

ROOF TRUSSES INC.

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location: Model:

BRADFORD BLOCK 403-2

UNIT 1

Lot #:

Elevation:

53568 207900

PlanLog: Layout ID:

Job Track:

437027

Ref#

Page:

1 of 2

Date:

Designer:

Sales Rep:

Rick DiCiano

04-03-2024

	QTY	MARK				1	OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Half Hip Girder	10 /12	19-06-08	4-01-04	2 x 4 2 x 6	1-03-08	1-07-11 4-01-04	192.62 123.00		
	2	T2 Half Hip	10 /12	19-06-08	5-01-04	2 x 4	1-03-08	1-07-11 5-01-04	170.45 109.00		
	2	T3 Half Hip	10 /12	19-06-08	6-01-04	2 x 4	1-03-08	1-07-11 6-01-04	182.6 117.33		
	2	T4 Half Hip	10 /12	19-06-08	7-01-04	2 x 4	1-03-08	1-07-11 7-01-04	181.94 112.67		
	2	T5 Half Hip	10 /12	19-06-08	8-01-04	2 x 4	1-03-08	1-07-11 8-01-04	192.07 121.33		
	8	T6 Half Hip	10 /12	19-06-08	9-01-04	2 x 4	1-03-08	1-07-11 9-01-04	829.31 518.67		
	2	T7 Half Hip	10 /12	19-06-08	10-01-04	2 x 4	1-03-08	1-07-11 10-01-04	232.34 145.67		
	1 2-ply	T8 Hip Girder	10 /12	19-06-08	4-10-07	2 x 4 2 x 6	1-03-08	1-07-11 1-10-10	199.59 127.33		
	1	T9 Hip	10 /12	19-06-08	6-04-12	2 x 4	1-03-08	1-07-11 1-10-10	93.46 60.00		
	3	T10 Common	10 /12	10-06-00	6-00-03	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	141.64 90.00		
	3	T10S Scissor	10 /12 5 /12	10-06-00	6-00-03	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	141 89.00		
	1 2-ply	T11 Monopitch Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	1	T12 Half Hip Girder	0 /12	8-07-08	3-00-15	2 x 6 2 x 4		2-08-11 3-00-15	42.35 27.17		
	2	PB1 Piggyback	10 /12	10-07-00	2-00-00	2 x 4		2-00-00	68.49 45.33		

Lumber Yard: TAMARACK LUMBER

Builder: **BAYVIEW WELLINGTON**

Project: **GREEN VALLEY ESTATE (2024)**

Location: **BRADFORD**

Model: BLOCK 403-2

Lot #:

Elevation: UNIT 1 Job Track:

53568 PlanLog: 207900

Layout ID: 437027

Ref#

Page:

2 of 2

04-03-2024

Date: Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	PB2 Piggyback	10 /12	10-07-00	3-00-00	2 x 4		3-00-00	71.17 44.33		
	2	PB3 Piggyback	10 /12	10-07-00	3-10-08	2 x 4		3-10-08	72.63 47.00		
	9	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	151.15 96.00		
	3	J2 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	45.42 29.00		
	5	J3W Jack-Open	6 /12	6-07-00	4-08-03	2 x 4	1-03-08	4-03 3-07-11	118.37 72.50		
	5	J4 Jack-Open	6 /12	5-05-08	3-08-07	2 x 4	1-03-08	4-03 3-00-15	74.98 46.67		
	1	C1 Jack-Open	10 /12	1-07-00	3-01-09	2 x 4		1-10-10 3-02-07	7.5 5.67		
	1	C2 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	1-07-11 3-01-09	12.04 8.33		

TOTAL #TRUSS= 62

TOTAL BFT OF ALL TRUSSES= 2065.33

BFT.

TOTAL WEIGHT OF ALL TRSSES 3264.28 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	LJS26DS	
1 .	Hardware	HGUS26-2	
28	Hardware	H2.5T	

TOTAL NUMBER OF ITEMS= 31

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

Model:

BLOCK 403-2

Lot #:

Elevation: UNIT 2 Job Track:

PlanLog:

53568 207900

Layout ID:

Ref#

Page:

1 of 2

437028

Date:

04-03-2024

Designer:

Sales Rep:

Rick DiCiano

· · ·	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T14 Piggyback Base	6 /12	46-10-00	9-07-08	2 x 6	1-03-08	4-00 1-02-00	297.27 179.17		
	1	T15 Piggyback Base	6 /12	46-10-00	9-07-08	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	316.76 191.67		
	1	T16 Piggyback Base	6 /12	46-10-00	9-07-08	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	327.6 199.33		
	1	T17 Piggyback Base	6 /12	46-10-00	9-07-08	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	324.35 195.00		
	1	T18 Piggyback Base	6 /12	46-10-00	9-07-08	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	343.27 204.33		
	1 2-ply	T19 Hip Girder	6 /12	46-10-00	9-07-08	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	660.59 394.67	:	
	4	T22 Piggyback Base	6 /12	38-05-00	9-07-08	2 x 4 2 x 6	1-03-08	1-02-00 5-04-08	842.8 517.33		
	1	T23G GABLE	6 /12	37-09-00	9-07-08	2 x 4 2 x 6	1-03-08	1-02-00 5-08-08	235.77 144.17		
	2	T24 Monopitch	10 /12	9-08-08	9-08-12	2 x 4	1-03-08	1-07-11 9-08-12	105.65 67.33		
B	4	T24A Monopitch	10 /12	9-08-08	9-08-12	2 x 4		1-07-11 9-08-12	203.63 129.33		
	1	T24G GABLE	10 /12	9-08-08	9-08-12	2 x 4	1-03-08	1-07-11 9-08-12	57.07 36.67		
	1 3-ply	T25 Monopitch Girder	10 /12	9-08-08	9-07-08	2 x 4 2 x 6		1-07-11 9-08-12	226.42 140.00		
	5	PB4 Piggyback	6 /12	11-04-00	2-10-00	2 x 4			134.19 87.50		
	1	PB5 Piggyback	6 /12	13-00-00	1-07-10	2 x 4			34.95 23.00		

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Location: BRADFORD

Model: **BLOCK 403-2**

Lot #:

Project:

Elevation: UNIT 2 Job Track:

53568 207900

PlanLog: Layout ID:

Ref#

Page:

2 of 2

437028

Date:

04-03-2024

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

PROFILE	QTY PLY	MARK TYPE	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT RIGHT	HEEL HEIGHT LEFT RIGHT	LBS. BFT.	BUNDLE # STACK #	LOAD BY REMARKS
	4	PB6 Piggyback	6 /12	13-00-00	3-03-00	2 x 4			143.55 92.67		
	6	J3W Jack-Open	6 /12	6-07-00	4-08-03	2 x 4	1-03-08	4-03 3-07-11	142.06 90.00		

GREEN VALLEY ESTATE (2024)

TOTAL #TRUSS=

38

TOTAL BFT OF ALL TRUSSES= 2692.17

BFT.

TOTAL WEIGHT OF ALL TRSSES 4395.93 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	LUS24	
5	Hardware	LJS26DS	
1	Hardware	HGUS26-3	
14	Hardware	H2.5T	
24	Hardware	H2.5A	

TOTAL NUMBER OF ITEMS= 48

Lumber Yard: TAMARACK LUMBER

Builder: **BAYVIEW WELLINGTON**

Project: **GREEN VALLEY ESTATE (2024)** Location: BRADFORD

Model: **BLOCK 403-2**

Lot #:

Elevation: UNIT 3 Job Track:

53568 207900

PlanLog: Layout ID:

437029

Ref#

Page:

1 of 1

Date:

04-03-2024

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	10	T20 Piggyback Base	6 /12	46-10-00	9-07-08	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	3107.82 1853.33		
	1	T23G GABLE	6 /12	37-09-00	9-07-08	2 x 4 2 x 6	1-03-08	1-02-00 5-08-08	235.77 144.17		
	2	T24 Monopitch	10 /12	9-08-08	9-08-12	2 x 4	1-03-08	1-07-11 9-08-12	105.65 67.33		
	1	T24G GABLE	10 /12	9-08-08	9-08-12	2 x 4	1-03-08	1-07-11 9-08-12	57.07 36.67		
	1 3-ply	T26 Monopitch Girder	10 /12	9-10-08	9-07-08	2 x 4 2 x 8		1-07-11 9-10-07	231.89 145.00		
	11	PB6 Piggyback	6 /12	13-00-00	3-03-00	2 x 4			394.77 254.83		
	6	J3W Jack-Open	6 /12	6-07-00	4-08-03	2 x 4	1-03-08	4-03 3-07-11	142.06 90.00		

TOTAL #TRUSS= 34

TOTAL BFT OF ALL TRUSSES= 2591.33

BFT.

TOTAL WEIGHT OF ALL TRSSES 4275.02 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	HGUS26	
8	Hardware	H2.5T	
32	Hardware	H2.5A	
2	Hardware	LGT3	

TOTAL NUMBER OF ITEMS= 46

ROOF TRUSSES INC. ALPA LUMBER GROUP

DELIVERY SHIPLIST

Lumber Yard: TAMARACK LUMBER

Builder: **BAYVIEW WELLINGTON**

Project:

GREEN VALLEY ESTATE (2024)

Location: Model:

BRADFORD BLOCK 403-2

Lot #:

Elevation: UNIT 4 Job Track:

53568 PlanLog:

207900 437030

Layout ID: Ref#

Page:

1 of 3

Date:

04-03-2024

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK	T				OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T30 Hip Girder	10 /12	21-06-08	4-01-04	2 x 4 2 x 6	1-03-08	1-07-11 1-10-10	204.68 129.67		
	1	T31 Hip	10 /12	21-06-08	5-01-04	2 x 4	1-03-08	1-07-11 1-10-10	93.7 61.00		
	1	T32 Hip	10 /12	21-06-08	6-01-04	2 x 4	1-03-08	1-07-11 1-10-10	92.43 58.50		
	1	T33 Half Hip	10 /12	21-06-08	6-05-04	2 x 4	1-03-08	1-07-11 6-05-04	101.5 63.33		
	1	T33A Half Hip	10 /12	21-01-08	6-05-04	2 x 4		1-11-14 6-05-04	98.69 62.00		
	1	T34 Half Hip	10 /12	21-06-08	7-05-04	2 x 4	1-03-08	1-07-11 7-05-04	108.11 68.00		
	1	T34A Half Hip	10 /12	21-01-08	7-05-04	2 x 4		1-11-14 7-05-04	105.29 66.17		
	1	T35 Half Hip	10 /12	21-06-08	8-05-04	2 x 4	1-03-08	1-07-11 8-05-04	117.17 72.33	:	
	1	T35A Half Hip	10 /12	21-01-08	8-05-04	2 x 4		1-11-14 8-05-04	114.34 71.00		
	4	T36 Half Hip	10 /12	21-06-08	9-05-04	2 x 4	1-03-08	1-07-11 9-05-04	471.22 293.33		
	1	T36A Half Hip	10 /12	21-01-08	9-05-04	2 x 4		1-11-14 9-05-04	114.96 71.33		
	2	T37 Half Hip	10 /12	21-06-08	10-05-04	2 x 4	1-03-08	1-07-11 10-05-04	247.56 153.33		
	1 2-ply	T38 Hip Girder	10 /12	21-06-08	4-10-07	2 x 4 2 x 6	1-03-08	1-07-11 1-10-10	213.62 137.00		
	1	T39 Hip	10 /12	21-06-08	6-01-07	2 x 4		1-07-11 1-10-10	90.59 58.33		

ROOF TRUSSES INC. ALPA LUMBER GROUP

DELIVERY SHIPLIST

Lumber Yard: TAMARACK LUMBER

Builder: **BAYVIEW WELLINGTON**

Project: **GREEN VALLEY ESTATE (2024)**

Location: BRADFORD

Model: BLOCK 403-2 Lot #:

Elevation: UNIT 4 Job Track:

53568 PlanLog: 207900

Layout ID: 437030

Ref#

Page:

2 of 3

Date:

04-03-2024

Designer:

Sales Rep: Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T40 Hip	10 /12	21-01-08	7-09-07	2 x 4		1-11-14 1-10-10	99.3 64.00		
	1	T41 Hip	10 /12	21-01-08	9-05-07	2 x 4		1-11-14 1-10-10	107.22 68.67		
	1	T42 Common	10 /12	21-01-08	10-08-14	2 x 4		1-11-14 1-10-10	101.46 64.00		
	1 2-ply	T43 Common Girder	10 /12	14-02-00	7-06-08	2 x 4 2 x 6		1-07-11 1-07-11	153.47 101.67		
	1	T43G GABLE	10 /12	14-02-00	7-06-08	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	69.95 46.17		
	2	T44 Common	10 /12	12-04-00	6-09-06	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	118.86 76.33		
	1	T44G GABLE	10 /12	12-04-00	6-09-06	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	60.03 39.17		
	5	T45 Common	10 /12	11-06-00	6-05-03	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	280.5 185.00		
	1	T45G GABLE	10 /12	11-06-00	6-05-03	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	55.9 37.00		
	2	T46 Common	6 /12	14-11-00	4-00-15	2 x 4		4-03 4-03	90.89 56.00		
	1	T46A Common	6 /12	12-08-00	4-00-15	2 x 4		4-03 1-05-11	43.92 27.17		
	1	T46G GABLE	6 /12	14-11-00	4-00-15	2 x 4		4-03 4-03	45.73 29.00		
	1	T47 Flat Girder	0 /12	9-07-08	2-06-15	2 x 6 2 x 4		2-06-15 2-06-15	44.1 28.00		
	1 2-ply	T48 Monopitch Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		

Lumber Yard: TAMARACK LUMBER

Builder: **BAYVIEW WELLINGTON**

Project: **GREEN VALLEY ESTATE (2024)**

Location: BRADFORD Model: **BLOCK 403-2**

Lot #:

Elevation: **UNIT 4** Job Track:

53568 207900

PlanLog: Layout ID:

437030

Ref#

Page:

3 of 3

04-03-2024

Rick DiCiano

Date:

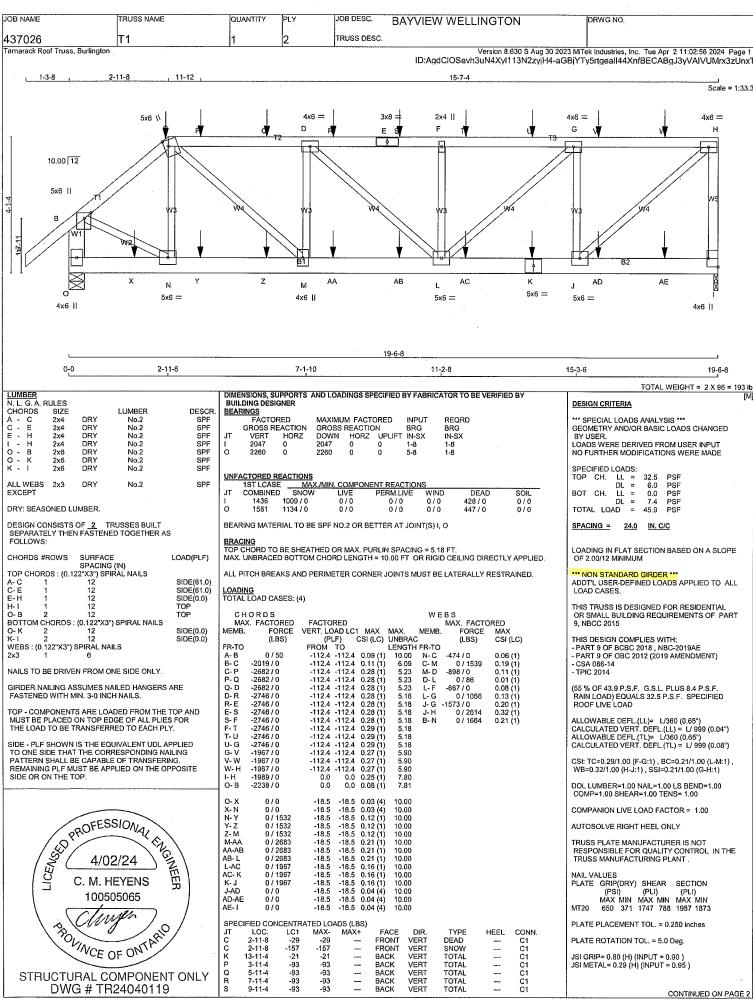
Sales Rep:

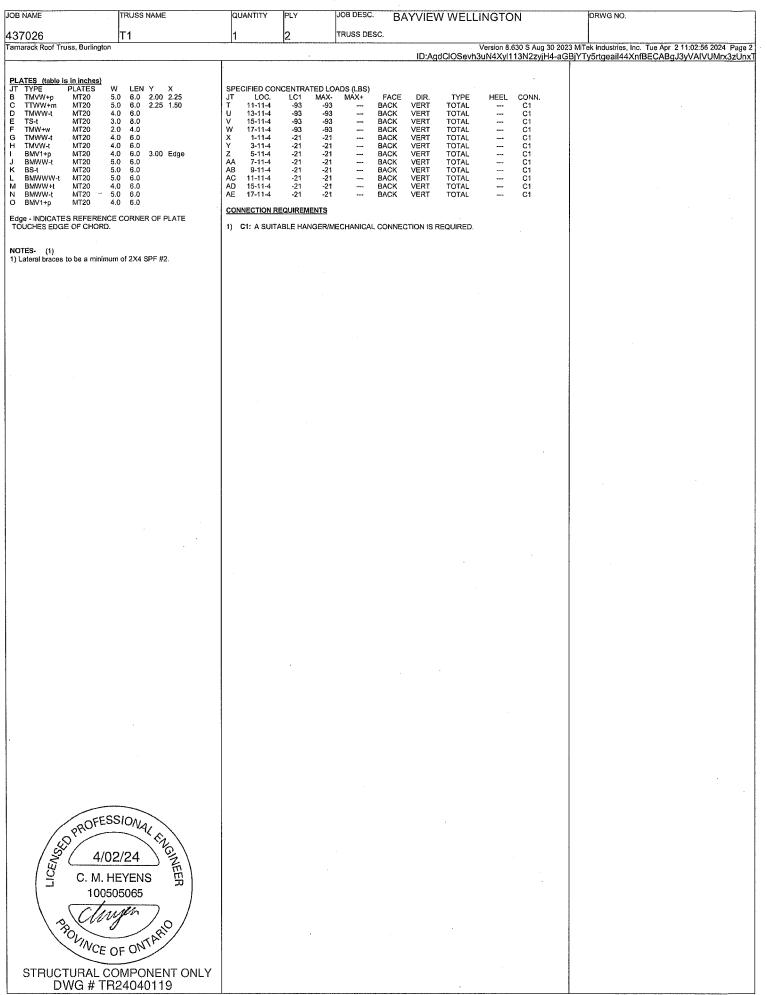
Designer:

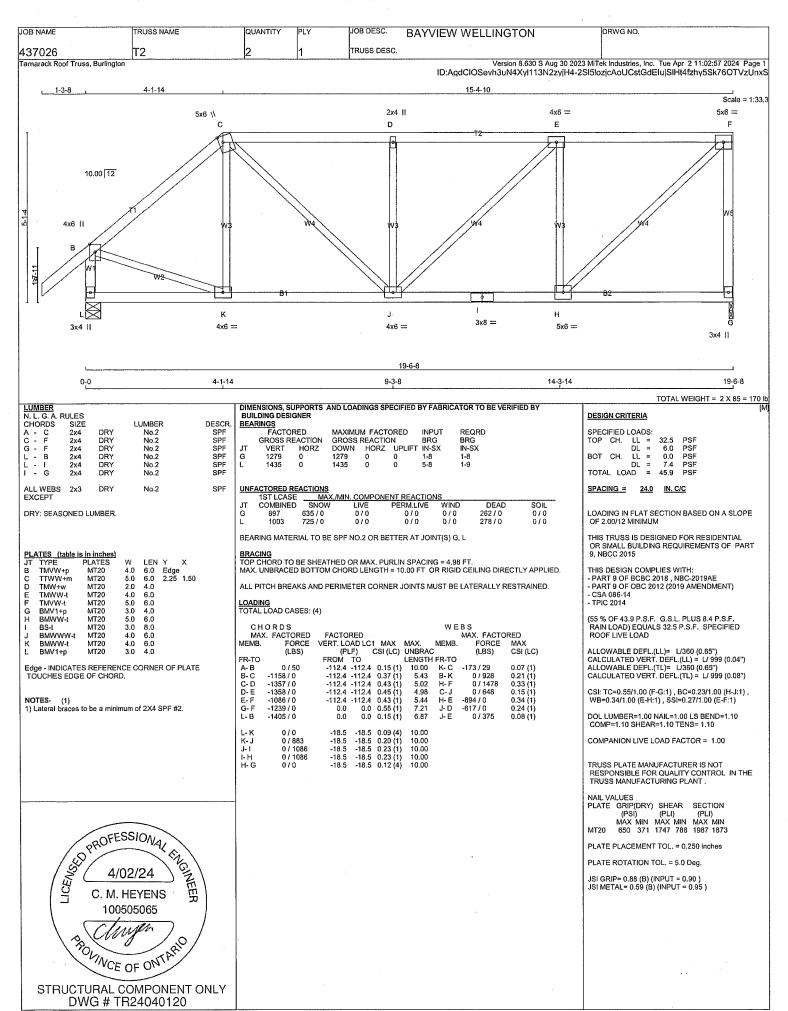
Roof Trusses

7,007 77	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T49 Half Hip Girder	6 /12	6-03-00	1-10-11	2 x 4	1-03-08	4-03 1-03-03	20.88 13.83		
	1 2-ply	T11Z Monopitch Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	3	PB7 Piggyback	10 /12	12-02-04	2-00-00	2 x 4		2-00-00	117.39 77.00		
	4	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	67.18 42.67		
	4	J2 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	60.56 38.67		
	8	J5W Jack-Open	6 /12	5-07-00	4-02-03	2 x 4	1-03-08	4-03 3-01-11	156.18 97.33		
	7	J6W Jack-Open	6 /12	4-07-00	3-08-03	2 x 4	1-03-08	4-03 2-07-11	104.27 65.33		
	6	J7 Jack-Open	6 /12	4-05-08	3-02-07	2 x 4	1-03-08	4-03 2-06-15	75.48 48.00		
	3	J8 Jack-Open	6 /12	1-10-00	1-10-11	2 x 4	1-03-08	4-03 1-03-03	18.72 12.00		
	1	C1 Jack-Open	10 /12	1-07-00	3-01-09	2 x 4	·	1-10-10 3-02-07	7.5 5.67		
	1	C2 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	1-07-11 3-01-09	12.04 8.33		

TOTAL #TRUSS= 82


TOTAL BFT OF ALL TRUSSES= 2663.33


BFT.


TOTAL WEIGHT OF ALL TRSSES 4186.95 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
11	Hardware	LJS26DS	
2	Hardware	HGUS26-2	
48	Hardware	H2.5T	
5	Hardware	LSTA9	

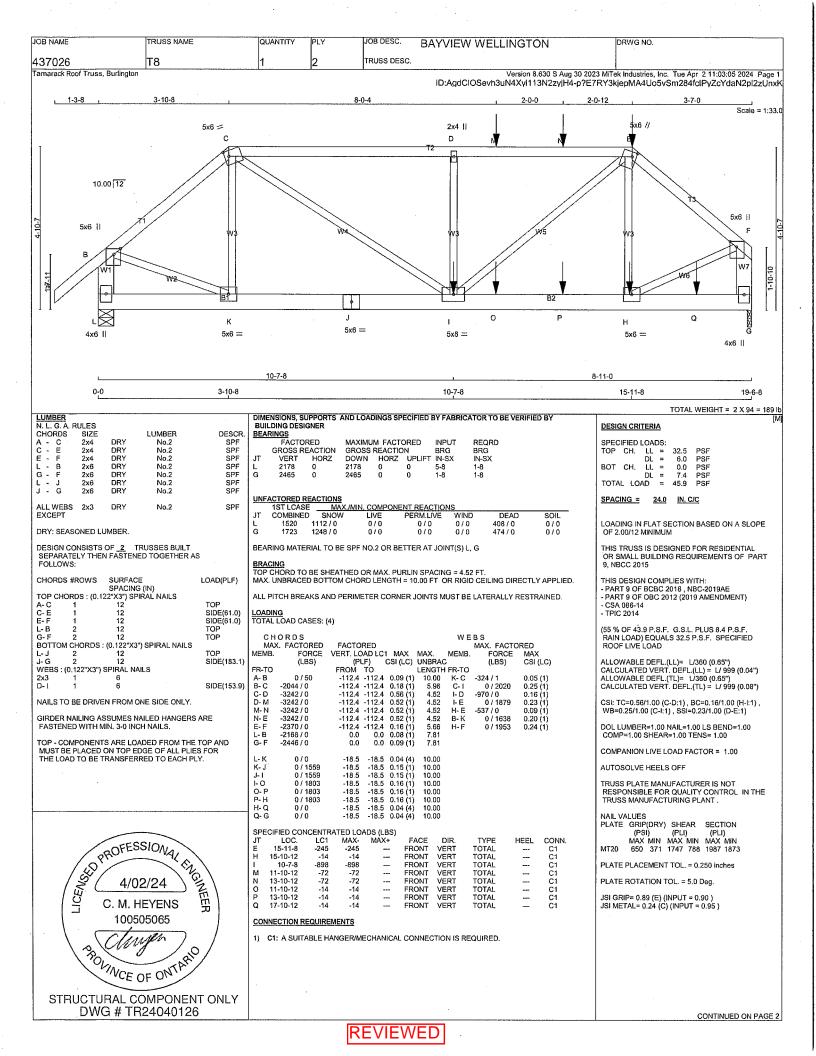
JOB NAME	TRUSS NAME	QUANTITY P	LY JOB DESC.	BAYVIEW	WELLINGTON		DRWG NO.		
437026	Т3	2 1	TRUSS DESC.						
Tamarack Roof Truss, Burlington				ID:AgdClOSe	Version 8.630 S vh3uN4Xyl113N2zyjH		MiTek Industries, Inc. Tu NUwLq0RSBxq7GfH		
1-3-8	5-4-4	r			14-2-4				
		5x6 \\		2x4		4x6 =		4x6	Scale = 1:36.3
,		c		D .	T2	E		F	İ
				9					
·						Z			
10	0.00 12	// `						/	
	//	´			. //				
6-1-4		W.B	Wa	W3	W4	WA.	/w/a	Ws	
4x6	//	l'I			//	ľľ			
. B							//		
12/	W2								
		B1					82		
		к		J	1	н		XX G	
3x4		4x6 =		4x6 =	3x8 =	4x6		3x4	
			1	9-6-8					
. 0-0		5-4-4		10-1-2		14-8-11		19-6-8	
LUMBER		DIMENSIONS, SUPP	ORTS AND LOADINGS SPECI	FIED BY FABRICAT	OR TO BE VERIFIED BY			TAL WEIGHT =	2 X 91 = 183 lb
N. L. G. A. RULES CHORDS SIZE	LUMBER DESC						DESIGN CRITERIA		
A - C 2x4 DRY C - F 2x4 DRY	No.2 SPI	GROSS REAC	TION GROSS REACTION	BRG I	REQRD BRG		SPECIFIED LOADS: TOP CH. LL = 32		
G - F 2x4 DRY L - B 2x4 DRY	No.2 SPI	G 1279 0	1279 0 0	1-8	N-SX 1-8		BOT CH. LL = 0	.0 PSF	
L - I 2x4 DRY I - G 2x4 DRY	No.2 SPI No.2 SPI		1435 0 0	5-8	1-9		DL = 7 TOTAL LOAD = 45	.4 PSF i.9 PSF	
ALL WEBS 2x3 DRY	No.2 SPE	UNFACTORED REA		DEACTIONS			SPACING = 24.0 II	N. C/C	
DRY: SEASONED LUMBER.		JT COMBINED	MAX./MIN. COMPONENT SNOW LIVE PE 35/0 0/0	RM.LIVE WIND 0/0 0/0	DEAD SOI 262 / 0 0 /		LOADING IN FLAT SECT	LIONI BASED OF	LASLODE
DRY: SEASONED LUMBER.			725/0 0/0	0/0 0/0	278/0 0/		OF 2.00/12 MINIMUM	HON BAGED ON	ASLOPE
		BEARING MATERIA	L TO BE SPF NO.2 OR BETTE	R AT JOINT(S) G,	L		THIS TRUSS IS DESIGN OR SMALL BUILDING R		
PLATES (table is in inches) JT TYPE PLATES W	LENY X	BRACING TOP CHORD TO BE	SHEATHED OR MAX, PURLI	N SPACING = 5.00	ET.		9, NBCC 2015	L GOII LINEIT I	
B TMVW+p MT20 4. C TTWW+m MT20 5.	0 6.0 Edge		OTTOM CHORD LENGTH = 1			LIED.	THIS DESIGN COMPLIE: - PART 9 OF BCBC 2018		
D TMW+w MT20 2. E TMWW-t MT20 4.	0 4.0	ALL PITCH BREAKS	S AND PERIMETER CORNER	JOINTS MUST BE I	ATERALLY RESTRAINE	D.	- PART 9 OF OBC 2012 - CSA 086-14		ENT)
F TMVW+p MT20 4.	0 6.0 0 4.0	LOADING TOTAL LOAD CASE	S: (4)				- TPIC 2014		
H BMWW+t MT20 4. I BS-t MT20 3.	0.8 0.	CHORDS		WE			(55 % OF 43.9 P.S.F. G. RAIN LOAD) EQUALS 3		
K BMWW-t MT20 4.	0 6.0 0 6.0	MAX. FACTORE	E VERT. LOAD LC1 MAX	MAX. MEMB.	MAX. FACTORED FORCE MAX		ROOF LIVE LOAD		
L BMV1+p MT20 3.		FR-TO (LBS)	FROM TO	UNBRAC LENGTH FR-TO	(LBS) CSI (LC)		ALLOWABLE DEFL.(LL): CALCULATED VERT. DE	EFL.(LL) = L/ 99	9 (0.04")
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE	A-B 0/50 B-C -1136/0	-112.4 -112.4 0.15 (1) -112.4 -112.4 0.64 (1)	5.00 B- K	-97 / 61 0.06 (1) 0 / 895 0.20 (1)		ALLOWABLE DEFL.(TL) CALCULATED VERT. DE	= L/360 (0.65") EFL.(TL) = L/ 99	9 (0.07")
NOTES- (1)		C- D -1116/0 D- E -1117/0 E- F -848/0	-112.4 -112.4 0.35 (1) -112.4 -112.4 0.37 (1) -112.4 -112.4 0.36 (1)	5.50 C- J	0 / 1329 0.30 (1) 0 / 391 0.09 (1) -922 / 0 0.54 (1)		CSI: TC=0.90/1.00 (F-G: WB=0.54/1.00 (E-H:1)		
1) Lateral braces to be a minimum	n of 2X4 SPF #2.	G-F -1243/0 L-B -1394/0	0.0 0.0 0.90 (1) 0.0 0.0 0.15 (1)	7.20 J- D	-568 / 0 0.33 (1) 0 / 430 0.10 (1)		DOL LUMBER=1.00 NAII	•	
		L-K 0/0	-18.5 -18.5 0.12 (4)		0,10(1)		COMP=1.10 SHEAR=1.		/-1.10
		K-J 0/869 J-I 0/848	-18.5 -18.5 0.21 (1) -18.5 -18.5 0.19 (1)	10.00			COMPANION LIVE LOAD	FACTOR = 1.6	00
		I-H 0/848 H-G 0/0		10.00			TRUSS PLATE MANUFA	CTURER IS NO	т
			•				RESPONSIBLE FOR QUETRUSS MANUFACTURI		OL IN THE
							NAIL VALUES		
-								LI) (PLI)	İ
	310:						MAX MIN MAX MT20 650 371 174		
20 PROFESS 4/02 C. M. H	JONAL A						PLATE PLACEMENT TO	L. = 0.250 inche	s
1 / 2	18/						PLATE ROTATION TOL.	= 5.0 Deg.	
/ 🐇 (4/02	2/24) [[]						JSI GRIP= 0.88 (B) (INPL	JT = 0.90)	1
S C. M. H	EYENS 盟						JSI METAL= 0.59 (B) (IN	rui = 0.95)	
10050	5065								
Clin	yen /								
130	/,00/								
ROVINCE	DE ONTA								
		.							
STRUCTURAL CO									

JOB NAME TRUSS NAME	QUANTITY PLY	JOB DESC. BAYVIEW WELLINGTO	N DRWG NO.
437026 T4	2 1	TRUSS DESC.	·
Tamarack Roof Truss, Burlington		Version 8.6 ID:AadClOSevh3uN4Xyl113N2	30 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:00 2024 Page 1 2zyjH4-T1QENq?cv5B33JbrJMsbL4Nj7HhWuCruQ5K24qzUnxP
1-3-8	6-6-11 5x6 \\	12-11-13 2x4	4x6 Scale = 1:40.6
1	D	E 12	F
3x4 11	5x6 / C W4	W6 W4	yd5 ₩6
K 4x6 =	4x6 =		G 3x4
0-0	6-6-11	<u>19-6-8</u> 13-0-1	19-6-8
LUMBER	DIMENSIONS SUPPORTS A	AND LOADINGS SPECIFIED BY FARRICATOR TO BE VERIFIED	TOTAL WEIGHT = 2 X 93 = 185 ib
LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER A - D 2x4 DRY No.2 G - F 2x4 DRY No.2 K - B 2x4 DRY No.2 K - I 2x4 DRY No.2 I - G 2x4 DRY No.2 ALL WEBS 2x3 DRY No.2 ALL WEBS 2x3 DRY No.2 DRY: SEASONED LUMBER. PLATES (table is in Inches) JT TYPE PLATES W LEN Y X B TMV+p MT20 3.0 4.0 C TMWW+t MT20 5.0 6.0 2.25 1.50 E TMW+w MT20 5.0 6.0 2.25 1.50 E TMW+w MT20 3.0 4.0 F TMVW+p MT20 3.0 4.0 H BMWW+t MT20 3.0 8.0 J BMW-t MT20 3.0 8.0 J BMW-t MT20 4.0 6.0 K BMVW-1 MT20 4.0 6.0 K BMVW-1 MT20 4.0 6.0 K BMVW-1 MT20 4.0 6.0 K BMVW-1 MT20 4.0 6.0 K BMVW-1 MT20 4.0 6.0 K BMVW-1 MT20 4.0 6.0 K BMVW-1 MT20 4.0 6.0 K BMVW-1 MT20 4.0 6.0 K BMVW-1 MT20 4.0 6.0	BUILDING DESIGNER	0 / 0	DESIGN CRITERIA SPECIFIED LOADS: TOP CH. LL = 32.5 PSF
C. M. HEYENS TO NOT THE TO NOT TH			PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN FROM SECTION (PSI) (PLI) (PLI) MAX MIN

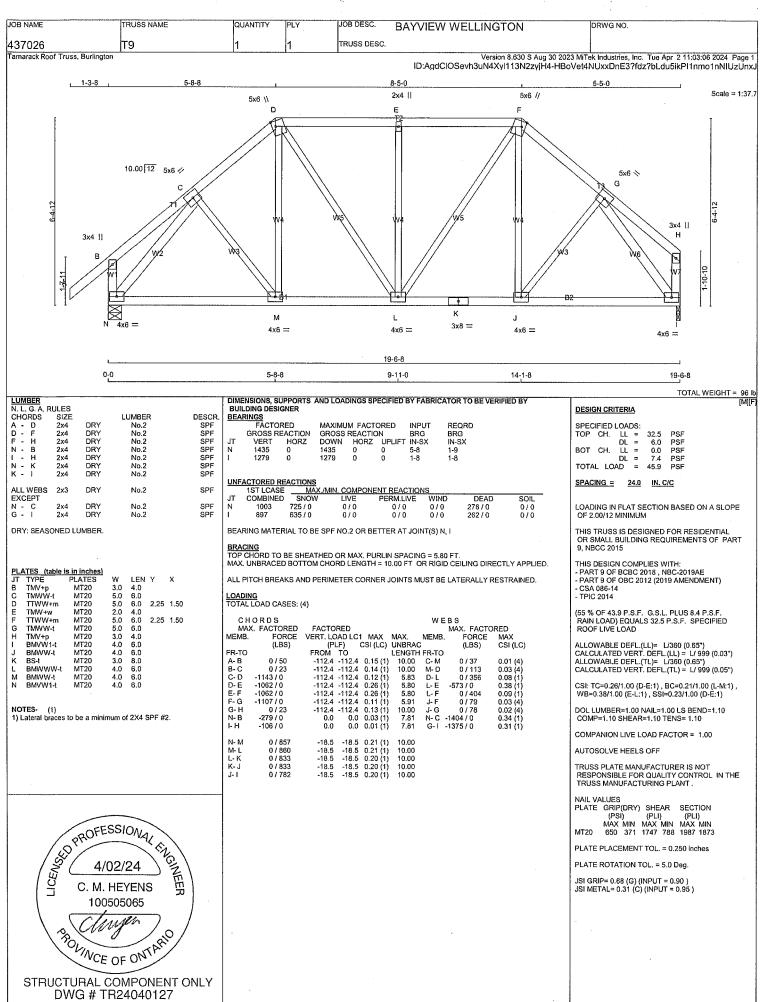
JOB NAME TRUSS NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. 437026 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:01 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-xE cbA0EqPJwhTA1s4Nqulvxbh0xdil1fl4ccGzUnxO 1-3-8 7-9-1 11-9-7 3x4 📏 4x6 = Scale = 1:45.2 4x6 || ٥ 10.00 12 4x6 // 3x4 II Н 4x6 = 3x8 = 4x6 =4x6 1 3x4 II 19-6-8 0-0 7-9-1 13-7-5 19-6-8 TOTAL WEIGHT = 2 X 98 = 196 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER **DESIGN CRITERIA** SIZE LUMBER BEARINGS A - D D - F G - F K - B 2x4 DRY No.2 SPF FACTORED MAXIMUM FACTORED INPUT REQRD 2x4 2x4 DRY DRY DRY No.2 No.2 SPF GROSS REACTION VERT HORZ GROSS REACTION
DOWN HORZ UPLIFT BRG IN-SX CH. 32.5 LL = DL = IN-SX 6.0 0.0 PSF 2x4 No.2 SPF G 1279 0 1279 0 1-8 1-8 1-9 BOT CH. LL DL = PSF DRY No.2 No.2 SPF TOTAL LOAD 45.9 PSF ALL WERS 2x3 DRY No.2 SPE UNFACTORED REACTIONS SPACING = 24.0 IN. C/C EXCEPT K - C 1ST LCASE COMBINED MAX./MIN, COMPONENT REACTIONS SNOW DRY SPF No.2 LIVE 2x4 PERM.LIVE WIND DEAD SOIL 635 / 0 0/0 0/0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE DRY: SEASONED LUMBER. 725 / 0 OF 2.00/12 MINIMUM THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K 9. NBCC 2015 PLATES (table is in inches)
JT TYPE PLATES TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 5.51 FT LEN Y MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE TMV+p TMWW-t ВСД MT20 MT20 4.0 6.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. - PART 9 OF OBC 2012 (2019 AMENDMENT) 3.0 4.0 4.0 TTW+h MT20 2.00 1.00 TMWW-t TMVW+p MT20 MT20 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H. - TPIC 2014 6.0 4.0 6.0 8.0 6.0 G H I BMV1+r MT20 3.0 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED MT20 MT20 4.0 3.0 BMWW+ ROOF LIVE LOAD BMWWW-t MT20 4.0 LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL)= L/999 (0.13") BMVW1-t MT20 4.0 6.0 CHORDS WEBS NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX. FACTORED мемв. FORCE CSI: TC=0.69/1.00 (D-E:1) , BC=0.30/1.00 (J-K:4) , WB=0.59/1:00 (C-K:1) , SSI=0.32/1.00 (E-F:1) (LBS) (PLF) CSI (LC) UNBRAC (LBS) CSI (LC) τ'n LENGTH 10.00 FR-TO EBOM. FROM TO
-112.4 -112.4 0.15 (1)
-112.4 -112.4 0.27 (1)
-112.4 -112.4 0.30 (1)
-112.4 -112.4 0.69 (1)
-112.4 -112.4 0.69 (1) 0.12 (1) 0.05 (1) 0.01 (4) 0.36 (1) A-B B-C C-D -183 / 0 J-D 0 / 233 0 / 62 -871 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 0/3310.00 5.75 5.51 J-E H-E H-F -1047 / 0 D-E E-F G-F -744 / 0 5.60 0 / 1229 0.28 (1) COMPANION LIVE LOAD FACTOR = 1.00 0.59 (1) -1232 / 0 0.0 0.0 0.37 (1) 5.78 K-C -1385 / 0 0.03 (1) K-B 0.0 AUTOSOLVE RIGHT HEEL ONLY K-.J 0 / 899 -18.5 -18 5 0 30 (4) 10.00 TRUSS PLATE MANUFACTURER IS NOT 0/744 -18.5 -18.5 -18.5 0.29 (4) -18.5 0.29 (4) 10.00 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. H- G -18.5 0.14 (4) NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PLI) 4/02/24

4/02/24

GROFESSIONAL THE PROPERTY OF (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg $\Gamma \subset E_{A}$ JSI GRIP= 0.83 (C) (INPUT = 0.90) JSI METAL= 0.34 (H) (INPUT = 0.95) 100505065 unin ROVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040123


JOB NAME TRUSS NAME QUANTITY JOB DESC DRWG NO. **BAYVIEW WELLINGTON** TRUSS DESC. 437026 T6 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:02 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-PQY oW1sRjRnIdIDQnu3QVS8d5NgMB7BuPp99jzUnxN 1-3-8 8-11-8 10-7-0 Scale = 1:50.6 4x6 == 4x6 || 10.00 12 4x6 / 5x6 II M ĸ 3x8 = 4x6 == 4x6 === 4x6 | 3x4 || 3x4 II 19-6-8 0-0 4-7-0 8-11-8 14-2-8 19-6-8 TOTAL WEIGHT = 8 X 104 = 829 lb LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY DESIGN CRITERIA BEARINGS FACTORED LUMBER DESCR SIZE A - D D - F G - F No.2 No.2 DRY SPF MAXIMUM FACTORED INPLIT REQRD SPECIFIED LOADS: GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX BRG IN-SX LL = DL = LL = DL = AD = DRY CH. 32.5 2x4 SPF 6.0 0.0 7.4 PSF PSF No.2 BOT CH. LL DL TOTAL LOAD В DRY No.2 SPF G 1279 1435 0 0 1-8 1-9 SPF G 45.9 DRY No.2 ALL WEBS DRY No.2 SPF UNFACTORED REACTIONS 2x3 SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND EXCEPT DEAD SOIL COMBINED DRY: SEASONED LUMBER. 635 / 0 725 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.32 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 9. NBCC 2015 PLATES (table is in inches)
JT TYPE PLATES I FN Y TMVW+p TMWW-t 5.0 4.0 6.0 . Edge THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) MT20 TTW+h MT20 3.0 4.0 2.00 1.00 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. TMWW-t TMVW+p 6.0 6.0 4.0 MT20 - TPIC 2014 MT20 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H. G BMV1+r MT20 3.0 BMWW+t MT20 MT20 6.0 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BMWWW-I 6.0 MT20 4.0 ROOF LIVE LOAD BMWW-t MT20 LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL)= L/999 (0.06") Edge - INDICATES REFERENCE CORNER OF PLATE CHORDS WEBS FACTORED
VERT. LOAD LC1 MAX MAX MAX. FACTORED FORCE MAX MAX. FACTORED FORCE CSI: TC=0.55/1.00 (D-E:1) , BC=0.19/1.00 (J-K:1) , (LBS) (PLF) CSI (LC) UNBRAC (LBS) CSI (LC) (PLF) CSI (LC)
FROM TO
-112.4 -112.4 0.15 (1)
-112.4 -112.4 0.43 (1)
-112.4 -112.4 0.55 (1)
-112.4 -112.4 0.54 (1) LENGTH FR-TO NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. FR-TO FROM WB=0.49/1.00 (E-H:1) , SSI=0.29/1.00 (E-F:1) A-B B-C C-D D-E E-F K-C C-J J-E H-F -175 / 29 0.08 (1) 0.30 (1) 0.04 (1) 0.04 (1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 -1179 / 0 5.32 -349/0 -960 / 0 -707 / 0 5.76 6.12 0 / 182 0 / 190 COMPANION LIVE LOAD FACTOR = 1.00 -612/0 6.25 -900 / 0 0.49(1)G-F -1239 / 0 0.0 0.48 (1) 5.77 0 / 1182 0.15 (1) L-B 0.0 6.88 TRUSS PLATE MANUFACTURER IS NOT i - K 0/0-185 -185 0.09(4) 10.00 RESPONSIBLE FOR QUALITY CONTROL. IN THE -18.5 -18.5 -18.5 0/935 0/612 -18.5 0.19 (1) -18.5 0.17 (4) 10.00 10.00 TRUSS MANUFACTURING PLANT. I-H 0 / 612 -18.5 0.17 (4) NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN H- G PROFESSIONAL THE A/02/24 C. M. HEYENS 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.74 (D) (INPUT = 0.90) JSI METAL= 0.48 (B) (INPUT = 0.95) 100505065 POVINCE OF ONTARIO

STRUCTURAL COMPONENT ONLY DWG # TR24040124


JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 437026 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:03 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyiH4-tc6M0s1UB0ZewnKQ VPIzj?IDVil5bhK63Zih9zUnxM 1-3-8 10-1-14 9-4-10 3x4 📏 4x6 == 4x6 || Scale = 1:57,1 D 10.00 12 4x6 / 5x6 II 3x8 == 3x4 || 3x4 || 4x6 =4x6 =4x6 II 19-6-8 0-0 19-6-8 5-2-3 10-1-14 14-9-11 TOTAL WEIGHT = 2 X 116 = 232 lb LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER DESIGN CRITERIA BEARINGS FACTORED LUMBER SIZE DESCR A - D D - F G - F 2x4 2x4 2x4 DRY No.2 SPF MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: DRY GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX LL = DL = LL = DL = BRG IN-SX CH. 32.5 No.2 6.0 0.0 7.4 PSF В 2x4 DRY No.2 SPF G 1279 0 1279 0 1-8 1-8 BOT CH. PSF DRY No.2 No.2 SPF ŏ TOTAL LOAD 45.9 ALL WEBS 2x3 DRY No.2 SPF UNFACTORED REACTIONS

1ST LCASE MAX./MIN. COMPONENT REACTIONS SPACING = 24.0 IN. C/C EXCEPT SNOW DRY SPF COMBINED SOIL J - E H - F 2x4 No.2 LIVE PERM.LIVE WIND DEAD DRY 635 / 0 0/0 0/0 0/0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM DRY: SEASONED LUMBER THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L 9. NBCC 2015 TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.38 FT. PLATES (table is in Inches)
JT TYPE PLATES
B TMVW+p MT20 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED 5.0 6.0 Edge ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED TMWW-t TTW+h TMWW-t 6.0 MT20 40 TPIC 2014 2.00 1.00 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H. MT20 TMVW+p MT20 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BMV1+p BMWW+t MT20 ROOF LIVE LOAD 4.0 8.0 6.0 6.0 BS-t MT20 3.0 LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.06") MT20 MT20 BMWWW-t 2.00 1.50 BMWW-t BMV1+p MT20 3.0 4.0 CHORDS WEBS MAX. FACTORED MB. FORCE FACTORED MAX. FACTORED VERT. LOAD LC1 MAX
(PLF) CSI (LC)
FROM TO Edge - INDICATES REFERENCE CORNER OF PLATE FORCE CSI: TC=0.62/1.00 (F-G:1), BC=0.21/1.00 (J-K:1), TOUCHES EDGE OF CHORD. CSI (LC) UNBRAC (LBS) (LBS) CSI (LC) LENGTH FR-TO 10.00 K- C FR-TO WB=0.66/1.00 (E-H:1) , SSI=0.26/1.00 (E-F:1) FROM TO -112.4 0.15 (1) -112.4 -112.4 0.40 (1) -112.4 -112.4 0.39 (1) -112.4 -112.4 0.32 (1) -112.4 -112.4 0.31 (1) 0.0 0.0 0.82 (1) A-B B-C C-D -129 / 55 0.07 (1) NOTES- (1) C-J J-D J-E H-F 0.52 (1) 0.03 (4) 0.05 (1) 0.66 (1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 -1176 / 0 5.38 -450 / 0 -875 / 0 -637 / 0 6.04 6.25 0 / 124 0 / 322 1) Lateral braces to be a minimum of 2X4 SPF #2 D-E E-F G-F -943/0 COMPANION LIVE LOAD FACTOR = 1.00 -502 / 0 6.25 -1244/05.76 0 / 1155 0.19 (1) -1396 / 0 TRUSS PLATE MANUFACTURER IS NOT I.- K 0/0 -18.5 -18.5 0.12 (4) 10.00 RESPONSIBLE FOR QUALITY CONTROL IN THE -18.5 -18.5 -18.5 -18.5 0.12 (4) -18.5 0.21 (1) -18.5 0.13 (1) -18.5 0.13 (1) 0 / 937 0 / 502 10.00 10.00 TRUSS MANUFACTURING PLANT. I-H 0 / 502 10.00 NAIL VALUES H- G PROFESSIONAL ENGINEERS THE PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL, = 5.0 Deg. LICE JSI GRIP= 0.74 (D) (INPUT = 0.90) JSI METAL= 0.49 (B) (INPUT = 0.95) 100505065 wisen SHOVINCE OF ONTARIO

STRUCTURAL COMPONENT ONLY DWG # TR24040125

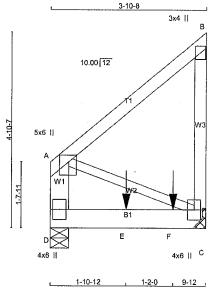
JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
437026	Т8	1	2	TRUSS DESC.		
Tamarack Roof Truss, Burlington		***************************************		1	Version 8.630 S Aug 30 2023 ID:AgdClOSevh3uN4Xyl113N2zyjH4-p?E7F	MiTek Industries, Inc. Tue Apr 2 11:03:05 2024 Page 2 RY3kjepMA4Uo5vSm284fcIPyZcYdaN2pl2zUnxK
C TTWW-m MT20 5.0 D TMW+w MT20 2.0 E TTWW+m MT20 5.0 F TMVW+p MT20 5.0 G BMV1+p MT20 4.0	LEN Y X 0 6.0 2.00 2.25 0 6.0 2.00 1.50 0 4.0 0 6.0 1.75 1.50 0 6.0 2.00 2.25 0 6.0 0 6.0 0 6.0 0 6.0 0 6.0 0 6.0 0 6.0					
NOTES- (1) 1) Lateral braces to be a minimum						
Lateral braces to be a minimum	of 2X4 SPF #2.					
PROFESS 4/02 C. M. HE 10050 POVINCE O STRUCTURAL CO DWG # TR2	F ONT ARIO					

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 437026 TRUSS DESC. T10 Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:07 2024 Page 1 ID:AgdClOSevh3uN4Xvl113N2zvjH4-mNLtsD4?FF34POdBDKUE7Z91e65i1Ylw1hXwqwzUnx Tamarack Roof Truss, Burlingtor 1-3-8 5-3-0 1-3-8 4x6 || С 10.00 12 4x6 || 4x6 II E G 4x6 =3x4 II 3x4 || 10-6-0 0-0 5-3-0 10-6-0 TOTAL WEIGHT = 3 X 47 = 142 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. RULES CHORDS SIZE **DESIGN CRITERIA** SIZE LUMBER DESCR BEARINGS FACTORED A - C C - E H - B F - D SPF SPF SPF MAXIMUM FACTORED INPUT GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX No.2 No.2 2×4 DRY SPECIFIED LOADS: DRY DRY DRY 2x4 2x4 GROSS REACTION TOP CH. LL =

DL =

BOT CH. LL = 32.5 6.0 0.0 BRG PSE No.2 VERT HORZ IN-SX PSF PSF F - D H - F 2x4 No.2 SPF MECHANICAL DL PSF TOTAL LOAD = ALL WEBS 2x3 DRY No.2 SPF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM **EXCEPT** BEARING LENGTH AT JOINT F = 1-8. SPACING = 24.0 IN. C/C DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART UNFACTORED REACTIONS
1ST LCASE MA MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND COMBINED PERM,LIVE SOIL 0/0 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 . NBC-2019AE PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 0/0 157 / 0 LEN Y 431/0 0/0 0/0 0/0 157 / 0 0/0 - PART 9 OF OBC 2012 (2019 AMENDMENT) 4.0 4.0 4.0 3.0 6.0 Edge 6.0 Edge 6.0 Edge 4.0 - CSA 086-14 - TPIC 2014 MT20 MT20 MT20 MT20 TTW+p TMVW+p BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H BMV1+n BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BMWWW-I MT20 BMV1+p ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.35")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.35")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02") Edge - INDICATES REFERENCE CORNER OF PLATE ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. TOUCHES EDGE OF CHORD. LOADING TOTAL LOAD CASES: (4) NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. CHORDS CSI: TC=0.40/1.00 (C-D:1) , BC=0.15/1.00 (F-G:4) , WB=0.08/1.00 (D-G:1) , SSI=0.18/1.00 (C-D:1) WEBS FACTORED
VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO MAX. FACTORED MAX. FACTORED мемв. FORCE CSI (LC) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 (LBS) (LBS) FR-TO FROM TO
-112.4 -112.4 0.15 (1)
-112.4 -112.4 0.40 (1)
-112.4 -112.4 0.40 (1)
-112.4 -112.4 0.15 (1)
0.0 0.09 (1) A-B B-C C-D 0 / 50 -427 / 0 10.00 G- C B- G 0.03 (4) 6.25 0 / 338 0.08 (1) COMPANION LIVE LOAD FACTOR = 1.00 -427 / 0 0 / 50 -806 / 0 6.25 G- D 0 / 338 0.08 (1) D- E H- B F- D 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0.0 0.09 (1) -806 / 0 0.0 -18.5 0.15 (4) -18.5 0.15 (4) 10.00 NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION 0/0 (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PROFESSIONAL TIMES A/02/24

HEYENS PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.50 (D) (INPUT = 0.90) JSI METAL= 0.30 (D) (INPUT = 0.95) LICEN 100505065 NOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040128


REVIEWED

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 437026 T10S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:09 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-imTdGv6FnsJneinZKlWiD FN3vm5VSiDV?01upzUnxG 1-3-8 5-3-0 1-3-8 Scale = 1:36.9 4x6 || 10.00 12 5x6 II 5x6 || WZ 5x6 = W 5.00 12 3x4 H 3x4 II 5-3-0 0-0 5-3-0 10-6-0 TOTAL WEIGHT = 3 X 49 = 147 lb LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BUILDING S BEARINGS FACTORED GROSS REACTION VERT HORZ DESIGN CRITERIA SIZE LUMBER DESCR A - CHO DRY DRY DRY SPF SPF SPF MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLI 2x4 2x4 No.2 No.2 C REQRD SPECIFIED LOADS: BRG LL = DL = LL = BRG TOP CH. 32.5 PSF HORZ UPLIFT IN-SX 0 0 5-8 0 0 5-8 В 2x6 No.2 IN-SX 6.0 0.0 PSF SPF - D 2×6 DRY No 2 BOT CH. 1-8 DL PSF 2x4 DRY No.2 SPF TOTAL LOAD = ALL WEBS EXCEPT DRY No.2 SPF UNFACTORED REACTIONS SPACING = 24.0 IN. C/C ACTIONS

MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE 1ST LCASE .IT SOIL 0/0 0/0 THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART COMBINED WIND DEAD DRY: SEASONED LUMBER. 431/0 0/0 0/0 157 / 0 9. NBCC 2015 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H, F THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 . NBC-2019AE PLATES (table is in inches)
JT TYPE PLATES BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6,25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014 LEN Y Y X 2.00 2.25 Edge 2.00 2.25 2.00 1.25 2.75 3.00 6.0 6.0 6.0 4.0 6.0 5.0 4.0 5.0 3.0 5.0 TMVW+p TTW+p MT20 TMVW+p MT20 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BMV1+p BBWWW-p MT20 LOADING TOTAL LOAD CASES: (4) MT20 ROOF LIVE LOAD BMV1+p 4.0 2.00 ALLOWABLE DEFL.(LL)= L/360 (0.35")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.35")
CALCULATED VERT. DEFL.(TL)= L/999 (0.05") Edge - INDICATES REFERENCE CORNER OF PLATE CHORDS WEBS TOUCHES EDGE OF CHORD. MAX. FACTORED FACTORED MAX. FACTORED C1 MAX MAX. CSI (LC) UNBRAC VERT. LOAD LC1 (PLF) C FROM TO мемв. FORCE (LBS) CSI (LC) (LBS) NOTES-FR-TO CSI: TC=0.40/1.00 (B-C:1) , BC=0.15/1.00 (G-H:4) , WB=0.11/1.00 (B-G:1) , SSI=0.18/1.00 (C-D:1) LENGTH FR-TO FROM TO
-112.4 -112.4 0.15 (1)
-112.4 -112.4 0.40 (1)
-112.4 -112.4 0.40 (1)
-112.4 -112.4 0.15 (1)
0.0 0.0 0.06 (1)
0.0 0.06 (1) A- B B- C C- D D- E G- C B- G G- D 0.05 (1) 0.11 (1) 0.11 (1) 0 / 50 -640 / 0 1) Lateral braces to be a minimum of 2X4 SPF #2. 0 / 229 6.25 0 / 496 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 -640 / 0 6.25 0 / 496 10.00 7.81 7.81 0 / 50 -795 / 0 H-B F-D -795/0 COMPANION LIVE LOAD FACTOR = 1.00 H- G G- F -18.5 0.15 (4) -18.5 0.15 (4) AUTOSOLVE HEELS OFF TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PROFESSIONAL ENGINEERS PLATE ROTATION TOL. = 5.0 Deg JSI GRIP= 0.45 (D) (INPUT = 0.90) JSI METAL= 0.19 (F) (INPUT = 0.95) 100505065 wie POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040129 REVIEWED

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 437026 TRUSS DESC T11

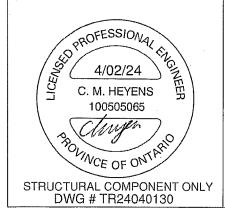
Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:10 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-Ay10UF7tYAReGsMmuT1xlBncgJ2 EwgMjflaRFzUnxl

0-0 1-10-12 3-0-12 3-10-8

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER DESCR A - C - D -SPF SPF SPF DRY - В - В 2x4 No 2 2x4 2x6 DRY No.2 No.2 2x6 DRY No.2 SPF ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS	SURFACE	LOAD(PLF)
	SPACING (IN)	
TOP CHORDS: (0.1	22"X3") SPIRAL NAILS	
A-B 1	12	TOP
B- C 1	12	TOP
D- A 2	12	TOP
BOTTOM CHORDS:	(0.122"X3") SPIRAL NAILS	
D- C 2	12	SIDE(0.0)
WEBS: (0.122"X3")	SPIRAL NAILS	• •
2v2 1	6	


NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING MAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLA	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Х
Α	TMVW+p	MT20	5.0	6.0	2.00	2.25
В	TMV+p	MT20	3.0	4.0		
С	BMVW1+p	MT20	4.0	6.0		
D	BMV1+p	MT20	4.0	6.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

	FOMO DEG	GNER						
<u>BEA</u>	BEARINGS							
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD	
	GROSS R	EACTION	GROSS I	REACTIO	N	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX	
С	1310	0	1310	0	0	MECHANIC	CAL.	
D	848	0	848	0	0	5-8	1-8	

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 1-8.

UNF	ACTORED REA	CHONS			
	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	IS.
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WI

JI	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL.
С	913	677 / 0	0/0	0/0	0/0	235 / 0	0/0
D	591	436 / 0	0/0	0/0	0/0	155 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS				WE	BS		
MAX.	FACTORED	FACTORED				MAX. FACT	ORED	
MEMB.	FORCE	VERT. LOAD LC1	I MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (I	LC)
FR-TO	, ,	FROM TO	,	LENGTH		()	(,
A-B	0/0	-112.4 -112.4	0.16(1)	10.00	A- C	0/0	0.00	(1)
C-B	-218/0	0.0 0.0	0.04 (1)	7.81				٠,
D- A	-218/0	0.0 0.0	0.01 (1)	7.81				
D-E	0/0	-18.5 -18.5	0.43 (1)	10.00				
E-F	0/0	-18.5 -18.5						
F- C	0/0	-18.5 -18.5						
SPECIFI	SPECIFIED CONCENTRATED LOADS (LBS)							
	LOC. LC1			ACE E	NR.	TYPE	HEEL	CONN.

BACK

VERT

TOTAL

C1 C1

CONNECTION REQUIREMENTS

1-10-12 3-0-12

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

-573

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO.	AD	=	45,9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 2 X 22 = 45 lb

Scale = 1:27.5

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.04")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.43/1.00 (C-D:1) , WB=0.00/1.00 (A-C:1) , SSI=0.36/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

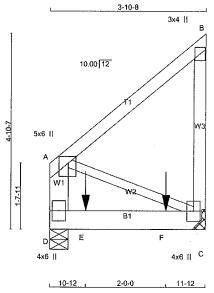
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.05 (B) (INPUT = 0.90) JSI METAL= 0.04 (B) (INPUT = 0.95)


CONTINUED ON PAGE 2

JOB NAME TRUSS NA	ME QU	JANTITY PLY	JOB DESC.	BAYVIEW WELLINGTON		DRWG NO.
437026 T11	1	2	TRUSS DESC.	<i>5,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Tamarack Roof Truss, Burlington				Version 8,630 S ID:AgdClOSevh3uN4XyI113N2zy	Aug 30 2023 Mil	rek Industries, Inc. Tue Apr 2 11:03:10 2024 Page 2 YAReGsMmuT1xlBncgJ2 EwgMjflaRFzUnxF
NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPI	F #2.					
						:
	·					-
OCESSION						
4/02/24 C. M. HEYENS	SIGNEER					
100505065 Chaylan PONINCE OF ONTE	, /					
STRUCTURAL COMPON DWG # TR240401		IR.	EVIEWE	EDI		TO ANGLE AND AN AND AN AND AN AND AN AND AN AND AN AND AN AND AND

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 437026 T11Z Tamarack Roof Truss, Burlingtor

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:11 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-e9bOhb8VJUZVu0xySAZAlOKmQjPrzNwWyJV7zhzUnxE

Scale = 1:27.5

0-0 10-12 2-10-12 3-10-8

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER SIZE DESCR No.2 No.2 No.2 SPF SPF SPF В DRY CODD DRY 2x6 DRY No.2 SPF ALL WEBS 2x3 No.2 SPF DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS

CHORDS	#ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	, ,
TOP CHO	RDS: (0.122	"X3") SPIRAĹ NAILS	
A-B	1	12	TOP
B- C	1	12	TOP
D- A	2	12	TOP
BOTTOM	CHORDS: (0.122"X3") SPIRAL NAILS	
D-C	2	12	SIDE(0.0)
WEBS: (0.122"X3") SI	PIRAL NAILS	
202	1 .	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING, REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PLA	TES_(table	is in inches)				
JT	TYPE	PLATES	w	LEN	Υ	Х
Α	TMVW+p	MT20	5.0	6.0	2.00	2.25
В	TMV+p	MT20	3.0	4.0		
С	BMVW1+p	MT20	4.0	6.0		
D	BMV1+p	MT20	4.0	6.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEAL	KINGS						
	FACTOR	RED	MAXIMUN	/ FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
0	1125	0	1125	0	0	MECHANIC	AL
0	1164	0	1164	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	<u>/IIN. COMPO</u>	NENT REACTION	VS			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
С	784	579 / 0	0/0	0/0	0/0	205 / 0	0/0	
D	811	599 / 0	0/0	0/0	0/0	212 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	DRDS FACTORED	FACTO	DED			WE	BS MAX. FACTO	BED
MEMB.	FORCE	VERT. LC	AD LC1		MAX.	MEMB.	FORCE	MAX
FR-TO	(LBS)		-F) i	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
A-B	0/0	-112.4	-112.4	0.16(1)	10.00	A-C	0/0	0.00(1)
C-B	-218 / 0	0.0	0.0	0.04(1)	7.81			
D- A	-218 / 0	0.0	0.0	0.01 (1)	7.81			
D-E	0/0	-18.5	-18.5	0.32 (1)	10.00			
E-F	0/0	-18.5	-18.5	0.32 (1)	10.00			
F-C	0/0	-18.5	-18.5	0.32 (1)	10.00			
SPECIFI	ED CONCENT	RATED LO	ADS (LE	BS)				

LOC. 10-12 MAX--620 MAX+ LC1 FACE DIB TYPE HEEL CONN. C1 C1 2-10-12 FRONT -620 -620 VERT TOTAL

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:
TOP CH. LL =
DL =
BOT CH. LL =
DL = PSF 32.5 6.0 PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 22 = 45 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/399 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.32/1.00 (C-D:1) , WB=0.00/1.00 (A-C:1) , SSI=0.31/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

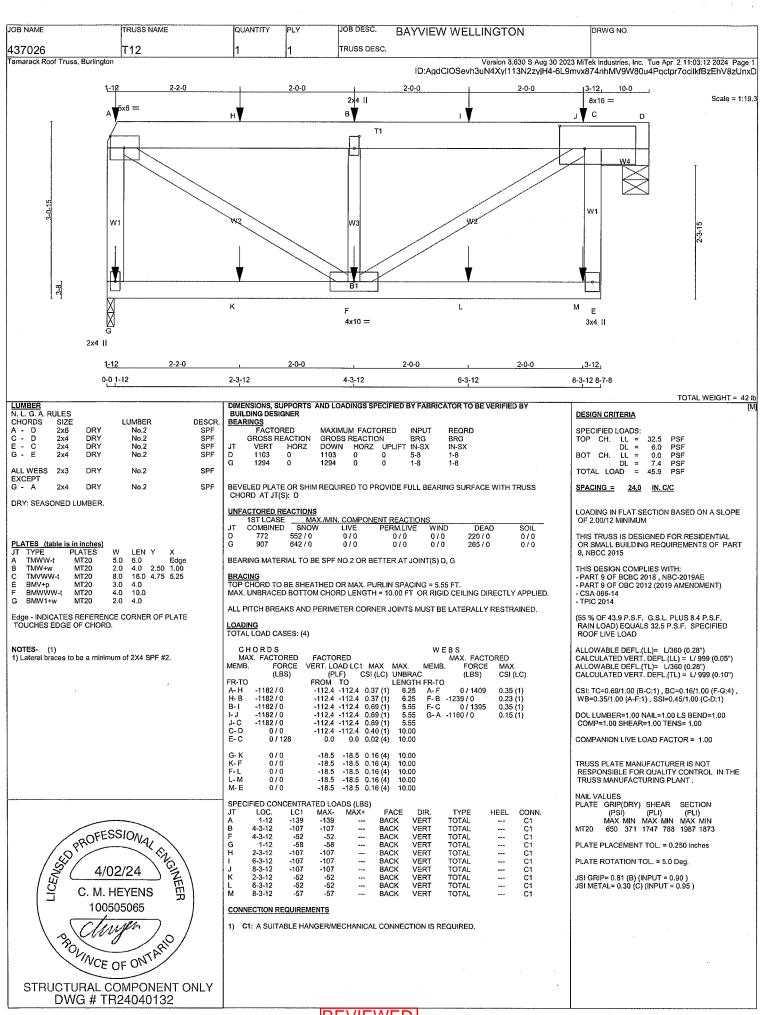
COMPANION LIVE LOAD FACTOR = 1.00

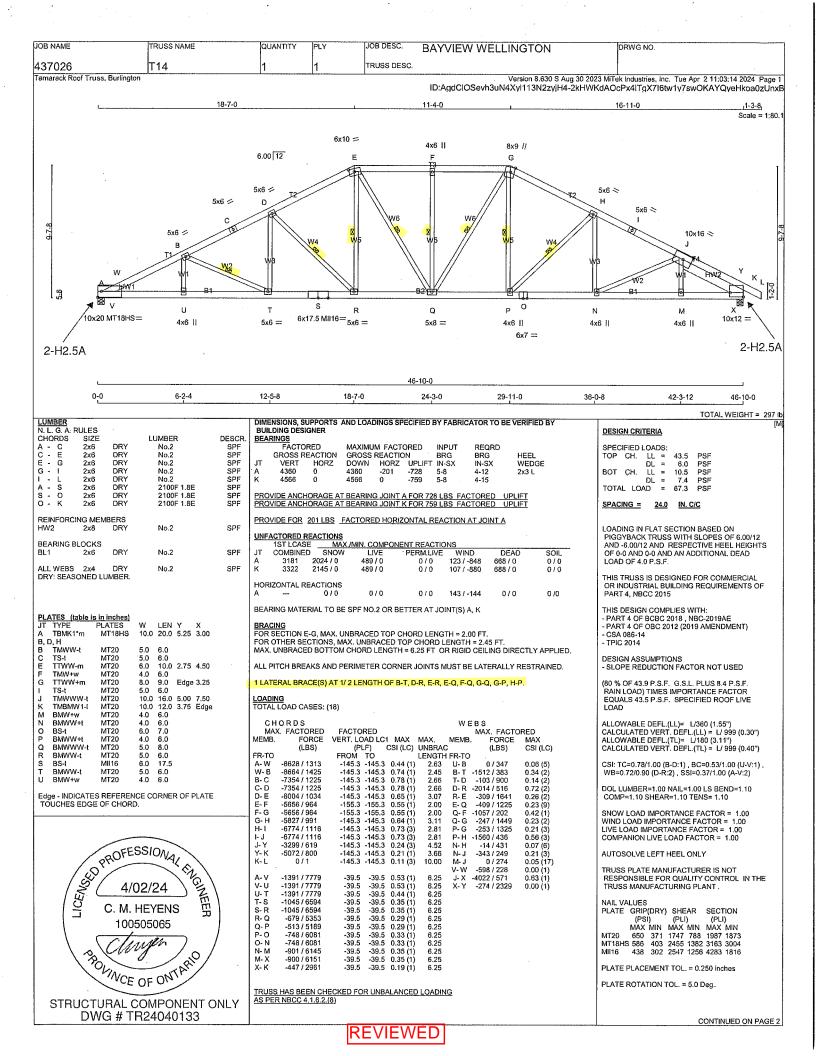
AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

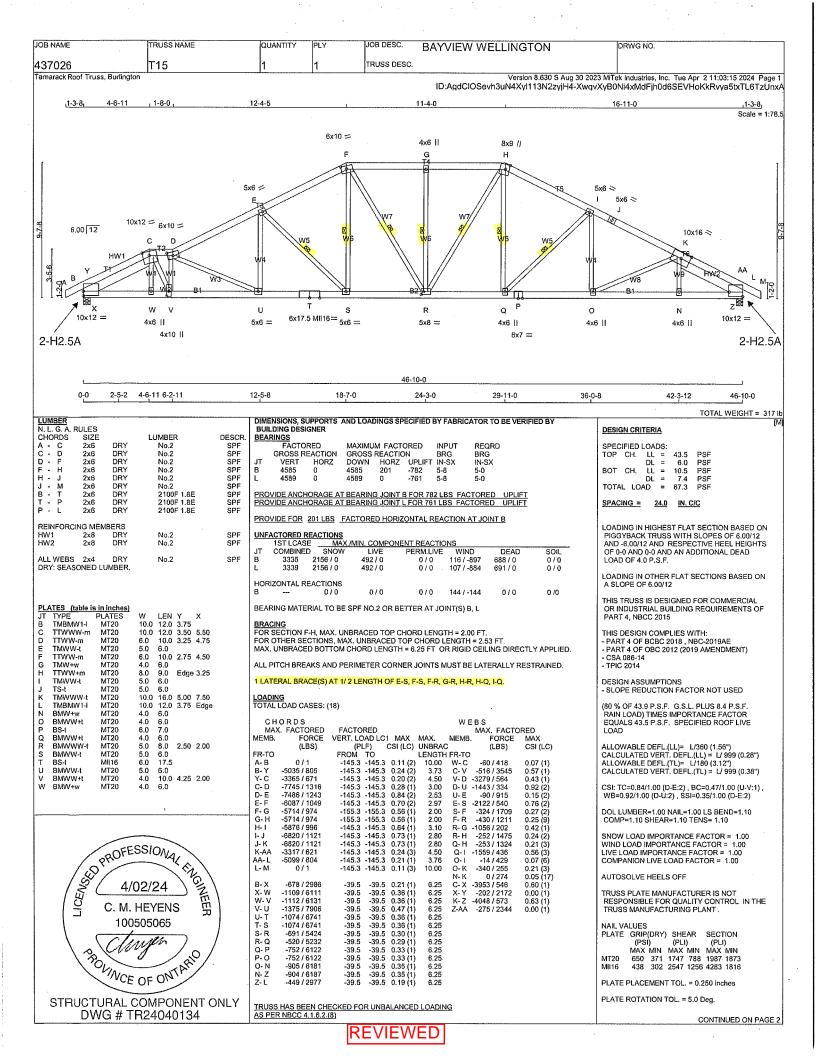
NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

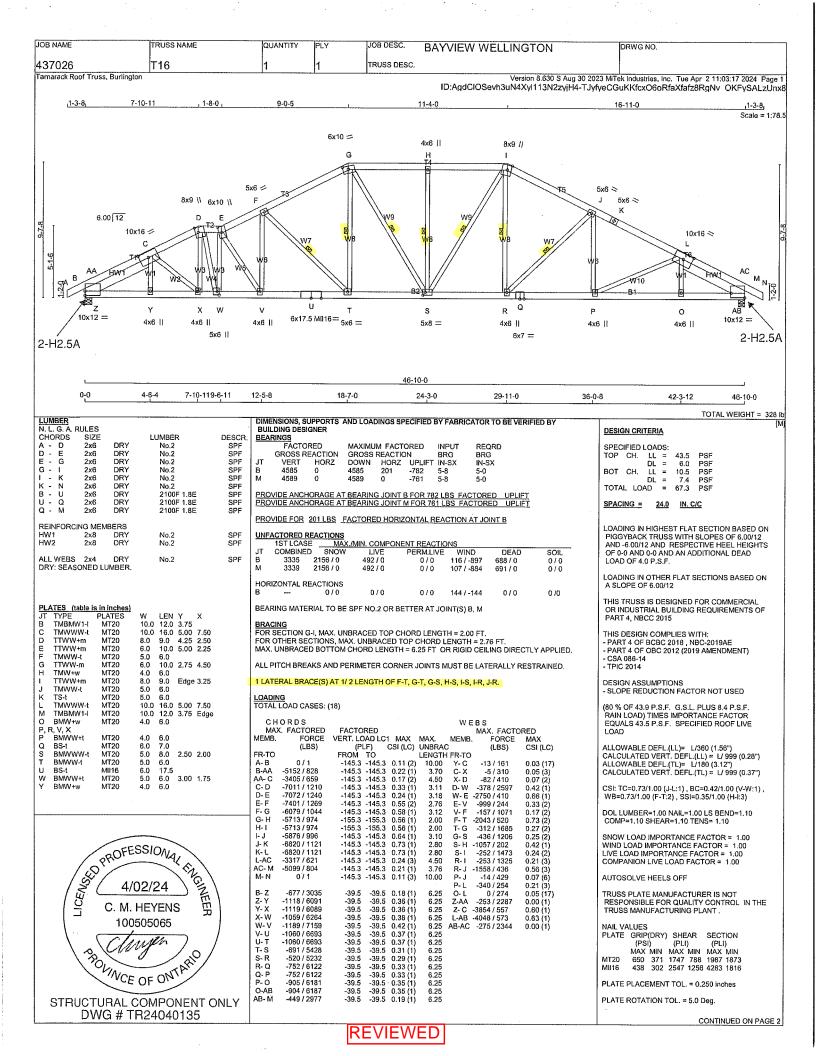

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL, = 5.0 Deg

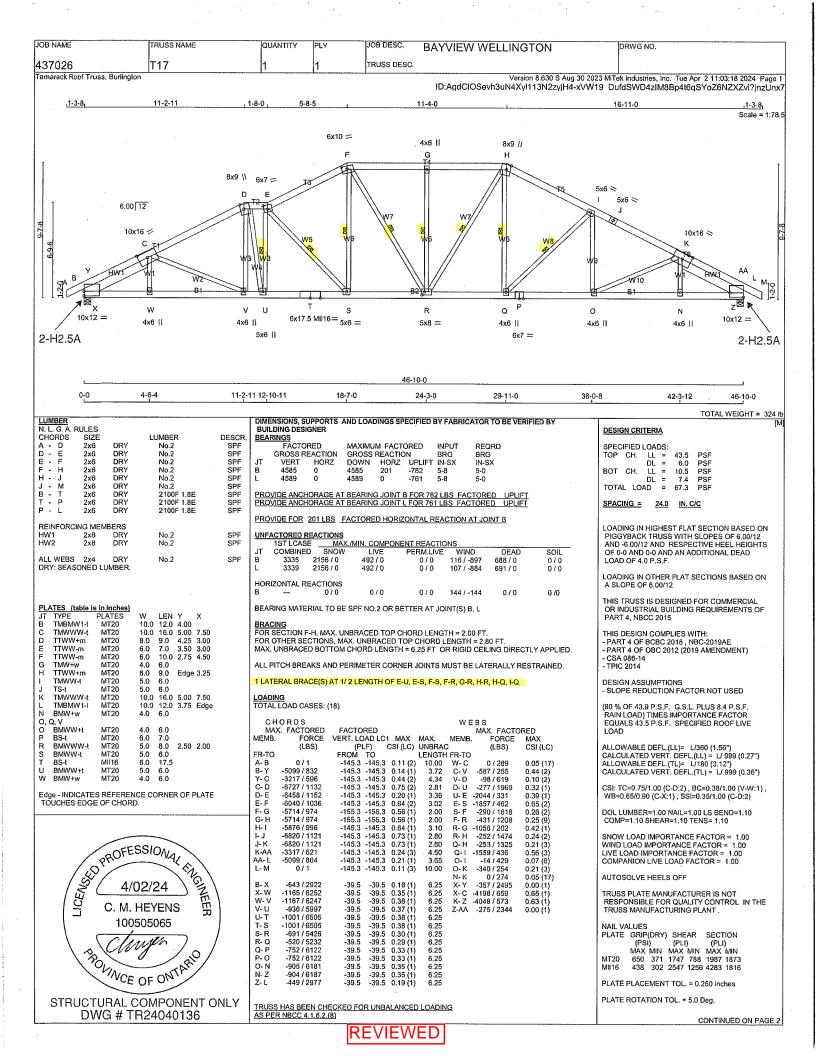
JSI GRIP= 0.05 (B) (INPUT = 0.90) JSI METAL= 0.04 (B) (INPUT = 0.95)


CONTINUED ON PAGE 2

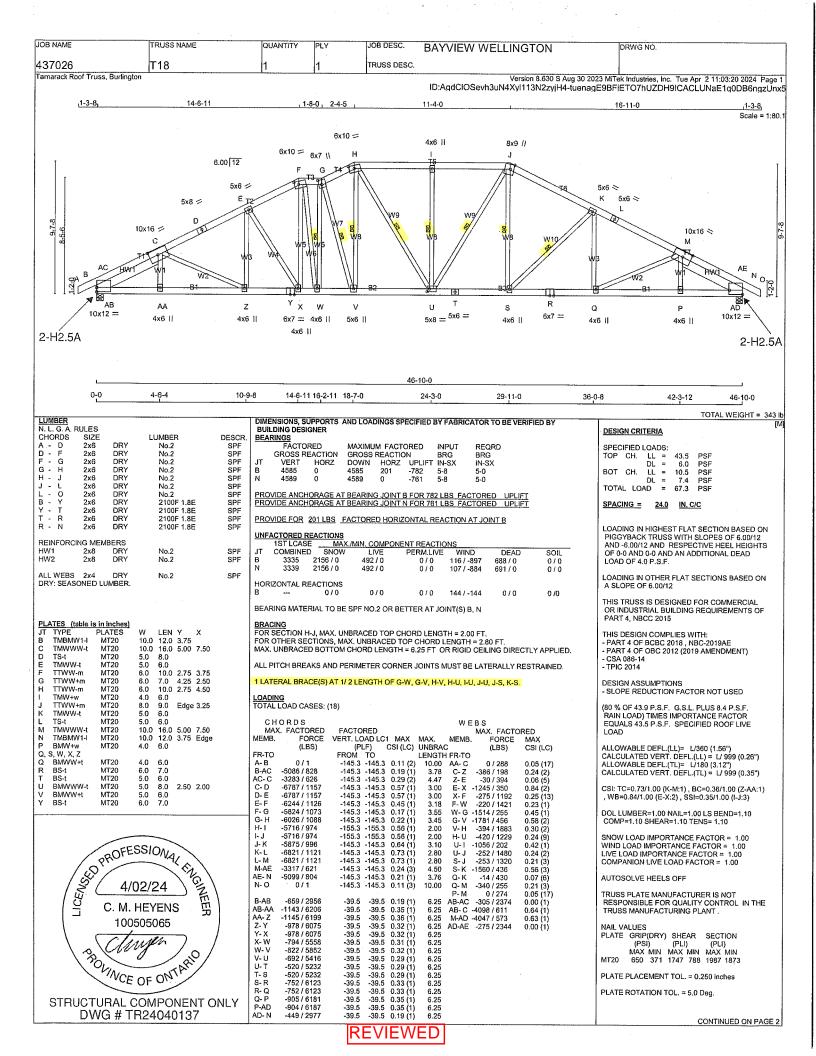
IOD WAVE	TDI 100 NATE	lou cas imiras	lesi v	Lion peno			
	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WEI	LLINGTON	DRWG NO.
437026 Tamarack Roof Truss, Burlington	T11Z	1	2	TRUSS DESC.		Version 8.630 S Aug 30 2023 MiT	ek Industries, Inc. Tue Apr 2 11:03:11 2024 Page 2
-	-	.			ID:AgdCIOSevh3ul	N4Xyl113N2zyjH4-e9bOhb8VJl	jek industries, Inc. Tue Apr 2 11:03:11 2024 Page 2 JZVu0xySAZAIOKmQjPrzNwWyJV7zhzUnxE
NOTES- (1) . 1) Lateral braces to be a minimum	-£ DV4 CD5 #0						
1) Lateral braces to be a minimum	or 2X4 SPF #2.						
	·						
OFESS	IONA						
10 PHO	THE STATE OF THE S						
/ 8 4/02	/24 \ GZ						
4/02 C. M. HE	YENS THE						
10030.	3003						
Clary	jen) ~						
ROVINCE OF	TARIU						
VVCE O	FON						
STRUCTURAL CO DWG # TR2	MPONENT ONLY						
DWG # TR2	24040131		ID.	EVIEW	בהו		
			IK	$\Gamma \cap \Lambda \cap \Gamma \cap \Lambda \cap \Gamma$	∟レ∣		



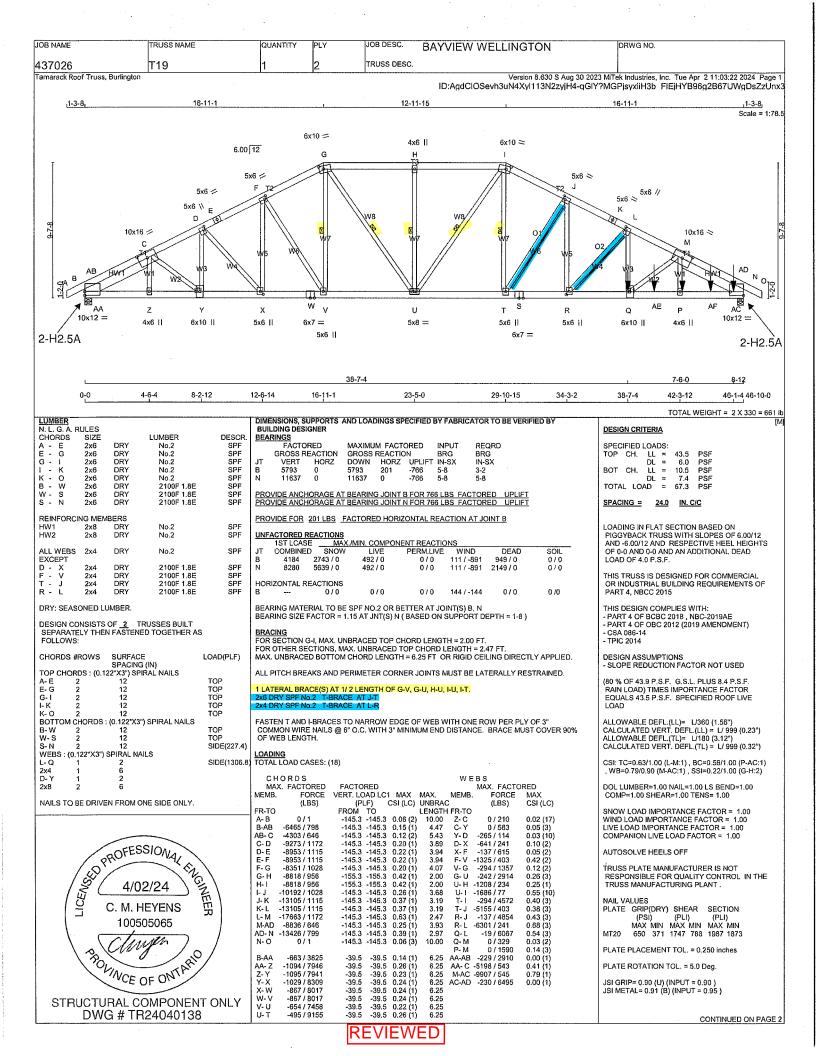
OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WE	LLINGTON	DRWG NO.
37026	T14	1	1	TRUSS DESC.	DICT VIEW WE	LEINGTON	
amarack Roof Truss, Burlingto		1:			ID:AndCIOSevh3	Version 8.630 S Aug 30 20] D23 MiTek Industries, Inc. Tue Apr 2 11:03:14 2024 Page KdAOcPx4ITgX7I6tw1y7swOKAYQyeHkoa0zUnx
NOTES- (1) 1) Lateral braces to be a mínir	num of 2X4 SPF #2.	WIND LOAD AP (40-0-0) FT-IN-3 COEFFICIENTS WIND PRESSU (OPEN TERRAL FROM EAVE.TI PSF AND 5.0 F	PLIED IS DERIY SX REFERENCE B, CPCG, BASEL RE IS BASED C IN), AND TRUSS RUSS UPLIFT IS PSF RESPECTIV	/ED FROM RÉFER E HEIGHT ABOVE ON THE {MAIN W IN DESIGN {CATE B IS DESIGNED TO B BASED ON TOP /ELY.		SSURE OF (7.5) PSF AT TERNAL PEAK 3 SYSTEM), INTERNAL 3 Y BE LOCATED ON ST (0-0) FT-IN-SX AWAY DEAD LOADS OF 5.0	JSI GRIP= 0.90 (Q) (INPUT = 0.90) JSI METAL= 0.85 (Q) (INPUT = 0.95)
100	SSIONAL FIND D2/24 HEYENS 505065 MACO OF ONTARIO						
STRUCTURAL O DWG # T	COMPONENT ONLY R24040133		[E	REVIEW	'EDI		


JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLIN	IGTON	DRWG NO.	
437026 Tamarack Roof Truss, Burlingto	T15	1	1	TRUSS DESC.		0.000 0.4 00.0000 0	***	e Apr 2 11:03:15 2024 Page 2
		<u> </u>			ID:AgdClOSevh3uN4	xyl113N2zyjH4-XwqvXy	B0Ni4xMdFjh0d6SE	VHoKkRvya5txTL6TzUnxA
Edge - INDICATES REFEREN TOUCHES EDGE OF CHORD NOTES- (1) 1) Lateral braces to be a minim	CE CORNER OF PLATE).	WIND LOAD API (40-0-0) FT-IN-S COEFFICIENTS WIND PRESSU (OPEN TERRAL FROM EAVE.TF PSF AND 5.0 P	PLIED IS DERIV IX REFERENCE I, CPCg, BASED RE IS BASED N), AND TRUSS IUSS UPLIFT IS ISF RESPECTIV	YED FROM REFER HEIGHT ABOVE ON THE {MAIN W IN DESIGN {CATE IS DESIGNED TO BASED ON TOP YELY.	RENCE VELOCITY PRESSURE GRADE AND USING EXTERNA WIND FORCE RESISTING SYST GORY 2). BUILDING MAY BE L D BE LOCATED AT LEAST (0-0) AND BOTTOM CHORD DEAD L	OF (7.5) PSF AT L PEAK EMI,INTERNAL OCATED ON FT-IN-SX AWAY OADS OF 5.0	SI GRIP= 0.87 (V) (INPU SI METAL= 0.94 (D) (INF	· IT = 0.90) PUT = 0.95)
		,						
O PROFE	GSIONAL EN							
ROVINCE	D2/24 HEYENS D505065 OF ONT ARIO							
STRUCTURAL C DWG # TI	COMPONENT ONLY R24040134							

REVIEWED



JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WE	LLINGTON	DRWG NO.
437026	Т16	1	1	TRUSS DESC.			
Tamarack Roof Truss, Burlington	T				ID:AgdClOSev	version 8.630 S Aug 30 202 h3uN4Xyl113N2zyjH4-TJyfy	3 MiTek industries, Inc. Tue Apr 2 11:03:17 2024 Page 2 reCGuKKfcxO6oRfaXfafz8RgNv_OKFySALzUnx8 I
Edge - INDICATES REFERENCI TOUCHES EDGE OF CHORD.		AS PER NBCC 4.	.1.6.2.(8)	DR UNBALANCED	JSI GRIP= 0.89 (D) (INPUT = 0.90) JSI METAL= 0.86 (Q) (INPUT = 0.95)		
NOTES- (1) 1) Lateral braces to be a minimul	n of 2X4 SPF #2.	WIND LOAD APF {40-0-0} FT-IN-S: COEFFICIENTS, WIND PRESSUF {OPEN TERRAIN FROM EAVE.TR PSF AND 5.0 PS	022 OFFILE 12 F	SASED ON TOP A	INCE VELOCITY PRES RADE AND USING EX NO FORCE RESISTING ORY 2). BUILDING MA BE LOCATED AT LEAS ND BOTTOM CHORD I	SURE OF (7.5) PSF AT TERNAL PEAK S SYSTEM) INTERNAL Y BE LOCATED ON ST (0-0) FT-IN-SX AWAY DEAD LOADS OF 5.0	
PROFESS 4/02 C. M. H 10050	18000						
POVINCE C	OF ONT ARIO DIPONENT ONLY 24040135						


REVIEWED

JOB NAME TRI	USS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW V	WELLINGTON		DRWG NO.
437026 Tamarack Roof Truss, Burlington	17	1	1	TRUSS DESC.		Version 8.630	S Aug 30 2023 Mi	Tek Industries, Inc. Tue Apr 2 11:03:18 2024 Page 2
		 			ID:AgdClOS	evh3uN4Xyl113N2z	zyjH4-xVW19 [OufdSWD4zIM8Bp4t6qSYoZ6NZXZvi?jnzUnx7
NOTES- (1) 1) Lateral braces to be a minimum of 2	V { { {	VIND LOAD APF (40-0-0) FT-IN-S COEFFICIENTS, WIND PRESSUF OPEN TERRAIN FROM EAVE.TR	PLIED IS DERIV X REFERENCE , CPCg, BASED RE IS BASED C N), AND TRUS USS UPLIFT IS SF RESPECTIV	/ED FROM REFERE E HEIGHT ABOVE C D ON THE (MAIN WI IN DESIGN (CATEC S IS DESIGNED TO B BASED ON TOP A /ELY.	ENCE VELOCITY P RADE AND USING ND FORCE RESIS SORY 2). BUILDING BE LOCATED AT I ND BOTTOM CHO	RESSURE OF { 7.5} PS EXTERNAL PEAK TING SYSTEM).INTER! 3 MAY BE LOCATED O LEAST (0-0) FT-IN-SX A IRD DEAD LOADS OF	SF AT JS VAL N WAY 5.0	I GRIP= 0.90 (E) (INPUT = 0.90) I METAL= 0.86 (P) (INPUT = 0.95)
,								
						·		
	:							
	,							
4/02/2 C. M. HEY! 1005050								
ROVINCE OF	ONTARIL							
STRUCTURAL COM DWG # TR24	040136							
			F	REVIEW	ED			

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WE	LLINGTON	DRWG NO.	
437026 Tamarack Roof Truss, Burlington	T18	1	1	TRUSS DESC.		V		
Troop During(d)	<u> </u>				ID:AgdClOSevh3u	iN4Xyl113N2zyjH4-tuenagE	E9BFIETO7hUZDH9IC	ue Apr 2 11:03:20 2024 Page 2 CACLUNaE1q0DB6ngzUnx5
PLATES (table Is In inches) JT TYPE PLATES W AA BMW+w MT20 4.0 Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD. NOTES- (1) 1) Lateral braces to be a minimum	CORNER OF PLATE of 2X4 SPF #2.	AS PER NBCC 4.	.1.6.2.(8) PLIED IS DERIVE X REFERENCE I CpCg, BASED O RE IS BASED ON I), AND TRUSS I USS UPLIFT IS I	DR UNBALANCED ED FROM REFERE HEIGHT ABOVE G ON THE (MAIN WII N DESIGN (CATEG IS DESIGNED TO BASED ON TOP A ELY.		SURE OF { 7.5} PSF AT TERNAL PEAK SYSTEM].INTERNAL Y BE LOCATED ON T (0-0) FT-IN-SX AWAY DEAD LOADS OF 5.0	JSI GRIP= 0.89 (G) (INF JSI METAL= 0.93 (R) (IN	PUT = 0.90) IPUT = 0.95)
	·							
C. M. HE 100505 ROUNNE OF	ONTARIO							
STRUCTURAL COM DWG # TR2	MPONENT ONLY 4040137							
			RI	EVIEWE	Đ			

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
437026	T19	1	2	TRUSS DESC.		
Tamarack Roof Truss, E	Burlington				Version 8.630 S Aug 30 20	23 MiTek Industries, Inc. Tue Apr 2 11:03:22 2024 Page 2
					ID:AgdClOSevh3uN4Xyl113N2zyjH4-qGl	Y?MGPjsyxiiH3b_FIEjHYB96g2B67UWgDsZzUnx3

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

	ATES (table				,						
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMBMW1-I	MT20	10.0	12.0	3.25						
Ç	TMWWW-t	MT20	10.0	16.0	4.50	7.75					
D	TMWW+t	MT20	5.0	6.0	2.50	1.25					
Ε	TS-t	MT20	5.0	6.0							
F	TMWW-t	MT20	5.0	6.0	2.50	1.75					
G	TTWW-m	MT20	6.0	10.0	2.75	3.75					
н	TMW+w	MT20	4.0	6.0							
1	TTWW-m	MT20	6.0	10.0	2.75	3.75					
J	TMWW-t	MT20	5.0	6.0	2.50	1.75					
K	TS-t	MT20	5.0	6.0							
L	TMWW+t	MT20	5.0	6.0	2.50	1.25					
M	TMWWW-t	MT20	10.0	16.0	4.50	7.75					
N	TMBMW1-I	MT20	10.0	12.0	3.25	Edge					
Р	BMW+w	MT20	4.0	6.0							
Q	BMWW+t	MT20	6.0	10.0							
R	BMWW+t	MT20	5.0	6.0	2.50	2.25					
S	BS-t	MT20	6.0	7.0							
T	BMWW+t	MT20	5.0	6.0							
U	BMWWW-t	MT20	5.0	8.0							
V	BMWW+t	MT20	5.0	6.0							
W	BS-t	MT20	6.0	7.0							
Х	BMWW+t	MT20	5.0	6.0	2.50	2.25					
Υ	BMWW+t	MT20	6.0	10.0							
Z	BMW+w	MT20	4.0	6.0							

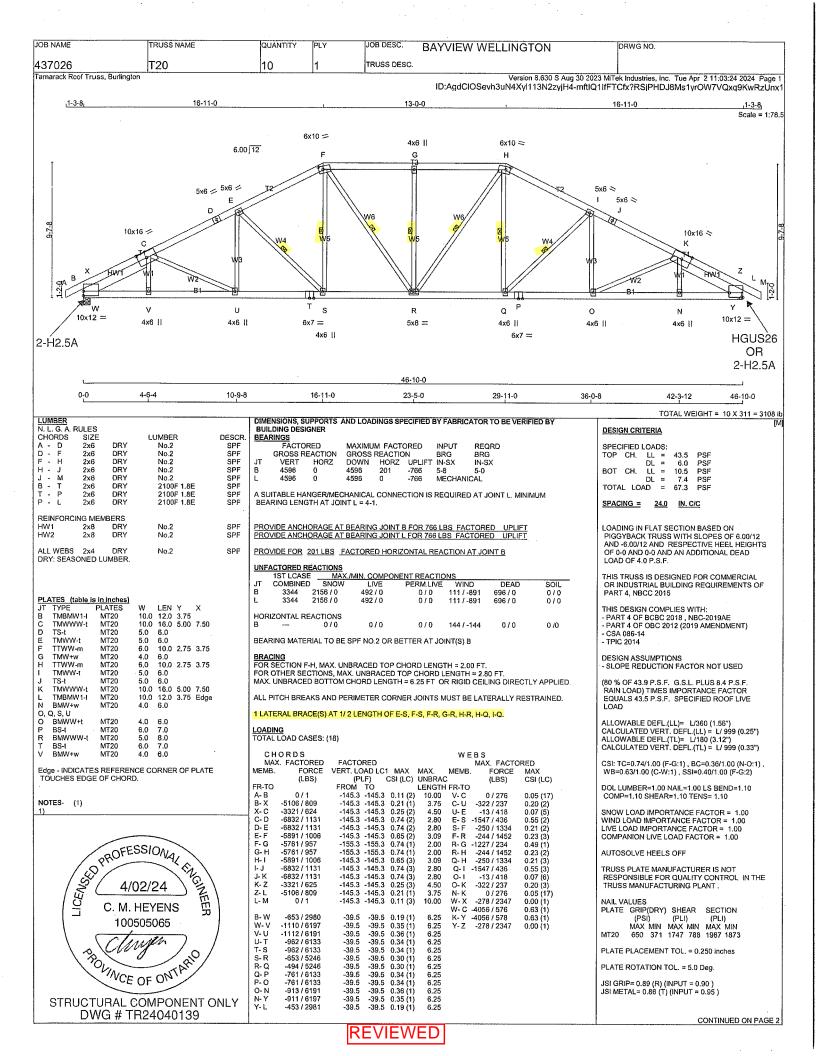
Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

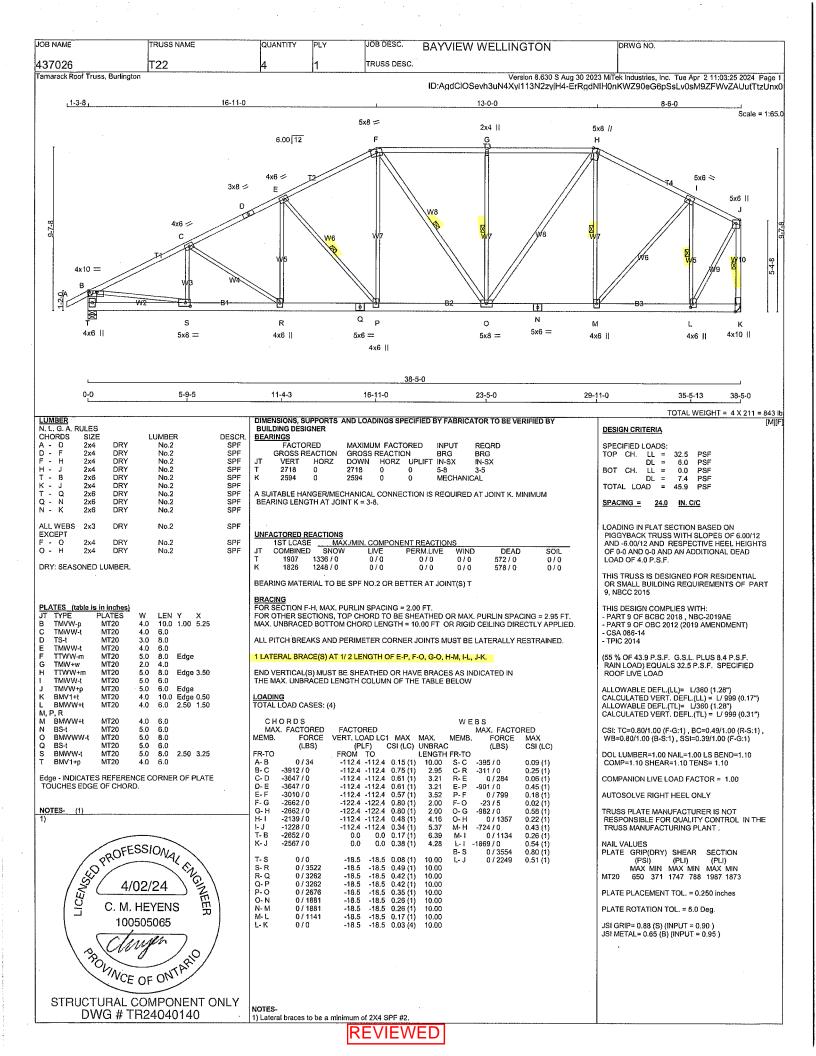
LOADING TOTAL LOAD CASES: (18)

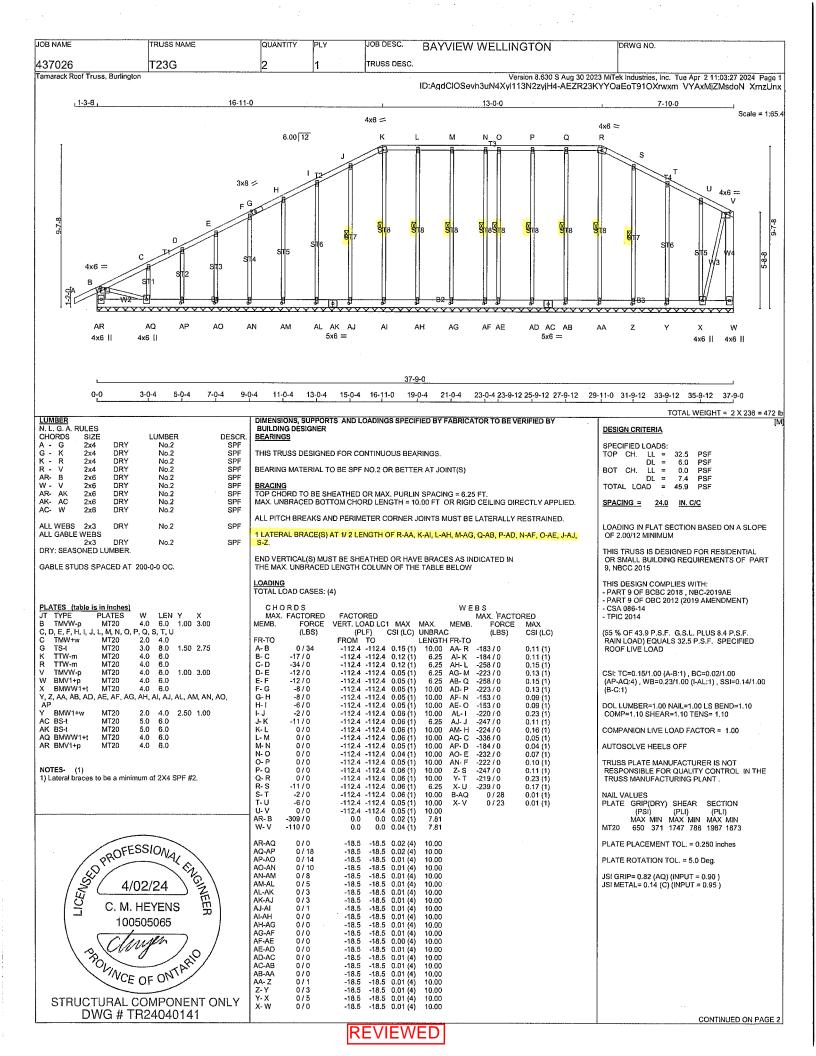
сно	RDS							WE	BS				
MAX.	FACT	ORED	FACTO	RED					MAX	. FACT	ORED		
MEMB.	F	ORCE	VERT. LC	AD LC1	i MAX	(MAX.	MEMB.		FORCE	MAX		
	(L	BS)	(PI	LF)	CSI (LC	2)	UNBRAC	;		(LBS)	CSI	(LC)	
FR-TO			FROM	TO			LENGTH	FR-TO					
T-S	-666 /	11737	-39.5	-39.5	0.33 ((1)	6.25						
S-R	-666 /	11737	-39.5	-39.5	0.33 ((1)	6.25						
R-Q	-828/	15830	-39.5	-39.5	0.47 ((1)	6.25						
Q-AE	-895 /	15659	-39.5	-39.5	0.54 ((1)	6.25						
AE- P	-895 /	15659	-39.5	-39.5	0.54 ((1)	6.25						
P-AF	-895 /	15698	-39.5	-39.5	0.56 (1)	6.25						
AF-AC	-895 /	15698	-39.5	-39.5	0.56 (1)	6.25						
AC- N	-463 /	7843	-39.5	-39.5	0.27 (1)	6.25						
			ATED LO										
17 1	00	1.04	MANY	B & A V		E 4	CE E	in a	TVE	· -		CO	

CONN. C1 C1 C1 C1 C1 DIR. VERT VERT LOC. 42-5-12 38-7-4 46-1-4 40-5-12 44-5-12 TYPE TOTAL TOTAL TOTAL TOTAL TOTAL -431 -4052 -433 -431 BACK BACK BACK BACK

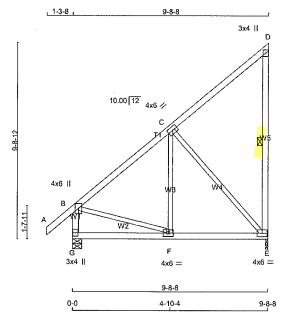

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.


TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)


WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF {7.5} PSF AT {40-0-0} FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE {MAIN WIND FORCE RESISTING SYSTEM}.INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST {0-0} FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WE	FLUNGTON	DRWG NO.
	T20	10	1	TRUSS DESC.	DIVIAITAA AA	IIV	
Tamarack Roof Truss, Burlington			L.i		ID:AadClOSevh	Version 8.630 S Aug 30 202	I. 3 MiTek Industries, Inc. Tue Apr 2 11:03:24 2024 Page 2 IIfFTCfx?RSjPHDJ8Ms1yrOW7VQxq9KwRzUnx1
NOTES- 1) Lateral braces to be a minimum	of 2X4 SPF #2.						The second from Value of the second from the s
	, N	AS PER NBCC 4	F.1.6.2.(8) PLIED IS DERI X REFERENCE CONTROL OF CONTR	FOR UNBALANCED VED FROM REFERE E HEIGHT ABOVE C D ON THE (MAIN W) ON DESIGN (CATEC) S IS DESIGNED TO S BASED ON TOP A VELY.		SSURE OF (7.5) PSF AT ITERNAL PEAK 3 SYSTEM), INTERNAL NY BE LOCATED ON ST (0-0) FT-IN-SX AWAY DEAD LOADS OF 5.0	
•							
						:	
				•			•
		*					
							•
OFESS	HONA						
4/02 Syl 4/02 C. M. HE 100500	/24 (2) EYENS EE						
1	100						
STRUCTURAL CO DWG # TR2	24040139		***************************************				
			F	REVIEW	ED		



JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
437026	T23G	2	1	TRUSS DESC.		
Tamarack Roof Truss, Burlington					Version 8.630 S Aug 30 202 ID:AgdClOSevh3uN4Xyl113N2zyjH4-AEZR23K	3 MiTek Industries, Inc. Tue Apr 2 11:03:27 2024 Page 2 YYOaEoT91OXrwxm VYAxMjZMsdoN XmzUnx
	·					
				÷		
						·
				•		
						·
					,	
						·
OFFSS	IOA					
20 PROFESS. 4/02/ C. M. HE	SVAL CA					
4/02/	(24) (24)					
0 C. M. HE	YENS 盟					
100905	5065					
1 3 Carry						
POVINCE OF	ONTAL					
STRUCTURAL CON DWG # TR2						
DWG # TR2	4040141			EVIEW	EDI	
			K	⊏VI⊏VV	□レ	

BAYVIEW WELLINGTON JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. DRWG NO. TRUSS DESC. 437026 T24 Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 Mir ek industries, Inc. Tue Apr 2 11:03:28 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-eQ7pGPLAJii5QdkDyFM9U XdBaFaSx70sS7X2CzUnwz

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER DESCR A - D E - D G - B G - E SPF SPF SPF DRY 2×4 No 2 2x4 2x4 DRY DRY No.2 2x4 DRY No.2 SPF ALL WEBS 2x3 DRY No.2 EXCEPT

DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 C
 TMWW-t
 MT20
 LEN Y 6.0 Ed 6.0 4.0 6.0 4.0 Edge 3.0 4.0 4.0 DEFG TMV+p BMVW1-t MT20 MT20 BMWW-t MT20 BMV1+p 3.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

BEAF	RINGS						
	FACTOR	ED	MAXIMUN	A FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
=	636	0	636	0	0	1-8	1-8
3	791	0	791	0	0	5-8	1-8

UNFACTORED REACTIONS

	151 LCASE	MAX./I	MIN. COMPOR	VENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL
E	445	315/0	0/0	0/0	0/0	130 / 0	0/0
G	552	405 / 0	0/0	0/0	0/0	147 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-E.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHO	ORDS					WE	BS	
MAX.	FACTORED	FACTOR	ED				MAX. FACTO	RED
MEMB.	FORCE	VERT, LOA	D LC	1 MAX	MAX.	мемв.	FORCE	MAX
	(LBS)	(PLF	•)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM 1	Ю		LENGTH	FR-TO		
A-B	0/50	-112.4 -	112.4	0.15 (1)	10.00	F- C	0 / 97	0.03 (4)
B-C	-423 / 0	-112.4 -	112.4	0.35 (1)	6.25	C-E	-533 / 0	0.51 (1)
C-D	-43/0	-112.4 -	112.4	0.34 (1)	6.25	B-F	0/371	0.08 (1)
E-D	-205/0	0.0	0.0	0.09(1)	6.25			
G-B	-756 / 0	0.0	0.0	0.08(1)	7.81			
G-F	0/0	-18.5	-18.5	0.12 (4)	10.00			
F-E	0 / 358	-18.5	-18.5	0.15 (4)	10.00			

TOTAL WEIGHT = 4 X 53 = 211 IL

Scale = 1:54.8

DESIGN CRITERIA

SPECIFIED LOADS: 32.5 6.0 0.0 7.4 PSF PSF LL = DL = DL = PSF PSF BOT CH. TOTAL LOAD = 45.9 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.35/1.00 (B-C:1) , BC=0.15/1.00 (E-F:4) , WB=0.51/1.00 (C-E:1) , SSI=0.20/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

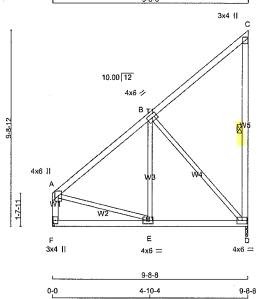
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.47 (B) (INPUT = 0.90) JSI METAL= 0.29 (B) (INPUT = 0.95)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 437026 T24A Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:29 2024 Page 1

ID:AgdClOSevh3uN4Xyl113N2zyjH4-6chBTlLo40qy2nJPVytO0B4oxzbpBOM956s4bfzUnwy 9-8-8 Scale = 1:54.8 3x4 II C

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR A - C D - C F - A F - D DRY DRY DRY SPF SPF SPF 2x4 2x4 No.2 No.2 2x4 No.2 D DRY SPF ALL WEBS SPF 2x3 DRY No.2 EXCEPT

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
A TMVW+p MT20 LEN Y 4.0 6.0 Edge ABCDEF 6.0 4.0 6.0 TMWW-t 4.0 3.0 4.0 MT20 TMV+p BMVW1-t MT20 6.0 RMWW.+ MT20 4.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

SEA	RINGS						
	FACTOR	ED	MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
)	636	0	636	0	0	1-8	1-8
=	636	0	636	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS									
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL.					
Ď	445	315/0	0/0	0/0	0/0	130 / 0	0/0					
F	445	315 / 0	0/0	0/0	0/0	130 / 0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-D.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHC	CHORDS				WEBS						
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED			
MEMB.	FORCE	VERT. LC	AD LC	1 MAX	MAX.	MEMB.	FORCE	MAX			
	(LBS)	(PI	-F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)			
FR-TO		FROM	TO		LENGTH	FR-TO					
A-B	-423 / 0	-112.4	-112.4	0.35 (1)	6.25	E-B	0/97	0.03 (4)			
B- C	-43 / 0	-112.4	-112.4	0.34 (1)	6.25	B- D	-533 / 0	0.51 (1)			
D- C	-205 / 0	0.0	0.0	0.09 (1)	6.25	A-E	0/371	0.08 (1)			
F-A	-600 / 0	0.0	0.0	0.06 (1)	7.81						
F-E	0/0	-18.5	-18.5	0.12 (4)	10.00						
E-D	0 / 358	-18.5	-18.5	0.15 (4)	10.00						

DESIGN CRITERIA

SPECIFIED LOADS: 32.5 6.0 0.0 7.4 PSF PSF LL = DL = LL = DL = PSF PSF вот сн. TOTAL LOAD = 45.9 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 4 X 51 = 204 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.02")

CSI: TC=0.35/1.00 (A-B:1) , BC=0.15/1.00 (D-E:4) , WB=0.51/1.00 (B-D:1) , SSI=0.20/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

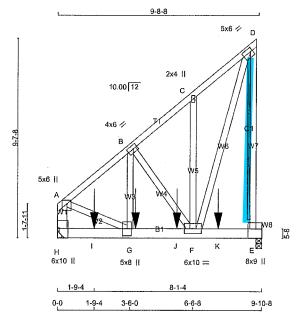
MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.37 (A) (INPUT = 0.90) JSI METAL= 0.25 (A) (INPUT = 0.95)



JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 437026 T24G Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:31 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-3?oyuRN2bd5gH4TodNws6c9BQnJlfMxSYQLBfXzUnwv 1-3-8 9-8-8 Scale = 1:58.8 3x4 II G 2x4 || 2x4 || 10.00 12 2x4 II D 2x4 II 4x6 || 3x4 II 4x6 = 2x4 II 2x4 II 2x4 II 3x4 II 9-8-8 0-0 9-8-8 TOTAL WEIGHT = 2 X 57 = 114 lb LUMBER
N. L. G. A. RULES
CHORDS SIZE
M - B 2x4
A - G 2x4
H - G 2x4 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY DESIGN CRITERIA LUMBER DESCR BEARINGS SPF SPF SPF No.2 No.2 DBV SPECIFIED LOADS: DRY DRY THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS. TOP CH. LL =
DL =
BOT CH. LL =
DL = PSF 32.5 No.2 6.0 PSF DRY No.2 SPF THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. PSF ALL WEBS 2x3 SPF DRY No.2 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) TOTAL LOAD 45.9 PSF ALL GABLE WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF 24.0 IN. C/C <u>BRACING</u> TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. SPACING = THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. GABLE STUDS SPACED AT 2-0-0 OC. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 9. NBCC 2015 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) 1 LATERAL BRACE(S) AT 1/2 LENGTH OF G-H. END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 IFN Y JT TYPE
B TMVV
C, D, E, F
C TMWG TMV+
H BMV1
I, J, K 4.0 6.0 Edge TPIC 2014 LOADING TOTAL LOAD CASES: (4) DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. TMW+w MT20 20 4 0 TMV+p BMV1+p 4.0 CHORDS MT20 3.0 WEBS (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX.

(PLF) CSI (LC) UNBRAC
FROM TO LENGTH MT20 MT20 FORCE (LBS) BMW1+v 2.0 4.0 мемв. МЕМВ. BMWW1-t L M 4.0 (LBS) CSI (LC) LENGTH FR-TO BMV1+p MT20 3.0 4.0 FR-TO M- B A- B C- D D- E -330 / 0 0 / 50 -58 / 0 I-F J-E K-D 0.32 (1) 0.14 (1) 0.08 (1) 7.81 10.00 -254 / 0 -214 / 0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. CSI: TC=0.15/1.00 (A-B:1), BC=0.02/1.00 (H-I:4), 6.25 -239 / 0 WB=0.32/1.00 (F-I:1) , SSI=0.09/1.00 (A-B:1) -6/0 -11/0 10.00 6.25 L-C B-L -127 / 0 0 / 20 0.02 (1) 0.00 (1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. 10.00 E-F F-G -1/0COMP=1.10 SHEAR=1.10 TENS= 1.10 -112.4 -112.4 0.06 (1 0.0 COMPANION LIVE LOAD FACTOR = 1.00 -18.5 -18.5 -18.5 -18.5 -18.5 0.02 (4) -18.5 0.02 (4) -18.5 0.01 (4) -18.5 0.02 (4) 10.00 10.00 10.00 M- L 0/0 0/12 0/6 0/3 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT. NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. PROFESSIONAL ENGINEERS C. M. HEYENS JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.14 (F) (INPUT = 0.95) 100505065 NOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040144

JOB NAME TRUSS NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** DRWG NO 437026 T25 TRUSS DESC Tamarack Roof Truss, Burlington

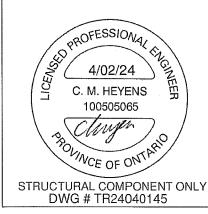
Version 8.630 S Aug 30 2023 MiTck Industries, Inc. Tue Apr 2 11:03:32 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-XBMK5mOgMxDXVE2 B4R5eqiNwBcGOlQbn45lBzzUnw

LUMBER N. L. G. A. CHORDS A. RULES SIZE LUMBER DESCR No.2 No.2 SPF n DRY DRY DRY A 2x6 2100F 1.8E SPF ALL WEBS 2x4 DRY DRY: SEASONED LUMBER. SPF

DESIGN CONSISTS OF 3 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE LOAD(PLF) SPACING (IN) TOP CHORDS: (0.122"X3") SPIRAL NAILS TOP TOP A-D H-A 12 BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(884.9) WEBS: (0.122"X3") SPIRAL NAILS

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.


GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR

THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING, REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	X						
Α	TMVW+p	MT20	5.0	6.0	2.00	2.25						
В	TMWW-t	MT20	4.0	6.0	2.00	2.50						
С	TMW+w	MT20	2.0	4.0								
D	TMWW-t	MT20	5.0	6.0	2.25	1.25						
Ε	BMWW1+t	MT20	0.8	9.0	5.50	Edge						

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

EA	KINGS						
	FACTOR	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSSI	REACTIO	N	BRG	BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
!	5786	0	5786	0	0	MECHANIC	CAL
	5752	0	5752	0	0	3-8	2-1

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 1-11.

UNFACTORED REACTIONS

	151 LUASE	:MAX./	MIN. COMPO	NENT REACTION	48		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Н	4067	2810 / 0	0/0	0/0	0/0	1257 / 0	0/0
Ε	4043	2794 / 0	0/0	0/0	0/0	1250 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.08 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3"
COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

				•									
	СН	ORDS							W E	BS			
	MAX	. FACT	ORED	FACTO	RED					MAX. FAC	TORE	:D	
	MEMB.		DRCE	VERT. LC	OAD LC	MAX	C M	AX.	MEMB			AAX	
		(L	BS)	(P	LF)	CSI (LC	C) U	NBRAG	2	(LBS)	C	SI (I	LC)
	FR-TO		•	FROM	TO		Ĺ	ENGTH	FR-TO			•	,
		-4985/								-4781 / 0	0	.49 ((1)
		-2635/		-112.4	-112.4	0.06	1)	6.25	A- G	0 / 4072	2 0	.22	(1)
		-2610/		-112.4	-112.4 0.0	0.06	(1)	6.25	G-B	0 / 3600		.19 (
_	H- A .	-4712/	0	0.0	0.0	0.11 ((1)	7.81		-3102/0		.31 (
										-301 / 0		.06 (
	H- I	0/		-18.5					F-D	0 / 6598	30	.35 ((1)
	I- G	0/		-18.5									
	G-J		3845		-18.5								
	J-F			-18.5									
	F-K	0/		-18.5									
	K-E	0 /	U	-18.5	-18.5	0.19	(1)	10.00					
	Specie	IED COL	CENT	RATED LO	ADS (L)	261							
	JT	LOC.	LC1			+	FAC	F 1	DIR.	TYPE	HEE	=1	CONN.
	Ğ		-1811				BACK		ERT	TOTAL	11111		C1
	ĭ			-1811				. vi		TOTAL	_		C1
	j			-1811								_	Č1
	ĸ		-1811				ACK		ERT	TOTAL		_	C1
						-							
	CONNE	CTION R	EQUIRE	MENTS									

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 3 X 75 = 226 lb

Scale = 1:53.3

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 . NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.31")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.31")
CALCULATED VERT. DEFL.(TL)= L/999 (0.06")

CSI: TC=0.11/1.00 (A-H:1) , BC=0.23/1.00 (G-H:1) , WB=0.49/1.00 (D-E:1) , SSI=0.37/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

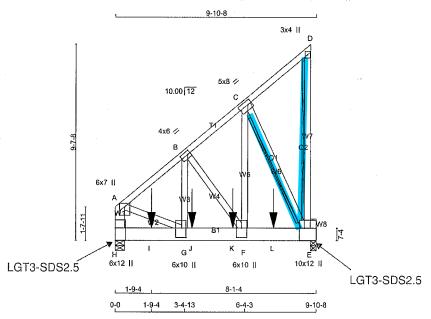
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

ATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.88 (D) (INPUT = 0.90) JSI METAL= 0.46 (G) (INPUT = 0.95)


CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTO	NI .	DRWG NO.	
	T25	1	3	TRUSS DESC.	DATVIEW WELEINOTC	71 V		
Tamarack Roof Truss, Burlington	120	.1'	J.	1	Version 8. ID:AgdCIOSevh3uN4Xyl113N2	630 S Aug 30 2023 Mi	Tek Industries, Inc. Tue A	pr 2 11:03:32 2024 Page 2
PLATES (table is in inches) JT TYPE PLATES W	LEN Y X				ID:AggCIOSeVI3uN4XyI113N2	ZYJH4-XBMK5MOG	MXDXVE2_B4R5eqiN	WBCGOIQDR45IBZZONW
G BMWW+t MT20 6.0	10.0 10.0							
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE					4		
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.							
					,			
		·						
								:
4/02 C. M. HE	SIONALEN							
4/02	/24 G Z			•				
10030	3003							
POVINCE O	per dans							
STRUCTURAL CO DWG # TR2	24040145		D	EVIEW	FDI			
			K	⊏VI⊏VV	⊏レ∣			

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 437026 T26

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:33 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-?OwiJ6PI7ELOWOdBkoyKB1EWqbxS7AKI0kqlkQzUnwu

LUMBER				
N. L. G. A. R	ULES			1
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
E - D	2x4	DRY	No.2	SPF
H - A	2x6	DRY	No.2	SPF
H - E	2x8	DRY	1950F 1.7E	SPF
				I
ALL WEBS	2x4	DRY	No.2	SPF
DDV- CEAC	MEDIL	IMPER		

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	ORDS: (0.1	22"X3") SPIRAL NAILS	
A- D	1 '	12	TOP
D-E	1	12	TOP
H-A	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
H-E	3	5	SIDE(1368.8
WEBS:	(0.122"X3")	SPIRAL NAILS	
2x4	2	4	
A-G	1	6	
B-F	1	6	
C-F	1	6	

STAGGER NAILS BY HALF THE SURFACE SPACING IN

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

200	KINGS						
	FACTOR	MAXIMUN	J FACTO	INPUT	REQRD		
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	9958	0	10085	0	-1844	3-8	3-8
1	10037	0	10163	458	-1640	5-8	5-8

PROVIDE ANCHORAGE AT BEARING JOINT E FOR 1844 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT H FOR 1640 LBS FACTORED UPLIFT

PROVIDE FOR 458 LBS FACTORED HORIZONTAL REACTION AT JOINT H

UNFACTORED REACTIONS

	1ST LCASE	MAX.	MIN. COMPO	NENT REACTIO	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL
E	7233	4793 / 0	1038 / 0	0/0	423 / -2050	1486 / 0	0/0
Н	7290	4830 / 0	1046 / 0	0/0	373 / -1910	1497 / 0	0/0
HOR H	IZONTAL RE	ACTIONS 0/0	0/0	0/0	327 / -214	0/0	0 /0
		• • •					0,0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, H BEARING SIZE FACTOR = 1.15 AT JNT(S) E (BASED ON SUPPORT DEPTH = 1-8)

MAX. UNBRACED TOP CHORD LENGTH = 3.91 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

<u>LOADING</u> TOTAL LOAD CASES: (18)

IOIALI	LOAD CAG	_3. (10)							
СН	ORDS					w	EBS		
	C. FACTOR	ED FACTO	DRED				MAX. F	ACTORE	D
MEMB.	FOR	CE VERT. L	OAD LC1	MAX	MAX.	MEME	. FO	RCE M	AX
	(LBS) (F	LF) (CSI (LC)	UNBRA	.C	(LB	S) C	SI (LC)
FR-TO		FROM	TO		LENGT	H FR-TC) ·	•	
A-B	-8804 / 146	62 -145.3	-145.3	0.22(2)	3.91	A- G	-1188 / 7	146 0.	38 (2)
B- C	-5254 / 95	7 -145.3	-145.3	0.13(2)	4.94	G-B	-969 / 5	572 0.	30 (3)
C-D	-142 / 19 ⁻	1 -145.3	-145.3	0.09 (2)	6.25	B-F	-4560 / 9	33 0.	41 (2)
		3 0.0							.58 (2)
H- A	-8206 / 133	29 0.0	0.0	0.18 (2)	6.32	C-E	-9041 / 1	740 0.	.58 (2)
		1 -39.5							
		1 -39.5							
		70 -39.5							
		70 -39.5							
		70 -39.5							
		60 -39.5							
L-E	-793 / 406	60 -3 9.5	-39.5	0.29 (2)	6.25				
SPECIE	TED CONC	ENTRATED LO	DADS (LE	38)					
JT		LC1 MAX-			ACE	DIR.	TYPE	HEE	L CONN.
İ	1-9-4				ONT V		TOTAL		
J	3-9-4 -:					ERT	TOTAL		
K	5-9-4 -:	3308 -3308	36	6 FR	ONT V	ERT	TOTAL		

CONNECTION REQUIREMENTS

-3308

-3308

7-9-4

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

366

FRONT VERT

TOTAL

C1

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	43.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	= '	10.5	PSF
		DL	=	7.4	PSF
TOTA	L LO.	AD	=	67.3	PSF

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015

TOTAL WEIGHT = 3 X 77 = 232 lb

Scale = 1:54.2

THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018 , NBC-2019AE
- PART 4 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

DESIGN ASSUMPTIONS - SLOPE REDUCTION FACTOR NOT USED

(80 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F.

RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 43.5 P.S.F. SPECIFIED ROOF LIVE

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/180 (0.64")
CALCULATED VERT. DEFL.(TL)= L/999 (0.06")

CSI: TC=0.22/1.00 (A-B:2) , BC=0.29/1.00 (E-F:2) , WB=0.58/1.00 (C-F:2) , SSI=0.88/1.00 (F-G:2)

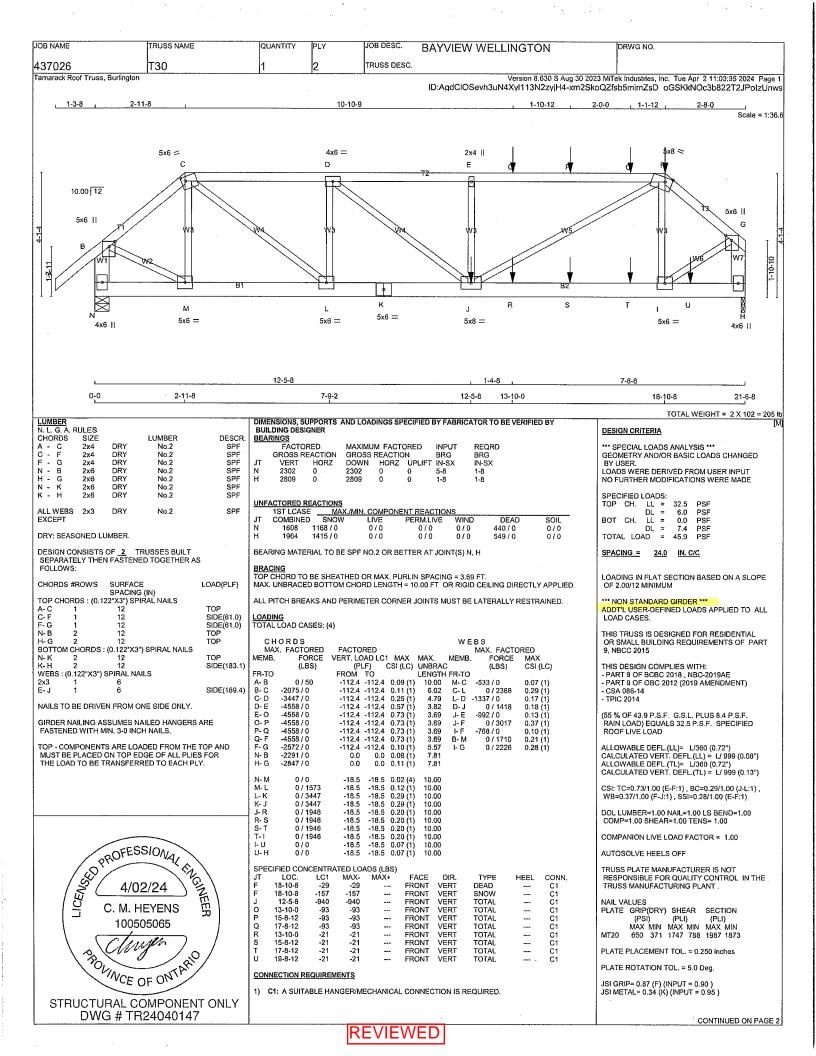
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

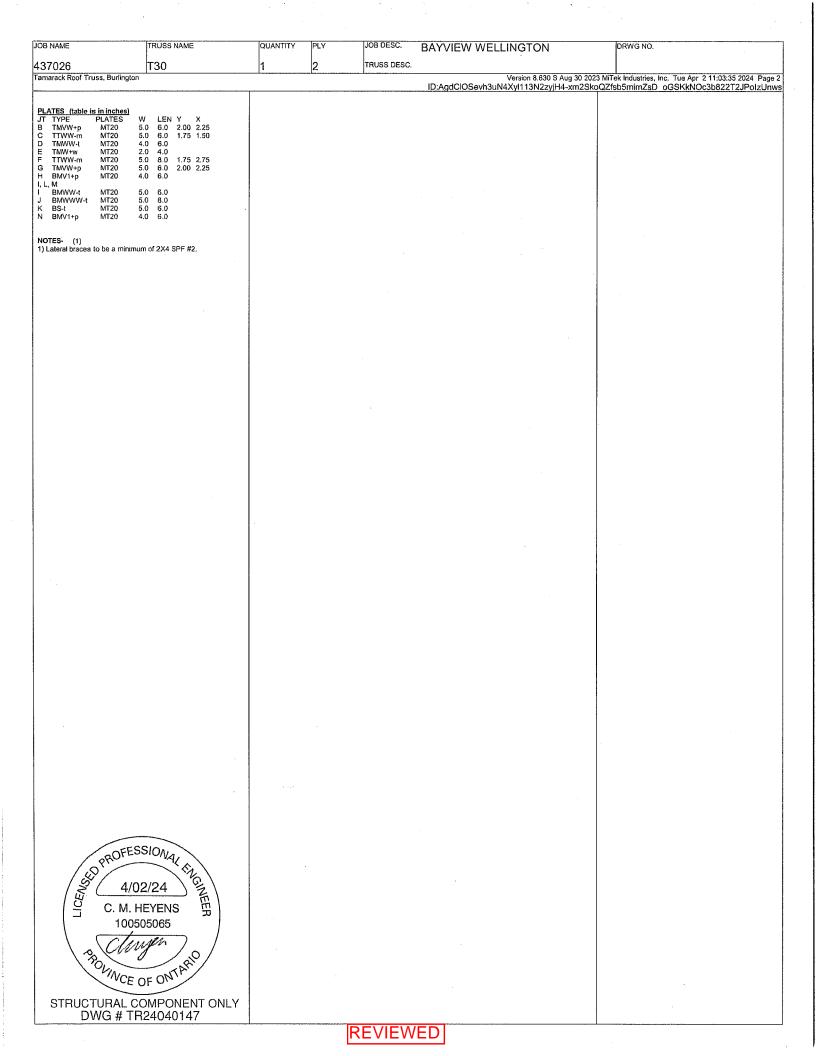
SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00

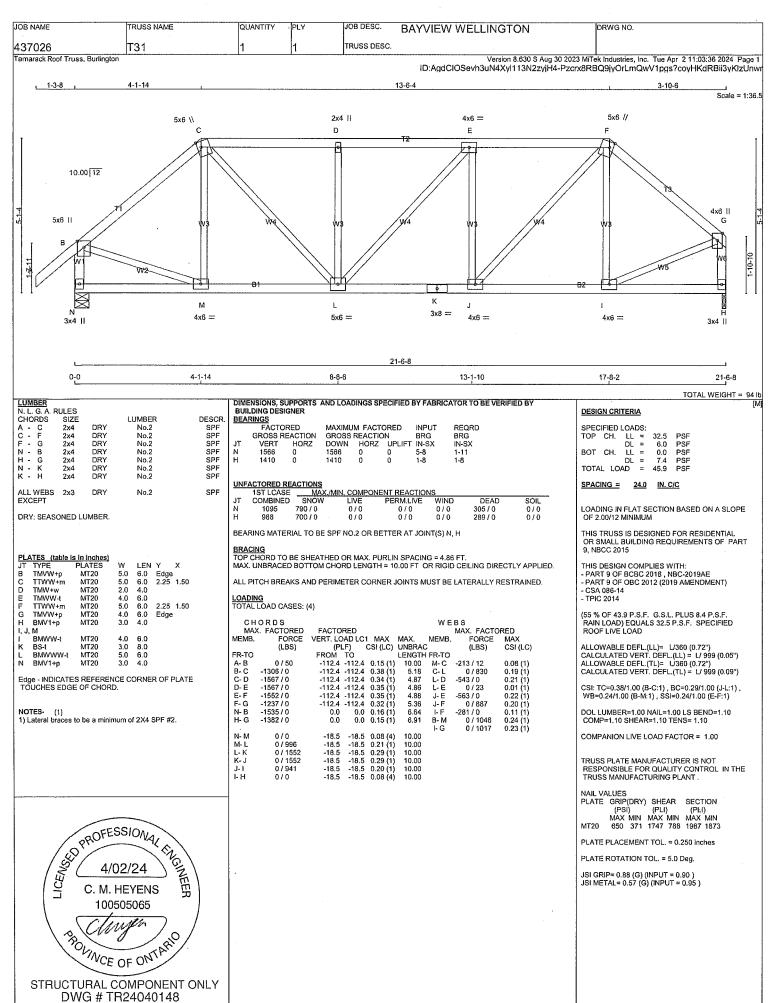
AUTOSOLVE RIGHT HEEL ONLY

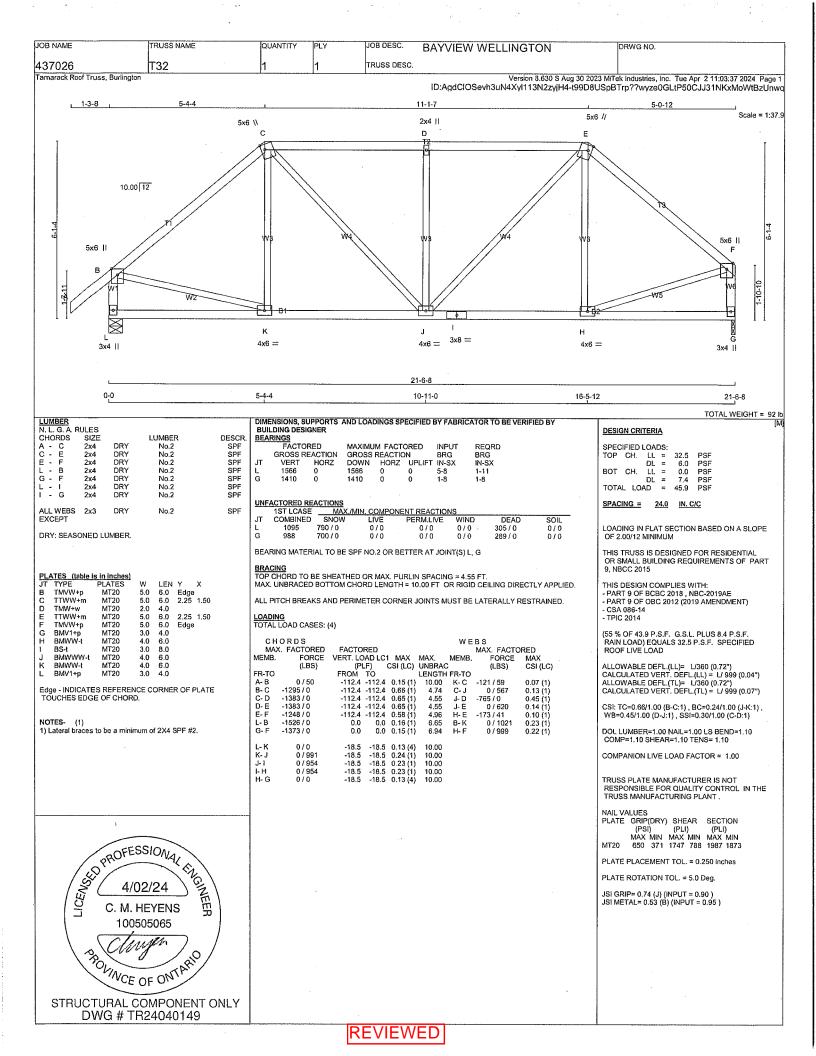
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

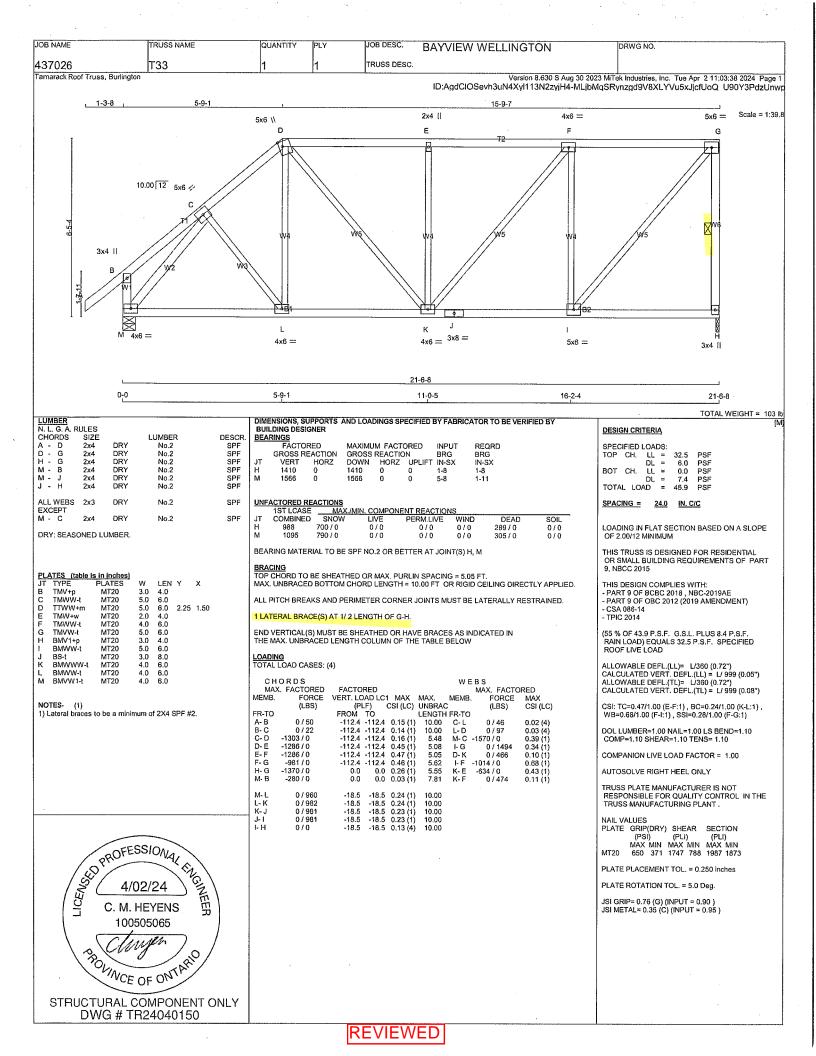
NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

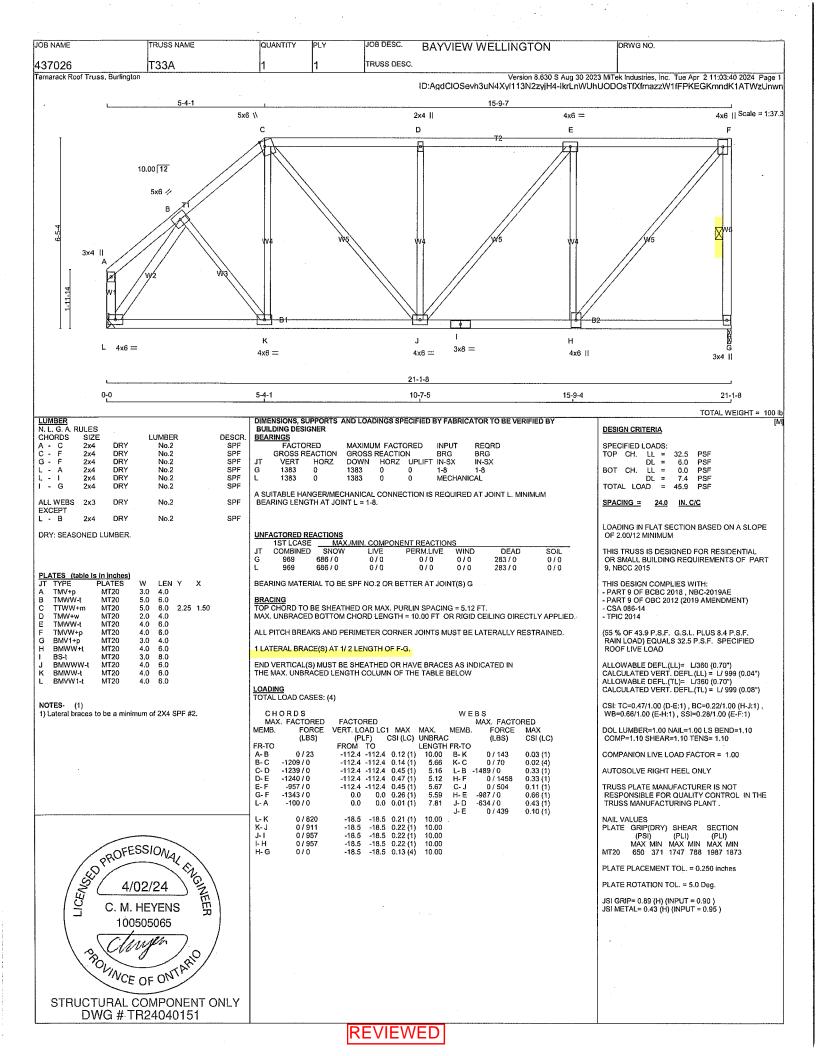

PLATE PLACEMENT TOL. = 0.250 inches

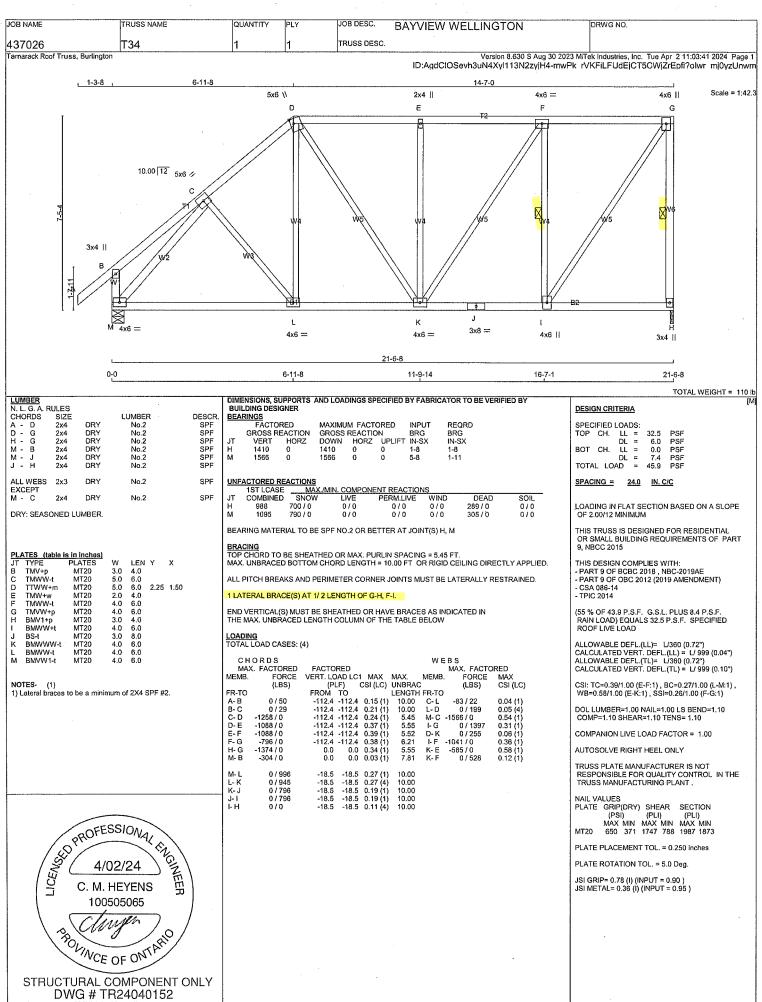

PLATE ROTATION TOL. = 5.0 Deg.

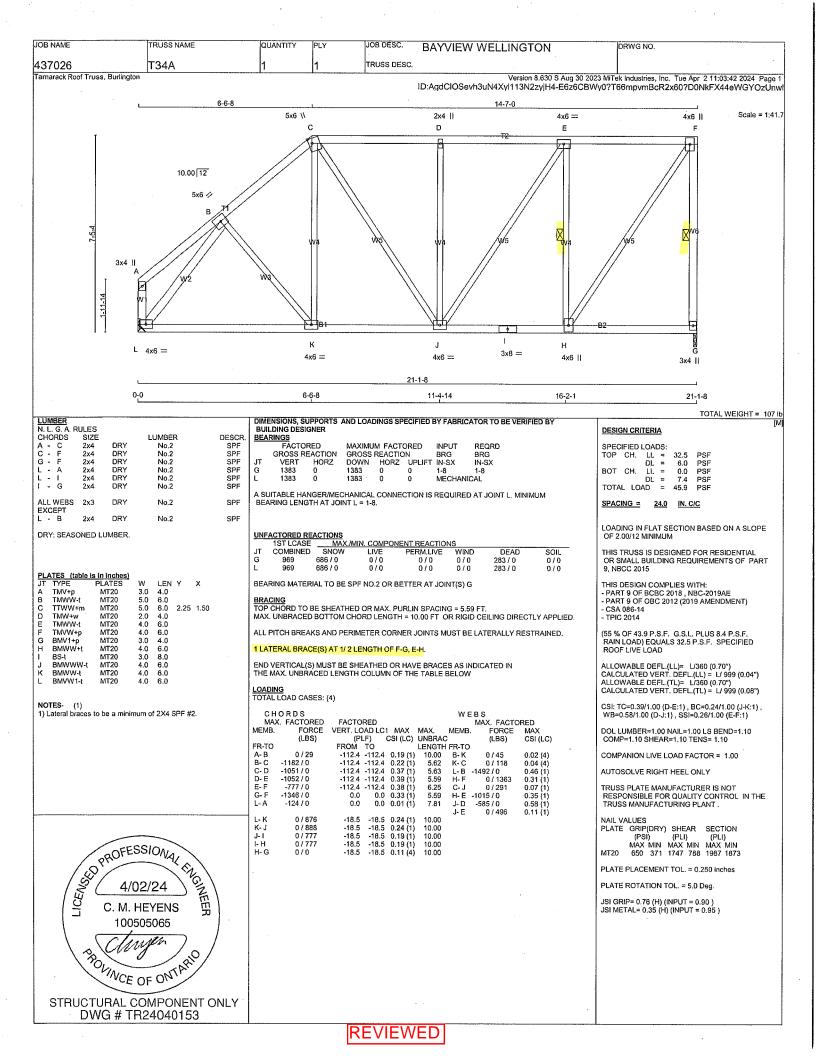

JSI GRIP= 0.88 (C) (INPUT = 0.90) JSI METAL= 0.68 (G) (INPUT = 0.95)


CONTINUED ON PAGE 2


JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WEI	LLINGTON	DRWG NO.	
437026	T26	1	3	TRUSS DESC.				
Famarack Roof Truss, Burlingt	on				ID:AgdCiOSevh3u	Version 8.630 S Aug 30 20 N4Xyl113N2zyjH4-?OwiJ	023 MiTek Industries, 6PI7ELOWOdBk	inc. Tue Apr 2 11:03:33 2024 Page 2 pyKB1EWqbxS7AKl0kqlkQzUnwt
PLATES (table is in inches) JT TYPE PLATES A TM/WH-p MT20 B TM/WH-1 MT20 C TM/WH-1 MT20 D TM/H-p MT20 E BM/WW+1 MT20 F BM/WW+1 MT20 G BM/WH+ MT20 H BM/1+p MT20 Edge INDICATES REFERENT TOUCHES EDGE OF CHOR	D.	TRUSS HAS BE AS PER NBCC 4 WIND LOAD AP {40-0-0} FT-IN-5 COEFFICIENTS WIND PRESSU {OPEN TERRAL	ABLE HANGER EEN CHECKED 4.1.6.2.(8) PLIED IS DERIN SX REFERENCE 6, CPCg, BASED IRE IS BASED C INI, AND TRUSS RUSS UPLIFT IS	WMECHANICAL CO FOR UNBALANCE WED FROM REFER E HEIGHT ABOVE D ON THE (MAIN W DN DESIGN (CATE OD DESIGNED TO S BASED ON TOP	DINNECTION IS REQUIRED LOADING RENCE VELOCITY PRESSENCE AND USING EXTIMP FORCE RESISTING GORY 2). BUILDING MAYOUS DELOCATED AT LEAST AND BOTTOM CHORD D	SURE OF { 7.5} PSF AT ERNAL PEAK SYSTEMJ, INTERNAL 1 ELOCATED ON T (0-0) FT-IN-SX AWAY		
								,
STRUCTURAL	SSIONAL ENCLUDED SOUTH OF ONT PRINCE COMPONENT ONLY R24040146							







JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 437026 TRUSS DESC T35 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:43 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-iJXUPXWanJbzjwO6Ku7gb8fArdMCTkFDJIFq4rzUnwk , 1-3-8 8-1-14 5x6 \\ Scale = 1:47.3 4x6 == 4x6 || D Е G 10.00 12 4x6 // 5x6 || W2 J М K 3x8 =3x4 [] 4x6 =4x6 = 4x6 = 4x6 || 3x4 II 21-6-8 0-0 4-2-3 8-1-14 12-7-8 16-11-14 21-6-8 TOTAL WEIGHT = 117 lb LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** LUMBER DESCR BEARINGS FACTORED A D H N N MAXIMUM FACTORED INPUT GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX D G DRY REQRD SPECIFIED LOADS: TOP CH. LL = DL = 2x4 No.2 SPE SPF SPF SPF 2x4 2x4 DRY DRY No.2 No.2 GROSS REACTION VERT HORZ BRG 32.5 PSF IN-SX 6.0 PSF В DRY 1-8 5-8 2x4 No.2 1410 0 1410 0 вот сн. SPF DRY Nn 2 PSF TOTAL LOAD 45,9 UNFACTORED REACTIONS
1ST LCASE MA ALL WEBS 2x3 DRY No.2 SPF SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE \ EXCEPT SOIL 0/0 COMBINED WIND DEAD DRY: SEASONED LUMBER. 700 / 0 790 / 0 0/0 0/0 289 / 0 305 / 0 LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H, N THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.19 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 9, NBCC 2015 LEN Y TMVW+n MT20 6.0 Edge THIS DESIGN COMPLIES WITH: TMWW-t TTWW+m - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) 2.25 1.50 5.0 2.0 MT20 6.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE L'ATERALLY RESTRAINED TMW+w MT20 40 4.0 6.0 4.0 6.0 8.0 TMWW-t TMVW+p MT20 MT20 1 LATERAL BRACE(S) AT 1/2 LENGTH OF G-H, F-I, E-K. - TPIC 2014 3.0 4.0 3.0 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW BMV1+c MT20 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BMWW+t J K ROOF LIVE LOAD <u>LOADING</u> TOTAL LOAD CASES: (4) BMWWW-t MT20 4.0 6.0 BMWW-4.0 4.0 6.0 ALLOWABLE DEFL.(LL)= L/360 (0.72")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.72")
CALCULATED VERT. DEFL.(TL)= L/999 (0.08") MT20 Ν CHORDS W E B S MAX. FACTORED 4.0 FACTORED
VERT. LOAD LC1 MAX
(PLF) CSI (LC)
FROM TO
-112.4 -112.4 0.15 (1)
-112.4 -112.4 0.35 (1) MAX. FACTORED Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. MEMB. MAX MAX. FORCE мемв. FORCE MAX CSI: TC=0.45/1.00 (G-H:1), BC=0.20/1.00 (L-M:1), WB=0.49/1.00 (F-I:1), SSI=0.24/1.00 (F-G:1) (LBS) CSI (LC) UNBRAC CSI (LC) LENGTH FR-TO A-B B-C C-D D-E E-F 10.00 M-C -246/2 0.10(1) 5.19 5.43 5.99 5.96 0.18 (1) 0.06 (1) 0.25 (1) -1324 / 0 C-L -251 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 -112.4 -112.4 0.35 (1) -112.4 -112.4 0.34 (1) -112.4 -112.4 0.30 (1) -112.4 -112.4 0.32 (1) -112.4 -112.4 0.31 (1) 0.0 0.0 0.45 (1) 1) Lateral braces to be a minimum of 2X4 SPF #2 -1185 / 0 L-D B-M 0 / 274 0 / 1093 I- G D- K I- F K- E -932 / 0 0 / 1338 0.30 (1) COMPANION LIVE LOAD FACTOR = 1.00 0.30 (1) 0.02 (1) 0.49 (1) 0.24 (1) 6.25 5.54 F-G -653 / 0 0 / 100 H- G N- B -1073 / 0 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 6.65 -535 / 0 0.13 (1) 0/591 -18.5 0.07 (4) -18.5 0.20 (1) -18.5 0.18 (1) -18.5 0.15 (1) -18.5 0.15 (1) N- M M- L 0 / 0 0 / 1043 -18.5 10.00 -18.5 -18.5 10.00 NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION L- K 0 / 884 10.00 0 / 653 -18.5 -18.5 10.00 10.00 0 / 653 (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 -18.5 0.09 (4 0/0 PROFESSIONAL ENGINEERS C. M. HEYENS PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL, = 5.0 Deg JSI GRIP= 0.73 (I) (INPUT = 0.90) JSI METAL= 0.52 (B) (INPUT = 0.95) 100505065 POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040154

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 437026 T35A Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:45 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-eheEqDYqlwrhzEXURJA8gZkWUQ3vxeyWmbkx9jzUnwi Tamarack Roof Truss, Burlingtor 7-8-14 13-4-10 Scale = 1:47.1 5x6 \\ 2x4 II 4x6 = 4x6 II С D Ε 10.00 12 4x6 || K 3x8 == 3x4 | 4x6 = 4x6 = 4x6 =4x6 II 3x4 [] 21-1-8 21-1-8 0-0 3-9-3 7-8-14 12-2-8 16-6-14 TOTAL WEIGHT = 114 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER N. L. G. A BUILDING DESIGNER BEARINGS FACTORED N. L. G. A. RULES CHORDS SIZE **DESIGN CRITERIA** LUMBER DESCR SIZE ACGM. CFF MAXIMUM FACTORED INPUT SPECIFIED LOADS: 244 DRY Nn 2 SPF REORD SPF SPF SPF PSF PSF PSF 2x4 2x4 DRY No.2 No.2 GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX LL = DL = LL = CH. 32.5 0.0 7.4 DRY BOT CH. A 2x4 No.2 1383 0 1383 0 1383 1383 Ō 0 MECHANICAL No.2 G 2x4 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT M. MINIMUM ALL WEBS 2x3 DRY No.2 SPE BEARING LENGTH AT JOINT M = 1-8. SPACING = 24.0 IN. C/C EXCEPT DRY: SEASONED LUMBER. LOADING IN FLAT SECTION BASED ON A SLOPE UNFACTORED REACTIONS
1ST LCASE MA OF 2.00/12 MINIMUM MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE \ WIND COMBINED DEAD SOIL THIS TRUSS IS DESIGNED FOR RESIDENTIAL 686 / 0 686 / 0 0/0 OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 PLATES (table is in inches)
JT TYPE PLATES LEN Y 4.0 4.0 5.0 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) TMVW+p TMWW-t MT20 Edge BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G 2.25 1.50 TTWW+m MT20 6.0 MT20 MT20 TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 5.47 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. TMMAL CSA 086-14 4.0 TMVW+p MT20 6.0 G 3.0 4.0 RMV1+ MT20 4.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (55 % OF 43.9 P.S.F. G.S.L, PLUS 8.4 P.S.F RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD BMWW+t 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H, D-J. BS-t MT20 3.0 8.0 BMWWW-t MT20 4.0 4.0 6.0 J K L M ALLOWABLE DEFL.(LL)= L/360 (0.70") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.04") ALLOWABLE DEFL.(TL)= L/360 (0.70") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.07") END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW BMWW-t BMWW-t 6.0 BMV1+p MT20 3.0 4.0 LOADING TOTAL LOAD CASES: (4) Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. CSI: TC=0.44/1.00 (F-G:1) , BC=0.19/1.00 (K-L:1) , WB=0.47/1.00 (E-H:1) , SSI=0.24/1.00 (E-F:1) CHORDS WEBS FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED MAX. FACTORED NOTES- (1) MEMB. DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 MEMB. FORCE FORCE (PLF) C FROM TO -112.4 -112.4 -112.4 -112.4 1) Lateral braces to be a minimum of 2X4 SPF #2. (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) COMP=1.10 SHEAR=1.10 TENS= 1.10 LENGTH FR-TO FR-TO A- B B- C C- D D- E E- F -1188/0 0.31 (1) L-B B-K K-C A-L H-F -337 / 0 COMPANION LIVE LOAD FACTOR = 1.00 5.47 5.59 -1124 / 0 0.31(1) -159 / 0 0.11 (1) -902 / 0 -902 / 0 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.30 (1) 0.32 (1) 6.07 6.04 6.25 0 / 204 0 / 1025 0.05 (1) 0.23 (1) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE -638 / 00.31(1) 0 / 1307 0.29(1)G-F M-A 0.0 0.03 (1) 0.47 (1) 0.24 (1) 0.13 (1) -1349 / 0 0.0 0.44 (1) 5.58 0 / 131 TRUSS MANUFACTURING PLANT. 0.0 0.15 (1) 6.97 NAIL VALUES J-D -535 / 0 M- I 0/0 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 0.06 (4) 10.00 0 / 560 PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873 L- K K- J J- I I- H H- G 0/939 0.19 (1) 10.00 0 / 839 ROFESSIONAL CHARLES TO C. M. HEYENS 0 / 638 -18.5 -18.5 0.15 (1) 10.00 -18.5 -18.5 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.86 (A) (INPUT = 0.90) JSI METAL= 0.55 (A) (INPUT = 0.95) 100505065 Musen ROVINCE OF ONTARIO

STRUCTURAL COMPONENT ONLY DWG # TR24040155

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** PLY DRWG NO. TRUSS DESC 437026 T36 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:46 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-7uCd1ZZS3EzXaO6h?1hNDnHcLqNag4ef?FUUhAzUnwh 1-3-8 9-4-4 Scale = 1:52.4 4x6 == 4x6 == D 10.00 12 4x6 // 5x6 || W2 K J н 3x8 = 3x4 II 4x6 = 4x6 = 4x6 == 3x4 || 21-6-8 0-0 4-9-6 9-4-4 15-4-14 21-6-8 TOTAL WEIGHT = 4 X 118 = 471 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** BEARINGS MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLII FACTORED INPUT REQRD SPECIFIED LOADS: GROSS REACTION VERT HORZ REACTION BRG HORZ UPLIFT IN-SX TOP CH. LL =
DL =
BOT CH. LL =
DL = PSF BRG 32.5 IN-SX 6.0 PSF PSF 1-8 1-11 1410 PSF

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
G - F	2x4	DRY	No.2	SPF
L - B	2x4	DRY	No.2	SPF
L - I	2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
J - E	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х			
В	TMVW+p	MT20	5.0	6.0	Edge				
С	TMWW-t	MT20	4.0	6.0					
D	TTW÷h	MT20	3.0	4.0	2.00	1.00			
E	TMWW-t	MT20	4.0	6.0					
F	TMVW-t	MT20	4.0	6.0					
G	BMV1+p	MT20	3.0	4.0					
н	BMWW-t	MT20	4.0	6.0					
ı	BS-t	MT20	3.0	8.0					
J	BMWWW-t	MT20	4.0	6.0	2.00	1.50			
ĸ	BMWW-t	MT20	4.0	6.0					
L	BMV1+p	MT20	3.0	4.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

UNFACTORED REACTIONS

	1ST LCASE	MAX./	AIN. COMPO	NENT REACTION	4S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G	988	700 / 0	0/0	0/0	0/0	289 / 0	0/0
L	1095	790 / 0	0/0	0/0	0/0	305 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS		WEBS						
MAX	. FACTORED	FACTO	RED		MAX, FACTORED				
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
ĺ	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0/50	-112.4	-112.4	0.15 (1)	10.00	K-C	-194 / 26	0.09 (1)	
B-C	-1332 / 0	-112,4	-112.4	0.48 (1)	5.00	C-J	-356 / 0	0.34(1)	
C-D	-1109 / 0	-112,4	-112.4	0.46(1)	5.38	J- D	0 / 235	0.05(1)	
D-E	-821 / 0	-112.4	-112.4	0.75(1)	5.22	J-E	0 / 148	0.02(1)	
E-F	-740 / 0	-112.4	-112.4	0.74(1)	5.44	H-E	-974 / 0	0.57 (1)	
G-F	-1365 / 0	0.0	0.0	0.57(1)	5.56	H-F	0 / 1329	0.21 (1)	
L-B	-1528 / 0	0.0	0.0	0.16(1)	6.65	B-K	0 / 1093	0.25(1)	
L-K	0/0	-18.5	-18.5	0.09(4)	10.00				
K-J	0 / 1054	-18.5	-18.5	0.22(1)	10.00				
J-1	0 / 740	-18.5	-18.5	0.22(4)	10.00				
I-H	0/740	-18.5	-18.5	0.22(4)	10.00				
H- G	0/0	-18.5	-18.5	0.17 (4)	10.00				

TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.72")
CALCULATED VERT. DEFL.(LL) = L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.72")
CALCULATED VERT. DEFL.(TL) = L/999 (0.07")

CSI: TC=0.75/1.00 (D-E:1) , BC=0.22/1.00 (H-J:4) , WB=0.57/1.00 (E-H:1) , SSI=0.33/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (F) (INPUT = 0.90) JSI METAL= 0.53 (B) (INPUT = 0.95)

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC 437026 T36A Version 8.630 S Aug 30 2023 MITEk Industries, Inc. Tue Apr 2 11:03:47 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-b4m?FvZ4qY6OCYhtZkCcl pn8EirPX8pEvD1DczUnwg Tamarack Roof Truss, Burlington 8-11-4 3x4 📏 Scale = 1:52.4 4x6 == 4x6 = Ε 10.00 12 4x6 / В 5x6 H W Н G 3x8 = 3x4 1 4x6 = 4x6 = 4x6 = 3x4 II 21-1-8 4-4-6 0-0 8-11-4 14-11-14 21-1-8 TOTAL WEIGHT = 115 ib LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS
FACTORED DESIGN CRITERIA LUMBER DESCR A -C -K -K -SPF SPF SPF SPF SPECIFIED LOADS: CEE 2x4 DRY No.2 MAXIMUM FACTORED INDIT REORD 2x4 2x4 DRY DRY No.2 No.2 GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX PSF PSF LL = DL = LL = DL = 32.5 IN-SX 6.0 2x4 DRY No.2 1383 1383 BOT CH. PSF MECHANICAL No.2 TOTAL LOAD = 45.9 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K. MINIMUM ALL WEBS 2x3 DRY No.2 SPF BEARING LENGTH AT JOINT K = 1-8. SPACING = 24.0 IN. C/C EXCEPT No.2 SPF D . G - E LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM DRY No.2 SPE UNFACTORED REACTIONS DRY: SEASONED LUMBER. MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE V WIND SOIL 0/0 THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART COMBINED DEAD 283/0 686 / 0 0/0 283 / 0 0/0 9, NBCC 2015 PLATES (table is in inches)
JT TYPE PLATES
A TMVW+p MT20 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) 6.0 6.0 4.0 6.0 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.26 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 5.0 Edge 4.0 3.0 4.0 4.0 TMMM/M-t MT20 TTW+h TMWW-t 2.00 1.00 - TPIC 2014 MT20 6.0 TMVW-t MT20 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BMV1+p BMWW-t MT20 MT20 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-F, D-G. 6.0 ROOF LIVE LOAD MT20 2.00 1.50 BMWWW-t

3.0 4.0 3.0 4.0 4.0 3.0 8.0 6.0 6.0 MT20 MT20 BMV1+p 4.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

Сн	ORDS					WE	BS	
MAX	K. FACTORED	FACTOR	ED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOA	D LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF	• (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM T	·o	• •	LENGTH	FR-TO		` .
A-B	-1212 / 0	-112.4 -	112.4	0.42 (1)	5.26	J-B	-275 / 0	0.13(1)
B-C	-1059 / 0	-112.4 -	112.4	0.42(1)	5.55	B-I	-271 / 0	0.26 (1)
C-D	-785 / 0	-112.4 -	112.4	0.75 (1)	5.31	I- C	0 / 200	0.04 (1)
D-E	-722 / 0	-112.4 -	112.4	0.74(1)	5.49	I- D	0 / 116	0.02 (1)
F-E	-1338 / 0	0.0	0.0	0.56 (1)	5.60	G-D	-947 / 0	0.56 (1)
K-A	-1349 / 0	0.0	0.0	0.15(1)	6.98	G-E	0 / 1296	0.21 (1)
						A- J	0 / 1029	0.23 (1)
K-J	0/0	-18.5	-18.5	0.08 (4)	10.00			
J-I	0 / 962			0.20 (1)				
I- H	0/722	-18.5	-18.5	0.22 (4)	10.00			
H-G	0/722	-18.5	-18.5	0.22(4)	10.00			
G-F	0/0	-18.5	-18.5	0.17 (4)	10.00			
I								

ALLOWABLE DEFL.(LL)= L/360 (0.70")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.70")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.07")

CSI: TC=0.75/1.00 (C-D:1) , BC=0.22/1.00 (G-I:4) , WB=0.56/1.00 (D-G:1) , SSI=0.33/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

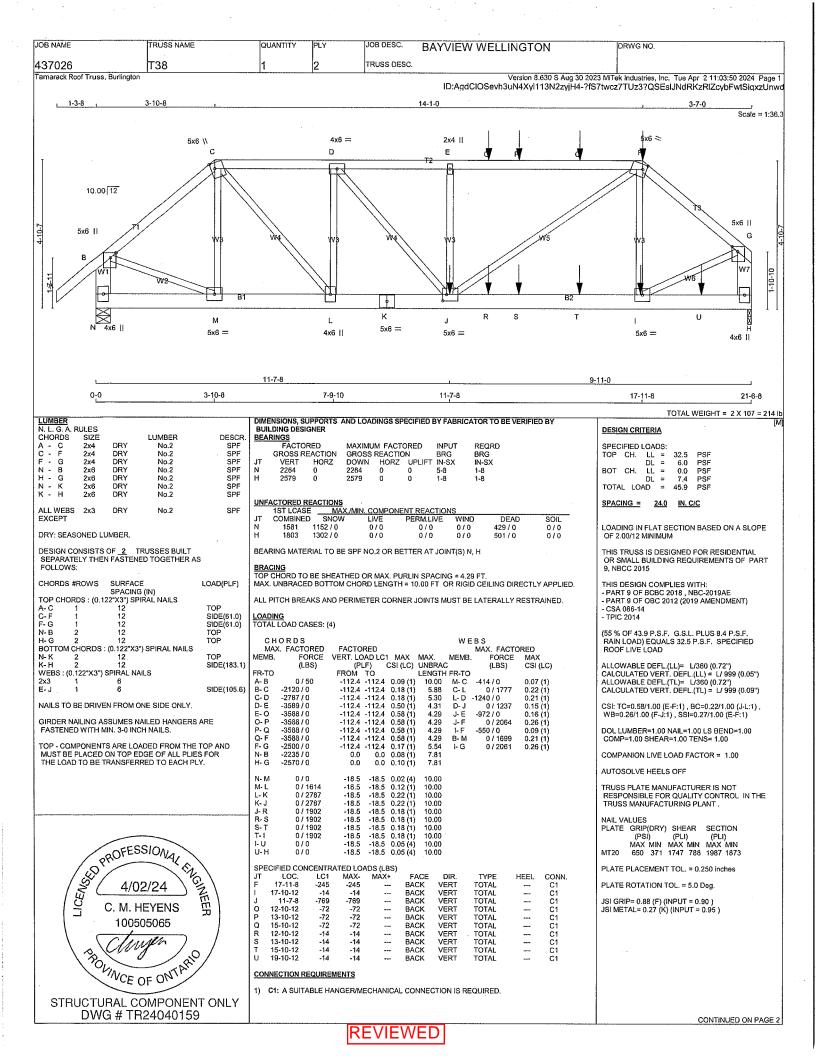
NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

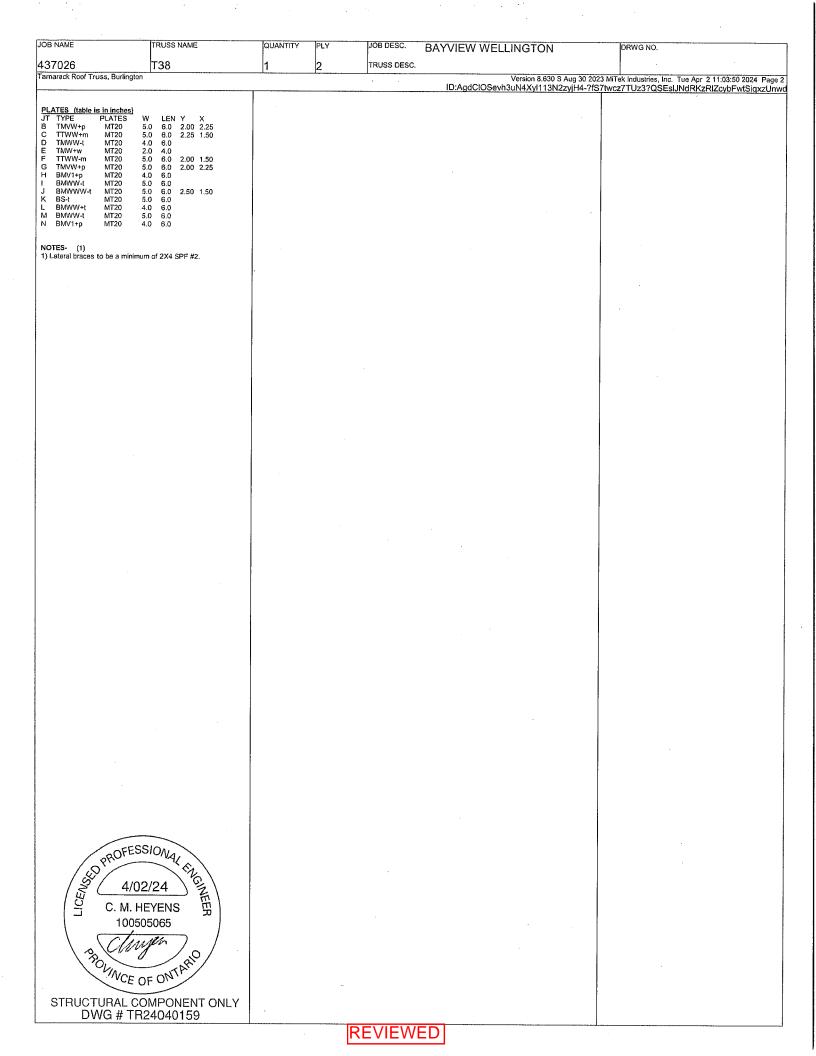
PLATE PLACEMENT TOL. = 0.250 inches

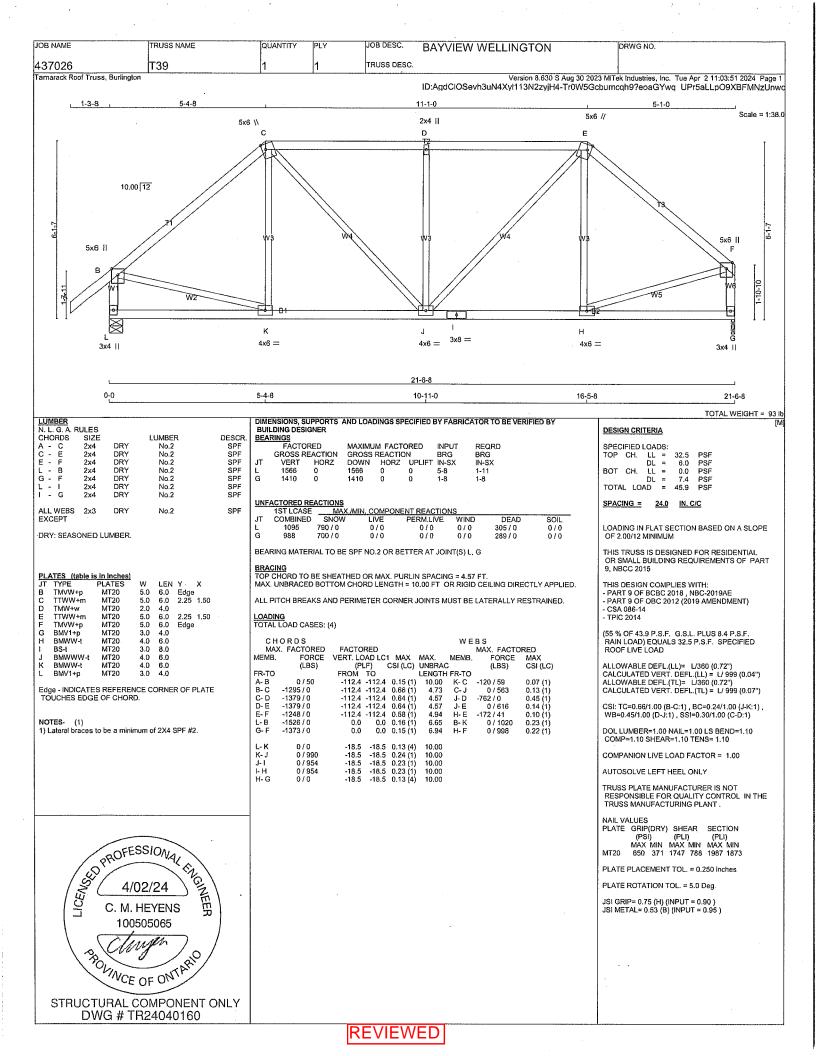
PLATE ROTATION TOL. = 5.0 Dea

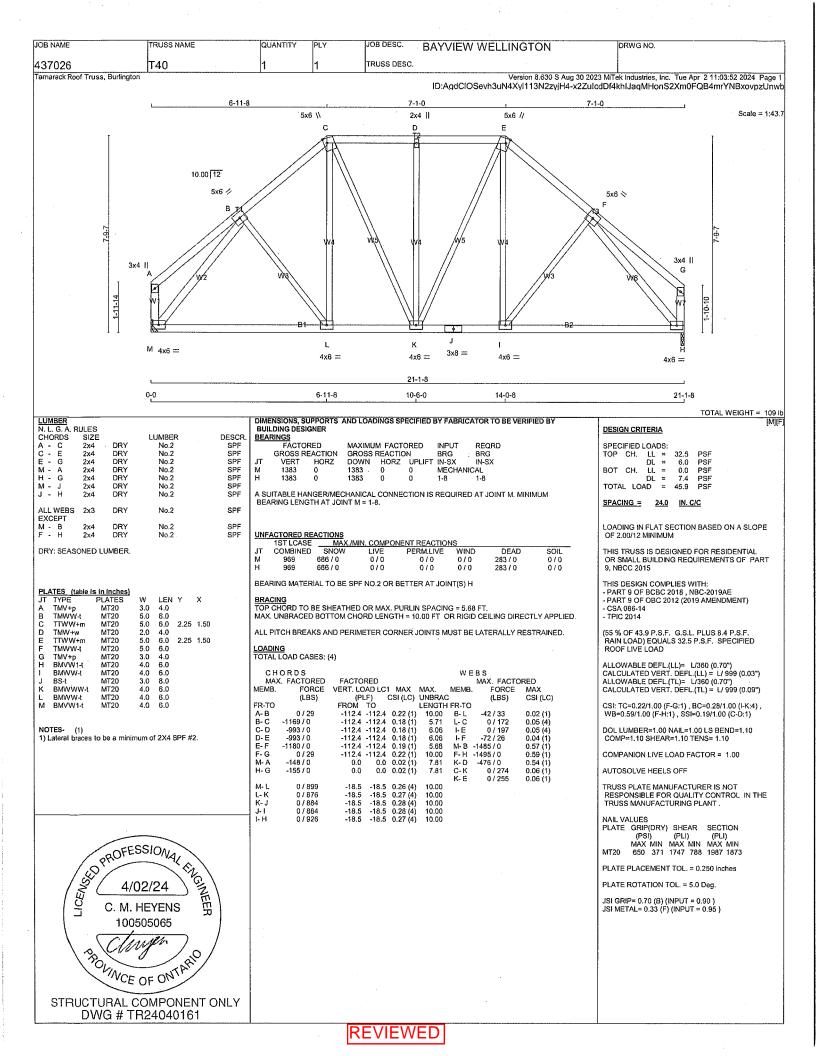
JSI GRIP= 0.86 (E) (INPUT = 0.90) JSI METAL= 0.46 (A) (INPUT = 0.95)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC 437026 T37 Version 8.630 S Aug 30 2023 MTek Industries, Inc. Tue Apr 2 11:03:49 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-XTulgabLM9M6RrrFg9E4qPv7i1P9tNE5hDi8IUzUnwe Tamarack Roof Truss, Burlington _1-3-8 10-6-11 3x4 📏 4x6 II Scale = 1:61.2 D 10.00 12 4x6 / 5x6 || W2 K 4x6 = 3x8 = 3x4 || 4x6 = 4x6 || 3x4 || 0-0 5-4-9 10-6-11 16-0-9 21-6-8 TOTAL WEIGHT = 2 X 124 = 248 lb LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** CHOI A -D - F G - F L - B SIZE LUMBER DESCR BEARINGS SPF SPF SPF 2x4 2x4 No.2 No.2 DRY FACTORED MAXIMUM FACTORED INPLIT REORD SPECIFIED LOADS: DRY GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX GROSS REACTION VERT HORZ BRG IN-SX TOP CH. PSF PSF LL = DL = 2x4 No.2 6.0 LL. DL 2×4 DRY Nn 2 SPE 1410 0 1410 1-8 BOT CH. = 0.0 PSF DRY 1-11 No.2 SPF TOTAL LOAD 45.9 ALL WEBS 2x3 DRY No.2 SPF UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMANATE SPACING = 24.0 IN. C/C EXCEPT J - E H - F DRY DEAD 2x4 No.2 SPF COMBINED WIND SOIL 0/0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM DRY SPF 700 / 0 0/0 790 / 0 DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L <u>BRACING</u> TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.75 FT. 9, NBCC 2015 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) PLATES (table is in inches)
JT TYPE PLATES MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. LEN Y 6.0 6.0 4.0 TMVW+n MT20 5.0 Edge ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED TMWW-t 2.00 1.00 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H. TTW+h **TPIC 2014** TMWW-t MT20 4.0 6.0 TMVW+p END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED MT20 MT20 BMWW+t MT20 4.0 6.0 ROOF LIVE LOAD MT20 MT20 MT20 3.0 4.0 4.0 8.0 6.0 <u>LOADING</u> TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (0.72") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.04") ALLOWABLE DEFL.(TL)= L/360 (0.72") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.07") BMWWW-t 2.00 1.50 KL BMWW-t 6.0 BMV1+p MT20 3.0 CHORDS WEBS FACTORED


VERT. LOAD LC1 MAX


(PLF) CSI (LC)


FROM TO
-112.4 -112.4 0.15 (1) MAX. FACTORED MB. FORCE MAX. FACTORED Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. MEMB. MEMB. FORCE MAX CSI (LC) CSI: TC=0.74/1.00 (F-G:1), BC=0.23/1.00 (J-K:1), WB=0.77/1.00 (E-H:1), SSI=0.30/1.00 (E-F:1) (LBS) CSI (LC) UNBRAC (LBS) LENGTH FR-TO -146 / 52 A-B B-C 10.00 K-C 0.09 (1) NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. -1331 / 0 -112.4 -112.4 0.63 (1) 4.75 C-J -458/0 0.58 (1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 -112.4 -112.4 0.59 (1) -112.4 -112.4 0.59 (1) -112.4 -112.4 0.59 (1) J-D J-E H-E 0 / 174 0 / 290 -1021 / 0 0.04 (4) 0.05 (1) 0.77 (1) C-D D-E -1025 / 0 -751 / 0 5.29 5.86 COMP=1.10 SHEAR=1.10 TENS= 1.10 E-F COMPANION LIVE LOAD FACTOR = 1.00 -615/0 6.25 0 / 1291 -1369 / 0 0.74 (1) 5 55 L- B TRUSS PLATE MANUFACTURER IS NOT L- K K- J J- I -18.5 0.13 (4) -18.5 0.23 (1) -18.5 0.18 (4) -18.5 0.18 (4) 0/0 -18.5 10.00 RESPONSIBLE FOR QUALITY CONTROL IN THE 10.00 10.00 0 / 1057 TRUSS MANUFACTURING PLANT . 0 / 615 -18.5 I- H 0 / 615 NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)


MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 H- G PROFESSIONAL ENGINEERS C. M. HEYENS PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg JSI GRIP= 0.75 (K) (INPUT = 0.90) JSI METAL= 0.54 (B) (INPUT = 0.95) 100505065 POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY

DWG # TR24040158

JOB NAME TRUSS NAME QUANTITY JOB DESC. DRWG NO. PLY **BAYVIEW WELLINGTON** TRUSS DESC 437026 T41 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:54 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-uQhejlfUBh PYcjDTiqFXTc4z26oYlvrrVQvzizUnwZ 8-11-8 5x6 \\ Scale = 1:55.6 3x4 // C D 10.00 12 4x6 4 4x6 ◇ E 5x6 [] 5x6 || J 3x4 || 3x8 3x4 || 4x6 == 4x6 == 4x6 = 4x6 = 0-0 4-7-0 8-11-8 12-0-8 16-5-0 21-1-8 TOTAL WEIGHT = 107 Ib LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BUILDINGS BEARINGS FACTORED DESIGN CRITERIA LUMBER SIZE DESCR A - - MG - M 2x4 2x4 2x4 SPF SPF SPF MAXIMUM FACTORED INPUT GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX No.2 No.2 SPECIFIED LOADS: DRY INPUT REORD CDF DRY DRY DRY TOP CH. LL =

DL =

BOT CH. LL = GROSS REACTION VERT HORZ No.2 IN-SX 6.0 PSF SPF A F 2×4 No 2 1383 0 1383 MECHANICAL 0.0 PSF DRY 2x4 DRY TOTAL LOAD 45.9 PSF G DRY No.2 SPF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT M. MINIMUM BEARING LENGTH AT JOINT M = 1-8. SPACING = 24.0 IN. C/C ALL WEBS EXCEPT 2x3 No.2 LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM DRY: SEASONED LUMBER. UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND SOIL 0/0 THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART COMBINED DEAD 686 / 0 0/0 0/0 0/0 283 / 0 0/0 9. NBCC 2015 PLATES (table is in inches)
JT TYPE PLATES
A TMVW+p MT20 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) LEN Y 6.0 E 6.0 W BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G 5.0 Edge ABCDEF BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.40 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. TMWW-i MT20 4.0 MT20 MT20 MT20 MT20 5.0 3.0 4.0 TTWW+m TTW+h 6.0 2.25 1.50 2.00 1.00 TPIC 2014 6.0 TMWW-t 5.0 3.0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED TMV/W 6.0 Edge ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 4.0 GH, BMV1+p MT20 LOADING TOTAL LOAD CASES: (4) ROOF LIVE LOAD 4.0 4.0 3.0 BMWW-MT20 6.0 6.0 ALLOWABLE DEFL.(LL)= 1/360 (0.70")
CALCULATED VERT. DEFL.(LL)= 1/ 999 (0.03")
ALLOWABLE DEFL.(TL)= 1/360 (0.70")
CALCULATED VERT. DEFL.(TL)= 1/ 999 (0.05") BMWWW-t CHORDS J M MT20 WEBS BMV1+p MT20 3.0 4.0 MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX.

(PLF) CSI (LC) UNBRAC
FROM TO LENGTH MEMB. мемв. FORCE Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. (LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO CSI: TC=0.32/1.00 (E-F:1) , BC=0.20/1.00 (H-I:1) , WB=0.30/1.00 (E-I:1) , SSI=0.19/1.00 (E-F:1) A-B C-D E-F M-A -112.4 -112.4 0.31 (1) -112.4 -112.4 0.30 (1) -112.4 -112.4 0.14 (1) L- B B- K C- I -1216 / 0 -1057 / 0 5.45 5.76 0.13 (1) -290 / 0 0.28 (1) NOTES-(1) -786 / 0 6.25 0 / 285 0.06 (1 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 -112.4 -112.4 0.31 (1) -112.4 -112.4 0.32 (1) 0.0 0.0 0.15 (1) 0 / 12 0 / 301 -315 / 0 1) Lateral braces to be a minimum of 2X4 SPF #2. -1063 / 0 -1240 / 0 5.73 5.40 0.00 (1) 0.07 (1) I-E H-E A-L H-F -1348 / 0 0.30 (1) COMPANION LIVE LOAD FACTOR = 1.00 6.99 0.12 (1) 0.23 (1) 0.23 (1) -229 / 18 0 / 1024 -1346 / 0 0.0 0.0 0.15 (1) 6.99 M- I -18.5 0.09 (4) -18.5 0.20 (1) -18.5 0.16 (1) -18.5 0.16 (1) 10.00 0/0 -18.5 TRUSS PLATE MANUFACTURER IS NOT 0 / 1034 L- K K- J J-1 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0 / 963 -18.5 10.00 0 / 782 0 / 782 -18.5 10.00 1- H 0 / 982 -18.5 -18.5 0.20 (1) 10.00 NAIL VALUES H G PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PROFESSIONAL CLASSION C. M. HEYENS PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.74 (D) (INPUT = 0.90) JSI METAL= 0.47 (F) (INPUT = 0.95) 100505065 mier BOUNCE OF ONTARIO STRUCTURAL COMPONENT ONLY

DWG # TR24040162

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 437026 T42 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:55 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-McF0weg6y?6G9mlP1QLU4g9DjSSjH7k 499TV8zUnwY 10-6-0 Scale = 1:65.3 C 10.00 12 4x6 // 4x6 ❖ 5x6 II 5x6 || 1-10-10 WA G 4x10 = 3x8 =3x4 11 4x6 = 4x6 = 3x4 [] 21-1-8 0-0 5-4-4 10-6-0 15-7-12 21-1-8 TOTAL WEIGHT = 101 Ib LUMBER N. L. G. A. CHORDS DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS
FACTORED MAXIMUM FACTORED INPUT REQRD DESIGN CRITERIA SIZE LUMBER DESCR DRY DRY DRY SPF SPF SPF MAXIMUM FACTORED INPUT GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX 2x4 2x4 REQRD SPECIFIED LOADS: GROSS REACTION VERT HORZ TOP CH. PSF PSF LL = DL = LL = DL = 6.0 2x4 No.2 IN-SX 2×4 DRY No 2 SPE 1383 1383 MECHANICAL. BOT CH. 2x4 DRY No.2 SPF TOTAL LOAD = 45.9 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K. MINIMUM ALL WEBS DRY No.2 SPF BEARING LENGTH AT JOINT K = 1-8. SPACING = 24.0 IN. C/C EXCEPT DRY SPF THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART - C 2x4 No.2 DRY: SEASONED LUMBER. UNFACTORED REACTIONS
1ST LCASE MA MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) SOIL 0/0 COMBINED DEAD 283 / 0 686 / 0 0/0 0/0 283 / 0 0/0 PLATES (table is in inches)
JT TYPE PLATES
A TMVW+p MT20 LEN Y BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F 5.0 6.0 6.0 Edge (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED TMWW-t MT20 4.0 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.20 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED 6.0 6.0 6.0 TTW+p TMWW-t CDEFGH MT20 Edge MT20 ROOF LIVE LOAD TMVW+p 5.0 MT20 Edge 3.0 4.0 3.0 ALLOWABLE DEFL.(LL)= L/360 (0.70") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03") ALLOWABLE DEFL.(TL)= L/360 (0.70") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.06") MT20 MT20 4.0 6.0 BMV1+ ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. BMWW-t BS-t MT20 8.0 LOADING TOTAL LOAD CASES: (4) BMWWW-t MT20 MT20 4.0 4.0 10.0 6.0 3.0 CHORDS WEBS CSI: TC=0.45/1.00 (D-E:1) , BC=0.22/1.00 (G-I:1) , WB=0.58/1.00 (D-I:1) , SSI=0.23/1.00 (D-E:1) BMV1+p MT20 4.0 MAX. FACTORED MB. FORCE (LBS) FACTORED

VERT. LOAD LC1 MAX MAX.

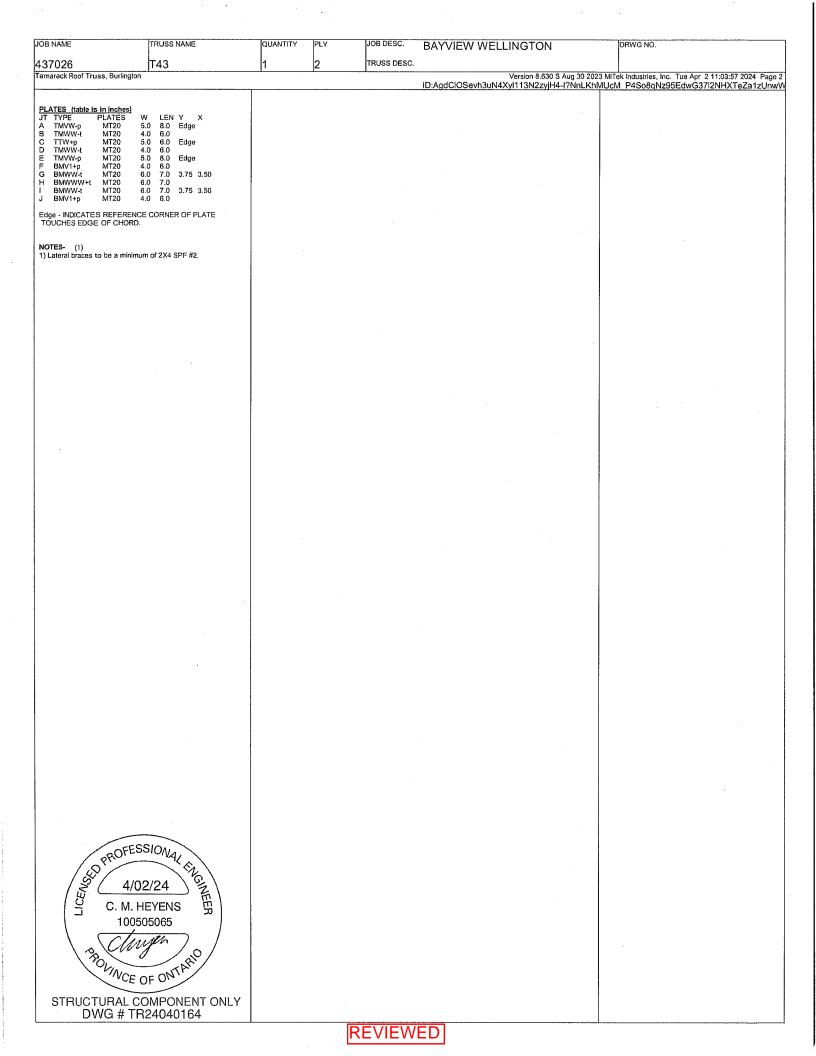
(PLF) CSI (LC) UNBRAC

FROM TO LENGTH MAX. FACTORED Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. MEMB. FORCE MAX CSI (LC) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 (LBS) LENGTH FR-TO FR-TO FROM TO
-112.4 -112.4 0.43 (1)
-112.4 -112.4 0.41 (1)
-112.4 -112.4 0.43 (1)
-112.4 -112.4 0.45 (1)
0.0 0.0 0.15 (1)
0.0 0.0 0.15 (1) A-B B-C C-D -1222/0 5.26 5.77 J- B B- I 0.55 (1) 0.12 (1) 0.58 (1) 0.11 (1) -965 / 0 -966 / 0 -416/0 COMPANION LIVE LOAD FACTOR = 1.00 5.75 5.20 7.00 7.00 I- C I- D G- D 1) Lateral braces to be a minimum of 2X4 SPF #2. 0 / 746 D-E K-A F-E -1242 / 0 -1342 / 0 -1341 / 0 -440 / 0 -170 / 46 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0 / 1019 K- J J- I H- G -18.5 0.12 (4) -18.5 0.22 (1) -18.5 0.22 (1) -18.5 0.22 (1) 10.00 10.00 0/973 -18.5 NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 10.00 10.00 0 / 989 -18.5 0/0 -18.5 0.13 (4) PLATE PLACEMENT TOL. = 0.250 inches PROFESSIONAL CINCING A/02/24

C. M. HEYENS PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.75 (G) (INPUT = 0.90) JSI METAL= 0.48 (E) (INPUT = 0.95) 100505065 POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040163

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 437026 TRUSS DESC T43 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:03:56 2024 Page 1 ID:AqdClOSevh3uN4Xyl113N2zyjH4-qppO8 gkjJE7nwtcb7sjcuhSAsju0b77lpv02azUnwX 7-1-0 Scale = 1:44.5 5x6 || 10.00 12 4x6 4 4x6 ❖ D В 5x8 5x8 = Е \boxtimes М Н G 6x7 == 6x7 = 4x6 || 4x6 || 1-6-4 0-0 7-12 3-7-12 7-1-0 10-6-4 12-7-12 14-2-0 TOTAL WEIGHT = 2 X 77 = 153 lb LUMBER N. L. G. A. CHORDS DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY RULES **DESIGN CRITERIA** LUMBER DESCR BEARINGS A - C C - E J - A F - E SPF SPF SPF DRY REQRD 2x4 No 2 FACTORED MAXIMUM FACTORED INPUT SPECIFIED LOADS: 2x4 2x6 DRY DRY No.2 No.2 GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ L TOP CH. LL =
DL =
BOT CH. LL =
DL = PSF HORZ UPLIFT IN-SX IN-SX 6.0 PSF 2x6 DRY No.2 SPF 6013 0 6013 DRY PSF TOTAL LOAD 45.9 DRY ALL WEBS 2x3 No.2 SPF EXCEPT UNFACTORED REACTIONS
1ST LCASE _____MA SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE \ DRY: SEASONED LUMBER. WIND THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART COMBINED DEAD SOIL 3016 / 0 2707 / 0 0/0 1192 / 0 1069 / 0 DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS 0/0 9. NBCC 2015 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) FOLLOWS: BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J, F SURFACE SPACING (IN) CHORDS #ROWS <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 4.16 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. LOAD(PLF) - CSA 086-14 - TPIC 2014 TOP CHORDS : (0.122"X3") SPIRAL NAILS A- C 1 12 A-C C-E J-A TOP TOP ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED 12 SIDE(173.7) TOP F-E 2 2 BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS LOADING TOTAL LOAD CASES: (4) ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.47") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.05") ALLOWABLE DEFL.(TL)= L/360 (0.47") CALCULATED VERT. DEFL.(TL)= L/999 (0.09") SIDE(183.1) WEBS: (0.122"X3") SPIRAL NAILS D- G 1 6 CHORDS WEBS SIDE(172.9 MAX. FACTORED **FACTORED** MAX. FACTORED FORCE VERT LOAD LC1 MAX MAX.
(LBS) (PLF) CSI (LC) UNBF
FROM TO LENG 2x3 MEMB. MEMB FORCE MAX CSI (LC) CSI (LC) UNBRAC (LBS) NAILS TO BE DRIVEN FROM ONE SIDE ONLY. FR-TO LENGTH FR-TO CSI: TC=0.21/1.00 (A-B:1) , BC=0.55/1.00 (H-I:1) , WB=0.57/1.00 (C-H:1) , SSI=0.52/1.00 (H-I:1) 0.21 (1) 0.15 (1) 0.15 (1) 0.21 (1) 0.17 (1) A- B B- C C- D D- E 0.57 (1) 0.36 (1) 0.17 (1) 4.16 4.69 -5021 / 0 -1124 -1124 0 / 4625 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS. -3885 / 0 -3886 / 0 0 / 1395 4.69 G-D DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 0.36 (1) -5011/0 4.16 B- H -1436 / 0 COMP=1.00 SHEAR=1.00 TENS= 1.00 TOP - COMPONENTS ARE LOADED FROM THE TOP AND J- A F- E 4699 / 0 0 / 1411 MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY. 6.68 A- I 0.51 (1) COMPANION LIVE LOAD FACTOR = 1.00 0 / 4075 0.50 (1) -18.5 0.31 (1) -18.5 0.31 (1) -18.5 0.31 (1) J-K K-L 0/0 -18.5 10.00 AUTOSOLVE HEELS OFF SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE L-I I-M 0/0 -18.50 / 3872 -18.5 -18.5 REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP. 0/3872 0.55 (1) 0.55 (1) -18.5 -18.5 TRUSS MANUFACTURING PLANT. N- H H- O 10.00 -18.50 / 3864 -18.5 -18.5 0.49 (1 10.00 0- G G- P P- F 0/3864 PLATE GRIP(DRY) SHEAR SECTION -18.5-18.50.39 (1) 0/0

PROFESSIONAL THE ALL THE PROFESSIONAL TH Σ̈́ 100505065 POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040164


SPECIFIED CONCENTRATED LOADS (LBS)										
JΤ	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.	
G	10-7-12	-954	-954		FRONT	VERT	TOTAL		C1	
K	7-12	-957	-957		FRONT	VERT	TOTAL		C1	
L	2-7-12	-954	-954		FRONT	VERT	TOTAL		C1	
M	4-7-12	-954	-954	_	FRONT	VERT	TOTAL		C1	
N	6-7-12	-954	-954		FRONT	VERT	TOTAL.		C1	
0	8-7-12	-954	-954		FRONT	VERT	TOTAL		C1	
Ρ	12-7-12	-954	-954		FRONT	VERT	TOTAL		C1	

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg JSI GRIP= 0.88 (G) (INPUT = 0.90) JSI METAL= 0.44 (C) (INPUT = 0.95)

CONTINUED ON PAGE 2

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 437026 T43G TRUSS DESC Version 8.630 S Aug 30 2023 MITek Industries, Inc. Tue Apr 2 11:03:58 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-mBx9Zfi FwUq0E1 iYvCiJmpcgXnUblQm7O76TzUnwV Tamarack Roof Truss, Burlington 1-3-8 7-1-0 1-3-8 Scale = 1:47.2 4x6 II 2x4 [] 2x4 || 10.00 12 2x4 || 2x4 |1 2x4 || 2v4 II c 5x6 II s R O Р 0 N М 4x6 | 1 3x4 | 1 2x4 || 2x4 || 2x4 11 2x4 II 2x4 II 3x4 II 4x6 || 14-2-0 0-0 14-2-0 TOTAL WEIGHT = 80 lb N. L. G. A. CHORDS DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY ĪΜ A. RULES **BUILDING DESIGNER** DESIGN CRITERIA LUMBER DESCR BEARINGS No.2 No.2 No.2 DRY - B 2x6 SPF SPECIFIED LOADS: 2x4 2x4 DRY DRY SPF PSF PSF PSF THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS CH. LL = DL = 32.5 6.0 THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. 2x6 DRY No.2 SPF BOT CH. LL DRY No 2 SPE TOTAL LOAD BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) PSF 45.9 ALL WEBS DRY SPF 2x3 No.2 ALL GABLE WEBS SPACING = 24.0 IN. C/C TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. DRY SPF No.2 DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART GABLE STUDS SPACED AT 2-0-0 OC. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. <u>LOADING</u> TOTAL LOAD CASES: (4) THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CHORDS PLATES (table is in inches)
JT TYPE PLATES WEBS - CSA 086-14 LEN Y MAX. FACTORED FACTORED MAX. FACTORED FACTORED
VERT. LOAD LC1 MAX MAX. I
(PLF) CSI (LC) UNISRAC
FROM TO LENGTH I
0.0 0.0 0.02 (1) 7.81
-112.4 -112.4 0.15 (1) 10.00
-112.4 -112.4 0.05 (1) 6.25
-112.4 -112.4 0.07 (1) 6.25
-112.4 -112.4 0.07 (1) 6.25
-112.4 -112.4 0.07 (1) 6.25 TMVW+p MT20 5.0 2.00 2.25 MEMB. мемв. C, D, E, G, H, I C TMW+w F TTW+p J TMVW+p DESIGN ASSUMPTIONS (LBS) (LBS) CSI (LC) MT20 40 FR-TO LENGTH FR-TO -OVERHANG NOT TO BE ALTERED OR CUT OFF. 4.0 5.0 6.0 6.0 T- B A- B -367 / 0 0 / 50 -97 / 0 P-F Q-E R-D S-C 0.15 (1) 0.13 (1) 0.05 (1) Edge 2.00 2.25 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. -255 / 0 B-C C-D D-E E-F RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD BMV1+c MT20 4.0 6.0 -218 / 0 M N, N -29 / 0 -29 / 0 -65 / 0 -255 / 0 0.03 (1) 0.01 (1) 0.13 (1) 0.05 (1) BMWW1+t MT20 3.0 4.0 2.50 1.50 MT20 4.0 BMW1+w 2.0 2.50 1.00 -42/0 N- H -218/0 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.0 0.0 F- G G- H H- I J- K L- J BMWW1+t MT20 MT20 3.0 4.0 -42 / 0 -29 / 0 -29 / 0 0.07 (1) 6.25 6.25 6.25 M- I B- S M- J -65/0 0/45 CSI: TC=0.15/1.00 (J-K:1), BC=0.01/1.00 (Q-R:4), WB=0.15/1.00 (F-P:1), SSI=0.09/1.00 (J-K:1) 4.0 2.50 1.50 0.01 (1) BMV1+p 0.01 (1) 0 / 45 0.05 (1) 0.01(1)Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. -97 / 0 0.15 (1) 6.25 10.00 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 0 / 50 -367 / 0 0.02 (1) 7.81 COMPANION LIVE LOAD FACTOR = 1.00 T-S S-R Q-P P-O N-M M-L NOTES- (1) -18.5 1) Lateral braces to be a minimum of 2X4 SPF #2. AUTOSOLVE HEELS OFF 0/31 -18.5 -18.5 -18.5 -18.5 0.01(1) 10.00 0 / 25 0.01 (4) 10.00 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (1) 0.00 (4) -18.5 -18.5 -18.5 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. -18.5 10.00 -18.5 -18.5 0 / 25 10.00 -18.5 -18.5 PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 MT20 PLATE PLACEMENT TOL. = 0.250 inches PROFESSIONAL ENGINEER

4/02/24

C. M. HEYENS PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.18 (E) (INPUT = 0.90) JSI METAL= 0.14 (G) (INPUT = 0.95) 100505065 ROVINCE OF ONTARIO

STRUCTURAL COMPONENT ONLY DWG # TR24040165

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 437026 TRUSS DESC. T44 Version 8.630 S Aug 30 2023 MTek Industries, Inc. Tue Apr 2 11:03:59 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-EOVXm?jc?EcheOcAGFQREWJz83pVD0ya n7gevzUnwU Tamarack Roof Truss, Burlington 1-3-8 6-2-0 1-3-8 4x6 || Scale = 1:40.7 n 10.00 12 4x6 // 4x6 📏 3x4 [[3x4 II 4x6 = 4x6 == 6-2-0 12-4-0 TOTAL WEIGHT = 2 X 59 = 119 R LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS
FACTORED DESIGN CRITERIA LUMBER DESCR No.2 No.2 No.2 DRY Đ 2x4 SPF MAXIMUM FACTORED INPLIT REORD SPECIFIED LOADS: SPECIFIED LOADS.

TOP CH. LL =

DL =

DL = GBF 2x4 2x4 DRY DRY SPF GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX BRG IN-SX PSF PSF 32.5 6.0 0.0 7.4 DRY SPF PSF PSF 2x4 No.2 963 963 - H DRY No.2 SPF MECHANICAL TOTAL LOAD 45.9 PSF ALL WEBS EXCEPT DRY SPF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM 2x3 No.2 BEARING LENGTH AT JOINT H = 1-8. 24.0 IN. C/C DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 UNFACTORED REACTIONS
1ST LCASE MA MAX./MIN. COMPONENT REACTIONS
SNOW LIVE BERLING PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20
C TMVW-t MT20 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) COMBINED WIND DEAD SOIL. 0/0 491/0 0/0 182 / 0 3.0 4.0 - CSA 086-14 4.0 4.0 4.0 6.0 6.0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J Edge TMWW-t $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT.}}$ MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 6.0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED MT20 4.0 6.0 6.0 3.0 TMV+p BMVW1-t MT20 MT20 MT20 4.0 ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.41")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.41")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04") BMVW1-t MT20 4.0 6.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. INDICATES REFERENCE CORNER OF PLATE LOADING TOTAL LOAD CASES: (4) TOUCHES EDGE OF CHORD. CSI: TC=0.17/1.00 (E-F:1) , BC=0.23/1.00 (H-I:4) , WEBS FACTORED MAX. FACTORED MAX. FACTORED WB=0.31/1.00 (E-H:1) , SSI=0.13/1.00 (D-E:1) FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC
FROM TO 1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.17 (1) 10.00
-1124 - 1124 0.13 (1) 6.25
-1124 - 1124 0.13 (1) 6.25
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00
-1124 - 1124 0.15 (1) 10.00 1) Lateral braces to be a minimum of 2X4 SPF #2. MEMB. мемв. FORCE (LBS) MAX CSI (LC) (LBS) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 FR-TO LENGTH FR-TO COMP=1.10 SHEAR=1.10 TENS= 1.10 0.09 (1) 0.07 (1) 0.07 (1) 0 / 50 I-D I-E -162/0 COMPANION LIVE LOAD FACTOR = 1.00 C-D D-E E-F F-G -544/0 C-I -162 / 0 -544 / 0 -805 / 0 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0/25 J- B -288 / 0 H-F 0.0 NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 J- 1 0 / 501 -18.5 -18.5 0.23 (4) 10.00 0 / 501 -18.5 0.23 (4) PLATE PLACEMENT TOL. = 0.250 inches PROFESSIONAL ENGINEERS C. M. HEYENS PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.53 (C) (INPUT = 0.90) JSI METAL= 0.18 (C) (INPUT = 0.95) 100505065 TOVINCE OF ONTARIO

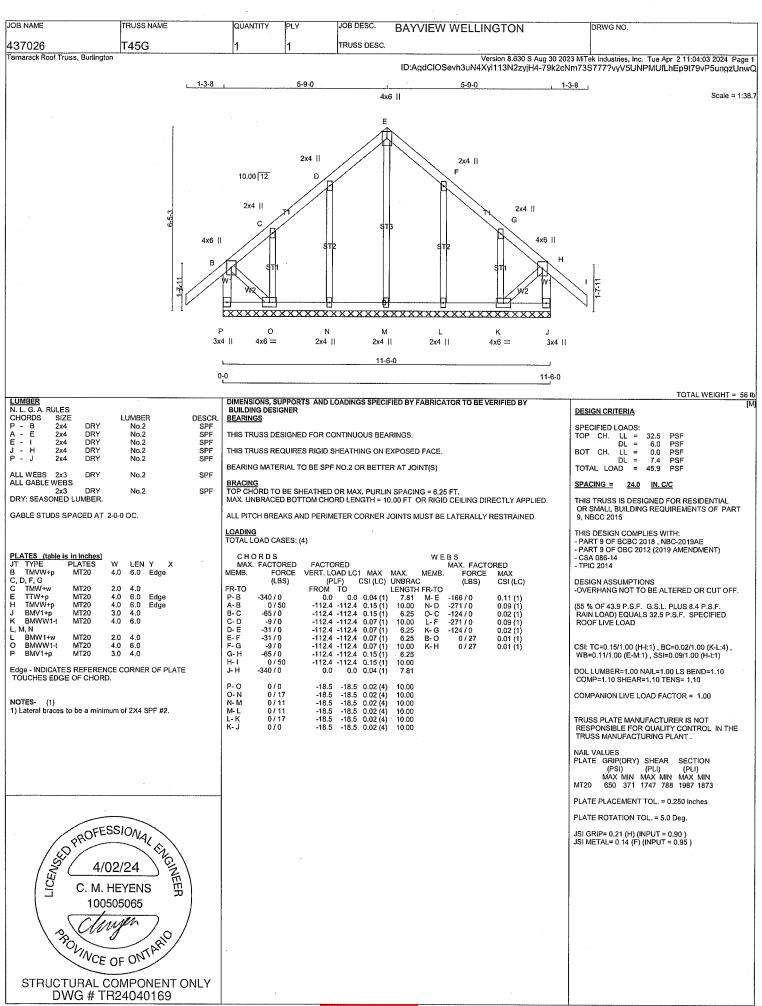
STRUCTURAL COMPONENT ONLY DWG # TR24040166

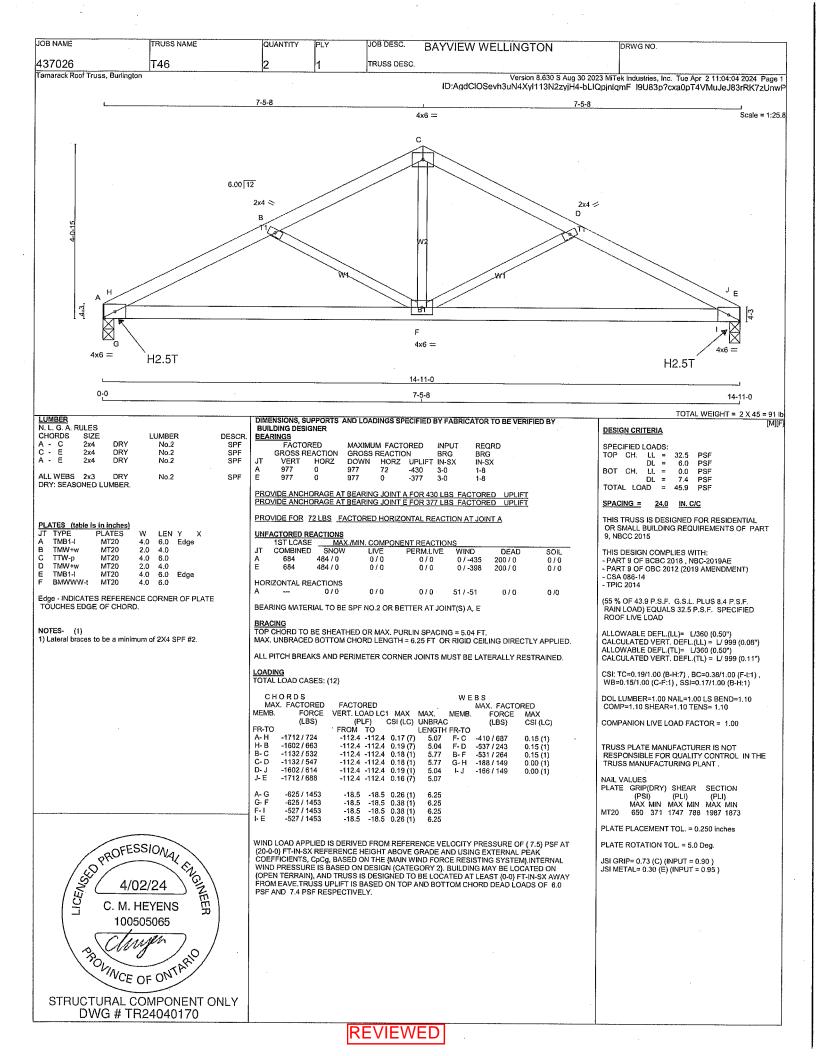
JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 437026 T44G TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:04:00 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-ia2vzLjEmXkYGXBNqzxgnks85TC1yWFjDRtDBMzUnwT , 1-3-8 6-2-0 1-3-8 4x6 [] Scale = 1:40.7 Е 2x4 II 2x4 || D 10.00 12 2x4 II 2x4 || G 4x6 II 4x6 II xxxxxxxxxxxxxxxxxxxxxxx 4x6 = 3x4 II 2x4 || 2x4 II 2x4 || 3x4 II 4x6 =12-4-0 0-0 12-4-0 TOTAL WEIGHT = 60 lb LUMBER N. L. G. A. CHORDS P - B A - E E - I DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY RULES **BUILDING DESIGNER** DESIGN CRITERIA LUMBER DESCR No.2 No.2 No.2 SPF SPF SPF DRY 2x4 SPECIFIED LOADS: A - E E - I J - H DRY DRY DRY 2x4 2x4 THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS. CH. LL = PSF PSF 6.0 SPF THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE 2x4 No.2 BOT CH. 1.1 0.0 PSF No.2 SPF BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) TOTAL LOAD 45.9 PSF ALL WEBS DRY No.2 SPF ALL GABLE WEBS BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 24.0 IN. C/C DRY No.2 SPF DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART GABLE STUDS SPACED AT 2-0-0 OC. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED 9, NBCC 2015 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) LOADING TOTAL LOAD CASES: (4) CHORDS PLATES (table is in inches)
JT TYPE PLATES - CSA 086-14 WEBS LEN Y MAX. FACTORED FACTORED MAX. FACTORED B TMVV C, D, F, G C TMW-VERT. LOAD LC1 MAX MAX.

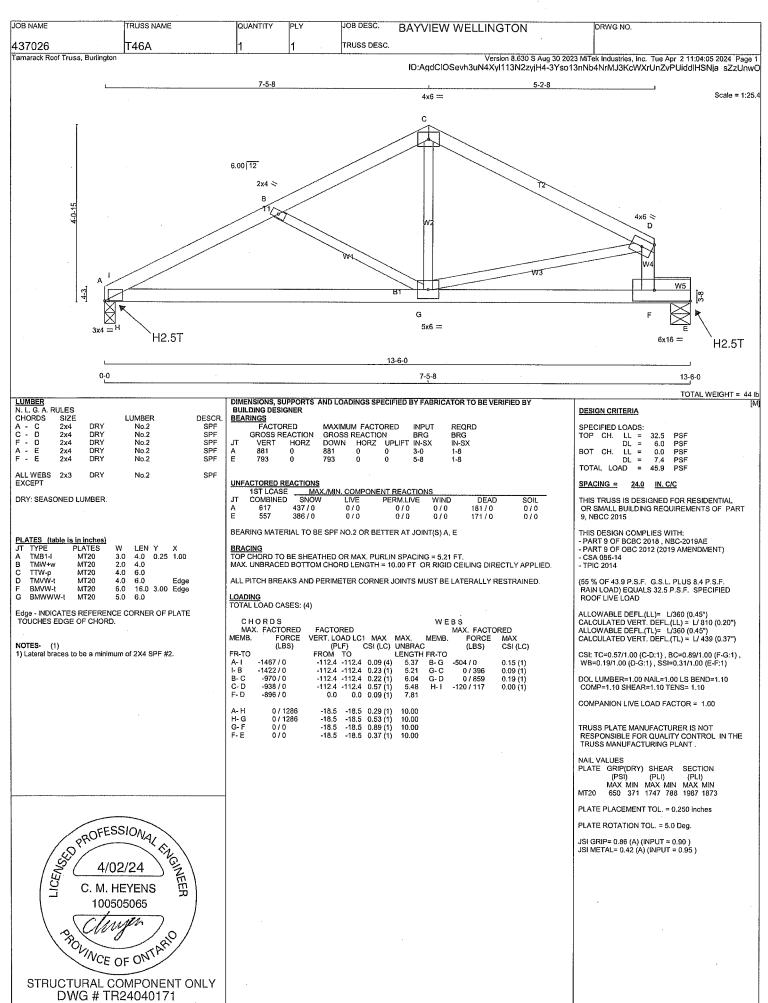
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH TMVW+p MT20 4.0 Edge мемв. мемв (LBS) (LBS) CSI (LC) (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. MT20 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD TMW+w 20 40 FR-TO LENGTH FR-TO MT20 MT20 4.0 4.0 6.0 P- B A- B B- C 0.0 0.0 0.03 (1) -112.4 -112.4 0.15 (1) -112.4 -112.4 0.06 (1) M-E N-D -298 / 0 0.12 (1) 0.10 (1) Edge 0/50-29/0 10.00 -247 / 0 J BM K BM L, M, N L BM O BM P BM 0- C L- F K- G 6.25 6.25 6.25 6.25 0.05 (1) 0.10 (1) 0.05 (1) 3.0 4.0 BMV1+c MT20 -246 / 0 -112.4 -112.4 0.06 (1) -112.4 -112.4 0.06 (1) -112.4 -112.4 0.06 (1) -112.4 -112.4 0.06 (1) -112.4 -112.4 0.06 (1) -112.4 -112.4 0.15 (1) C-D D-E -34 / 0 -41 / 0 -247 / 0 -246 / 0 BMWW1-t MT20 4.0 6.0 CSI: TC=0.15/1.00 (A-B:1) , BC=0.02/1.00 (K-L:4) , WB=0.12/1.00 (E-M:1) , SSI=0.09/1.00 (H-I:1) BMW1+w MT20 E- F F- G G- H H- I 2.0 4.0 -41/0 B- 0 K- H 0/39 0.01 (1) 4.0 -34 / 0 -29 / 0 6.25 6.25 10.00 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 BMWW1-t MT20 6.0 BMV1+p 0 / 50 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. J- H -298 / 0 0.0 0.0 0.03 (1) COMPANION LIVE LOAD FACTOR = 1.00 P- 0 O- N N- M M- L L- K 0/0 -18.5 -18.5 0.02 (4) 10.00 0/26 0/21 0/21 -18.5 0.02 (4) -18.5 0.02 (4) -18.5 0.02 (4) -18.5 10.00 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2. -18.5 0.02 (4) 10.00 TRUSS MANUFACTURING PLANT. 0/26 -18.5 -18.5 NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

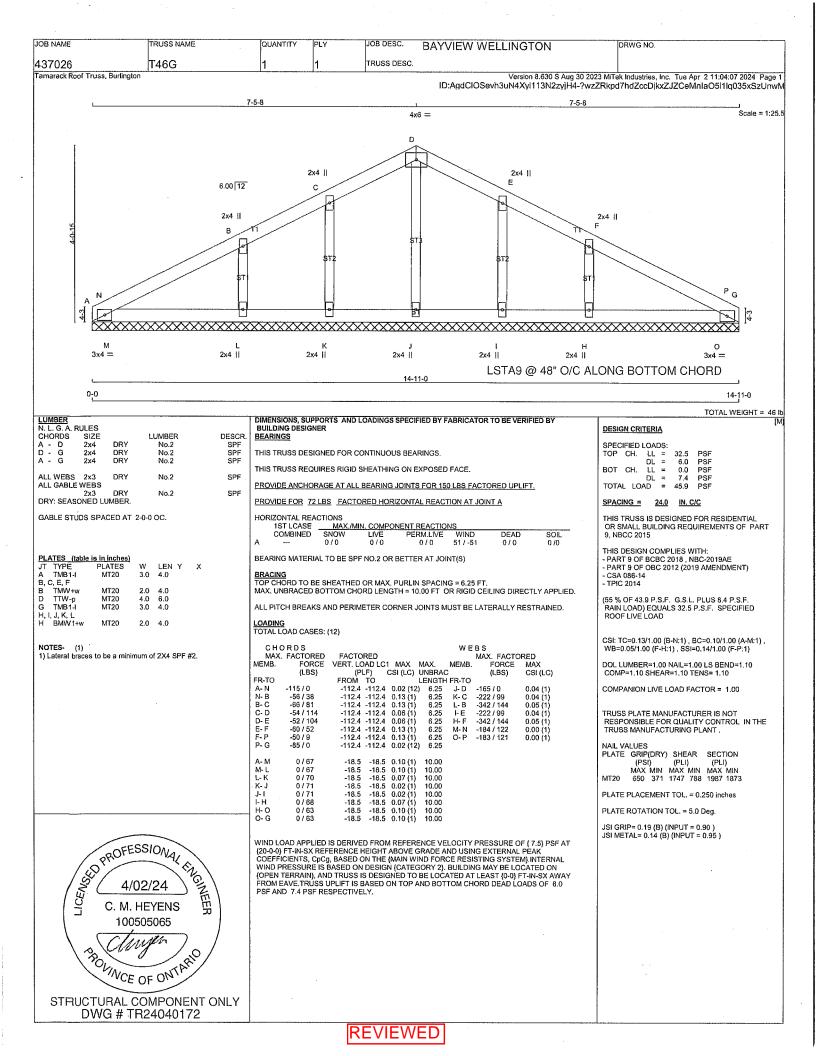
MAX MIN MAX MIN MAX MIN MAX MIN

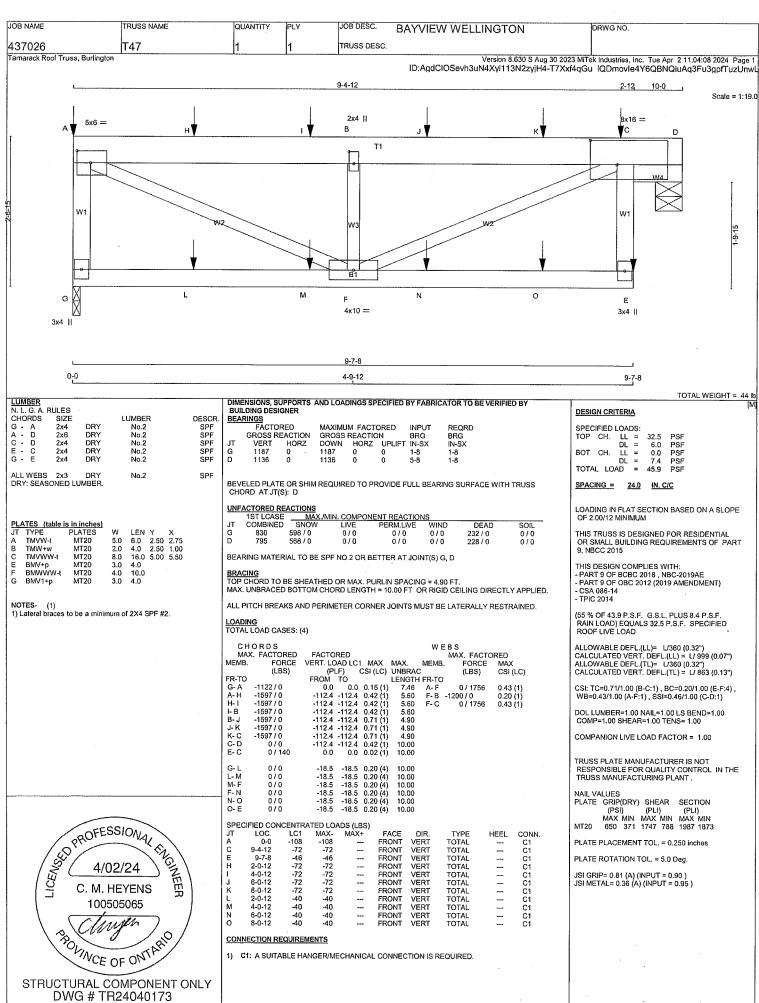
MT20 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL, = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.19 (B) (INPUT = 0.90) JSI METAL= 0.13 (D) (INPUT = 0.95) PROFESSIONAL ENGINEERS C. M. HEYENS 100505065 wien ONOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040167

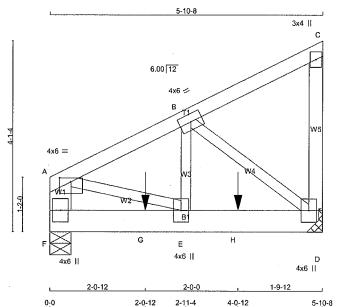

JOB DESC. **BAYVIEW WELLINGTON** JOB NAME TRUSS NAME QUANTITY PLY DRWG NO 437026 TRUSS DESC. T45 Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:04:01 2024 Page 1 ID:AgdCIOSevh3uN4Xyl113N2zyjH4-AmcHBhktXrsPthmZNgSvJxOJrtVQhwHtS5cnjozUnwS Tamarack Roof Truss, Burlington 1-3-8 5-9-0 1-3-8 4x6 II Scale = 1:38.7 D 10.00 12 4x6 // 4x6 < Е 3x4 II 3x4 II 4x6 =4x6 == 0-0 5-9-0 11-6-0 TOTAL WEIGHT = 5 X 56 = 280 II LUMBER N. L. G. A. CHORDS DIMENSIONS, SUPPORTS, AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS FACTORED RULES DESIGN CRITERIA LUMBER DESCR A - D D - G J - B H - F DRY 2x4 No.2 SPF MAXIMUM FACTORED INPLIT REORD SPECIFIED LOADS 2x4 2x4 DRY DRY No.2 No.2 SPF SPF GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX BRG IN-SX CH. LL = DL = LL = 6.0 PSF DRY SPF 0.0 7.4 2x4 No.2 909 0 909 BOT CH. PSF - H DRY No.2 SPF MECHANICAL TOTAL LOAD 45.9 PSF ALL WEBS DRY A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM 2x3 No.2 SPF EXCEPT BEARING LENGTH AT JOINT H = 1-8. 24.0 IN. C/C DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 UNFACTORED REACTIONS
1ST LCASE MA MAX./MIN. COMPONENT REACTIONS
SNOW LIVE DEBANG. JT THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) COMBINED WIND DEAD SOIL PLATES (table is in inches)
JT TYPE PLATES 463 / 0 463 / 0 171 / 0 0/0 TMV+p B MT20 3.0 4.0 - CSA 086-14 4.0 4.0 4.0 TMWW-I MT20 6.0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J Edge 6.0 4.0 6.0 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. TMWW-t MT20 (55 % OF 43 9 P.S.F. G.S.L. PLUS 8 4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD TMV+r MT20 3.0 BMVW1-t BMWWW-t 6.0 ALLOWABLE DEFL.(LL)= L/360 (0.38")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.38")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.03") BMVW1-t MT20 4.0 6.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. Edge - INDICATES REFERENCE CORNER OF PLATE LOADING TOTAL LOAD CASES: (4) TOUCHES EDGE OF CHORD. CSI: TC=0.15/1.00 (F-G:1), BC=0.20/1.00 (H-I:4), WEBS NOTES-MAX. FACTORED FACTORED MAX, FACTORED WB=0.26/1.00 (C-J:1) , SSI=0.12/1.00 (C-D:1) FACTORED


VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC


FROM TO LENGTH FR-TO
-112.4 -112.4 0.14 (1) 10.00 I-D
-112.4 -112.4 0.11 (1) 6.25 C-I
-112.4 -112.4 0.11 (1) 6.25 J-C
-112.4 -112.4 0.14 (1) 10.00 E-H
-112.4 -112.4 0.15 (1) 10.00
0.00 0.00 0.00 (1) 781 1) Lateral braces to be a minimum of 2X4 SPF #2. MEMB. MAX CSI (LC) (LBS) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 (LBS) FR-TO A-B-C-D-E-F-G 0.08 (1) 0.05 (1) 0.05 (1) 0 / 50 0 / 355 0 / 23 -499 / 0 -143 / 0 -143 / 0 COMPANION LIVE LOAD FACTOR = 1.00 -499 / 0 -743 / 0 0.26 (1) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0/23 J-B H-F -279 / 0 0.0 0.0 0.03 (1) NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)


MAX MIN MAX MIN MAX MIN MAX MIN


MT20 650 371 1747 788 1987 1873 J-1 0 / 455 -18.5 -18.5 0.20 (4) 10.00 0 / 455 -18.5 0.20 (4) PLATE PLACEMENT TOL. = 0.250 inches PROFESSIONAL CLASSION C. M. HEYENS PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.50 (E) (INPUT = 0.90) JSI METAL= 0.17 (E) (INPUT = 0.95) 100505065 ROVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040168



JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 437026 T48 Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:04:09 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-xJ5JsQqufltHrwN5rMbnedki35EZZZK2lKYC?KzUnwK

Scale = 1:23.7

DESCR SPF SPF SPF

SPF

2x3 EXCEPT DRY: SEASONED LUMBER.

SIZE

2x4 2x4

2x6

LUMBER N. L. G. A. RULES CHORDS SIZE

A - C D - C F - A

- D

ALL WEBS

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

DRY DRY DRY

DRY

DRY

CHORD	s #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CH	IORDS: (0.1	22"X3") SPIRAL NAILS	
A-C	1 .	12	TOP
C-D	1	12	TOP
F- A	2	12	TOP '
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAII	_S
F-D	2	12	SIDE(0.0)
WEBS:	(0.122"X3")	SPIRAL NAILS	, , , ,
2x3	` 1 ′	6	

LUMBER

No.2 No.2

No.2

No.2

No.2

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Х
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00
В	TMWW-t	MT20	4.0	6.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	DRED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	1370	0	1370	0	0	MECHANIC	CAL
F	1289	0	1289	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

	UNF	ACTORED RE	ACTIONS					
		1ST LCASE	MAX./	MIN. COMPOR	VENT REACTION	48		
	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
	D	955	702 / 0	0/0	0/0	0/0	253 / 0	0/0
	F	899	660 / 0	0/0	0/0	0/0	239 / 0	0/0
ı								

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					W E	BS	
MAX	(, FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	DAD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(Pi	LF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	I FR-TO		
A-B	-1401 / 0	-112.4	-112.4	0.08 (1)	6.25	E-B	0 / 1206	0.15 (1)
B- C	-14 / 0	-112.4	-112.4	0.07 (1)	6.25	B-D	-1592 / 0	0.19 (1)
D-C	-134 / 0	0.0	0.0	0.02(1)	7.81	A-E	0 / 1308	0.16(1)
F-A	-1100 / 0	0.0	0.0	0.04(1)	7.81			
F-G	0/0	-18.5	-18.5	0.13(1)	10.00			
G-E	0/0	-18.5	-18.5	0.13(1)	10.00			
E-H	0 / 1265	-18.5	-18.5	0.25 (1)	10.00			
H-D	0 / 1265	-18.5	-18.5	0.25 (1)	10.00			
SPECIF	TED CONCENT	RATED LO	ADS (LI	3S)				

LOC LC1 MAX-MAX+ FACE DIR. TYPE HEEL. CONN 2-0-12 4-0-12 -658 VERT C1 C1 TOTAL

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 29 = 58 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.02")

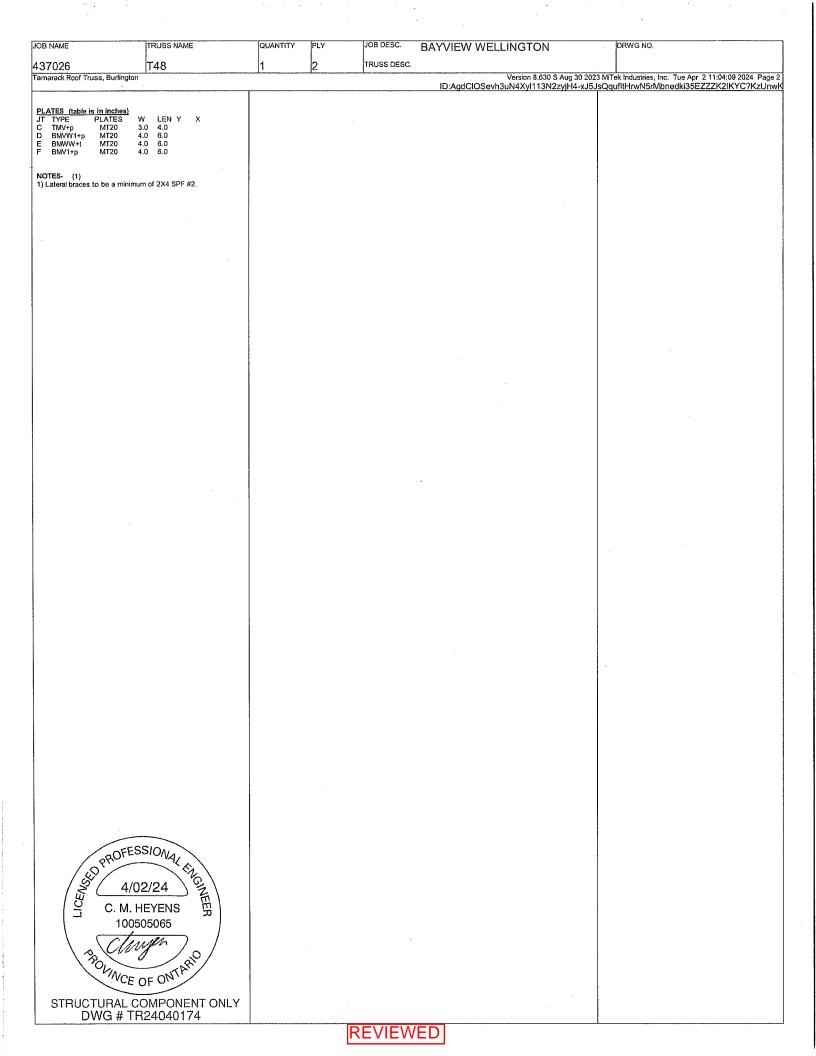
CSI: TC=0.08/1.00 (A-B:1), BC=0.25/1.00 (D-E:1), WB=0.19/1.00 (B-D:1) , SSI=0.27/1.00 (E-F:1)

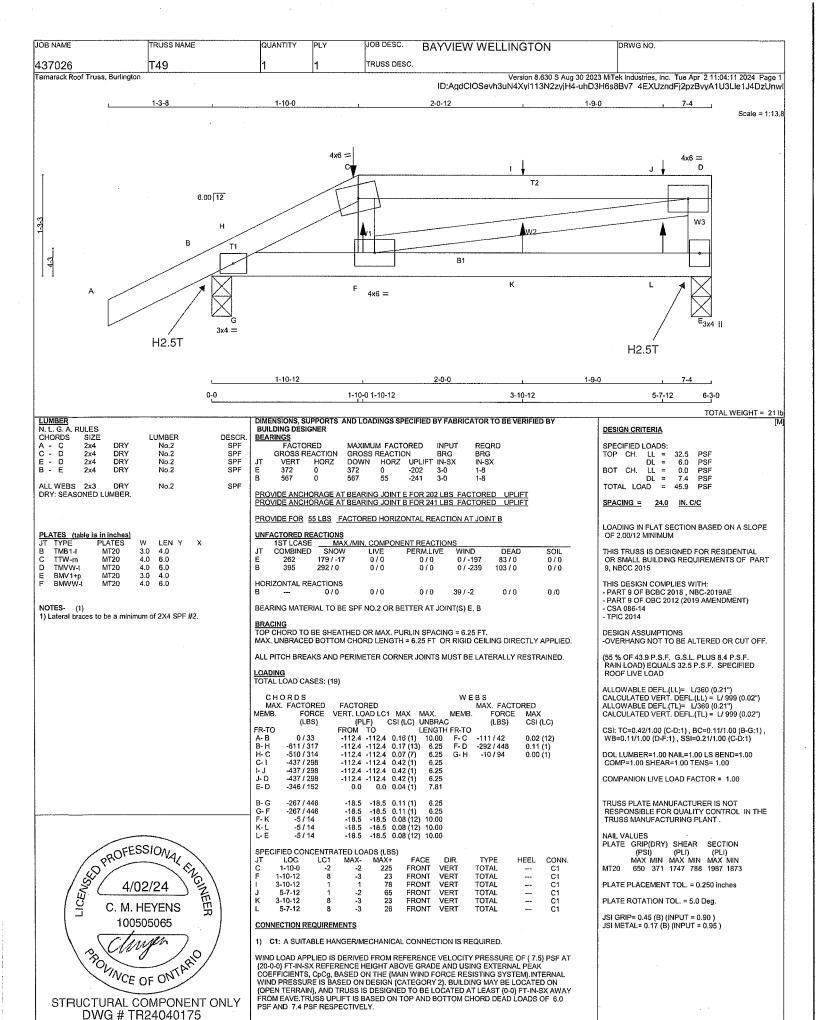
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

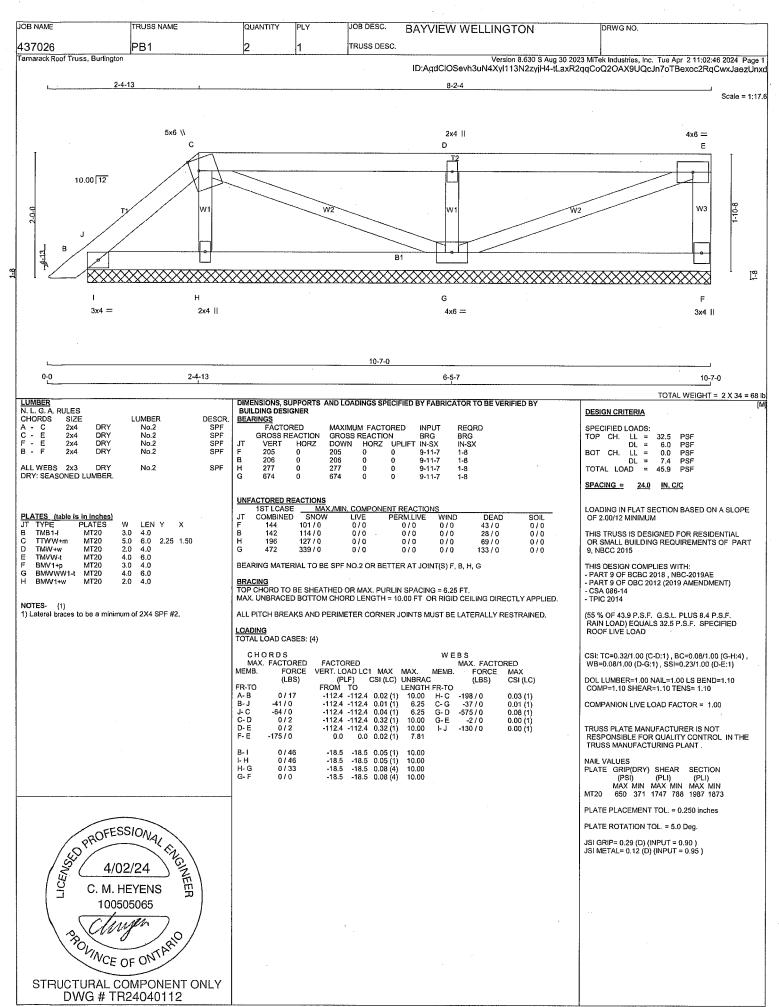
COMPANION LIVE LOAD FACTOR = 1.00

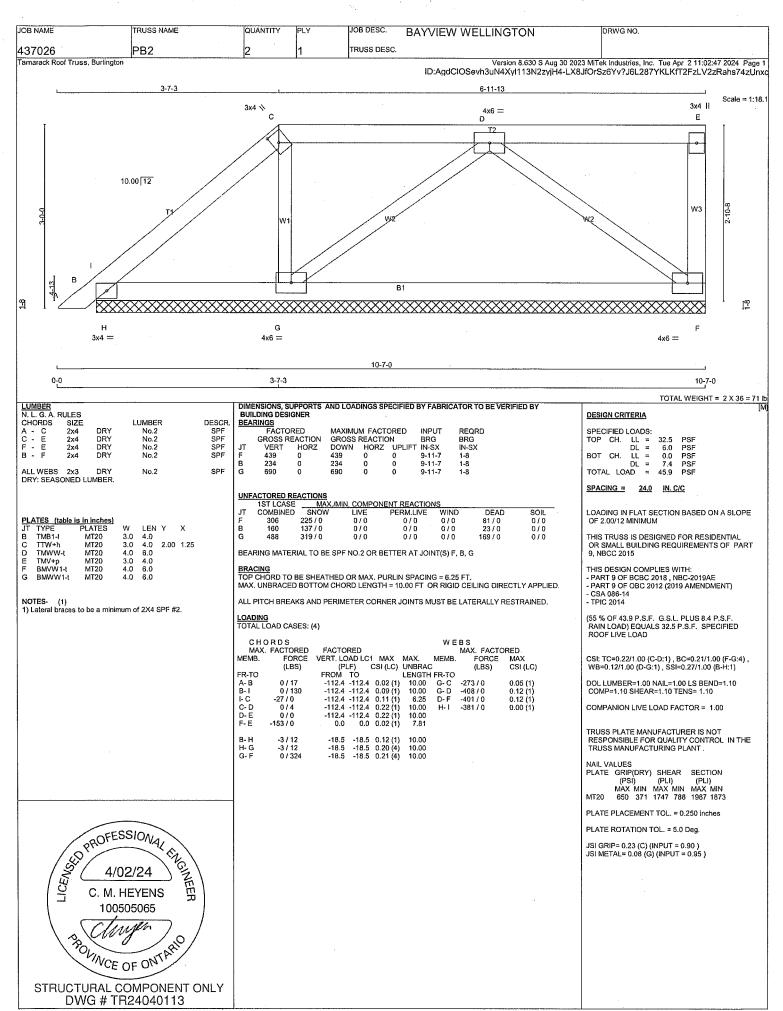
AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

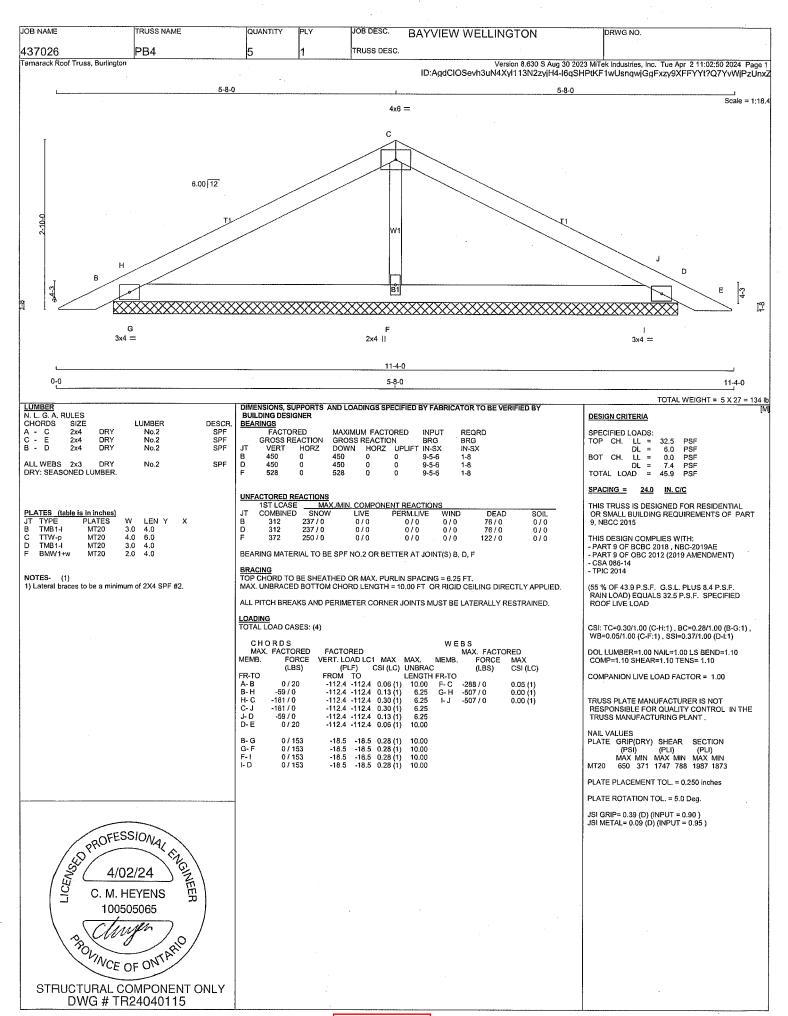

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

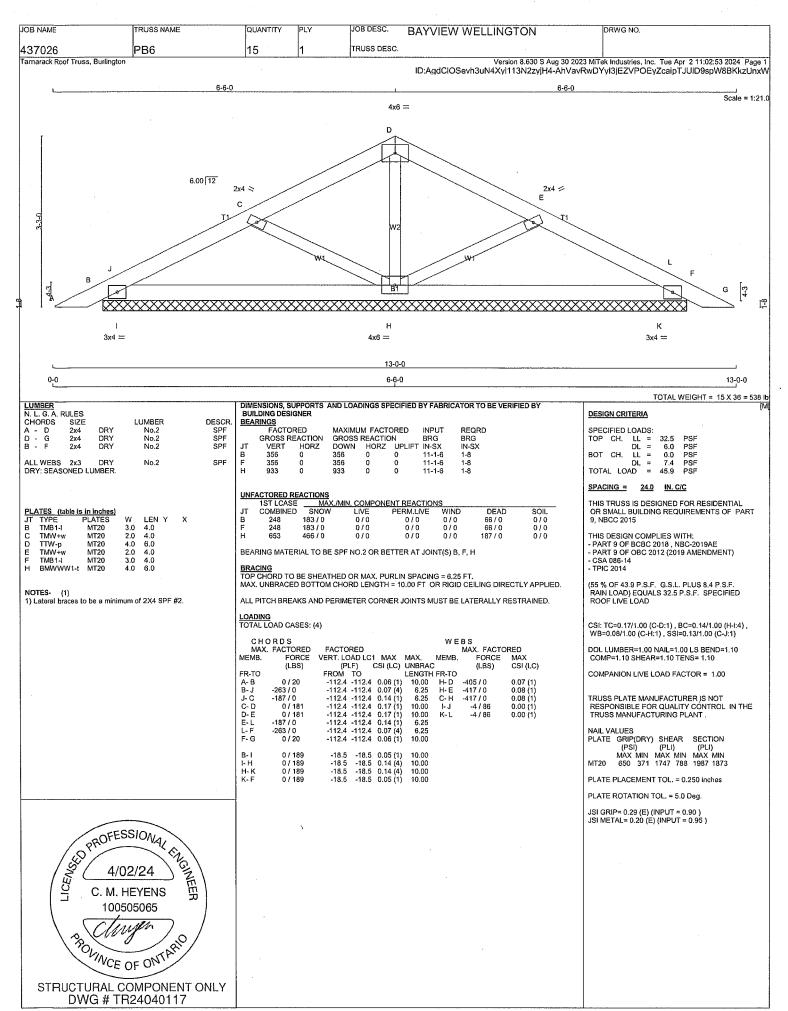

PLATE PLACEMENT TOL. = 0.250 inches

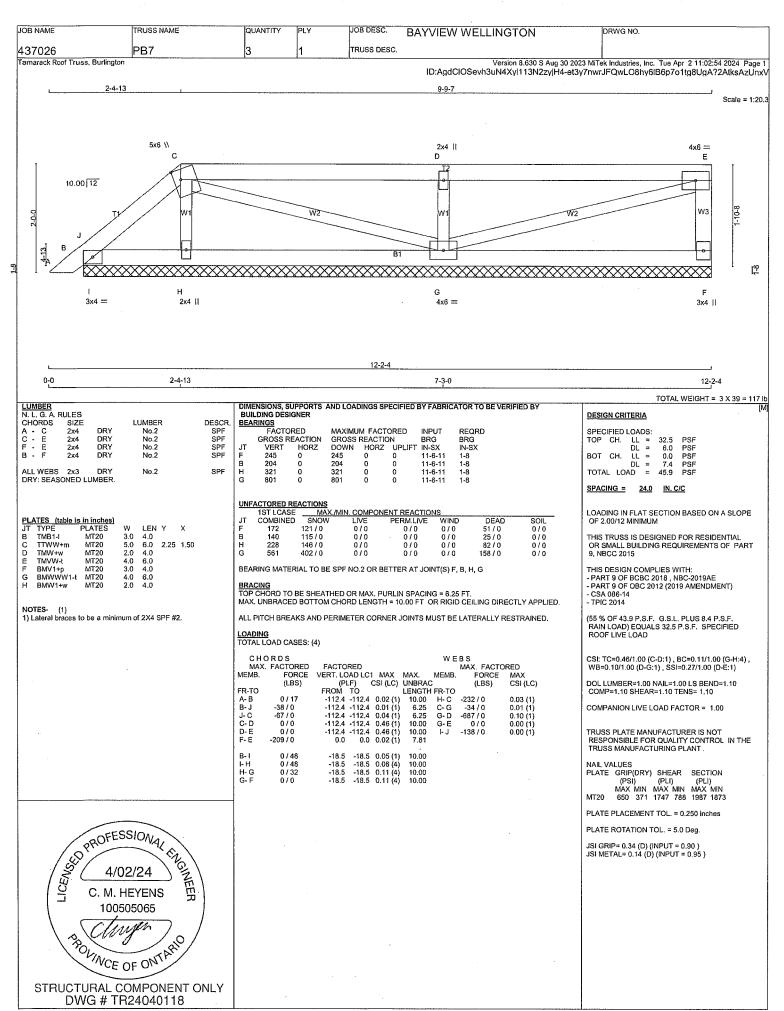

PLATE ROTATION TOL. = 5.0 Deg.

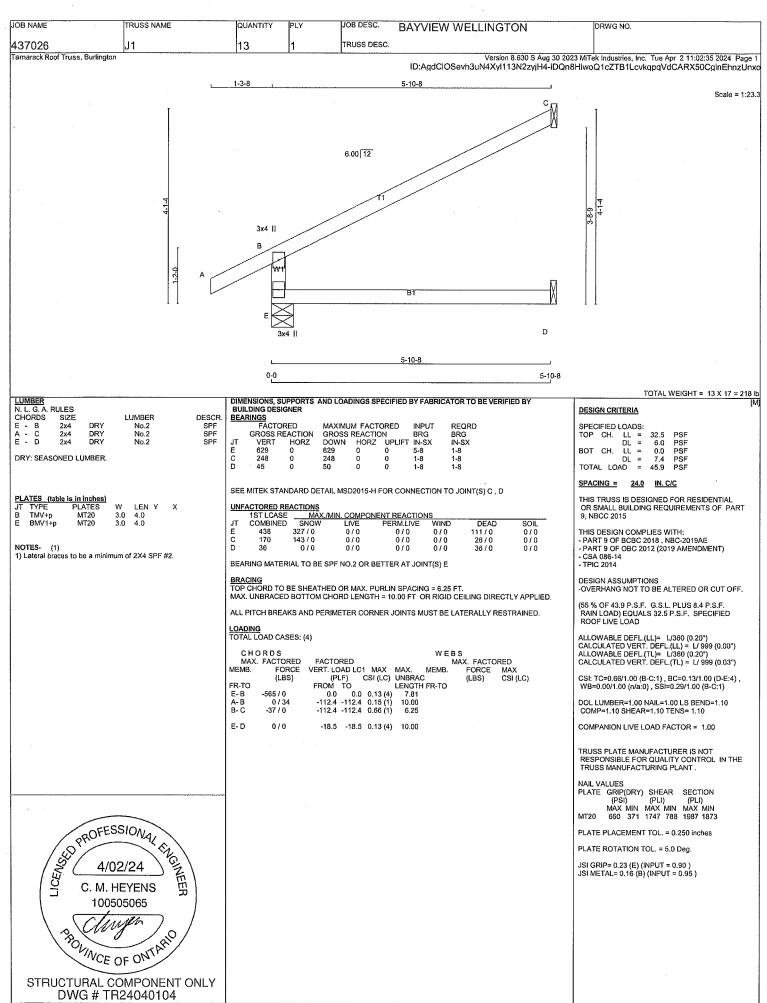

JSI GRIP= 0.60 (D) (INPUT = 0.90) JSI METAL= 0.29 (D) (INPUT = 0.95)

CONTINUED ON PAGE 2

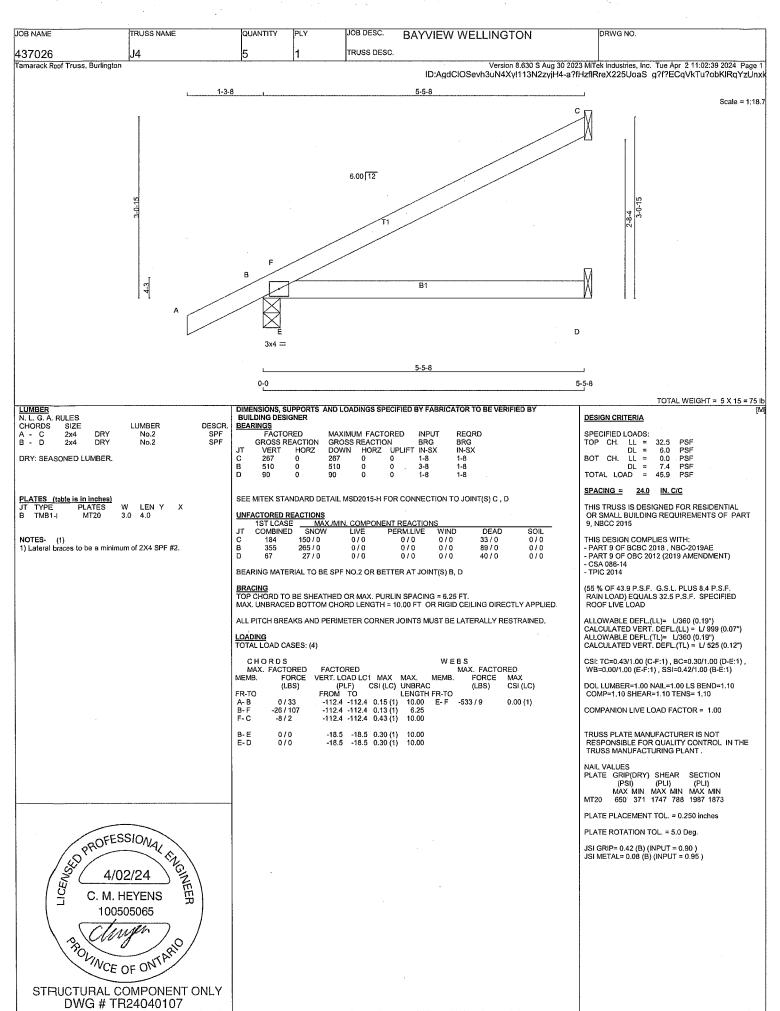


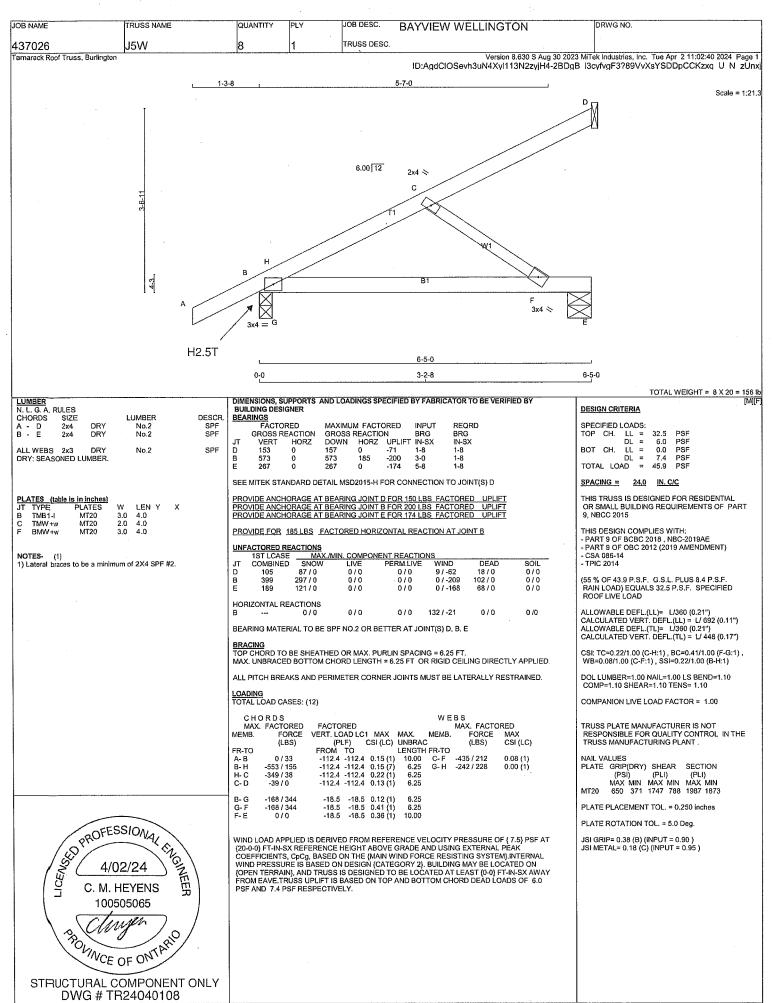


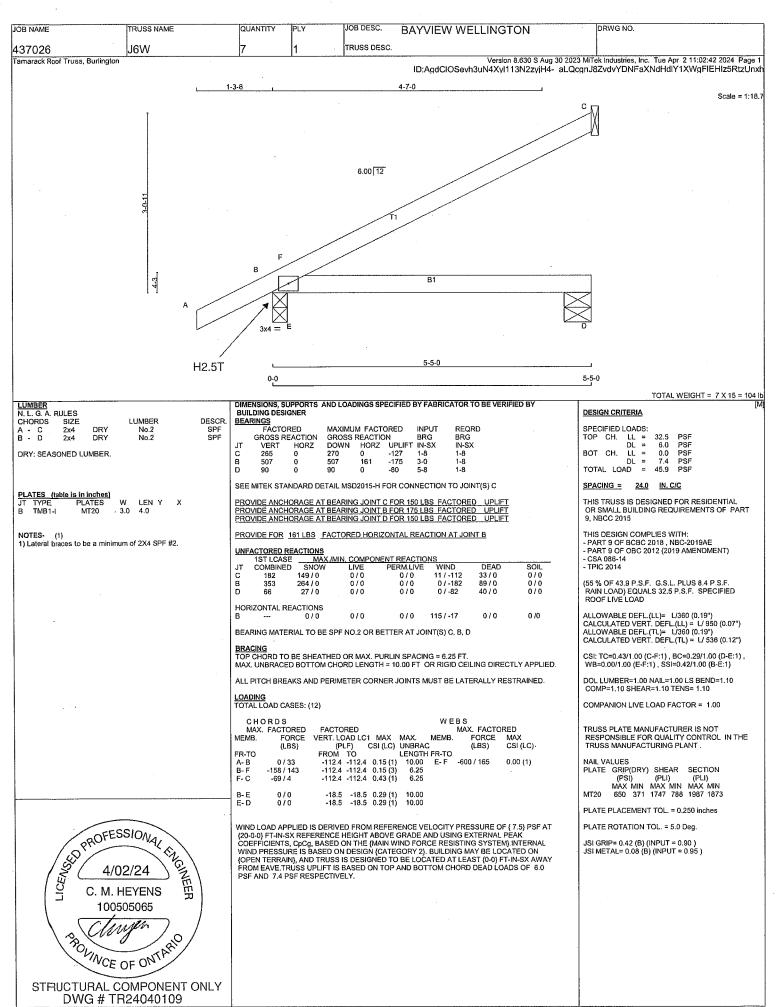


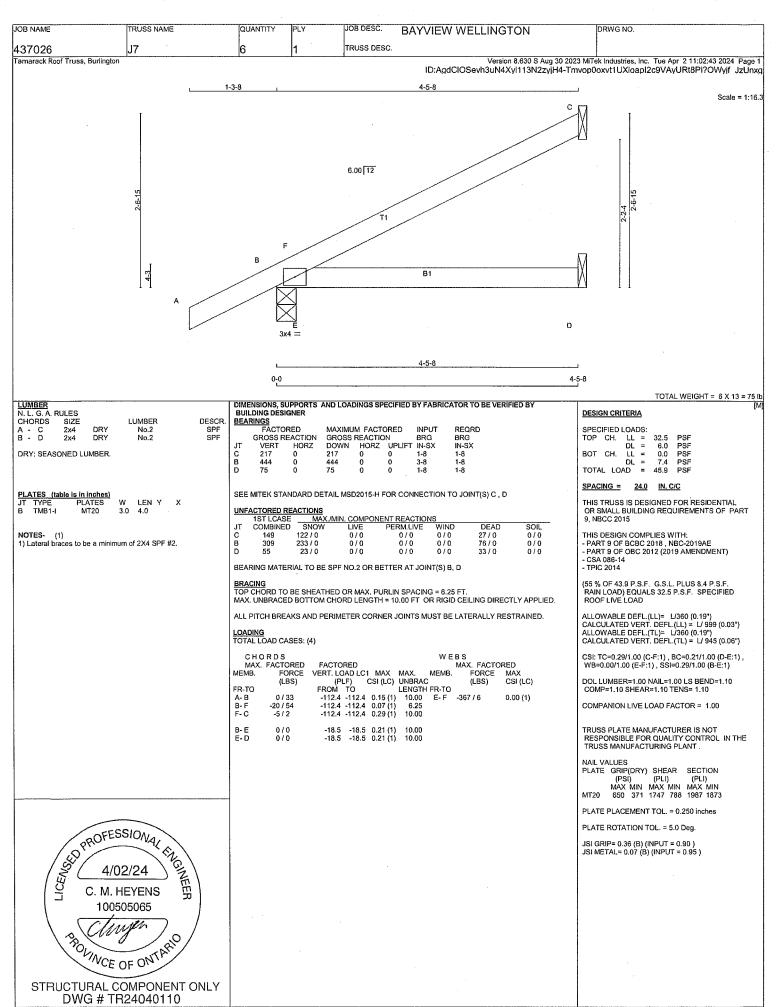

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. BAYVIEW WELLINGTON DRWG NO.	Page 1 zzUnxa = 1:21.9
Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:02:49 2024 ID:AgdClOSevh3uN4Xyi113N2zyiH4-HwG343siUjodFdFjAY90PmQusswepPwGuuAzB; 4-7-13	zzUnxa
ID:AgdClOSevh3uN4Xyl113N2zyjH4-HwG343siUjodFdFjAY90PmQusswepPwGuuAzBz	zzUnxa
3x4 \\ C T2 10.00 \[\begin{array}{c ccccccccccccccccccccccccccccccccccc	
3x4 \\ C	= 1:21.9
10.00 12	
10.00 12	
900 W3 0 W3 0 W3	
	- 1
of B	
2	.
G F G A A A A A A A A A A	
324 420	
0-0 4-7-13 10-7-0	
TOTAL WEIGHT = 2 X 36 LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	6 = 73 lb [M]
N. I. G. A. RULES CHORDS SIZE LUMBER DESCR. BEARINGS DESIGN CRITERIA DESIGN CRITERIA	[141]
A - C	1
E - D 2x4 DRY No.2 SPF JT VERT HORZ DOWN HORZ UPLIFT IN-SX IN-SX DL = 6.0 PSF DL =	
B 376 0 0 9-11-7 1-8 DL = 7.4 PSF ALL WEBS 2x3 DRY No.2 SPF F 571 0 571 0 0 9-11-7 1-8 TOTAL LOAD = 45.9 PSF	1
DRY: SEASONED LUMBER.	
UNFACTORED REACTIONS 1ST LCASE MAX./MIN. COMPONENT REACTIONS	
JT COMBINED SNOW LIVE PERM.LIVE WIND DEAD SOIL LOADING IN FLAT SECTION BASED ON A SLO	PE
JT TYPE PLATES W LEN Y X B 260 203/0 0/0 0/0 0/0 57/0 0/0	
C TTW+h MT20 3.0 4.0 2.00 1.25 OR SMALL BUILDING REQUIREMENTS OF PA	RT
D TMVW-! MT20 4.0 6.0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, B, F 9, NBCC 2015 E BMV1+p MT20 4.0 6.0 BRACING THIS DESIGN COMPLIES WITH:	
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT PART 9 OF BCBC 2018, NBC-2019AE	
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED PART 9 OF OBC 2012 (2019 AMENDMENT) 1) Lateral braces to be a minimum of 2X4 SPF #2. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED TPIC 2014	
	1
LOADING (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. TOTAL LOAD CASES: (4) RAIN LOAD EQUALS 32.5 P.S.F. SPECIFIED	1
CHORDS WEBS ROOF LIVE LOAD	
WMA. FACTORED),
(LBS) (PLF) CSI (LC) UNBRAC (LBS) CSI (LC) WB=0.10/1.00 (C-F:1) , SSI=0.44/1.00 (B-G:1) FR-TO LENGTH FR-TO	
A-B 0 / 17 -112.4 -112.4 0.02 (1) 10.00 F-C -450 / 0 0.10 (1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 B-H 0 / 133 -112.4 -112.4 0.14 (1) 10.00 F-D 0 / 85 0.02 (1) COMP=1.10 SHEAR=1.10 TENS= 1.10	
H- C -128 / 0 -112.4 -112.4 0.22 (1) 6.25 G- H -581 / 0 0.00 (1) COMPANION LIVE LOAD FACTOR = 1.00	
E-D -377/0 0.0 0.0 0.08(1) 7.81	
B- G 0 / 87 -18.5 -18.5 0.20 (1) 10.00 TRUSS PLATE MANUFACTURER IS NOT G- F 0 / 87 -18.5 -18.5 0.20 (1) 10.00 RESPONSIBLE FOR QUALITY CONTROL IN TO	HE
F-E 0/0 -18.5 -18.5 0.15 (4) 10.00 TRUSS MANUFACTURING PLANT.	.
NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION	
(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN	
MT20 650 371 1747 788 1987 1873	
PLATE PLACEMENT TOL. = 0.250 inches	
PLATE ROTATION TOL. = 5.0 Deg.	
PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.53 (C) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 0.95) C. M. HEYENS	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
100F0F0FF	
100505065	
\s\Chrype / \	
ROVINCE OF ONTARD	
STRUCTURAL COMPONENT ONLY DWG # TR24040114	

JOB NAME	TRUSS NAME	QUANTITY PLY JC	DB DESC. BA	YVIEW WELLINGTON	DRWG NO.
437026	PB5	1 1 1	RUSS DESC.		
Tamarack Roof Truss, Burlington			IC		2023 MiTek Industries, Inc. Tue Apr 2 11:02:51 2024 Page 1 DqVluy0K2LUxP6HzCUUBVMzfdvHlsZMCf4GszUnxY
3	-3-3		6-5-9		3-3-3
					Scale = 1:21.1
	4x6 =		4x6 ==	4x6	=
f 6.00 12	· C		D ·	E	
3.33112			12		7
01	TI WI	Wo		W2 W1	71
, B K					M F
1 4 ,			B1		G 6.4
					1 12
J	1			Н	L _
3x4 =	4x6	=		4x6 	3x4 =
					·
			,	•	
0-0	3-3-3	·	13-0-0		4200
L	3-3-3			9-8-13	13-0-0 TOTAL WEIGHT = 35 lb
LUMBER N. L. G. A. RULES		BUILDING DESIGNER	DINGS SPECIFIED B	Y FABRICATOR TO BE VERIFIED BY	DESIGN CRITERIA [M]
CHORDS SIZE A - C 2x4 DRY	No.2 SPF			INPUT REQRD	SPECIFIED LOADS:
C - E 2x4 DRY E - G 2x4 DRY		JT VERT HORZ DOWN	HORZ UPLIFT		TOP CH. LL = 32.5 PSF DL = 6.0 PSF
B - F 2x4 DRY ALL WEBS 2x3 DRY		3 173 0 173 = 173 0 173 650 0 650	0 0	11-1-6 1-8 11-1-6 1-8 11-1-6 1-8	BOT CH. LL = 0.0 PSF DL = 7.4 PSF TOTAL LOAD = 45.9 PSF
DRY: SEASONED LUMBER.		H 650 0 650		11-1-6 1-8	SPACING = 24.0 IN. C/C
		UNFACTORED REACTIONS			<u> </u>
PLATES (table is in inches)		JT COMBINED SNOW LI	OMPONENT REACT	'E WIND DEAD SOIL	LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM
JT TYPE PLATES W B TMB1-I MT20 3.0	0 4.0	= 118 100/0 0	1/0 0/0 1/0 0/0	0/0 19/0 0/0 0/0 19/0 0/0	THIS TRUSS IS DESIGNED FOR RESIDENTIAL
C TTW-m MT20 4.1 D TMWW-t MT20 4.1 E TTW-m MT20 4.1	0 6.0		0/0 0/0	0/0 140/0 0/0 0/0 140/0 0/0	OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015
E TTW-m MT20 4.1 F TMB1-I MT20 3.0 H BMWW1-t MT20 4.0	0 4.0	BEARING MATERIAL TO BE SPF NO	0.2 OR BETTER AT J	JOINT(S) B, F, I, H	THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018, NBC-2019AE
I BMWW1-t MT20 4.4	0 6.0	B <mark>RACING</mark> TOP CHORD TO BE SHEATHED OR	MAX. PURLIN SPAC	DING = 10.00 FT.	- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14
NOTES- (1)				OR RIGID CEILING DIRECTLY APPLIED.	- TPIC 2014
Lateral braces to be a minimum			ER CORNER JOINTS	MUST BE LATERALLY RESTRAINED.	(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED
		<u>.OADING</u> TOTAL LOAD CASES: (4)			ROOF LIVE LOAD
		CHORDS MAX, FACTORED FACTORE	D	W E B S MAX. FACTORED	CSI: TC=0.19/1.00 (D-E:1) , BC=0.15/1.00 (H-I:1) , WB=0.14/1.00 (D-H:1) , SSI=0.17/1.00 (C-D:1)
		MEMB. FORCE VERT. LOAD (LBS) (PLF)	CSI (LC) UNBR	MEMB. FORCE MAX	DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10
			12.4 0.06 (1) 10.0		COMP=1.10 SHEAR=1.10 TENS= 1.10
		K- C 0 / 112 -112,4 -1	12.4 0.03 (1) 10.0 12.4 0.08 (1) 10.0 12.4 0.19 (1) 10.0	0 D-H -608/0 0.14(1)	COMPANION LIVE LOAD FACTOR = 1.00
		D-E 0 / 127 -112.4 -1	12.4 0.19(1) 10.0 12.4 0.19(1) 10.0 12.4 0.08(1) 10.0	0 J-K -164/0 0.00 (1)	TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE
	ł	M-F 0 / 128 -112.4 -1	12.4 0.03 (1) 10.0 12.4 0.03 (1) 10.0 12.4 0.06 (1) 10.0	0	TRUSS MANUFACTURING PLANT.
		B- J -102 / 0 -18.5 -	18.5 0.07 (1) 6.2	15	NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
		I- H 0 / 440 -18.5 -	18.5 0.12 (4) 6.2 18.5 0.15 (1) 10.0	0	(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MTOD 670 174 174 700 4007 4077
			18.5 0.12 (4) 6.2 18.5 0.07 (1) 6.2		MT20 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches
					PLATE PLACEMENT TOL. = 0.250 inches
PROFESS	DIUNAL				JSI GRIP= 0.36 (H) (INPUT = 0.90)
20 PROFESS 4/02 21 C. M. HE					JSI METAL= 0.13 (H) (INPUT = 0.95)
$/\sqrt{3}$ $4/02$	[2/24] [[]				
C. M. HE	EYENS 盟				
10050	15065				
1 \ s Chry	yen)				
ROVINCEO	TARIL				
,VCE O	FON	· .			
STRUCTURAL CO	MPONENT ONLY				
DWG # TR	24040116				



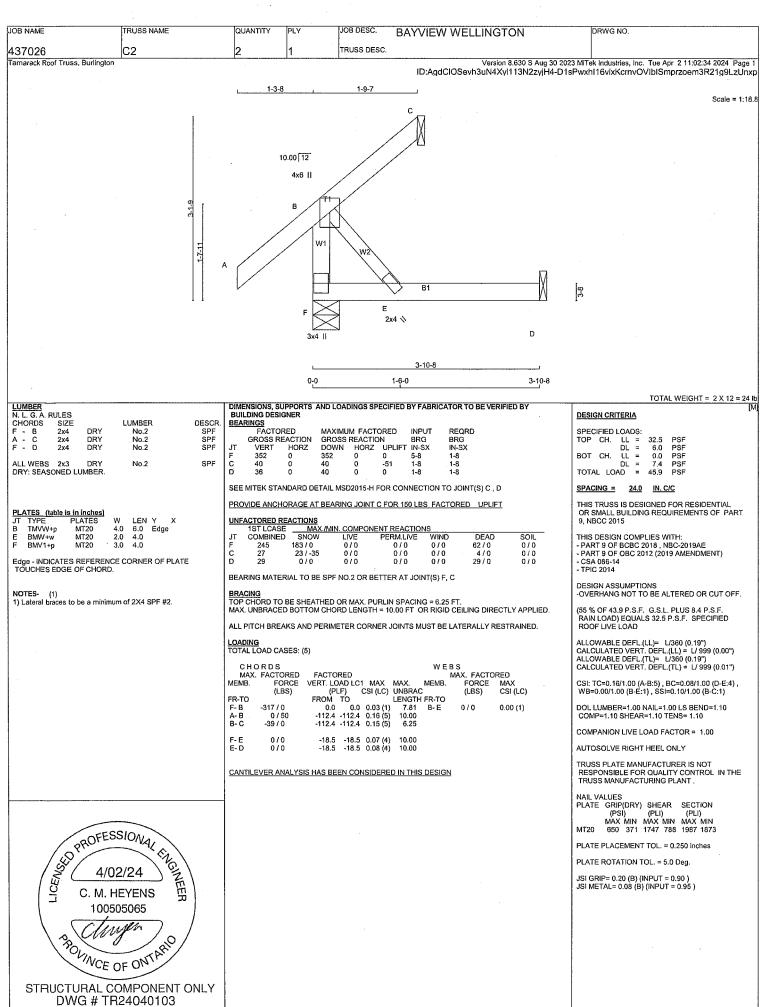

QUANTITY JOB DESC. JOB NAME TRUSS NAME PLY **BAYVIEW WELLINGTON** DRWG NO. 437026 TRUSS DESC Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:02:36 2024 Page 1 Tamarack Roof Truss, Burlington ID:AgdClOSevh3uN4Xyl113N2zyjH4-AQ 9LdiYYj9TBdmEvKQzN0NmDcWRGYGMvMWnEDzUnxn 1-3-8 Scale = 1:27.5С 10.00 12 4x6 || Е 2x4 N D 3x4 II 3-10-8 0-0 1-6-0 3-10-8 TOTAL WEIGHT = 7 X 15 = 106 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES CHORDS SIZE F - B 2x4 **DESIGN CRITERIA** BEARINGS FACTORED SIZE LUMBER DESCR. SPF MAXIMUM FACTORED GROSS REACTION INPUT BRG DRY REQRD SPECIFIED LOADS: GROSS REACTION LL = DL = LL = 32.5 BRG TOP 2x4 DRY CH. JT HORZ HORZ UPLIFT IN-SX - D 2x4 DRY No.2 SPF VERT DOWN IN-SX 6.0 PSF DL = Pr = PSF PSF PSF 0 409 218 0 5-8 1-8 1-8 1-8 BOT CH. 0.0 7.4 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF No.2 TOTAL LOAD 45.9 1-8 1-8 SPACING = 24.0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 UNFACTORED REACTIONS
1ST LCASE _____MA LEN Y MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND 9. NBCC 2015 4.0 2.0 3.0 6.0 Edge 4.0 4.0 JТ DEAD SOIL COMBINED BEF THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) 216 / 0 126 / 0 0/0 0/0 BMW+w MT20 0/0 CD BMV1+p MT20 0/0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. - CSA 086-14 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.19") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00") ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. <u>LOADING</u> TOTAL LOAD CASES: (5) CSI: TC=0.29/1.00 (B-C:1) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.13/1.00 (B-C:1) CHORDS WEBS MAX. FACTORED MB. FORCE FACTORED MAX. FACTORED VERT. LOAD LC1 FORCE (PLF) CSI (LC) UNBRAC FROM TO LENGTH FR-TO 0.0 0.0 0.0 0.04 (1) 7.81 B-E -112.4 -112.4 0.18 (5) 10.00 -112.4 -112.4 0.29 (1) 10.00 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 CSI (LC) (LBS) (LBS) FR-TO COMP=1.10 SHEAR=1.10 TENS= 1.10 F-B A-B -374 / 0 0.00(1) COMPANION LIVE LOAD FACTOR = 1.00 0 / 50 B- C 0/0 AUTOSOLVE RIGHT HEEL ONLY -18.5 -18.5 0.07 (4) -18.5 -18.5 0.08 (4) TRUSS PLATE MANUFACTURER IS NOT E-D RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PROFESSIONAL CLASSION AL CLASS PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.10 (B) (INPUT = 0.95) 100505065 ROVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040105


JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY BAYVIEW WELLINGTON DRWG NO. 437026 J3W TRUSS DESC Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:02:38 2024 Page 1 Tamarack Roof Truss, Burlington ID:AgdClOSevh3uN4Xyl113N2zyjH4-6o5vmJko4LPBQxwc0lTRSRS8TQ59kPCfMg?ul6zUnxl Scale: 1/2"=1 6.00 12 4x6 = С 4-3 31 G 2x4 || 3x4 = H2.5T 0-0 3-8-8 7-5-0 TOTAL WEIGHT = 17 X 24 = 403 lb PORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER **BUILDING DESIGNER** N. L. G. A. RULES **DESIGN CRITERIA** DESCR. SPF SPF BEARINGS FACTORED CHORDS SIZE 2x4 LUMBER DRY MAXIMUM FACTORED REQRD SPECIFIED LOADS: A - D B - E LL = DL = LL = DL = No.2 GROSS REACTION BRG 32.5 PSF DRY GROSS REACTION BRG CH. VERT 177 DOWN 181 HORZ 0 UPLIFT IN-SX 1-8 6.0 0.0 HORZ IN-SX PSF No.2 210 DRY: SEASONED LUMBER. -226 PSF 638 638 3-0 1-8 309 309 TOTAL LOAD = 45.9 SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) D SPACING = IN. C/C 24.0 PROVIDE ANCHORAGE AT BEARING JOINT D FOR 150 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT B FOR 226 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT E FOR 201 LBS FACTORED UPLIFT PLATES (table is in inches)
JT TYPE PLATES
B TMB1-I MT20 THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART LEN Y 3.0 4.0 3.0 4.0 6.0 4.0 9, NBCC 2015 BCFG TMWW-t BMW+w MT20 MT20 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) PROVIDE FOR 210 LBS FACTORED HORIZONTAL REACTION AT JOINT B BMW+w UNFACTORED REACTIONS
1ST LCASE MA MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE \ NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. WIND DEAD COMBINED SOIL 0/0 0/0 121 101 / 0 0/0 0/0 11/-72 20/0 0 / -236 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED 140 / 0 79/0 0/0 219 0/0 ROOF LIVE LOAD HORIZONTAL REACTIONS ALLOWABLE DEFL.(LL)= L/360 (0.25")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (0.25")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.09") 0/0 0/0 150 / -24 0/0 0 /0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D, B, E TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.


MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT. OR RIGID CEILING DIRECTLY APPLIED. CSI: TC=0.18/1.00 (C-D:1) , BC=0.51/1.00 (F-G:1) , WB=0.16/1.00 (C-F:1) , SSI=0.24/1.00 (E-F:1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED LOADING TOTAL LOAD CASES: (12) COMPANION LIVE LOAD FACTOR = 1.00 FACTORED MAX. FACTORED MAX. FACTORED TRUSS PLATE MANUFACTURER IS NOT VERT. LOAD LC1 MAX MAX.

(PLF) CSI (LC) UNBF
FROM TO LENG FORCE (LBS) RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. мемв. MEMB. FORCE CSI (LC) UNBRAC FR-TO LENGTH FR-TO -112.4 -112.4 0.15 (1) -112.4 -112.4 0.04 (1) -112.4 -112.4 0.13 (1) A- B B- I I- C 10.00 6.25 6.25 0.733-208 / 257 0.06 (1) NAIL VALUES NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873 -644 / 181 -646 / 229 0.16 (1) 0.00 (1) -225 / 85 C-D -46/0 -112.4 -112.4 0.18 (1) 6.25 -18.5 -18.5 0.20 (1) -18.5 -18.5 0.22 (1) -18.5 -18.5 0.51 (1) -18.5 -18.5 0.42 (1) 6.25 6.25 -343 / 588 B-H H- G G- F F- E -343 / 588 PLATE PLACEMENT TOL. = 0.250 inches -343 / 588 PLATE ROTATION TOL. ≈ 5.0 Deg. PROFESSIONAL THE PROFES JSI GRIP= 0.58 (B) (INPUT = 0.90) JSI METAL= 0.24 (F) (INPUT = 0.95) WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT WIND LOAD APPLIED IS DENIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (20-0.0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM), INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 6.0 PSF AND 7.4 PSF RESPECTIVELY. 100505065 POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040106

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 437026 18 TRUSS DESC Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:02:45 2024 Page 1 Tamarack Roof Truss, Burlington ID:AgdClOSevh3uN4Xyl113N2zyjH4-P90ZEipCRUIBm0yyxj54EwFK9EcttcUhzGCl2CzUnxe 1-3-8 Scale = 1:9.8 6.00 12 В Т1 Α D 3x4 =H2.5T 1-10-0 0-0 1-10-0 TOTAL WEIGHT = 3 X 6 = 19 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. RULES **DESIGN CRITERIA** BEARINGS FACTORED CHORDS SIZE LUMBER DESCR DRY DRY SPF No.2 No.2 MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: A - C B - D GROSS REACTION 32.5 PSF 2x4 GROSS REACTION BRG BRG TOP CH. LL = DL = HORZ UPLIFT IN-SX 6.0 0.0 7.4 JΤ VERT HORZ DOWN IN-SX PSF DRY: SEASONED LUMBER 64 329 -35 -101 1-8 3-0 1-8 1-8 BOT CH. LL = PSF PSF В 1-8 TOTAL LOAD = 45.9 PSF SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D SPACING = 24.0 IN. C/C PLATES (table is in inches)
JT TYPE PLATES PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT B FOR 150 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT D FOR 150 LBS FACTORED UPLIFT W LEN Y THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART TMB1-I 9. NBCC 2015 THIS DESIGN COMPLIES WITH:
-PART 9 OF BCBC 2018, NBC-2019AE
-PART 9 OF OBC 2012 (2019 AMENDMENT) NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. PROVIDE FOR 72 LBS FACTORED HORIZONTAL REACTION AT JOINT B UNFACTORED REACTIONS
1ST LCASE MA MA) SNOW COMPONENT REACTIONS
LIVE PERM.LIVE WIND 0/0 43 35 / -13 0/0 0/0 4/-31 9/0 180 / 0 DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. 227 0/0 0 / -102 0/-22 10/0 0/0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED HORIZONTAL REACTIONS 0/0 0/0 51 / -4 0/0 0 /0 ROOF LIVE LOAD BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, D ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00") <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. CSI: TC=0.15/1.00 (A-B:1) , BC=0.06/1.00 (B-E:13) , WB=0.00/1.00 (E-F:1) , SSI=0.15/1.00 (B-F:1) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. LOADING TOTAL LOAD CASES: (13) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 CHORDS FACTORED MAX. FACTORED COMPANION LIVE LOAD FACTOR = 1.00 MAX. FACTORED FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBF
FROM TO LENG
-112.4 -112.4 0.15 (1) 10.0.
-112.4 -112.4 0.14 (1) 6.2
-112.4 -112.4 0.04 (13) 6.2 MEMB. FORCE MEMB. FORCE CSI (LC) UNBRAC LENGTH FR-TO (LBS) (LBS) CSI (LC) FR-TO TRUSS PLATE MANUFACTURER IS NOT A-B B-F F-C 0/33 -23 / 153 10.00 E-F 0.00(1) RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. -19/0 NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN -18.5 -18.5 0.06 (13) 10.00 -18.5 -18.5 0.06 (13) 10.00 PROFESSIONAL CITY OF THE PROFESSIONAL CITY OF MT20 650 371 1747 788 1987 1873 CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN PLATE PLACEMENT TOL. = 0.250 inches WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (20-0.0) FT.IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM).INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 6.0 PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.05 (B) (INPUT = 0.95) LICE PSF AND 7.4 PSF RESPECTIVELY. 100505065 POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040111


JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 437026 TRUSS DESC Version 8.630 S Aug 30 2023 MITEk Industries, Inc. Tue Apr 2 11:02:32 2024 Page 1 ID:AgdClOSevh3uN4Xyl113N2zyjH4-HekeVFf2VVf1i0SSgUM1DAD83?AcLkGm IYZ5SzUnxr Tamarack Roof Truss, Burlington 1-1 в 10.00 12 446 II В1 C D 3x4 II 2x4 \\ 1-7-0 1-5-15 1-7-0 TOTAL WEIGHT = 2 X 8 = 15 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER MIF BUILDING DESIGNER BEARINGS FACTORED N. L. G. A. RULES CHORDS SIZE DESIGN CRITERIA LUMBER DESCR SPF SPF SPF DRY MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: D - A 2x4 No.2 TOP CH. LL = DL = BOT CH. LL = DRY DRY No.2 No.2 GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ U RRG 32.5 PSF IN-SX 1-13 6.0 0.0 7.4 PSF PSF 97 97 0 1-8 1-8 ALL WEBS 2v3 DRY No.2 SPF DRY: SEASONED LUMBER. TOTAL LOAD SPACING = 24,0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) B, C THIS TRUSS IS DESIGNED FOR RESIDENTIAL UNFACTORED REACTIONS

1ST LCASE MAX./MIN.

JT COMBINED SNOW PLATES (table is in inches)
JT TYPE PLATES
A TMVW+p MT20 OR SMALL BUILDING REQUIREMENTS OF PART W 4.0 2.0 LEN Y 6.0 Edge 4.0 COMPONENT REACTIONS
LIVE PERM.LIVE WIND
0/0 0/0 0/0 9, NBCC 2015 SOIL 0/0 0/0 0/0 THIS DESIGN COMPLIES WITH: BMW1+w MT20 68 49/0 19/0 49/0 0/0 - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) Edge - INDICATES REFERENCE CORNER OF PLATE CSA 086-14 TOUCHES EDGE OF CHORD. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D, B - TPIC 2014 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. LOADING TOTAL LOAD CASES: (4) CSI: TC=0.04/1.00 (A-B:1) , BC=0.01/1.00 (C-D:4) , WB=0.00/1.00 (A-G:1) , SSI=0.05/1.00 (A-B:1) MAX. FACTORED FACTORED MAX. FACTORED DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 FACTORED
VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO
0.0 0.0 0.01 (1) 7.81 A-C
-112.4 -112.4 0.04 (1) 10.00 мемв. FORCE FORCE MAX COMP=1.10 SHEAR=1.10 TENS= 1.10 (LBS) (LBS) CSI (LC) FR-TO COMPANION LIVE LOAD FACTOR = 1.00 0.00 (1) D- A A- B -84 / 0 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE D- C 0/0 -18.5 -18.5 0.01 (4) 10.00 TRUSS MANUFACTURING PLANT. NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.05 (A) (INPUT = 0.90) JSI METAL= 0.02 (A) (INPUT = 0.95) PROFESSIONAL ENGINEERS C. M. HEYENS 100505065 POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040102

EWP DESIGN INC.

(905) 832-2250

FAX (905) 832-0286

RESPONSIBILITIES AND SPECIFICATIONS

RESPONSIBILITIES

- 1. EWP DESIGN INC. is responsible for the design of trusses as individual components.
- It is the responsibility of others to ascertain that the design loads utilized on each drawing meet or exceed the actual dead load imposed by the structure, the live load imposed by the intended use and the snow load imposed by local building code or authorities with jurisdictions.
- 3. All dimensions are to be verified by the owner, contractor, architect or other authorities with jurisdictions before truss fabrication.
- 4. EWP DESIGN INC. bears no responsibility for the erection of trusses. Persons erecting trusses are cautioned to seek professional advice regarding the temporary and permanent bracing for the system. Bracing shown on EWP DESIGN INC. drawing is specified for the truss as a component only and forms an integral part of the truss design.
- 5. It is the truss manufacturer's responsibility to ensure that trusses are manufactured in conformance with specifications of EWP DESIGN INC. as outlined below.

SPECIFICATIONS

- 1. Trusses designed by EWP DESIGN INC. conform to the relevant section of the Ontario Building Code of Canada (Part 9 or Part 4) or to the Canadian code for farm buildings, whichever applies to the building type, as indicated on the EWP DESIGN INC. drawings, and conform to the design procedures established by the Truss Plate Institute of Canada. Unit stresses used for truss designs are as per the edition of CSA-O86 shown on EWP DESIGN INC. drawings.
- Lumber is to be the size, species and grade as specified on EWP DESIGN INC. drawings.
- 3. Moisture content of lumber shall not exceed 19% in service unless specified otherwise.
- 4. Metal connector plates shall be applied to both faces of truss at each joint and shall be positioned as specified.
- 5. Top chords of trusses are assumed to be continuously braced laterally by roof sheathing or by purlins at intervals not exceeding 12.5 times the thickness of top chord member.
- 6. Bottom chords shall be laterally braced at intervals not exceeding 3M (10') o.c., where rigid ceiling is not applied directly to the underside of chords.

THESE DRAWINGS CONSTITUTE THE PROPERTY OF EWP DESIGN INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY THE ALPA LUMBER GROUP, AND WILL BE RETRACTED BY EWP DESIGN INC. IF UTILIZED FOR ANY OTHER PURPOSE.

February 1, 2019

STANDARD DETAIL MSD2015-H

Issued: SEPTEMBER 22, 2020

Expiry:

APRIL 30, 2022

TOE-NAIL CAPACITY DETAILS

LATERAL AND WITHDRAWAL RESISTANCE OF BEARING ANCHORAGE BY TOE-NAILS

			SPF	D. FIR	SPF	D. FIR
COMMON	3.00	0.144	122	139	30	42
WIRE	3.25	0.144	127	144	32	45
	3.50	0.160	152	173	38	52
COMMON	3.00	0.122	96	108	26	36
SPIRAL	3.25	0.122	97	108	28	40
JPIRAL	3.50	0.152	142	161	36	50
3.25" Gun nail	3.25	0.120	94	105	28	39

Note: If using truss with D. Fir lumber and SPF bearing plate, use tabulated SPF values in table.

Nail	type:		Common wire	Common spiral	Common wire	Common spiral	Gun Nail
Dian	neter	(in.)	0.160	0.152	0.144	0.122	0.120
Leng	th	(in.)	3.50	3.50	3.00	3.00	3.25
2x4	SPF		2	2	3	3	3
2x6	SPF		4	4	4	5	5
2x4	D. FII	R	2	2	2	2	2
2x6	D. FII	R	3	3	3	4	4

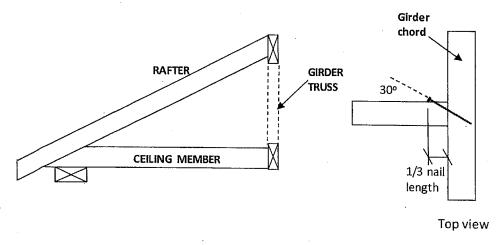
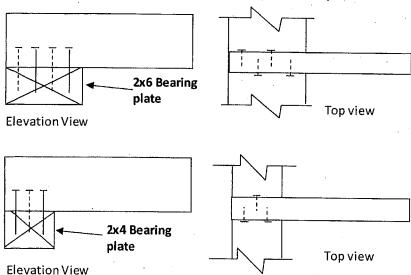


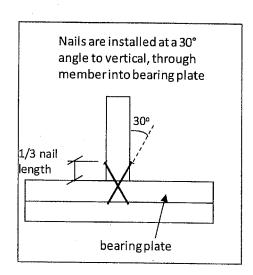
Figure 1: Toe-Nailing Rafter / Ceiling Member to Girder Truss

December 21, 2020

Page **1** of **2** © 2020 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, <u>www.mitek.ca</u>

STANDARD DETAIL MSD2015-H


Issued: SEPTEMBER 22, 2020


Expiry:

APRIL 30, 2022

TOE-NAIL CAPACITY DETAILS

Figure 2: Toe-Nail Anchorage to Bearing Plate for Uplift

NOTES:

- Rafter and ceiling members may be connected to top and bottom chords of girder truss by toe-nailing the members into
 the girder chords (see fig. 1), provided the factored vertical reactions of the supported members do not exceed the
 lateral resistance of the toe-nails. Mechanical connectors (hangers) are required if factored vertical reactions exceed
 the toe-nail capacity, or if the connection must resist horizontal loads (loads perpendicular to the face of girder or rafter).
- 2. Trusses, rafters or ceiling members may be anchored to the bearing plate with toe-nails (see fig. 2), provided that the factored uplift reactions due to wind or earthquake loads do not exceed the withdrawal resistance of the toe-nails. Mechanical anchors (tie-downs) are required for reactions that exceed the toe-nail withdrawal capacity. Toe-nail anchorage to bearing plates is NOT permitted if uplift reactions are generated from gravity loads (snow, floor live, dead).
- 3. Tabulated toe-nail resistances on page 1 are for **one** toe-nail. Multiply unit values by the number of nails used in the connection. Maximum number of nails in a connection shall not exceed the tabulated limits shown on page 1 for a given lumber size /species.
- 4. Nail values are based on specific gravity of G = 0.42 (SPF) and G = 0.49 (D. Fir).
- 5. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member.
- 6. For wind / earthquake loads, tabulated lateral resistances may be multiplied by 1.15 (K_D factor). No increases are permitted for tabulated withdrawal resistances.
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA O86-19, Clause 12.9.

December 21, 2020

Page 2 of 2

©2020 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, www.mitek.ca

LUS — Double-Shear Joist Hangers

SIMPSON Strong-Tie

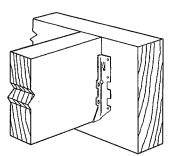
LUS28

Н

All LUS hangers have double-shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

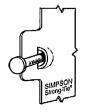
Design:


- Factored resistances are in accordance with CSA O86-14 and CSA O86:19.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- · Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire
- Double-shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Options:


· These hangers cannot be modified


			Dimensi	one (in	١	Eact	Fasteners		Factored Resistance (lb.)				
Model			Dillicital	0115 (111	.)	rasii	::::::::::::::::::::::::::::::::::::::	D.F	ir–L	S-P-F			
No.	Ga.	w		_		F		Uplift	Normal	Uplift	Normal		
		VV	Н	В	d _e 1	Face	Joist	(K _D =1.15)	(K _D =1.00)	(K _D =1.15)	(K ₀ =1.00)		
LUS24	18	1%16	31/8	13⁄4	1 15/16	(4) 10d	(2) 10d	710	1630	645	1155		
LUS24-2	18	31/8	31/8	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435		
LUS26	18	19/16	43/4	13/4	3%	(4) 10d	(4) 10d	1420	2170	1290	1630		
LUS26-2	18	31/8	41/8	2	4	(4) 16d	(4) 16d	1720	2595	1545	1920		
LUS26-3	18	4%	43/16	2	31/4	(4) 16d	(4) 16d	1720	2595	1545	2340		
LUS28	18	19/16	6%	13/4	3¾	(6) 10d	(6) 10d	1420	2520	1290	1790		
LUS28-2	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575		
LUS28-3	18	45%	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375		
LUS210	18	19/16	7 13/16	13/4	37/8	(8) 10d	(4) 10d	1420	2785	1290	2210		
LUS210-2	18	31/8	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195		
LUS210-3	18	45/8	83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375		

 $^{1.\,}d_{\text{e}}$ is the distance from the seat of the hanger to the highest joist nail.

Dome doubleshear nailing prevents tabs breaking off (available on some models).

US Patent 5,603,580

Doubleshear nailing top view.

This technical bulletin is effective until December 31, 2024, and reflects information available as of July 1, 2022. This information is updated periodically and should not be relied upon after December 31, 2024. Contact Simpson Strong-Tie for current information and limited warranty or see strongtle.com.

© 2022 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

T-SPECLUS22 7/22 exp. 12/24

HUS/LJS — Double-Shear Joist Hangers

SIMPSON Strong-Tie

All hangers have double-shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: See table Finish: G90 galvanized

Design:

- · Factored resistances are in accordance with CSA O86-14 and CSA O86:19.
- Uplift resistances have been increased 15%. No further increase is permitted.
- · Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

Options:

Model

No.

LJS26DS

HUS26

HUS28

HUS210

Ga.

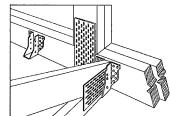
18 19/16 5 3½ 45/8

16 15/8

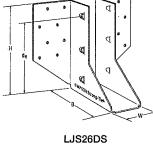
16

16

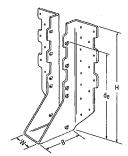
HUS1.81/10 16 113/16

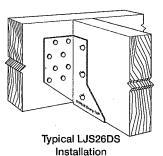

w

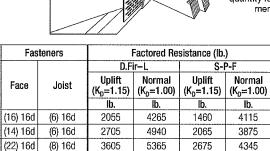
15/8 73/32 3 63/32


15/8 93/32

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- Double-shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications


· See current catalogue for options





HUS210 (HUS26, HUS28, similar)

5795

6450

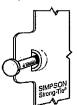
3 1. de is the distance from the seat of the hanger to the highest joist nail.

3

Dimensions (in.)

5% 3

9


В Н

 d_e^1

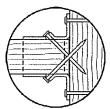
315/16

7³1/₃₂ (30) 16d

8 (30) 16d

Dome doubleshear nailing prevents tabs breaking off (available on some models).

US Patent 5,603,580


Doubleshear nailing side view. Do not bend tab back.

4505

4505

(10) 16d

(10) 16d

Doubleshear nailing top view.

4740

5200

This technical bulletin is effective until December 31, 2024, and reflects information available as of July 1, 2022. This information is updated periodically and should not be relied upon after December 31, 2024 Contact Simpson Strong-Tie for current information and limited warranty or see strongtle.com.

© 2022 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

T-SPECHUS22 7/22 exp. 12/24

4010

4010

HGUS — Double-Shear Joist Hangers

SIMPSON
StrongTie

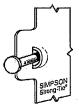
All HGUS hangers have double-shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

Design:

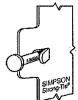
- Factored resistances are in accordance with CSA O86-14 and CSA O86:19.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

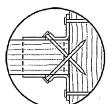

- Use all specified fasteners
- Nails: 16d = 0.162" dia x 3½" long common wire
- Double-shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Options:

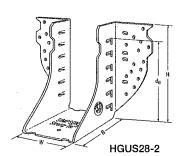
· See current catalogue for options

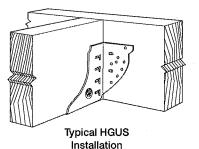

		C	Dimensi	ons (in)	Faste	ners			sistance (II	
Model				· · · · · · · · · · · · · · · · · · ·	,			D.Fir-L		S-P-F	
No.	Ga.	147	,,	В	١.,	F	laist	Uplift	Normal	Uplift	Normal
		W	Н	В	d _e ¹	Face	Joist	$(K_D=1.15)$	$(K_D = 1.00)$	(K _D =1.15)	(K _D =1.00)
HGUS26	12	1%	5%	5	45/32	(20) 16d	(8) 16d	2685	6625	2685	5700
HGUS26-2	12	35/16	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-3	12	4 15/16	5½	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-4	12	6%16	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS28	12	1%	71/8	5	61/8	(36) 16d	(12) 16d	3310	7675	3100	6900
HGUS28-2	12	35/16	73/16	4	61/8	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS28-3	12	4 15/16	71/4	4	6%	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS28-4	12	6%16	73/16	4	61/8	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS210-2	12	35/16	93/16	4	81/8	(46) 16d	(16) 16d	6840	14015	4855	10270
HGUS210-3	12	4 15/16	91/4	4	83/8	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS210-4	12	6%	93/16	4	81/8	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS212-4	12	6%	10%	4	101/8	(56) 16d	(20) 16d	7640	14995	5425	10645
HGUS214-4	12	6%	12%	4	111/8	(66) 16d	(22) 16d	10130	16400	7195	11645

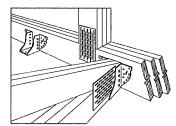
^{1.} $\ensuremath{d_{\text{e}}}$ is the distance from the seat of the hanger to the highest joist nail.



Dome doubleshear nailing prevents tabs breaking off (available on some models).


US Patent 5,603,580




Doubleshear nailing side view. Do not bend tab back.

Doubleshear nailing top view.

Typical HGUS Installation (Truss designer to provide fastener quantity for connecting multiple members together)

This technical builletin is effective until December 31, 2024, and reflects information available as of July 1, 2022. This information is updated periodically and should not be relied upon after December 31, 2024. Contact Simpson Strong-Tie for current information and limited warranty or see strongtle.com.

© 2022 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

T-SPECHGUS22 7/22 exp. 12/24

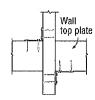
H — Seismic and Hurricane Ties

SIMPSON Strong-Ti

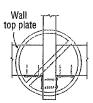
The H connector series provides wind and seismic ties for trusses and rafters.

Material: 18 gauge Finish: G90 galvanized

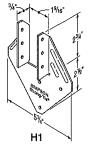
Design:

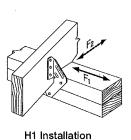

- Factored resistances are in accordance with CSA O86-14 and CSA O86:19.
- Factored resistances have been increased 15%. No further increase is permitted,

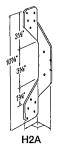
Installation:

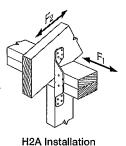

- Use all specified fasteners
- Nails: 8d = 0.131" dia. x 2½" long common wire, 8d x 1½" = 0.131" x $1\frac{1}{2}$ long, 10d x $1\frac{1}{2}$ " = 0.146" x $1\frac{1}{2}$ " long
- H1 can be installed with flanges facing outwards
- Hurricane ties do not replace solid blocking

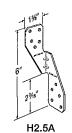
Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows: Factored Shear/Resisting Shear + Factored Tension/Resisting Tension \leq 1.0.

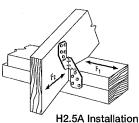

Hurricane Tie Installations to Achieve Twice the Load (Top View)

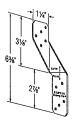


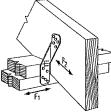


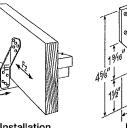


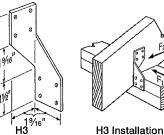

Nailing into both sides of a single ply 2x truss may cause the wood to split.

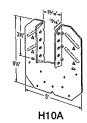


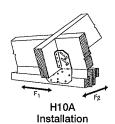












H2.5T **H2.5T Installation** (Nails into both top plates)

			Fasteners			Fac	tored Re	sistance ((lb.)	
			rasielleis			D.Fir-L			S-P-F	
Model No.	Ga.				Uplift	Nor	mal	Uplift	Nor	mal
MO.		To Rafter	To Plates	To Studs	upiiit	F ₁	F ₂	opini	F ₁	F ₂
					(K _D =1.15)				(K _D =1.15)	
H1	18	(6) 8d x 1½"	(4) 8d	-	740	685	300	680	485	215
H2A	18	(5) 8d x 1½"	(2) 8d x 11/2"	(5) 8d x 1½"	830	220	75	590	155	55
H2.5A	18	(5) 8d	(5) 8d		805	160	160	755	160	160
H2.5T	18	(5) 8d	(5) 8d	_	835	175	240	740	160	210
НЗ	18	(4) 8d	(4) 8d	_	740	180	265	615	125	190
H10A	18	(9) 10d x 11/2"	(9) 10d x 11/2"	_	1735	795	410	1505	565	290

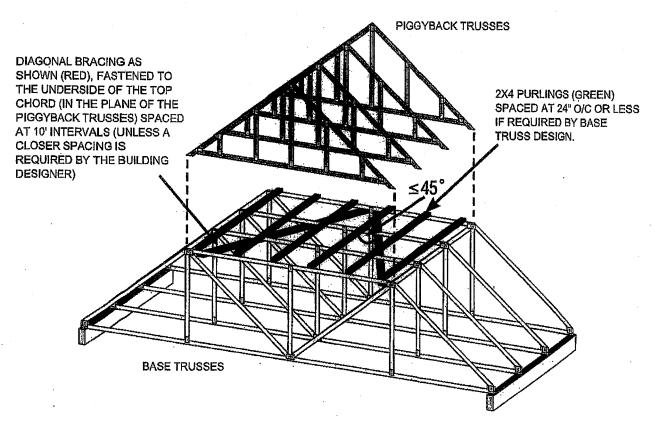
- 1. Factored resistances have been increased 15% for earthquake or wind loading with no further increase
- 2. Factored resistances are for one anchor. A minimum rafter thickness of 21/2" must be used when framing anchors are installed on each side of the joist and on the same side of the plate.
- 3. When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- 4. Hurricane ties are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable. For a Continuous Load Path. connections must be on same side of the wall.

This technical bulletin is effective until December 31, 2024, and reflects information available as of July 1, 2022, This information is updated periodically and should not be relied upon after December 31, 2024. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com

© 2022 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

T-SPECH22 7/22 exp. 12/24

TECH-NOTES


TN 15-001 Piggyback Bracing

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

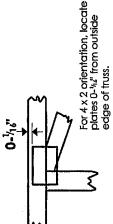
Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

Disclaimer:

OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technical are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to the information provided but has developed this technical confirmation where it is not currently readily available.



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x. y offsets are indicated.
Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss and fully embed teeth.

plates 0-1/4" from outside

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 4 ×

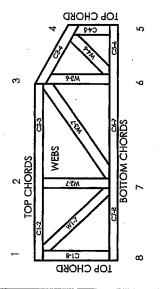
width measured perpendicular to slots. Second dimension is The first dimension is the plate the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.


Industry Standards:

Truss Design Procedures and Specifications for Light Metal Plate Connected Wood Trusses Design Standard for Bracing. DSB-89: BCSI:

Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MiTek® All Rights Reserved

POWER TO PERFORM."

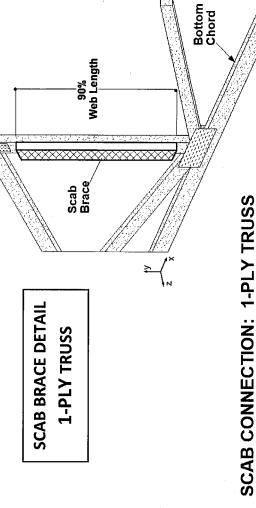
MITek Engineering Reference Sheet: MII-7473C rev. 10-'08

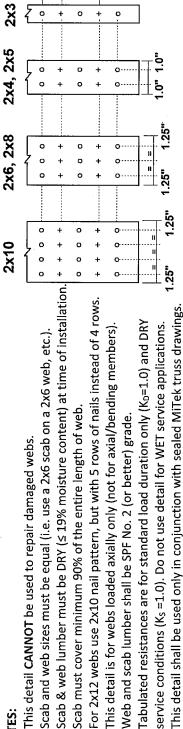
General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSL.
- Trus bracing must be designed by an engineer. For wide trus spacing, individual trieral braces themselves may require bracing, or alternative T, I, or Eliminator bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses. mi
- designer, erection supervisor, property owner and all other interested parties. Provide copies of this truss design to the building 4
- Cut members to bear lightly against each other. ьų
- Place plates on each face of truss at each Joint and embed fully. Knots and wane at Joint locations are regulated by TPIC. ۰,
- Design assumes trusses will be suitably protected from the environment in accord with TPIC. 7
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. ထံ
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. ۶.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purins provided at spacing indicated on design.
- 14. Bottom chards require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
 - Connections not shown are the responsibility of others.
- 16. Do not cut or after truss member or plate without prior approval of an engineer.
 - Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all partions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with TPIC Quality Criteria. 8

STANDARD DETAIL MSD2015-P


Expiry: APRIL 30, 2024 Issued: APRIL 27, 2022


ALTERNATIVE WEB BRACING SOLUTIONS

The scab brace detail shown on this page provides an alternative method of bracing compression webs of single ply trusses. Where the original exceed the tabulated values shown below. This detail applies to web lengths of 4.0 ft. to 10.0 ft. only. For intermediate web lengths, do not design calls for web bracing, the scab-brace is an acceptable alternative provided that the factored axial force in the web member does not interpolate, use the tabulated value of the longer length. (ex. For a 6.25 ft. web, use the tabulated values for a 6.5 ft. web)

Top Chord

		Maximu	m factored v	Maximum factored web force, lbs (1-Ply Truss)	s (1-Ply Trus	(Ss
	Web	2x3	2x4	2x5	2x6	2x8+
4.0		4331	6064	7796	9529	12561
4.5		3794	5312	6829	8347	11003
2.0		3285	4599	5913	7227	9527
(1) 5.5		2823	3952	5081	6210	8186
		2415	3381	4347	5313	7003
		2063	2888	3713	4538	5982
E 7.0		1763	2468	3174	3879	5113
1.5		1510	2114	2718	3322	4379
8.0 8.0		1297	1816	2335	2854	3762
1		1117	1564	2011	2458	3240
9.0		996	1353	1740	2126	2803
9.5		840	1176	1512	1848	2436
10.0		733	1027	1320	1614	2127

Scab must cover minimum 90% of the entire length of web.

This detail CANNOT be used to repair damaged webs.

NOTES:

Web and scab lumber shall be SPF No. 2 (or better) grade.

9

2.5

PEO Certificate No. 10889485

3.0.

..0.9

+ 0.122" dia. x 3.0" nail driven from front face o 0.122" dia. x 3.0" nail driven from back face

A POLINCE OF ONTRAIO

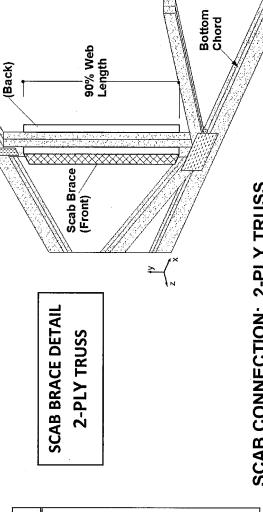
Note: Connect scabs to truss along their entire length.

©2021 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L32 4L5 | (800) 268-3434, www.mitek.ca Page 1 of 2

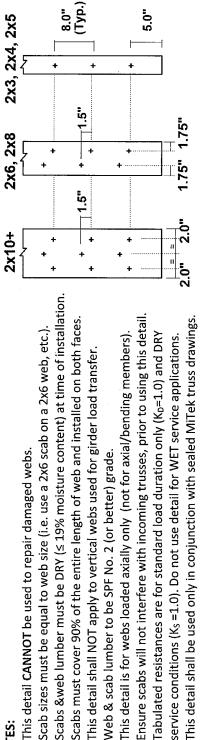
STANDARD DETAIL MSD2015-P

Issued: APRIL 27, 2022

Expiry: APRIL 30, 2024


ALTERNATIVE WEB BRACING SOLUTIONS

Scab Brace The scab brace detail shown on this page provides an alternative method of bracing compression webs of 2-PLY trusses. Where the original design calls for web bracing, the scab-brace is an acceptable alternative provided that the maximum factored axial force in the web member does not exceed the tabulated values shown below. This detail applies to web lengths of 4.0 Ft. to 10.0 Ft. only. For intermediate web lengths, do not interpolate, use the tabulated value of the longer length. (ex. For a 6.25 ft. web, use the tabulated values for a 6.5 ft. web)


Top Chord

	L		Maximu	Maximum factored web force, lbs (2-Ply Truss)	reb force, lb	s (2-Ply Trus	ss)
	I	Web	2x3	2x4	2x5	2x6	2x8+
7	4.0		8663	12128	15593	19058	25122
7	4.5		7588	10623	13659	16694	22006
(7	5.0		6570	9198	11826	14455	19054
져) ~,	5.5		5645	7903	10162	12420	16371
	6.0		4830	6762	8694	10626	14007
TĐ	6.5		4126	5776	7426	2206	11965
NΞ	7.0		3526	4937	6347	7758	10226
, . T 8	7.5		3020	4228	5436	6644	8758
~ 83/	8.0		2594	3632	4670	5708	7524
~ M	8.5		2235	3128	4022	4916	6480
J,	9.0		1933	2706	3479	4253	5606
J,	9.5		1680	2352	3024	3696	4872
ĭ	0.0		1467	2054	2640	3227	4254

REVIEWED

SCAB CONNECTION: 2-PLY TRUSS

Scabs must cover 90% of the entire length of web and installed on both faces.

This detail shall NOT apply to vertical webs used for girder load transfer.

Web & scab lumber to be SPF No. 2 (or better) grade.

Scab sizes must be equal to web size (i.e. use a 2x6 scab on a 2x6 web, etc.).

This detail CANNOT be used to repair damaged webs.

NOTES:

Ensure scabs will not interfere with incoming trusses, prior to using this detail

This detail is for webs loaded axially only (not for axial/bending members).

Tabulated resistances are for standard load duration only (K_D=1.0) and DRY

service conditions ($K_S = 1.0$). Do not use detail for WET service applications.

This detail shall be used only in conjunction with sealed MiTek truss drawings.

Note: Connect scabs to truss along their entire length. + MITEK MIFLK006 Screw @ 8 in. cc

LA CO22-05-03 RS CO22-05-03 RS CO22-05-03 RS CO22-05-03 RS CO22-05-03 RS CONDOCION RECORDAR RECO AOUNCE OF ONTRAIO

PEO Certificate No. 10889485

Page 2 of 2

9.

©2021 MITek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, www.mitek.ca