4'-10"	5'-4"	5'-8"	6'-1"	6'-6"	7'-1"	7'-5"	
	NI-40x	5'-3"	5'-8"	6'-0"	6'-5"	6'-10"	7'-3"	7'-8"	8'-2"	8'-6"	
9-1/2"	NI-60	5'-4"	5'-9"	6'-2"	6'-7"	7'-1"	7'-5"	8'-0"	8'-3"	81-91	
	NI-70	5'-1"	5'-5"	5'-10"	6'-3"	6'-7"	7'-1"	7'-6"	8'-1"	8'-4"	
	NI-80	5'-3"	5'-8"	6'-0"	6'-5"	6'-10"	7'-3"	7'-8"	8'-2"	8'-6"	
	NJ-20	5'-9"	6'-2"	6'-6"	7'-1"	7'-5"	7'-9"	8'-3"	8'-9"	9'-4"	
	NI-40x	6'-8"	7'-2"	7'-6"	8'-1"	8'-6"	9'-1"	91-6"	10'-1"	10'-9"	
	NI-60	7'-3"	7'-8"	8'-0"	8'-6"	9'-0"	91-3" .	91-9"	10'-3"	11'-0"	
11-7/8*	NI-70	7'-1"	7'-4"	7'-9"	81-31	8'-7"	9'-1"	9'-6"	10'-1"	10'-4"	
	NI-80	7'-2"	7'-7"	8'-0"	8'-5"	8'-10"	9'-3"	9'-8"	10'-2"	10'-8"	
	NI-90	7'-6"	7'-11°	8'-4"	81-9"	91-2"	91-7"	10'-1"	10'-7"	10'-11	
	NI-90x	7'-7"	' 8'-1"	81-5"	8'-10"	9'-4"	9'-8"	10'-2"	10'-8"	11'-2"	
	NI-40x	8'-1"	8'-7"	9'-0"	9'-6"	10'-1"	10'-7"	11'-2"	12'-0"	12'-8"	
	NI-60	8'-9"	9'-3"	9'-8"	10'-1"	10'-6"	11'-1"	11'-6"	13'-3"	13'-0"	
14"	NI-70	8'-7"	9'-1"	9'-5"	9'-10"	10'-4"	10'-8"	11'-2"	111-7"	12'-3"	
14	NI-80	9'-0"	9'-3"	9'-9"	10'-1"	10'-7"	11'-1"	11'-6"	12'-1"	12'-6"	
	NI-90	9'-2"	9'-8"	10'-0"	10'-6"	10'-11'	11'-5"	11'-9"	12'-4"	12'-11	
	NJ-90x	9'-4"	9-9	10'-3"	10'-7"	ין גין ן "	11'-7"	12'-1"	12'-7"	13'-2"	
	NI-60	10'-3"	10'-8"	11'-2"	11'-6"	12'-1"	12'-6"	13'-2"	14'-1"	14'-10	
	NI-70	10'-1"	10'-5"	11'-0"	11'-4"	11'-10'	12'-3"	12'-8"	13'-3"	14'-0"	
16"	NI-80	10'-4"	10'-9"	111-3"	111-9"	12'-1"	12'-7"	13'-1"	13'-8"	14'-4"	
	NI-90	10'-9"	11'-2"	11'-8"	12'-0"	12'-6"	13'-0"	13'-6"	14'-2"	14'-10	
	NI-90x	11'-1"	111-5"	11'-10"	12'-4"	12'-10'	13'-2"	13'-9"	14'-4"	15'-2"	

- Above table may be used for Ljoist spacing of 24 inches on centre or less.
 Duct chase opening location distance is measured from inside face of supports to centre of opening.
 The above table is based on simple-span joists only. For other applications, contact your local distributa.
 Distances are based on uniformly loaded floor joists that meet the span requirements for a design lilload of 40 psf and dead load of 15 psf, and a live load deflection limit of L/480.
 The above table is based on the Ljoists being used at their maximum spans. The minimum distance given above may be reduced for shorter spans; contact your local distributor.

FIELD-CUT HOLE LOCATOR

Knockouts are prescored holes provided for the contractor's convenience to install electrical or small plumbing lines. They are 1-1/2 inches in diameter, and are spaced 15 inches on centre along the length of the L-joist. Where possible, it is preferable to use knockouts instead of field-cut holes.

Never drill, cut or notch the flange, or over-cut the web.

Holes in webs should be cut with a sharp saw.

For rectangular holes, avoid over-cutting the corners, as this can cause unnecessary stress concentrations. Slightly rounding the corners is recommended. Starting the rectangular hole by drilling a 1-inch diameter ho in each of the four corners and then making the cuts between the holes is another good method to minimize damage to the I-joist.

SAFETY AND CONSTRUCTION PRECAUTIONS

Do not walk on 1-joists until fully fastened and braced, or serious injuries can result.

Never stack building materials over unsheathed I-joists. Once sheathed, do not over-stress I-joists with concentrated loads from building materials.

AVOID ACCIDENTS BY FOLLOWING THESE IMPORTANT GUIDELINES:

Brace and nail each I-joist as it is installed, using hangers, blocking panels, rim board, and/or cross-bridging at joist ends.
When I-joists are applied continuous over interior supports and a load-bearing wall is planned at that location, blocking will

WARNING: 1-joists are not stable until completely installed, and will not carry any load until fully braced and sheathed.

- be required at the interior support.

 2. When the building is completed, the floor sheathing will provide lateral support for the top flanges of the L-joists. Until this sheathing is applied, temporary bracing, often called struts, or temporary sheathing must be applied to prevent L-joist rollover or buckling.

 **Temporary bracing or struts must be 1×4 inch minimum, at least 8 feet long and spaced no more than 8 feet on centre, and must be secured with a minimum of two 2-1/2* nails fastened to the top surface of each L-joist. Nail the bracing to a lateral restraint at the end of each boy. Lap ends of adjoining bracing over at least two L-joists.

 **Or sheathing (Represent or permeast) so be puiled to the busy large of the first A feat of L-joists at the end of the how.
- Or, sheathing (temporary or permanent) can be noiled to the top flange of the first 4 feet of I-joists at the end of the bay.
 3. For cantilevered I-joists, brace top and bottom flanges, and brace ends with closure panels, rim board, or cross-bridging.
- Install and fully nail permanent sheathing to each 1-joist before placing loads on the floor system. Then, stack building materials over beams or walls only.
- 5. Never install a damaged I-joist.

Improper storage or installation, failure to follow applicable building codes, failure to follow span ratings for Nordic Lioists, failure to follow allowable hole sizes and locations, or failure to use web stiffeners when required can result in serious accidents. Follow these installation guidelines carefully.

PRODUCT WARRANTY

Chantiers Chibougaman guarantees that, in accordance with our specifications, Nordic products are free from manufacturing defects in material and workmanship.

Furthermore, Chantiers Chibougamau warrants that our products, on utilized in accordance with our handling and installation instructions, will meet or exceed our specifications for the lifetime of the structure.

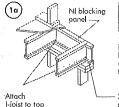
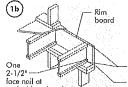



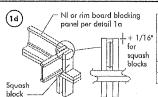
plate per detail 1b

Blocking Panel or Rim Joist	Maximum Factored Uniform Vertical Load* (plf)
NI Joists	3,300

*The uniform vertical load is limited to a joist depth of 16 inches or less and is based on standard term load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load

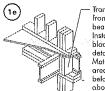
2-1/2" nails at 6" o.c. to top plate (when used for lateral shear transfer, nail to bearing plate with same nailing as required for decking)

Blocking Panel	Maximum Factored Uniform
or Rim Joist	Vertical Load* (plf)
1-1/8" Rim Board Plus	8,090

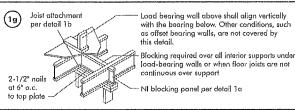

The uniform vertical load is limited to a rim board depth of 16 inches or less and is based on standard term load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer, see detail 1d.

One 2-1/2" wire or spiral nail at top and battom flange

Attach rim board to top plate using 2-1/2" wire or spiral toe-nails at 6" o.c.


To avoid splitting flange, start nails at least 1-1/2" from end of I-joist. Nails may be driven at an angle to avoid splitting of bearing plate.

Minimum bearing length shall be 1-3/4" for the end bearings, and 3-1/2" for the intermediate bearings when applicable.


Pair of Squash Blocks		ad per Pair Blocks (lbs)
	3-1/2" wide	5-1/2* wide
2x Lumber	5,500	8,500
1-1/8" Rim Board Plus	4,300	6,600

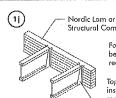
Provide lateral bracing per detail 1a or 1b

each side at bearing

Transfer load from above to bearing below Install squash blocks per detail 1d. Match bearing area of blocks below to post nhove.


Backer block (use if hanger load exceeds 360 lbs). Before installing a backer block to a double (-jaist), drive three additional 3° nails through the webs and filler black where the backer black will fit. Clinch. Install backer tight to top flange. Use twelve 3° nails, clinched when possible. Maximum factored resistance for hanger for this detail = 1,620 lbs.

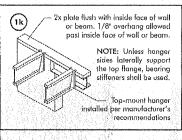
BACKER BLOCKS (Blocks must be long enough to permit required nailing without splitting)

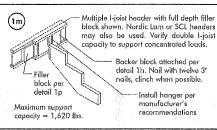

Flange Width	Material Thickness Required*	Minimum Depth**
2-1/2"	ן"	5-1/2"
3-1/2"	1-1/2"	7-1/4"

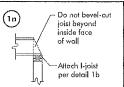
Minimum grade for backer block material shall be S-P-F No. 2 or better for solid sawn lumber and wood structural panels conforming to CAN/CSA-O325 or CAN/CSA-O437 Standard.
* For face-mount hangers use net joist depth minus 3-1/4" for joists with 1-1/2" thick flanges.

For 2" thick flanges use net depth minus 4-1/4".

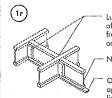
For hanger capacity see hanger manufacturer's recommendations. Verify double 1-joist capacity to support concentrated loads.

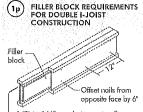


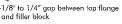

Structural Composite Lumber (SCL)


For nailing schedules for multiple beams, see the manufacturer's recommendations.

Top- or face-mount hanger installed per manufacturer's recommendations


NOTE: Unless hanger sides laterally support the top flange, bearing stiffeners shall be used.

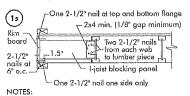

NOTE: Blocking required at bearing for lateral support, not shown for clarity



Lumber 2x4 min., extend block to face of adjacent web. Two 2-1/2" spiral nails from each web to lumber piece, alternate on opposite side

NI blocking panel

OPTIONAL: Minimum 1x4 inch strap applied to underside of loist at blocking line or 1/2 inch minimum gypsum ceiling attached to underside of joists.


- 1. Support back of I-joist web during nailing to prevent damage to web/flunge connection.

 2. Leave a 1/8 to 1/4-inch gap between top of filler block
- and bottom of top I-joist flange.
- 3. Filler block is required between joists for full length of span.

 4. Nail joists together with two rows of 3" nails at 12 inches
- o.c. (clinched when possible) on each side of the double I-joist. Total of four nails per foot required. If nails can be clinched, only two nails per foot are required.

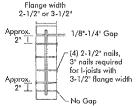
 The maximum factored load that may be applied to one
- side of the double joist using this detail is 860 lbf/ft. Verify double I-joist capacity.

Flange Size	Net Depth	Block Size
2-1/2" x 1-1/2"	9-1/2" 11-7/8" 14" 16"	-2-1/8" x 6" 2-1/8" x 8" 2-1/8" x 10" 2-1/8" x 12"
3-1/2" x 1-1/2"	9-1/2" 11-7/8" 14" 16"	3" × 6" 3" × 8" 3" × 10" 3" × 12"
3-1/2" x 2"	11-7/8° 14" 16"	3" × 7" 3" × 9" 3" × 1,1"

In some local codes, blocking is prescriptively required in the first joist space (or first and second joist space) next to the starter joist. Where required, see local code requirements for spacing of the blocking.

- All nails are common spiral in this detail.

All nails shown in the above details are assumed to be common wire nails unless otherwise noted. 3" (0.122" dia.) noted. 3" (0.122" dia.) common spiral nails may be substituted for 2-1/2" (0.128" dia.) common wire nails. Framing lumber assumed to be Spruce-Pine-Fir No. 2 or better. Individual components not show to scale for clarity.


WEB STIFFENERS

RECOMMENDATIONS:

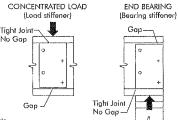
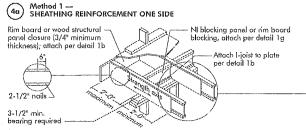

- A bearing stiffener is required in all engineered applications with factored reactions greater than shown in the I-joist properties table found of the I-joist Construction Guide (C101). The gap between the stiffener and the flange is at the top.
- A **bearing stiffener** is required when the l-joist is supported in a hanger and the sides of the hanger do not extend up to, and support, the top flange. The gap between the stiffener and flange is at the top.
- A load stiffener is acquired at locations where a factored concentrated load greater than \$2,370 lbs is applied to the top flange between supports, or in the case of Grantilever, anywhere between the cartillover tip and the support. These values are for standard term load duration, and may be adjusted for other load durations as permitted by the code. The gap between the stiffener and the flange is at the bottom.

FIGURE 2

WEB STIFFENER INSTALLATION DETAILS

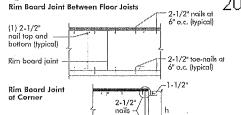

See the adjacent table for web stiffener size requirements

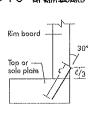
STIFFENER SIZE REQUIREMENTS Web Stiffener Size

CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET

SHEATHING REINFORCEMENT TWO SIDES

Use same installation as Method 1 but reinforce both sides of I-joist with sheathing.




Use nailing pattern shown for Method 1 with opposite face nailing offset by 3°.

Rim board joint

NOTE: Canadian softwood plywood sheathing or equivalent (minimum thickness 3/4*) required on sides of joist. Depth shall match the full height of the joist. Nail with 2-1/2" nails at 6" o.c., top and bottom flange. Install with face grain horizontal. Attach I-joist to plate at all supports per detail 1b. Verify reinforced I-joist capacity.

RIM BOARD INSTALLATION DETAILS (8a) ATTACHMENT DETAILS WHERE RIM BOARDS ABUT

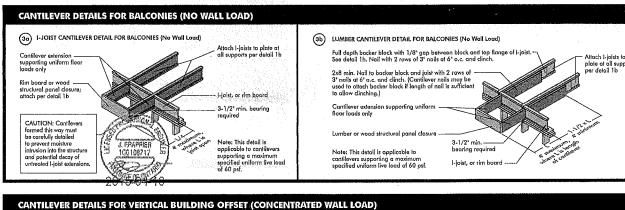
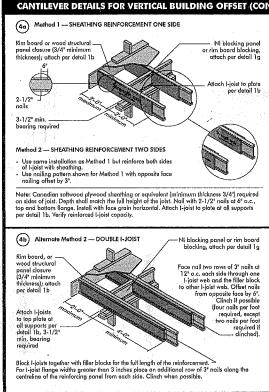
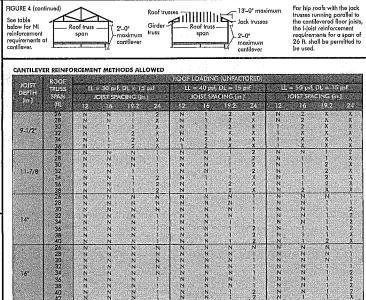




FIGURE 4 (continu

Girder Roof Inc.

– 13'-0" maximum

Jack trusses

L 2'-0"

- 1. N = No reinforcement required.

 1 = Nt reinforced with 3/4" wood structural penel on one side only.

 2 = Nt reinforced with 3/4" wood structural penel on one side only.

 3 = Nt reinforced with 3/4" wood structural penel on both sides, or double 1-joist.

 X = Try a deeper joist or claser specing.

 2. Maximum design load shall be 11 5 ps froot dead load, 55 psf floor total load, and 80 pff wall load. Wall load is based on 3°0" maximum width window or door openings.
- For larger opanings, or multiple 3'-0' width opanings spaced less than 6'-0' a.e., additional joints bameds the opaning's cripple studs may be required.

 3. Table applies to joint 12' to 24' a.e. that meet the floor span requirements for a design like load of 40 ppt and wheat load of 15 ppt, and a five load defection time of 1.460. Use 12' a.e. requirements for textre spacing.

Girder Back

Roof truss —

span

- A. For conventional reaf construction using a ridge beam, the Roaf Truss Span column above is equivalent to the distance between the supporting wall and the ridge beam. When the roof is framed using a ridge board, the Roaf Truss Span is equivalent to the distance between the supporting walls as if a distance between the supporting walls as if a supporting all trust are distance between the supporting walls as if a contract of the supporting and the supporting all trusts are roof beams may require additional reinforcing.

· Jack trusses

2′–0" - maximum cantilever - 5" maximum

For hip roofs with the jack trusses running parallel to the cartillevered floor joists, the I-joist reinforcement requirements for a span of 26 ft. shall be permitted to be used.

BRICK CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD) FIGURE 5 (continued) 12" minimum length of sheathing reinforcemen (5a) SHEATHING REINFORCEMENT See table Provide full depth blocking between joists over support (not shown) below for NI reinforcement -Nail reinforcement to tor requirements at cantilever. -Nail reintorcement to top and bottom joist flanges with 2-1/2" nails at 6" o.c. (offset apposite face nailing by 3" when using reinforcement on both sides of I-joist) Note: Canadian softwood plywood sheathing or equivalent (ninimum thickness 3/41) required on sidea of joils. Depth shall match the full height of the joils, Noil with 2-1/2" roals of 6' o.c., top and bottom florage, Install with face grain horizontal. Attach I-joist to plate at all supports per detail 1b. Verify reinforced I-joist capacity. 3-1/2* min. FIGH SSION A CRAPGIAN 190108717 \$2 (5b) SET-BACK DETAIL Rim board or wood structural panel closure (3/4° minimum thickness), attach per detail 1b. between joists over support (not shown for clarity) Attach I-joist to plate at all supports per detail 1b. 3-1/2" minimum I-joist Attach joists to girder joist per detail 5c. bearing required. (5c) SET-BACK CONNECTION Nail joist end using 3" nails, toe-nail at top and bottom flanges. Vertical solid sawn blocks (2x6 S-P-F No. 2 or better) nailed through joist web and web of girder using 2-1/2" nails. Alternate for opposite sida. used in lieu of solid sawn blocks

Notos: · Verify girder joist capacity if the back span · exceeds the joist spacing. · Attach double I-joist per detail 1p, if required.

BRICK CANTILEVER REINFORCEMENT METHODS ALLOWED

maximum cantilever

-5" maximum

--- Roof truss -

U = 40 per DL = 15 per JOIST SPACING (m.) LL = 50 psl, OL = 75 psl 9-1/2 11-2/8

- 1. N = No reinforcement required.
 1 = NI reinforced with 3/4' wood structure!
 panel on ans side only.
 2 = NI reinforced with 3/4' wood structure!
 panel on both sides, or double I-joist.
 X = Try a desper joist or close specing.
 2. Moximum design load shall be 11 ps pt root dead load, 55 psf floor total load, and 80 pff well load. Wall load is bead on 3-0' maximum width window or door openings.

- 4. For conventional roof construction using a ridge beam, the Roof Truss Span column chove is aquivalent to the distance between the supporting well and the ridge beam. When the roof is formed wing a ridge board, the Roof Truss Span is equivalent to the distance between the supporting wells as if a trust is used. Scanlibraved joils supporting wells as if a trust is used. Scanlibraved joils supporting girlder trusses or roof beams may require additional reinforcing.

RULES FOR CUTTING HOLES AND DUCT CHASE OPENINGS:

- The distance between the inside edge of the support and the centreline of any hole or duct chase opening shall be in compliance with the requirements of Table 1 or 2, respectively.
- 2. 1-joist top and bottom flances must NEVER be cut, notched, or otherwise modified.
- Whenever possible, field-cut holes should be centred on the middle of the web.
- The maximum size hole or the maximum depth of a duct chase opening that can be cut into an L-joist web shall equal the clear distance between the flanges of the L-joist minus 1/4 lach. A minimum of 1/8 inch should always be maintained between the top or bottom of the hole or opening and the adjacent L-joist flange.
- The sides of square holes or longest sides of rectangular holes should not exceed 3/4 of the diameter of the maximum round hole permitted at that location.
- 3/4 or in a animeter or the maximum round hole permitted at that localian. Where more than one hole is necessary, the distance between adjacent hole edges shall exceed witce the diameter of the largest round hole or twice the size of the largest suaper hole (or twice the largest of the largest stape of hele for twice the largest of the largest stape of hele propers staped hole or duct chose opening) and each hole and duct changest rectangular hole or duct chose opening) and each hole and duct changening shall be sized and located in compliance with the requirements of Tables 1 and 2, respectively.
- A knockout is not considered a hole, may be utilized anywhere it occurs, and may be ignored for purposes of calculating minimum distances between holes and/or duct chase openings.
- Holes measuring 1-1/2 inches or smaller shall be permitted anywhere in a confilewered section of a joist. Holes of greater size may be permitted subject to verification.
- A 1-1/2 inch hole or smaller can be placed anywhere in the web provided that it
 meets the requirements of rule number 6 above.
- 10. All holes and duct chase openings shall be cut in a workman-like manner in accordance with the restrictions listed above and as illustrated in Figure 7.
- 11. Limit three maximum size holes per span, of which one may be a duct chase
- A group of round holes at approximately the same location shall be permitted if they meet the requirements for a single round hole circumscribed around them.

TABLE 1 LOCATION OF CIRCULAR HOLES IN JOIST WEBS Simple or Multiple Span for Dead Loads up to 15 psf and Live Loads up to 40 psf

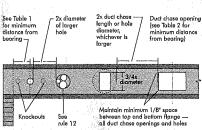
Date in	Jois! Series						Rou	nd lik	e din	neter				美国	70		sid usbri
		2	3	4	- 5	- 6	6-1/4	C.	i)	1.0	9	10	10-3/4			17.00	Inde
	141-20	0.7	-6	2-10	4-35	5'-8	6'-0'			ne e	-	50.54e55	1 m	-	(See Albin		3.6
	M-40x	0.7	11.6	3-0	4.4	6.5	84		-			144	100				14.9
	NI-60	11.3	2.6	4'-G*	9.4	- / · · ·	7.5	-	distribution of the second			-	==-	14	-		14'-11
	78-70	2-0	3-4	4.7	6'3'	8-0	8-4"	2	-		1		-	e l v ez e			15.7
	NI-80	2.3	3-6	5.0	8.8	8.2	8-8			10	39.00						1557
	NI-20	3.7	0.8	11/0	2'-4"	3.8	1.0	5.0	6-6	7.9	Driver L	-	-				15.6
	74-40x	37.7	0.8	11.3	2.8	4.0	4.5	5-5	7-7	5-4		·				5. (10)	15.6
	NI-50	0.7	1.8	3.0	4.3	5.9	647	7.3	8-10"	10-0		-	-				16.9
7/8	N4.70	11.3	2.6	4.0	5-4	2.9	7.7	8.4	10.0	11.2	SAME OF						17-5
	24-80		2-10	4.7	9-6	71.5	7.5	8-6	10.3	11:4							6/61/7/2
	NI-90	9.7	0.8	1.5	3-2	4.10	5-4	6.9	8.9	10.2			-	***	mark (2	3.72
	NI-90a	9.7	0.8	0.9	7.5	2.4	2.9	6.3	10 A 10 E	St. Gettal		17,000					18.0
	Ni 40n	<i>y Z</i>	0.5	0.5	1.0	2.4	2.9	3.7	5-2	6.0	0.0	8-3	10.2				17.1
	NI-69	9.7	0.5	19.8	3.0	4.3	4.8	5-8	7.2	8.0	81.8	19.4	131.9				18.7
	N4-70	0.8	11.10	3.0	4.5	5-10	6.2	7.3	8.9	9.9	10'-4'	12.0	13.5	Contraction.	2 - 3 -		19.2
	144-80	0-10	2-0	3.4	4.9	5.2	6-5	7.6	7.4	10.0	10.5	12-4	13.9				19.5
	16.90	0.7	0.8.	9-10	2.5	4.0	4.57	5-9	7.5	8-8	9.4	11.4	12411				19.9
	NI-90x	12.7	0.8	0.8	2.0	3.9	4.2	5'-5"	7.3	8.5	72	17 min		32398		100	27.0
	NI-60	0.7	0.8	0.8	1.0	2.10	3.7	4:-2	5-6	6.4	7.0	8.5	7.8	30-2	12.2	13.9	19.1
	74.70	9.7	1.0	2.3	3.6	4.10	9.7	6-3	7.8	8-6*	7.7	10-8	12'0	12-4	14'-0"	19.5	23.10
16*	NI-80	9.7	1.3	2.6	3.17	53	5.6	6.6	8.0	9.0	9.5	11.0	12.3	12.9	14.5	6.0	21.2
	14.90	0.7	0.8	0.5	11.0	3.3	3.8	4.0	6.5	7.5	8.0	9.10	11/3	111.9°	1309	15-4	21.61
	141.90x	9.7	7.8	(7.0	2.0	3.6	4.0	9.0	6'-7'	7.7	8.4	10.2	135-65	12-0			215-10

- Above table may be used for I-joist spacing of 24 inches on centre or less.
 Hole location distance is measured from inside face of supports to centre of hole.
 Distances in this chart are based on uniformly loaded joists.

OPTIONAL:

The above table is based on the I-joists used at their maximum span. If the I-joist are placed at less than their full maximum span (see Maximum distance from the centreline of the hole to the face of any support (D) as given above may be reduced as follows:

Dreduced = \begin{center}
\frac{\text{bctud}}{34P} \times D
\end{center}


D_{reduced} =

L_{actual} SAF D

Distance from the Inside Iaze of any support to centre of hole, reduced for less-than-maximal distance shall not be less titun of inches from the lace of the support to edge of the hole. The actival measured span distance between the inside faces of supports. Span Span In this labba. Span Adjustment Factor given in this labba. The minimum distance from the inside face of any support to centre of hole from this table. If the span I s

FIELD-CUT HOLE LOCATOR

A knockout is NOT considered a hole, may be utilized wherever it occurs and may be ignored for purposes of calculating minimum distances between holes.

Knockouts are prescored holes provided for the contractor's convenience to install electrical or small plumbing lines. They are 1-1/2 inches in diameter, and are spaced 15 inches on centre along the largth of the 1-joist. Where possible, it is preferable to use knockouts instead of field-cut holes.

Never drill, cut or notch the flange, or over-cut the web.

Hales in webs should be cut with a

For rectangular holes, avoid over-cutting the corners, as this can cause unnecessar stress concentrations. Slightly rounding the corners is recommended. Starting the creatingular hole by drilling a 1-inch diameter hole in each of the four corners and then making the cuts between the holes is another good meltind to minimize damage to the 1-jolst.

TABLE 2
DUCT CHASE OPENING SIZES AND LOCATIONS — Simple Span Only

PISI	Joist	Duct strase langth (a).)									
		B.	10	12	774	16	18	201	22	24	
	M-20	41.1	4.5	4'-17	5'-4°	5'-8'	6-1	6'-6"	71.1	7.5	
	341-404	5-3	5.5° 5.9°	6-0° 6-2° 5-10°	6-5' 6-7' 6-3' 7-1' 8-1' 8-6'	6'-10"	7.57 7.57 7.57 7.97 7.97 9.17 9.17 9.17	7"-8"	8.2	8-6' 8-9' 8-4'	
1.112	NI-60	5.4	3.9	6.2	6.7	7.1* 6-7* 6-10* 7-5 8-6	7.5	8-0	8-31	8-9"	
	NI-70	5-1	5-5	5-10	6.3	4.0		7-6	8-11	8-4	
	NI-80 NI-20	5.3	5.8	6-0 6-6 7-8 8-0 7-9	0.65	6-185	7-4	7-8	8-2	8-87 9-41 10-91 111-01	
2.0	NI-40x	5.9	6'-2"	0.0	(-1	95.00		8-3	8-9	7.4	
	NI-60	6-8	7-2	1.5	4.1	6-6		9-6		10.9	
1-7/8	M-70	7.3	7-8	0.0 G	B-6			9-9	10.3	11.0	
D-246	211-715	7.1	7°4° 7°57 7°511°	1.7	8.5° 8.5° 8.9°	9.0 8.7 8.10	7-1	9.6	10-1	200	
	NI-80 NI-90	7.7	1.00	810	Sc. 2 - 2	0.10		9.8° 10.11	10-2" 10-7" 10-8"	30.0	
2022 070	V1.90	7-6		8'-4"	9 Y	9.2		The Part of	19-7	10.11	
	NI-40x	7.7	8.1	8-5	81.101	O' 4"	9.8	10:2*	10.0	13.2	
	New York	8-1	8'.7'	9.0	91.6"	10.1	10-7	111-2"	12.0	7.6	
7.00	NI-60	8.9	9.3* 9.1* 9.3*	9-8	10-1° 9-10° 10-1°	10-4*		17'-6'	13.3*	13'-0"	
41	NI-70 NI-80	8.7		9.5° 9.9		10	10'-8'	111-2"		12.3	
	NI-90	9.0		100		10.7		11.6	12-1*	12.6	
	N4-90x	64	9'-8'	10'-0"	0-6 10-7	197-13	. . .		12.4	2012011	
	NI-60		9.9	10.2	11.5	10-11" 12-1 11-10		12-1	12.7	13.2	
0.5	NI-70	10.3	10'-8'	11.2	11.00		12-61	13'-2"		14.15	
20 March		10.1	10.9	11.3	114	12.1	12-3	12.5	13-3	4.0	
•	N6-80	10-4			11'.9"		12.71	150	13'.8"	10.4° 10.8° 10.11° 12.8° 13.0° 12.3° 12.11° 13.2° 14.10° 14.10° 14.10°	
	NL90 NL90x	10.9	111-21	11-81	2-0	12-6	13-0	13.6	14.2	14010	

Above table may be used for t-joist specing of 24 inches on centra or less.

Dud chase opening location distance is measured from initial foce of supports to centre of opening.

The above table is based on simple-spen joist only, for other applications, contact your local distributor.

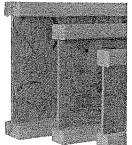
Distances are based on uniformly loaded floor joists that meet the spen requirements for a design five load of 40 psf and doed load of 15 psf, and a live load deficient limit of 1/480. For other opplications, contact your local distributor.

INSTALLING THE GLUED FLOOR SYSTEM

- 1. Wipe any mud, dirt, water, or ice from I-joist flanges before gluing.
- Snap a chalk line across the I-joists four feet in from the wall for panel edge alignment and as a boundary for spreading glue.
- Spread only enough glue to lay one or two panels at a time, or follow specific recommendations from the glue manufacturer.
- Lay the first panel with longue side to the wall, and noil in place. This protects the tongue of the next panel from damage when tapped into place with a block and sledgehammer.
- Apply a continuous line of glue (about 1/4-inch diameter) to the top flange of a single I-joist. Apply
 glue in a winding pattern on wide areas, such as with double I-joists.
- 6. Apply two lines of glue on I-joists where panel ends butt to assure proper gluing of each end. 7. After the first row of panels is in place, spread give in the groove of one of two panels at a time before laying the nest row. Give line may be continuous or spaced, but avoid squeeze-out by applying a tihinner line (1/2 linct) than used on i-joid flanges.
- B. Tap the second row of panels into place, using a block to protect groove edges,
- Stagger end Joints in each succeeding row of panels. A 1/8-inch space between all end joints and 1/8-inch et all edges, including T&G edges, is recommended. (Use a spacer tool or an 2-1/2" common nail to assure occorde and consistent spacing.)
- 10. Complete all notifing of each panel before give sets. Check the monufacturer's recommendations for cure time. (Warm weather accelerates give setting.) Use 2° ring- or screw-shank nails for panels 3/4-thet thick or less, and 2-1/2° ring- or screw-shank nails for thicker panels. Space nails per the table below. Closer nail spacing may be required by some codes, or for disphragm construction. The finished dack can be walked on right away and will carry construction loads without damage to the give bond.

FASTENERS FOR SHEATHING AND SUBFLOORING(1)

Maximum Minimum Jaist Ponel	Comaica	cil Size end 1) Ties: Throad	po-	Maximor of For) Specing) factors
Specing Trickness [in] [in.]	Wire of Spiral Nots	Noils process	Staples	Edges	Interm Supports
16 5/8	2'	1-3/4"	2"	6"	12"
20 5/8	2"	1-3/4*	2"	6"	12"
24 3/4	2"	1-3/4"	2"	6 ^H	12"


- 1. Fasteners of sheathing and subflooring shall conform to the above table.
- 2. Staples shall not be less than 1/16-inch in diameter or thickness, with not less than a 3/8-inch crown driven with the crown parallel to framing.
- 3. Flooring screws shall not be less than 1/8-inch in diameter.
- 4. Special conditions may impose heavy traffic and concentrated loads that require construction in excess of the minimums shown.
- 5. Use only adhesives conforming to CAN/CGSB-71.26 Standard, Adhesives for Field-Gluing Plywood to Lumber Framing for Floor System, applied in accordance with the manufacturer's recommendations. If OSB panels with sealed surfaces and edges are to be used, use only solvent-based glues; check with panel manufacturer.

Ref.: NRC-CNRC, National Building Code of Canada 2010, Table 9.23.3.5.

IMPORTANT NOTE:
Floor sheathing must be field glued to the I-joist flanges in order to achieve the maximum spons shown in this document. If sheathing is nafled only, I-joist spans must be verified with your local distribution.

RIM BOARD INSTALLATION DETAILS (8a) ATTACHMENT DETAILS WHERE RIM BOARDS ABUT Rim board Joint Between Floor Joists 2-1/2" nails at 6" o.c. (typical) Rim board Joint at Corner 1-1/2 (1) 2-1/2" nail top and bottom (typical) 1-1/2" 2-1/2" toe-nails at 6" o.c. (typical) — Rim board Joint -(8c) 2X LEDGER TO RIM BOARD ATTACHMENT DETAIL (8b) TOE-NAIL CONNECTION AT RIM BOARD Exterior sheathing Remove siding at ledger prior to installation Rim board Floor sheathing Continuous flashing extending at least 3" past joist hanger 309 - Staggered 1/2* ameter lag screws or thru-bolts with ℓ/₃ (Society Story) - Deck Inist Existing foundation wall – Joist hanger J. FRAFFIER 100108717 2x ledger board (pres oard (preservative-treated); must be greater than or equal to the depth of the deck joist

MAXIMUM FLOOR SPANS

- Moximum clear spans applicable to simple-span or multiple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The utilimate limit states are based on the factored loads of 1.50L + 1.25D. The surviceability intil states includ the consideration for floor vibration and a live load deflection limit of L/48D. For multiple-span applications, the end spans shall be 40% or more of the adjacent span.
- 2. Spans are based on a composite floor with glued-nailed criented strand board (OSB) sheathing with a minimum thickness of S/B inch for a joist spacing of 19.2 inches or less, or 3/4 inch for joist spacing of 24 inches. Adhesive shall meet the requirements given in CGSB-7.1.26 Standard. No concrete topping or bridging element was assumed. Increased spans may be achieved with the used of gypsum and/or a row of blocking at mid-span.
- Minimum bearing length shall be 1-3/4 inches for the end bearings, and 3-1/2 inches for the intermediate bearings.
- Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.
- 5. This span chart is based on uniform loads. For applications with other than uniform loads, an angineering analysis may be required based on the use of the design properties.
- 6. Tables are based on Limit States Design per CAN/CSA O86-09 Standard, and NBC 2010.
- 7. SI units conversion: 1 inch = 25.4 mm 1 foot = 0.305 m

MAXIMUM FLOOR SPANS FOR NORDIC I-JOISTS

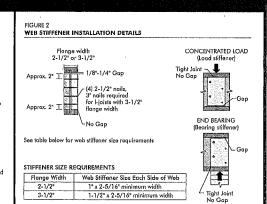
SIMPLE AND MULTIPLE SPANS

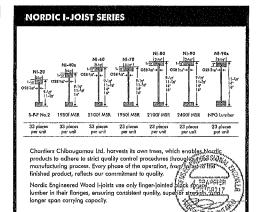
Jos.	Janu								10.5		
ionalia.			On centr	Epotency			On sentre specing				
		12	16*	19.2	24	12	16	1977	9/(0		
	NI-20	15-11	14'-2"	13'-9"	13'-5'	16'-3"	15'-4"	14'-10"	14'-7"		
	NI-40x	16'-1"	15'-2"	14'-8"	14'.9"	17'-5"	16'-5"	15'-10°	15'-5°		
9-1/2	NI-60	16'-3"	15'-4"	14'-10'	14-11	17:7"	16'-7"	16'-0"	16'-1"		
	NI-70	17-1"	16'-1"	15-61	15.7	18.7	17'-4"	16'-9"	16'-10"		
1005000	NI-80	17'.3"	16-3	15'-8"	15'-9"	18-10"	17'-6"	16'-11"	17.0		
	Ni-20	16'.11"	16'-0'	15'-5'	15'-6'	18'-4'	17:-3"	16'-8"	16'-7"		
	NI-40x	18'-1"	17.0	15'-5'	16-6	20'-0"	18'-6'	17'-9"	17'-7"		
	NI-60	16.4	17'-3"	16'-7"	16'-9"	20'-3"	18.0	18-0	18'-1"		
11.7/8	NI-70	19-6"	18'-0"	17'-4'	17'-5"	211-6"	19'-11'	19'-0"	19',1"		
23.5	NI-80	1749	18'-3"	17'-6"	17'-7'	21'-9"	20'-2"	19-3	19.4"		
2000	NI-90	20'-2"	18-7*	17'-10"	17:11	22'-3"	20'-7"	19'-8'	19-9		
	NJ-90x	20'-4"	18'-9"	47511	18-0"	22'-5"	20'-9"	19'-10"	15.11		
	N8-40x	20'-1"	18-7	17:10"	2.17-115	- 22'-2"	20'-6"	19.8	19'-4"		
	14-60	20.5	18-11*	18'-1"	18-2*	22'-7"	20'-11'	20'-0"	20-1		
14"	NI-70	21'-7"	20'-0"	19'-1"	19'-2"	23'-10"	22'-1'	2111	21-2		
14	NI-80	211-111	20-3	1944	19'-5'	24'-3'	22'-5'	21'-5'	21'-6'		
0.5	NL-90	22.5	20'-8"	19'-9"	19-10	24'-9"	22'-10"	21'-10"	211-10		
	NI-90x	22-7	20-11	19-11"	20'-0'	25-0	23'-1"	72'.0"	22'-2"		
	NI-60	22'-3"	20'-8"	19.9	17-10	24'-7°	22'-9"	21'-9"	21'-10"		
	NI-70	23-6	21'-9"	20'-9"	20'-10"	26'-0"	24'-0"	22'-11'	23'-0"		
16	N4-80	23-11	22'-1"	21'-1"	21'-2'	26'-5"	24'-5'	23'-3"	23'-4'		
	NI-90	24'-5"	22'-6"	21'-5"	21'-6"	26'-11"	24'-10"	23'-9"	23'-9"		
	NI-90x	24'-5'	22'-9"	21'-01	21'-10"	27'-3"	25'-2"	24'-0"	24'-1"		

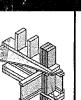
CCMC EVALUATION REPORT 13032-R

I-JOIST HANGERS

- 1. Hangers shown illustrate the three most commonly used metal hangers to support I-joists.
- 2. All nailing must meet the hanger manufacturer's recommendations.
- Hangers should be selected based on the joist depth, flange width and load capacity based on the maximum spans.
- 4. Web stiffeners are required when the sides of the hangers do not laterally brace the top flonge of the I-joist.

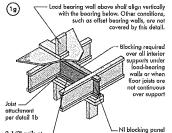

2015-04-16


Face Mount


WEB STIFFENERS

RECOMMENDATIONS:

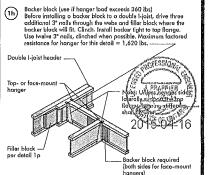
- A boaring stiffener is required in all engineered applications with factored reactions greater than shown in the I-joist properties table found of the I-joist Construction Guide (CIOI). The gap between the stiffener and the flange is at the top.
- A bearing stiffener is required when the L-joist is supported in a hanger and the sides of the hanger do not extend up to, and support, the top flange. The gap between the stiffener and flange is at the top.
- A load stiffener is required at locations where a factored concentrated load greater than 2,370 lbs is applied to the top flange between supports, or in the case of a cantilever, anywhere between the cantilever tip and the support. These values are for standard term load duration, and may be adjusted for other load durations as permitted by the code. The gap between the stiffener and the flange is at the bottom.
- \$1 units conversion: 1 inch = 25.4 mm



Transfer load from above to – bearing below, install squash blocks per detail 1d. Match bearing area of blocks below to post above.

Use single I-joist for loads up to 3,300 plf, double I-joists for loads up to 6,600 plf (filler block not required). Attach 1-joist to top plate using 2-1/2" nails at 6" o.c. Provide backer for siding attachment unless nailable Wall sheathing,

Rim board may be used in lieu of I-Joists. Backer is not required when rim board is used. Bracing per code shall be carried to the foundation.

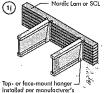


⑽

Atlach— I-joist per detail 1 b

Do not bevel-cut joist beyond inside

– NI blocking panel per detail 1 a 2-1/2" noils at

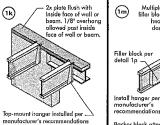

For hanger capacity see honger manufacturer's recommen Verify double 1-joist capacity to support concentrated loads mendations.

BACKER BLOCKS (Blocks must be long enough to permit required nailing without splitting)

Flange Width	Material Thickness Required*	Minimum Dapth**
2-1/2*	1"	5-1/2"
3-1/2"	1-1/2*	7-1/4"

Minimum grade for backer block material shall be S-P.F.No. 2 or better for salid sown lumber and wood structural panels conforming to CAN/CSA-0325 or CAN/CSA-0437 Standard.

For face-mount hangers use net joist depth minus 3-1/4 for joists with 1-1/2* thick flanges. For 2* thick flanges use net depth minus 4-1/4*


recommendations

For nailing schedules for multiple beams, see the manufacturer's recommendations.

Note: Unless hanger sides laterally support the top flange, bearing stiffeners shall be used.

Top-mount hanger installed per manufacturer's recommendations

(1k)

Note: Unless hanger sides laterally support the top flangs, bearing stiffeners shall be used.

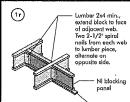
Leave a 1/8 to 1/4-inch gap between top of filler block and bottom of top 1-joist flange.

trut tength of span.

Nail joists together with two rows of 3° nails at 12 inches o.c. (clinched when possible) on each side of the double I-joist. Total of four nails per foot required. If nails can be clinched, only two nails per foot are required.

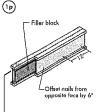
The maximum factored load that may be applied to one side of the double joist using this detail is 860 (bf/ft. Verify double I-joist capacity.

Filler block is required between joists for full length of span.

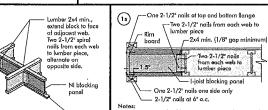


(Im)

FILLER BLOCK REQUIREMENTS FOR DOUBLE I-JOIST CONSTRUCTION


Multiple I-joist header with full depth filler block shown. Nordic Lam or SCL headers may also be used. Verify double I-joist capacity to support — concentrated loads.

Flange Size	Joist Depth	Filler Block Size
2-1/2" x 1-1/2"	9-1/2" 11-7/8" 14" 16"	2-1/8" x 6" 2-1/8" x 8" 2-1/8" x 10" 2-1/8" x 12"
3-1/2" x 1-1/2"	9-1/2" 11-7/8" 14" 16"	3" x 6" 3" x 8" 3" x 10" 3" x 12"
3-1/2" x 2"	11-7/8" 14" 16"	3" x 7" 3" x 9" 3" x 11"



Note: Blocking required at bearing for lateral support, not shown for clarity.

Optional: Minimum 1x4 inch —— strap applied to underside of joist at blocking line or 1/2 inch minimum gypsum ceiling attached to underside of joists.

–1/8" to 1/4" gap between top flange and filler block

minus 4-1/4"

Notos:
In some local codes, blocking is prescriptively required in the first joist space (or first and second joist space) next to the storter joist. Where required, see local code requiremen for spacing of the blocking.

All nails are common spiral in this detail.