

Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information						
Building number, street name				Lot:		
TH-2 W	ОВ			Lot/con.		
Bradford	Postal code	Plan number/ other description	r			
B. Individual who reviews and takes responsibility for desig	n activities	T				
Name David DaCosta		Firm		gtaDesigns Inc.		
Street address 2985 Drew Road	d, Suite 202		Unit no. Lot/con.			
Municipality Mississauga	Postal code L4T 0A4	Province Ontario	E-mail	hvac@gtadesi	ans ca	
	Fax number	Ontario	Cell nu		<u>gno.ou</u>	
(905) 671-9800						
C. Design activities undertaken by individual identified in Se	ection B. [Bu	ilding Code Tabl	le 3.5.2.1	of Division C]		
☐ House ☑ HVAC – Ho	ouse		☐ B	building Structural		
☐ Small Buildings ☐ Building Se	rvices		☐ P	Plumbing – House		
☐ Large Buildings ☐ Detection, I	_ighting and Po	wer	☐ P	lumbing – All Buildings		
☐ Complex Buildings ☐ Fire Protect	tion			n-site Sewage System	S	
Description of designer's work Mod	el Certification	1		Project #:	PJ-00204	
				Layout #:	JB-08087	
Heating and Cooling Load Calculations Main	Х	Builder		Bayview Wellingto	n	
Air System Design Alternate Residential mechanical ventilation Design Summary Area Sq ft:	1815	Project		Green Valley		
Residential System Design per CAN/CSA-F280-12	1015	Model		TH-2 WOB		
Residential New Construction - Forced Air		SB-12		Package A1		
D. Declaration of Designer						
(print name) I review and take responsibility for the 3.2.4 Division C of the Building Cod	ne design work		registered u	under subsection		
classes/categories. Individual BCIN: Firm BCIN:			-	TOWN OF BRADFORD BUILDING DEPARTMEN PLANS EXAMINED ONTARIO BUILDING CODATE: 04/22/2024	IT	
☑ I review and take responsibility for "other designer" under subsection 3						
Individual BCIN:	3290	64				
Basis for exempt	ion from registr	ation:	Division	C 3.2.4.1. (4)		
☐ The design work is exempt from the	registration an	d qualification requi	rements of	the Building Code.		
Basis for exempt	ion from registr	ation and qualification	on:			
I certify that:						
The information contained in this schedule is true to the best of m	y knowledge.					
I have submitted this application with the knowledge and consent	of the firm.		_			
January 17, 2024		Mane 1	4C			
Date		Signature of	Designer			

NOTE:

Page 1

1. For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d), of Division C, Article 3.2.5.1. of Division C and all other persons who are exempt from qualifications under Subsections 3.2.4. and 3.2.5.of Division C.

Schedule 1 does not require to be completed a holder of a license, temporary license, or a certificate of authorization, issed by the
Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited licence to
practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

REVIEWED

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

Page 2

Heat loss and gain calcul	ation summary sheet CSA-F280-M12 Standard
These documents issued for the use of Box	ayview Wellington Layout No.
and may not be used by any other persons without authorization. Documents	· · · · · · · · · · · · · · · · · · ·
Building	·
Address (Model): TH-2 WOB	Site: Green Valley
Model:	Lot:
City and Province: Bradford	Postal code:
Calculation	s based on
Dimensional information based on:	VA3 Design25/Jan/2022
Attachment: Townhome	Front facing: East/West Assumed? Yes
No. of Levels: 3 Ventilated? Included	Air tightness: 1961-Present (ACH=3.57) Assumed? Yes
Weather location: Bradford	Wind exposure: Sheltered
HRV? VanEE V150H75NS	Internal shading: Light-translucent Occupants: 4
Sensible Eff. at -25C 60% Apparent Effect. at -0C 80%	Units: Imperial Area Sq ft: 1815
Sensible Eff. at -0C 75%	
Heating design conditions	Cooling design conditions
Outdoor temp -9.4 Indoor temp: 72 Mean soil temp: 48	Outdoor temp 86 Indoor temp: 75 Latitude: 44
Above grade walls	Below grade walls
Style A: As per OBC SB12 Package A1 R 22	Style A: As per OBC SB12 Package A1 R 20ci
Style B:	Style B:
Style C:	Style C:
Style D:	Style D:
Floors on soil	Ceilings
Style A: As per Selected OBC SB12 Package A1	Style A: As per Selected OBC SB12 Package A1 R 60
Style B:	Style B: As per Selected OBC SB12 Package A1 R 31
Exposed floors	Style C:
Style A: As per Selected OBC SB12 Package A1 R 3	Doors
Style B:	Style A: As per Selected OBC SB12 Package A1 R 4.00
Windows	Style B:
Style A: As per Selected OBC SB12 Package A1 R 3.5	5 Style C:
Style B:	Skylights
Style C:	Style A: As per Selected OBC SB12 Package A1 R 2.03
Style D:	Style B:
Attached documents: As per Shedule 1 Heat Loss/	Gain Caculations based on CSA-F280-12 Effective R-Values
Notes: Residential New	Construction - Forced Air
Calculations	performed by
Name: David DaCosta	Postal code: L4T 0A4
Company: gtaDesigns Inc.	Telephone: (905) 671-9800
Address: 2985 Drew Road, Suite 202	Fax:
	E-mail hvac@gtadesigns.ca

Bayview Wellington

Date:

z

Builder:

Trunk

Air System Design

SB-12 Package A1 January 17, 2024

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under Division C subsection 3.2.5. of the

Building Code.

Project #

PJ-00204 JB-08087

Page 3

System 1 Mane Alex **Green Valley** TH-2 WOB Individual BCIN: 32964 David DaCosta Lavout # Project: Model: BOILER/WATER HEATER DATA: DESIGN LOAD SPECIFICATIONS AIR DISTRIBUTION & PRESSURE FURNACE/AIR HANDLER DATA: A/C UNIT DATA: Level 1 Net Load 13,597 btu/h **Equipment External Static Pressure** 0.5 "w.c. Make Make 2.0 Ton Amana Туре Amana AMEC960403ANA Level 2 Net Load 10,244 btu/h **Additional Equipment Pressure Drop** 0.225 "w.c. Model Model Cond.-2.0 Level 3 Net Load 8.332 btu/h **Available Design Pressure** 0.275 "w.c. Input Btu/h 40000 Input Btu/h Coil · 2.0 Return Branch Longest Effective Length 38400 Level 4 Net Load 0 btu/h 300 ft Output Btu/h Output Btu/h " W C ΔWH 32.173 btu/h 0.138 "w.c. 0.50 Min.Output Btu/h Total Heat Loss R/A Plenum Pressure E.s.p. Blower DATA: **Total Heat Gain** 18,334 btu/h S/A Plenum Pressure 0.14 "w.c. Water Temp deg. F. W2 AFUE Blower Speed Selected: ECM Heating Air Flow Proportioning Factor 0.0240 cfm/btuh 96% **Blower Type** 20562 ft³ **Building Volume Vb** Cooling Air Flow Proportioning Factor 0.0421 cfm/btuh Aux. Heat (Brushless DC OBC 12.3.1.5.(2)) Ventilation Load 1.118 Btuh. SB-12 Package Package A1 Heating Check 772 cfm 772 cfm R/A Temp 70 dea. F. Cooling Check Ventilation PVC 63.6 cfm S/A Temp 116 deg. F. Supply Branch and Grill Sizing Diffuser loss 772 cfm **Cooling Air Flow Rate** 0.01 "w.c. Temp. Rise>>> 46 deg. F Selected cfm> 772 cfm Level 1 Level 2 S/A Outlet No 2 5 10 Room Use BASE BASE BASE FAM/KIT FAM/KIT PWD MUD FOY Btu/Outlet 3399 3399 3399 3399 2070 2070 2070 378 1516 2139 **Heating Airflow Rate CFM** 82 82 82 82 50 50 50 9 36 51 32 32 32 32 92 92 92 2 42 Cooling Airflow Rate CFM **Duct Design Pressure** 0.13 **Actual Duct Length** 40 18 23 25 30 38 11 18 29 Equivalent Length 70 80 130 90 70 70 70 70 70 70 70 70 70 70 80 100 120 120 120 100 70 70 70 70 70 70 70 70 Total Effective Length 110 98 139 113 70 70 70 70 70 70 70 70 70 105 130 158 131 138 129 70 70 70 70 70 70 70 70 70 **Adjusted Pressure** 0.12 0.13 0.09 0.12 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.12 0.10 0.08 0.10 0.09 0.10 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 **Duct Size Round** 3 **Outlet Size** 4x10 4x10 4x10 4x10 3x10 3x10 3x10 4x10 Trunk В В С Level 3 Level 4 S/A Outlet No. 11 12 13 15 14 16 17 Room Use MAST MAST FNS RATH RFD 2 BFD 3 LAUND Btu/Outlet 1378 1378 376 266 2394 2422 118 33 57 **Heating Airflow Rate CFM** 33 3 52 52 Cooling Airflow Rate CFM 6 72 90 43 3 **Duct Design Pressure** 0.13 38 **Actual Duct Length** 51 28 41 53 39 **Equivalent Length** 110 150 130 150 120 120 140 70 148 201 168 178 161 173 179 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 Total Effective Length 70 70 Adjusted Pressure 0.09 0.06 0.08 0.07 0.08 0.08 0.07 0.19 **Duct Size Round** 5 2 6 5 Outlet Size 4x10 3x10 3x10 3x10 3x10 4x10 3x10 4x10 Trunk R C C Return Branch And Grill Sizing **Grill Pressure Loss** 0.02 "w.c **Return Trunk Duct Sizing** Supply Trunk Duct Sizing R/A Inlet No 1R 2R 3R 4R 5R 6R 7R 8R 9R 10R 11R Trunk CFM Press. Round Rect. Size Trunk CFM Press. Round Rect. Size Inlet Air Volume CFM 163 189 105 105 105 105 **Duct Design Pressure** 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 772 0.05 24x10 452 11.5 14x8 12x10 Drop 14.5 0.06 772 264 47 42 0.05 R 0.08 a n **Actual Duct Length** 5 42 Z 24 v 8 18x10 RYR 10y7 **Equivalent Length** 155 90 135 115 150 190 50 50 50 50 50 Υ C 320 0.07 10.0 12x8 10x10 **Total Effective Length** 160 99 144 162 192 232 50 50 50 50 50 х 0.07 Adjusted Pressure 0.12 0.08 0.07 0.06 0.05 0.24 0.24 0.24 0.24 0.24 w **Duct Size Round** 7.0 7.5 6.0 6.0 6.0 6.0 ν F FLC G Inlet Size U Inlet Size 14 14 14 14 s EVIEW

Q

Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800

e-mail hvac@gtadesigns.ca

					Date:		January 1	7 2024							-9.4 86 22	2 48.2	,		Page 4
	Builder:	Bayview We	iiington					.,				Weather Data	Bradford	44	0 00 22	- 10.2		Drainet #	PJ-00204
2012 OBC	Project:	Green Va	illey	М	odel:		TH-2 V	VOB		_	System 1	Heat Loss ^T	81.4 deg. F	Ht gain ^T	11 deg. F	GTA	A: 1815	Project # Layout #	JB-08087
114																			
Level 1 Run ft. exposed wall A			BASE 65 A		Α		Α		Α		Α	Α	A	Α	А		Α	А	
Run ft. exposed wall E			19 B		В		В		В		В	В	В	B	B		В	B	
Ceiling heigh			5.5 AG		5.5 AG		5.5 AG		5.5 AG		5.5 AG	5.5 AG	5.5 AG	5.5 AG	5.5 A		5.5 AG	5.5 A	
Floor area			649 Area		Area		Area		Area		Area	Area	Area	Area	Aı		Area		Area
Exposed Ceilings A			Α		Α		Α		Α		A	Α	Α	Α	Α		Α	A	
Exposed Ceilings E	1		В		В		В		В		В	В	В	В	В		В	В	3
Exposed Floors			Flr		Fir		Flr		Flr		Flr	Flr	Flr	Flr	FI	lr	Flr	F	-Ir
Gross Exp Wall A			358																
Gross Exp Wall E			162																
Components				Gain	Loss	Gain	Loss	Gain	Loss	Gain	Loss Gain	Loss Gain	Loss Gain	Loss	Gain Lo	oss Gair	n Loss	Gain L	oss Gain
North Shaded East/Wes																			
South																			
WOB Windows	3.55	22.93 27.86		1783															
Skyligh		40.10 88.23		1700															
Doors		20.35 2.75		58															
Net exposed walls A		3.85 0.52		175															
Net exposed walls E		4.78 0.65		63															
Exposed Ceilings A	59.22	1.37 0.64																	
Exposed Ceilings E	27.65	2.94 1.37																	
Exposed Floors	29.80	2.73 0.17																	
Foundation Conductive Heatloss			5141																
otal Conductive Heat Loss			7502																
Heat Gair				2079															
Air Leakage Heat Loss/Gair Case 1		0.7547 0.0423 0.07 0.09		88															
Ventilation Case 2		17.58 11.88																	
Case 3		0.061 0.09																	
Case 3		0.06 0.09		178															
Heat Gain People)	239		178															
Heat Gain People Appliances Loads	1 =.25			178															
Heat Gain People	1 =.25	239 percent 2946	13597	3048															
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total 13,597 Level HG Total 3,048 Level	1 =.25	239 percent 2946 10% otal HL for per room	13597	3048	PW 5 A	D	Mt 11 A	JD	FO 15 A	Y	A	A	A	A					4
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total 13,597 Level HG Total 3,048 Level	1 =.25	239 percent 2946 10% otal HL for per room	13597	3048	PW 5 A B	D		JD	FC 15 A B	Y	A B	A B	A	A B	A		A	A	
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total 13,597 Level HG Total 3,048 Level	1 =.25	239 percent 2946 10% otal HL for per room	13597 FAM/KI 54 A	3048 T	5 A	D	11 A	JD	15 A										
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total 3,597 Level HG Total 3,048 Level	1 =.25	239 percent 2946 10% otal HL for per room	13597 FAM/KI 54 A B	3048 T	5 A B	D	11 A B		15 A B		В	В	В	В	10.0		B 10.0 Area	10.0	
Heat Gain People Appliances Loade Duct and Pipe loss Level HL Total 13,597 Level HG Total 3,048 Level HG Total 3,048 Run ft. exposed wall A Run ft. exposed wall F Ceiling heigh Floor area Exposed Ceilings A	1 =.25	239 percent 2946 10% otal HL for per room	FAM/KI 54 A B 10.0 576 Area A	3048 T	5 A B 10.0 34 Area A	D	11 A B 12.0 26 Area A		15 A B 11.0 58 Area A		B 10.0 Area A	B 10.0 Area A	B 10.0 Area A	B 10.0 Area A	B 10.0 Ai A	rea	B 10.0 Area A	10.0 A A	3 Area A
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total 13,597 Level HG Total 3,048 Run ft. exposed wall R Run ft. exposed wall E Ceiling heigh Floor ares Exposed Ceilings E	1 =.25	239 percent 2946 10% otal HL for per room	13597 FAWKI 54 A B 10.0 576 Area A B	3048 T	5 A B 10.0 34 Area A B	D	11 A B 12.0 26 Area A B		15 A B 11.0 58 Area A B		B 10.0 Area A B	B 10.0 Area A B	B 10.0 Area A B	B 10.0 Area A B	B 10.0 Ar A B	rea	B 10.0 Area A B	B 10.0 A A B	3 Area A 3
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total 13,597 evel HG Total 3,048 Level 2 Run ft. exposed wall A Run ft. exposed wall B Ceiling heigh Floor aret Exposed Ceilings A Exposed Ceilings B Exposed Floors	1 = .25	239 percent 2946 10% otal HL for per room	FAM/KI 54 A B 10.0 576 Area A B Fir	3048 T	5 A B 10.0 34 Area A B Fir	D	11 A B 12.0 26 Area A B FIr		15 A B 11.0 58 Area A B Fir		B 10.0 Area A	B 10.0 Area A	B 10.0 Area A	B 10.0 Area A	B 10.0 Ai A	rea	B 10.0 Area A	B 10.0 A A B	3 Area A
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total 13,597 Level HG Total 3,048 Run ft. exposed wall E Ceiling heigh Floor aree Exposed Ceilings E Exposed Ceilings E Exposed Ceilings E Gross Exp Wall A	1 = .25	239 percent 2946 10% otal HL for per room	13597 FAWKI 54 A B 10.0 576 Area A B	3048 T	5 A B 10.0 34 Area A B	D	11 A B 12.0 26 Area A B		15 A B 11.0 58 Area A B		B 10.0 Area A B	B 10.0 Area A B	B 10.0 Area A B	B 10.0 Area A B	B 10.0 Ar A B	rea	B 10.0 Area A B	B 10.0 A A B	3 Area A 3
Heat Gain People Appliances Loads Duct and Pipe loss evel HL Total 13,597 evel HG Total 3,048 Level 2 Run ft. exposed wall 4 Run ft. exposed wall 6 Ceiling heigh Floor are Exposed Ceilings Exposed Floors Gross Exp Wall 4 Gross Exp Wall 6	1 = .25	239 percent 2946 10% otal HL for per room al HG per room x 1.3	FAM/KI 54 A B 10.0 576 Area A B Fir	3048	5 A B 10.0 34 Area A B Fir 50		11 A B 12.0 26 Area A B Fir 132		15 A B 11.0 58 Area A B Fir		B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe lost evel HL Total evel HG Total Run ft. exposed wall A Run ft. exposed wall A Run ft. exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Floors Gross Exp Wall A Gross Exp Wall B Components	1 = .25	233 percent 2946 10% otal HL for per room x 1.3	13597 FAM/Ki 54 A B 10.0 576 Area A B Fir 540	3048 T	5 A B 10.0 34 Area A B Fir		11 A B 12.0 26 Area A B FIr		15 A B 11.0 58 Area A B Fir		B 10.0 Area A B	B 10.0 Area A B	B 10.0 Area A B	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total Level HG Total Run ft. exposed wall E Ceiling heigh Floor are Exposed Ceilings E Exposed Ceilings E Components North Shadec	1 = .25	239 percent 2946 10% 10% otal HL for per room x 1.3 HG per room x 1.3 Loss Gain 22.93 11.62	FAM/KI 54 A B 10.0 576 Area A B Fir 540 Loss	3048	5 A B 10.0 34 Area A B Fir 50		11 A B 12.0 26 Area A B Fir 132		15 A B 11.0 58 Area A B Fir 165 Loss	Gain	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe lost Level HL Total 13,597 Level HG Total 3,048 Level HG Total 3,048 Run ft. exposed wall A Run ft. exposed wall A Fun ft. exposed Cellings A Exposed Cellings A Exposed Cellings A Exposed Cellings A Exposed Floors Gross Exp Wall A Gross Exp Wall B Components	1 = .25 Tota Tota R-Values 3.55 3.55	239 percent 2946 10% otal HL for per room x 1.3 HG per room x 1.3 Loss Gain 22.93 11.62 22.93 29.56	FAM/KI 54 A B 10.0 576 Area A B Fir 540 Loss	3048	5 A B 10.0 34 Area A B Fir 50		11 A B 12.0 26 Area A B Fir 132		15 A B 11.0 58 Area A B Fir	Gain	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss evel HL Total 13,597 evel HG Total 3,048 Level 2 Run ft. exposed wall 4 Run ft. exposed wall 4 Ceiling heigh Floor ares Exposed Ceilings E Exposed Floors Gross Exp Wall 4 Gross Exp Wall 4 Components North Shadec East/Wes	R-Values 3.55 3.55	239 percent 2946 10%	13597 FAM/Ki 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697	3048	5 A B 10.0 34 Area A B Fir 50		11 A B 12.0 26 Area A B Fir 132		15 A B 11.0 58 Area A B Fir 165 Loss	Gain	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total 13,597 Level HG Total 3,048 Level HG Total 3,048 Run ft. exposed wall F Ceiling heigh Floor ares Exposed Ceilings E Exposed Ceilings E Exposed Floors Gross Exp Wall F Components North Shadec East/Wes Soutt Existing Windows Skyligh	1 = .25 Total Total	239 percent 2946 10% otal HL for per room x 1.3 HG per room x 1.3 Loss Gain 22.93 21.56 22.93 22.56 22.93 22.56 40.90 23.66 40.10 88.23	FAM/KI 54 A B 10.0 576 Area A B Fir 540 Loss	3048	5 A B 10.0 34 Area A B Fir 50		11 A B 12.0 26 Area A B Fir 132 Loss	Gain	15 A B 11.0 58 Area A B Fir 165 Loss	Gain 66 562	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loade Duct and Pipe loss Level HL Total Level HG Total Run ft. exposed wall A Run ft. exposed wall A Run ft. exposed wall E Ceiling heigh Floor area Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Floors Gross Exp Wall A Gross Exp Wall A Gross Exp Wall A Sexposed Ceilings A Exposed Floors Sexp Wall A Gross Exp Wall A Gross Exp Wall A Gross Exp Wall A Existing Windows Skyligh Doors	R-Values 3.55 3.55 1.99 2.03	239 2946 10%	13597 FAM/Ki 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697	3048	5 A B 10.0 34 Area A B Fir 50 Loss	Gain	11 A B 12.0 26 Area A B Fir 132 Loss	Gain	15 A B 11.0 58 Area A B Fir 165 Loss 19 4:	Gain 6 562	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total 13,597 Level HG Total 3,048 Level HG Total 3,048 Level HG Total 3,048 Level HG Total 3,048 Level HG Total 13,597 Run ft. exposed wall E Ceiling heigh Floor are Exposed Ceilings E Exposed Ceilings E Exposed Floors Gross Exp Wall I Gross Exp Wall I Component North Shadec East/Wes Soutt Existing Windows Skyligh Doors Net exposed walls A	R-Values 3.55 3.55 1.99 2.03 4.00	239 percent 2946 10%	FAM/KI 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697	3048	5 A B 10.0 34 Area A B Fir 50	Gain	11 A B 12.0 26 Area A B Fir 132 Loss	Gain	15 A B 11.0 58 Area A B Fir 165 Loss 19 4:	Gain 6 562	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe lost Level HL Total 13,597 Level HG Total 3,048 Run ft. exposed wall A Run ft. exposed wall A Run ft. exposed Cellings A Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shadec East/Wes Soutt Existing Windows Skyligh Doors Net exposed walls A Net exposed walls A	R-Values 3.55 3.55 1.99 2.03 4.00 17.03	239 percent 2946 10% 10% otal HL for per room x 1.3 HG per room x 1.3 Loss Gain 22.93 11.62 22.93 22.56 22.93 22.56 40.90 23.66 40.10 88.23 20.35 2.75 4.78 0.65 9.58 1.29	FAM/KI 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697	3048	5 A B 10.0 34 Area A B Fir 50 Loss	Gain	11 A B 12.0 26 Area A B Fir 132 Loss	Gain	15 A B 11.0 58 Area A B Fir 165 Loss 19 4:	Gain 6 562	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total Level HG Total Run ft. exposed wall for Exposed Ceilings for Exposed Ceilings for Exposed Ceilings for Gross Exp Wall for Gross Exp Wall for Exposed Ceilings for Exposed Ceilings for Gross Exp Wall for Exposed Ceilings for Exposed Cei	R-Values 3.55 3.55 1.99 2.03 4.00 17.03 8.50	239 percent 2946 10% otal HL for per room x1.3 HG per room x1.3 HG per room x1.3 11.62 22.93 11.62 22.93 22.50 40.90 23.66 40.10 88.23 20.35 2.75 4.78 0.65 9.58 1.28 1.37 0.64	FAM/KI 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697	3048	5 A B 10.0 34 Area A B Fir 50 Loss	Gain	11 A B 12.0 26 Area A B Fir 132 Loss	Gain	15 A B 11.0 58 Area A B Fir 165 Loss 19 4:	Gain 6 562	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total Level 13,597 Level HG Total Run ft. exposed wall f Run ft. exposed Wall g Exposed Cellings R Exposed Cellings R Run ft. exposed Wall g Run ft. exposed wall g Run ft. exposed wall g Run ft. exposed walls g Ret exposed walls g Exposed Cellings R Exposed Cellings R Exposed Cellings R	R-Values 3.55 3.55 3.55 3.55 3.55 3.55 3.55 2.03 4.00 4.00 4.00 5.22 27.65	239 percent 2946 10%	13597 FAM/KI 54 A B 10.0 576 Area A B Filr 540 Loss 74 1697	3048	5 A B 10.0 34 Area A B Fir 50 Loss	Gain	11 A B 12.0 26 Area A B Fir 132 Loss	Gain	15 A B 11.0 58 Area A B Fir 165 Loss 19 4:	Gain 6 562	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss evel HL Total 13,597 evel HG Total 3,048 Level 12 Run ft. exposed wall A Run ft. exposed wall A Run ft. exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Floors Gross Exp Wall A Gross Exp Wall A Gross Exp Wall B Components North Shadec Estives Soutt Existing Windows Skyligh Doors Net exposed walls A Net exposed walls B Exposed Ceilings A	R-Values 3.55 3.55 3.55 3.55 3.55 3.55 3.55 2.03 4.00 4.00 4.00 5.22 27.65	239 2944	13597 FAM/KI 54 A B 10.0 576 Area A B Filr 540 Loss 74 1697	3048	5 A B 10.0 34 Area A B Fir 50 Loss	Gain	11 A B 12.0 26 Area A B Fir 132 Loss	Gain	15 A B 11.0 58 Area A B Fir 165 Loss 19 4:	Gain 6 562	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total Level 1 3,597 Run ft. exposed wall 4 Run ft. exposed wall 5 Exposed Ceilings 6 Exposed Floors Gross Exp Wall 6 Components North Shadec East/Wes Skyligh Doors Net exposed walls 5 Net exposed walls 6 Exposed Ceilings 6 Exposed Ceilings 6 Exposed Ceilings 7 Exposed Ceilings 8 Exposed Floors Gross Exp Wall 8 Components North Shadec East/Wes Skyligh Doors Net exposed walls 5 Exposed Ceilings 6 Exposed Floors Exposed Floors Foundation Conductive Heatloss	R-Values 3.55 3.55 1.99 2.03 8.50 4.00 17.03 8.50 27.65 29.80	239 percent 2946 10%	FAM/KI 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697	3048	5 A B 10.0 34 Area A B Fir 50 Loss	Gain	11 A B 12.0 26 Area A B Flr 132 Loss 21 4 111 5	Gain 27 58 31 72	15 A B 11.0 58 Area A B 165 Loss 19 4:	Gain 66 562 15 39 11 85	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total Level 1 3,597 Run ft. exposed wall 4 Run ft. exposed wall 5 Exposed Ceilings 6 Exposed Floors Gross Exp Wall 6 Components North Shadec East/Wes Skyligh Doors Net exposed walls 5 Net exposed walls 6 Exposed Ceilings 6 Exposed Ceilings 6 Exposed Ceilings 7 Exposed Ceilings 8 Exposed Floors Gross Exp Wall 8 Components North Shadec East/Wes Skyligh Doors Net exposed walls 5 Exposed Ceilings 6 Exposed Floors Exposed Floors Foundation Conductive Heatloss	R-Values 3.55 3.55 3.55 3.55 3.55 2.03 4.00 17.03 8.59 2.27.65 2.27.65	239 2944	13597 FAM/KI 54 A B 10.0 576 Area A B Filr 540 Loss 74 1697	3048	5 A B 10.0 34 Area A B Fir 50 Loss	Gain	11 A B 12.0 26 Area A B Fir 132 Loss 21 4 111 5	Gain 27 58 31 72	15 A B 11.0 58 Area A B Fir 165 Loss 19 4: 14 2: 132 6:	Gain 66 562 15 39 11 85	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss evel HL Total 13,597 evel HG Total 3,048 Level HG Total 3,048 Run ft. exposed wall F Run ft. exposed wall F Celling heigh Floor ares Exposed Cellings E Exposed Floors Gross Exp Wall F Gross Exp Wall F Components North Shadec East/Wes Soutt Existing Windows Skyligh Doors Net exposed walls F Exposed Cellings A Exposed Cellings B Exposed Floors	R-Values 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65	239 2944	13597 FAM/Ki 54 A B 10.0 576 Area A B Fiir 540 Loss 74 1697	3048 T Gain 2187	5 A B 10.0 34 Area A B Fir 50 Loss	Gain 99 32	11 A B 12.0 26 Area A B Fir 132 Loss 21 4 111 5	Gain 27 58 31 72 58 129	15 A B 11.0 58 Area A B Fir 165 Loss 19 4: 14 2: 132 6:	Gain 66 562 95 39 11 85	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total Level 13,597 Level HG Total Run ft. exposed wall A Run ft. exposed wall A Run ft. exposed Ceilings A Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shades East/Wes South Existing Windows Skyligh Doors Net exposed walls A Net exposed walls A Net exposed Ceilings A Exposed Ceilings A Exposed Ceilings B Exp	R-Values 3.55 3.55 1.99 2.03 4.00 17.03 8.50 27.65 29.80	Loss Gain	FAM/KI 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697 466 2227	3048 T Gain 2187 301	5 A B 10.0 34 Area A B Fir 50 Loss 23	Gain 99 32	11 A B 12.0 26 Area A B Fir 132 Loss 21 4 111 5	Gain 27 58 31 72 58 129	15 A B 11.0 58 Area A B Fir 165 Loss 19 4: 114 2: 1132 6:	Gain 66 562 95 39 11 85	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total Level HG Total Run ft. exposed wall for Fiber Sexposed Colors Gross Exp Wall for Gross Exp Wall for Gross Exp Wall for Sexposed Floors Exposed Colors Foundation Conductive Heat Loss/Gair Foundation Conductive Heat Loss/Gair Air Leakage Hat Loss/Gair Duct and Pipe loss Replaced Floors Foundation Conductive Heat Loss/Gair Air Leakage Hat Loss/Gair	R-Values 3.55 3.55 3.55 3.55 3.55 2.03 4.00 17.03 8.59 2.27.65 2.280	239 Dercent 2946 10% 10% otal HL for per room x 1.3 HG per room x 1.3 11.62 22.93 21.62 22.93 22.50 40.90 23.66 40.10 88.23 20.35 2.75 4.78 0.65 9.58 1.29 1.37 0.46 2.94 1.37 x 0.5248 0.0423	13597 FAM/KI 54 A B 10.0 576 Area A B FIr 540 Loss 74 1697 466 2227	3048 T Gain 2187 301	5 A B 10.0 34 Area A B Fir 50 Loss 23	Gain 99 32	11 A B 12.0 26 Area A B Fir 132 Loss 21 4 111 5	Gain 27 58 31 72 58 129	15 A B 11.0 58 Area A B Fir 165 Loss 19 4: 114 2: 1132 6:	Gain 66 562 95 39 11 85	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total Level 13,597 Run ft. exposed wall 4 Run ft. exposed wall 5 Exposed Cellings 6 Exposed Floors Gross Exp Wall 4 Gross Exp Wall 4 Gross Exp Wall 8 Exposed Cellings 6 Exposed Giors Gross Exp Wall 8 Exposed Floors Gross Exp Wall 8 Exposed Floors Rote East/Wes Soutt Existing Windows Skyligh Doors Net exposed walls 6 Exposed Cellings 6 Exposed Cellings 7 Exposed Giors Exposed Giors Skyligh Doors Net exposed walls 6 Exposed Cellings 6 Exposed Cellings 6 Exposed Cellings 6 Exposed Cellings 6 Exposed Floors Foundation Conductive Heatloss otal Conductive Heat Loss Heat Gain Air Leakage Heat Loss/Gair Ventilation Case 2 Case 2	R-Values 3.55 3.55 1.99 2.03 4.000 17.03 8.50 29.80	Loss Gain	13597 FAM/KI 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697 466 2227	3048 T Gain 2187 301	5 A B 10.0 34 Area A B Fir 50 Loss 23	Gain 9 32 9 32 5 1	11 A B 12.0 26 Area A B Fir 132 Loss 21 4 111 5	Gain 27 58 31 72 58 129	15 A B 11.0 58 Area A B Fir 165 Loss 19 4: 132 6:	Gain 66 562 65 39 61 85 61 685 9 29	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People	R-Values 3.55 3.55 3.55 4.00 17.03 4.00 17.03 8.50 29.80	Loss Gain 22.93 HG per room x1.3 Loss Gain 22.93 11.62 22.93 22	13597 FAM/Ki 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697 466 2227 3924 2059	3048 T Gain 2187 301 2488 105 213	5 A B 10.0 34 Area A B Fir 50 Loss 23 12	Gain 9 32 9 32 5 1	11 A B 12.0 26 Area A B Fir 132 Loss 21 4 111 5	Gain 27 58 31 72 58 129 03 5	15 A B 11.0 58 Area A B Fir 165 Loss 19 4: 132 6:	Gain 66 562 65 39 61 85 61 685 9 29	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loade Appliances Loade Duct and Pipe loss Level HL Total Level HG Total Run ft. exposed wall E Ceiling heigh Floo are Exposed Ceilings E Exposed Ceilings E Exposed Ceilings E Exposed Floors Gross Exp Wall E Components North Shadec East/Wes Skyligh Poora Net exposed walls Exposed Ceilings E Exposed Ceilings A Exposed Ceilings E Exposed Ceilings A Exposed Ceiling	R-Values 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 27.65 29.80	Loss Gain	13597 FAM/Ki 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697 466 2227 3924 2059 227	3048 T Gain 2187 301 2488 105	5 A B 10.0 34 Area A B Fir 50 Loss 23 12	Gain 9 32 9 32 5 1	11 A B 12.0 26 Area A B Fir 132 Loss 21 4 111 5	Gain 27 58 31 72 58 129 03 5	15 A B 11.0 58 Area A B Fir 165 Loss 19 4: 132 6:	Gain 66 562 65 39 61 85 61 685 9 29	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loads Duct and Pipe loss Level HL Total Level HG Total Run ft. exposed wall F Run ft. exposed wall F Ceiling heigh Floor are Exposed Ceilings E Exposed Floors Gross Exp Wall F Components North Shadec East/Wes Soutt Existing Windows Skyligh Doors Net exposed walls A Net exposed Walls F Exposed Ceilings R Exposed Ceilings R Exposed Floors Gross Exp Wall B Components North Shadec East/Wes Soutt Existing Windows Skyligh Doors Net exposed walls F Exposed Ceilings R Exposed Ceilings R Exposed Ceilings R Exposed Floors Foundation Conductive Heatloss ortal Conductive Heat Gain Air Leakage Heat Loss/Gair Ventilation Case 2 Case 2 Case 2 Case 3 Appliances Loads Duct and Pipe loss	R-Values 3.55 3.55 1.99 2.03 4.00 17.03 8.50 27.65 29.80 x	Loss Gain	13597 FAM/KI 54 A B 10.0 576 Area A B Fir 540 Loss 74 1697 466 2227 3924 2059	3048 T Gain 2187 301 2488 105 213	5 A B 10.0 34 Area A B Fir 50 Loss 50 23	Gain 19 32 19 32 15 1 4 3	11 A B 12.0 26 Area A B Fir 132 Loss 21 4 111 5	Gain 27 58 31 72 58 129 03 5 55 11	15 A B 11.0 58 Area A B Fir 165 Loss 19 4: 14 2: 132 6:	Gain 6 562 5 39 1 85 11 685 19 29 8 59	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir
Heat Gain People Appliances Loade Appliances Loade Juct and Pipe loss Level HG Total Run ft. exposed wall fa Exposed Ceilings fa Exposed Ceilings fa Run ft. exposed wall fa Run ft. exposed wall fa Exposed Ceilings	R-Values 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65 29.80	Loss Gain	13597 FAM/Ki 54 A B 10.0 576 Area A B Fiir 540 Loss 74 1697 466 2227 3924 2059 227 3.0	3048 T Gain 2187 301 2488 105 213	5 A B 10.0 34 Area A B Fir 50 Loss 23 12	Gain 19 32 19 32 15 1 4 3	11 A B 12.0 26 Area A B Fir 132 Loss 21 4 111 5	Gain 27 58 31 72 58 129 03 5 55 11	15 A B 11.0 58 Area A B Fir 165 Loss 19 4: 14 2: 132 6:	Gain 6 562 5 39 1 85 11 685 19 29 8 59	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Area A B Fir	B 10.0 Ai A B Fi	rea Ir	B 10.0 Area A B Fir	B 10.0 A A B F	3 Area A 3 Fir

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under

Total Heat Loss 32,173 btu/h Total Heat Gain 18,334 btu/h Division C subsection 3.2.5. of the Building Code. Individual BCIN:

Mana Mate

David DaCosta

SB-12 Package Package A1

Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800

e-mail hvac@gtadesigns.ca

							e-maii mvac@gta	acoigno.ou			
	Builder:	Bayview Wellington	Date:	January 17, 2024			Weather Data	Bradford 44	-9.4 86 22 48.3	2 Projec	Page 5 # PJ-00204
2012 OBC	Project:	Green Valley	Model:	TH-2 WOB		System 1	Heat Loss ^T 81.4	deg. F Ht gain ^T	11 deg. F GT.	A: 1815 Layou	
Run ft. exposed Run ft. exposed Ceiling Floc	rall B eight area	19 A B 8.0 366 Area	AST ENS A B 8.0 a 135 Area	B 8.0 8.0		BED 3 15 A B 8.0 132 Area	LAUND A B 8.0 8.0	A A B B 8.0 Area Area	A B 8.0 Area	A B 8.0	A B 3.0 Area
Exposed Ceil Exposed Ceil Exposed	igs A igs B	366 A B 18 Fir	135 A B 25 Fir	61 A 225 B 35 Fir 154	В	132 A B 50 Fir	58 A B Fir	A A B B Fir Fir	A B Fir	A B Fir	A B Fir
Gross Exp	all A	152		72		120 Loss Gain	Loss Gain	Loss Gain Loss	Gain Loss Gai		Loss Gain
	West 3.55 2	22.93 11.62 22.93 29.56 32 22.93 22.50	734 946	22	504 650	33 757 975					
	rlight 2.03	40.90 23.66 40.10 88.23 20.35 2.75									
Net exposed v Net exposed v Exposed Ceil	IIIs B 8.50 Igs A 59.22	9.58 1.29 1.37 0.64 366	574 78 503 235 135 186	87 61 84 39 225		87 416 56 132 181 85	58 80 37				
Exposed Ceil Exposed oundation Conductive Heatl	oors 29.80 ss	2.94 1.37 2.73 0.17 18	49 3 25 68	4 35 96 6 154		50 137 8	80				
Hea Air Leakage Heat Los			860 254 1261 789 53 108	91 45 4 76 2	1473 853 625 36	1491 1125 632 48	37 34 2				
Ventilation (ase 2	17.58 11.88	108 108 15 478	8 10 4	85 73 239	86 96 1 239	5 3				
Appliances Duct and Pip evel HL Total 8,332	loss Total F	10% HL for per room 2	756 376	266	210 109 2394	1 212 136 2422	1.0 737				
Run ft. exposed Run ft. exposed	el 4 vall A vall B	per room x 1.3	2471 A B	A B	1703	2137 A B	A B	A A B	A B	A B	A B
Ceiling Floc Exposed Ceil Exposed Ceil Exposed Gross Exp	area Igs A Igs B Oors	Area A B Fir	a Area A B Fir	Area A B Fir	Area A B Fir	Area A B Fir	Area A B Fir	Area Area A A B B Fir Fir	Area A B Fir	Area A B Fir	Area A B Fir
Gross Exp Compo North S Eas	all B	Gain Los 22.93 11.62 22.93 29.56 22.93 22.50	s Gain Loss Gai	Loss Gain	Loss Gain	Loss Gain	Loss Gain	Loss Gain Loss	Gain Loss Gai	in Loss Gain	Loss Gain
Existing Win	dows 1.99 4 dight 2.03 4 doors 4.00 2	22.35 22.36 40.90 23.66 40.10 88.23 20.35 2.75 4.78 0.65									
Net exposed v Exposed Ceil Exposed Ceil Exposed Ceil	ills B 8.50 igs A 59.22 igs B 27.65	9.58 1.29 1.37 0.64 2.94 1.37 2.73 0.17									
al Conductive Heatler	ss Loss Gain										
Ventilation (ase 1	0000 0.0423 0.00 0.09 17.58 11.88 0.06 0.09									
Heat Gain F Appliances Duct and Pip	eople oads 1 =.25 perce	239 int 2946 10%						R	FV	IFW	
evel HL Total 0		IL for per room									

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under 32964

32,173 Total Heat Loss btu/h Total Heat Gain 18,334

Division C subsection 3.2.5. of the Building Code. Individual BCIN:

Name Met

David DaCosta

SB-12 Package Package A1

2

3 Х

4

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

Project # Layout #

Page 6 PJ-00204 JB-08087

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under

Division C subsection 3.2.5. of the Building Code. Individual BCIN: 32964 Mane State David DaCosta

Package: Project:	Package A1 Bradford	Model:	TH-2 WOB	
	RESIDENTIAL MECHANICAL			
	For systems serving one dwelling unit & co	nforming to the Ontario Building	Code, O.reg 332/12	
	Location of Installation	Total Ve	entilation Capacity 9.32.3.3((1)
Lot #	Plan #	Bsmt & Master Bdrm	2 @ 21.2 cfm	
Township	Bradford	Other Bedrooms Bathrooms & Kitchen	2 @ 10.6 cfm 4 @ 10.6 cfm	21.2 cfm
Roll #	Permit #	Other rooms	3 @ 10.6 cfm Total	
Address				
		Principal '	Ventilation Capacity 9.32.3.	.4(1)
Name	Builder	Master bedroom	1 @ 31.8 cfm	31.8 cfm
Name	Bayview Wellington	Other bedrooms	1 @ 31.8 cfm 2 @ 15.9 cfm	
Address	.,		Total	63.6
City		Police		
Tel	Fax	Princ Make	ipal Exhaust Fan Capacity Model	Location
16.	1 0//	VanEE	V150H75NS	Base
	Installing Contractor			Duss
Name		127 cfm		Sones or Equiv.
Address			eat Recovery Ventilator	
<u> </u>		Make	VanEE	
City		Model	V150H75NS 127 cfm high	80 cfm low
Tel	Fax	Sensible efficiency @	-25 deg C	60%
		Sensible efficiency @ (<u>75%</u>
	Combustion Appliances 9.32.3.1(1)		ance HRV/ERV to within 10 permental Ventilation Capacit	
a) x b) c c) d)	Direct vent (sealed combustion) only Positive venting induced draft (except fireplaces) Natural draft, B-vent or induced draft fireplaces Solid fuel (including fireplaces)	Total ventilation capac Less principal exhaust REQUIRED supplemen	ity capacity	137.8 63.6 74.2 cfm
e)	No combustion Appliances			
		Sun	oplemental Fans 9.32.3.5.	
	Heating System	Location	cfm Model	Sones
х	Forced air	Bath	50 XB50	0.3
	Non forced air Electric space heat (if over 10% of heat load)	Ens	50 XB50	0.3
	House Type 9.32.3.1(2)			
l x	Type a) or b) appliances only, no solid fuel	all fans HVI listed	Make Broan	or Equiv.
	Type I except with solid fuel (including fireplace) Any type c) appliance		Designer Certification	
IV —	Type I or II either electric space heat		s ventilation system has beer	n designed
Other	Type I, II or IV no forced air		Ontario Building Code.	. accignos

Type I or II either electric space heat Type I, II or IV no forced air	I hereby certify that this ventilation system has been designed in accordance with the Ontario Building Code.					
System Design Option	Name	David Da	aCosta			
Exhaust only / forced air system HRV WITH DUCTING / forced air system	Signature	Mara	16C+1			
HRV simplified connection to forced air system HRV full ducting/not coupled to forced air system	HRAI#	5190	BCIN#	32964		
Part 6 design	Date	January 1	7, 2024	\//		

Energy Efficiency Design Summary: Prescriptive Method

(Building Code Part 9, Residential)

Page 7

Project # PJ-00204 Layout # JB-08087

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

This form is used by a designer to demonstrate that the energy efficiency design of a house complies with the building code using the prescriptive method described in Subsection 3.1.1. of SB-12. This form is applicable where the ratio of gross area of windows/sidelights/skylights/glazing in doors and sliding glass doors to the gross area of peripheral walls is not more than 22%.

			For use by Princi	pal Authority				
Application No:				Model/Certification Number				
A. Project Information								
Building number, street name					Unit number	Lot/Con		
			TH-2 WOB					
Municipality Bradford			Postal code	Reg. Plan number	other description	•		
2.00.00								
B. Prescriptive Compliance [indica	ate the bu	ilding cod	e compliance packa	ge being employed	I in the house design]			
SB-12 Prescriptive (input design pa	age A1	Table	3.1.1.2.A					
C. Project Design Conditions								
Climatic Zone (SB-1):		Heat. E	quip. Efficiency		Space Heating F	uel Source		
Zone 1 (< 5000 degree days)		√ ≥ 92	2% AFUE		☐ Propane	☐ Solid Fuel		
Zone 2 (≥ 5000 degree days)		□ ≥8	34% < 92% AFUE	☐ Oil	☐ Electric	Earth Ene	rgy	
Ratio of Windows, Skylights & Glas	s (W, S	& G) to	Wall Area		Other Building Ch	aracteristics		
4 (14) 005 00 12 0400 0	612			Log/Post&Bea	am	Grade	sement	
Area of Walls = 325.06 m ² or 3498.9	ft²	W,S &	G % = <u>7.0%</u>	☐ Slab-on-grou	nd 🖂 Walkout Ba	sement		
		<u> </u>		☑ Air Conditioni	ng Combo Uni	t		
Area of W, S & G = <u>22.668</u> m ² or <u>244.0</u>	ft²	Utilize \	Window ☐ Yes	☐ Air Sourced H	Heat Pump (ASHP)			
		Avera	aging 🔽 No	☐ Ground Source	ce Heat Pump (GSHP)			
D. Building Specifications [provide	values a	nd ratings	s of the energy effici	ency components	proposed]			
Energy Efficiency Substitutions					· ·			
☐ ICF (3.1.1.2.(5) & (6) / 3.1.1.3.(5))								
Combined space heating and domestic	water he	eating sys	tems (3.1.1.2(7) / 3.	1.1.3.(7))				
Airtightness substitution(s)		Table 3.	1.1.4.B Required:	d: Permitted Substitution:				
Airtightness test required		Table 3.	Required:		Permitted S	Substitution:		
(Refer to Design Guide Attached)		rable 3.	Required:		Permitted S	Substitution:		
Building Component			SI/R-Values or	В	uilding Component	Efficienc	y Ratings	
			n U-Value¹				J.	
Thermal Insulation		ninal	Effective	1	oors Provide U-Value ⁽¹⁾ o			
Ceiling with Attic Space		0	59.22	Windows/Sliding	g Glass Doors		1.6	
Ceiling without Attic Space	_	1	27.65	Skylights		2	2.8	
Exposed Floor		1	29.80	Mechanicals				
Walls Above Grade	22		17.03	Heating Equip.(/	· · · · · · · · · · · · · · · · · · ·		6%	
Basement Walls		20.0ci	21.12	HRV Efficiency	(SRE% at 0°C)		5%	
Slab (all >600mm below grade)	х х		DHW Heater (El	0	.80			
	ab (edge only ≤600mm below grade) 10 11.13				DWHR (CSA B55.1 (min. 42% efficiency)) #Showers 2			
Slab (all ≤600mm below grade, or heated)	1	0	11.13	Combined Heati	ng System			
(1) U value to be provided in either W/(m²·K) or Bt	u/(h·ft·F) b	out not bo	th.					
E. Designer(s) [name(s) & BCIN(s), if	applicable	e, of perso				ts building code]		
Name			BCIN	Signati		111		
David DaCosta			329	964	Mane	146 4 .		
Form authorized by OHRA OROA LMCRO, Revised December 1, 20								

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

Page 8
Project # PJ-00204
Layout # JB-08087

Vent

Case

Case

Case

Package:Package A1System:System 1Project:BradfordModel:TH-2 WOB

Air Leakage Calculations

Building Air Leakage Heat Loss								
В	B LRairh Vb HL^T HLleak							
0.018	0.376	20562	81.4	11322				

Building Air Leakage Heat Gain							
В	LRairh Vb HG^T HG Leak						
0.018	0.092 20562 11 373						

	Air Leakage Heat Loss/Gain Multiplier Table (Section 11)							
Level	Level	Building	Level Conductive	Air Leakage Heat Loss				
Factor (LF)		Air	Heat Loss	Multiplier				
Level 1	0.5		7502	0.7547				
Level 2	0.3	11322	6473	0.5248				
Level 3	0.2	11322	5336	0.4243				
Level 4	0		0	0.0000				

		Air Leakage Heat Gain
HG LEAK	373	0.0423
BUILDING CONDUCTIVE HEAT GAIN	8826	0.0423

Levels							
1	2	4					
(LF)	(LF)	(LF)	(LF)				
1.0	0.6	0.5	0.4				
	0.4	0.3	0.3				
		0.2	0.2				
			0.1				

Levels this Dwelling

Ventilation Calculations

		ventilat	ventilation neat Loss						
		Ventilation	n Heat Loss						
С	PVC	HL^T	(1-E) HRV	HLbvent					
1.08	63.6	81.4	0.20	1118					

Ventilation Heat Less

	Ventilation Heat Gain						
С	PVC	HG^T	HGbvent				
1.1	63.6	11	756				

Case 1

Ventilation Heat Loss (Exhaust only Systems)

Ventilation Heat Gain (Exhaust Only Systems)
--

Case 1

Ventilation Heat Gain

Case 1 - Exhaust Only					
Level	Level LF HLbvent LVL Cond. HL Multiplier				
Level 1	0.5		7502	0.07	
Level 2	0.3	1118	6473	0.05	
Level 3	0.2	1110	5336	0.04	
Level 4	0		0	0.00	
	0		0		

Case 1 - Exh	aust Only	Multiplier
HGbvent	756	0.09
Building	8826	0.09

Case 2

Ventilation Heat Loss (Direct Ducted Systems)

Ventilation Heat Gain (Direct Ducted Systems)

Case 2

			Multiplier
O	HL^T	(1-E) HRV	17.58
1.08	81.4	81.4 0.20	

		Multiplier
С	HG^T	11.88
1.08	11	11.00

ase 3

Ventilation Heat Loss (Forced Air Systems

Case 3

Ventilation Heat Gain (Forced Air Systems)

	HLbvent	Multiplier
Total Ventilation Load	1118	0.06

		Vent Heat Gain	Multiplier	
HGbvent	HG*1.3	756	0.09	
756	1	730	0.09	

Case 3

Foundation Conductive Heatloss Level 1	Level 1	1421	Watts	4849	Btu/h	
Foundation Conductive Heatloss Level 2	Level 2		Watts		Btu/h	

Slab on Grade Foundation Conductive Heatloss Watts

Walk Out Basement Foundation Conductive Heatloss 86 Watts 292 Btu/h

Btu/h

Envelope Air Leakage Calculator

Supplemental tool for CAN/CSA-F280

Weather Station	Description
Province:	Ontario T
Region:	Bradford ▼
Weather Station Location:	Open flat terrain, grass
Anemometer height (m):	10
Local Shiel	ding
Building Site:	Suburban, forest ▼
Walls:	Heavy ▼
Flue:	Heavy ▼
Highest Ceiling Height (m):	8.08
Building Confi	guration
Type:	Semi-Detached
Number of Stories:	Two
Foundation:	Shallow
House Volume (m³):	582.30
Air Leakage/Ve	entilation
Air Tightness Type:	Present (1961-) (ACH=3.57)
	ELA @ 10 Pa. 322.44 cm ²
Custom BDT Data:	3.57 ACH @ 50 Pa
Mechanical Ventilation (L/s):	Total Supply: Total Exhaust:
	31.8
Flue #:	#1 #2 #3 #4
Diameter (mm):	0 0 0 0
Heating Air Leakage Rate (ACH/H):	0.376
Cooling Air Leakage Rate (ACH/H):	0.092

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Weat	her Sta	tion Description
Province:		Ontario
Region:		Bradford ▼
	Site D	escription
Soil Conductivity:		High conductivity: moist soil ▼
Water Table:		Normal (7-10 m, 23-33 Ft)
Fou	undatio	n Dimensions
Floor Length (m):	16.06	
Floor Width (m):	3.75	
Exposed Perimeter (m):	19.81	
Wall Height (m):	2.59	Annua de la constanta de la co
Depth Below Grade (m):	0.91	Insulation Configuration
Window Area (m²):	0.00	
Door Area (m²):	1.95	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ation Loads
Heating Load (Watts):		1421

Residential Slab on Grade Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Weat	Weather Station Description				
Province: Ontario					
Region:		Bradford ▼			
	Site D	escription			
Soil Conductivity:		High conductivity: moist soil ▼			
Water Table:		Normal (7-10 m, 23-33 Ft)			
	Floor D	Pimensions			
Length (m):	5.18				
Width (m):	0.61				
Exposed Perimeter (m):	5.79	Insulation Configuration			
	Radiant Slab				
Heated Fraction of the Slab:	0				
Fluid Temperature (°C):	33				
	Design Months				
Heating Month	Heating Month 1				
	Founda	ntion Loads			
Heating Load (Watts):		86			

FLEX DUCT
RIGID ROUND DUCT
SUPPLY DIFFUSER

LOW/HIGH WALL/KICK SUPPLY DIFFUSER
HRV EXHAUST GRILLE
SUPPLY AIR PIPE RISER
VOLUME DAMPER

DUCT CONNECTION TO JOIST LINING RETURN AIR PIPE RISER RETURN ROUND DUCT RETURN AIR GRILLE
(SIZE INDICATED ON DRAWING)
RETURN AIR RISER UP TO
FLOOR ABOVE
RETURN AIR FROM BASEMENT
SECOND FLOOR

S.A. R.A. T

SUPPLY AIR
RETURN AIR
THERMOSTAT
PRINCIPAL EXHAUST FAN SWITCH
W/R & PRINCIPAL EXHAUST FAN

KITCHEN EXHUST
100 CFM MIN. 6"
ALL OTHER FANS SHALL BE
A MIN. OF 50 CFM OR
OTHERWISE NOTED
AS PER 9.32.3.5

FOR THE PURPOSE OF
HEATLOSS/GAIN
CALCULATIONS ALL
ELEVATIONS HAVE BEEN
CONSIDERED

CIRCULATION PRINCIPAL
FAN SWITCH
TO BE CENTRALLY
LOCATED

INSULATE ALL DUCTS IN UNCONDITIONED SPACES MIN. RI2

ALL DUCTWORK LOCATED IN UNCONDITIONED AREAS MUST BE SEALED TO CLASS A LEVEL AS PER OBC PART 6-6.2.4.3.(II)

ALL DUCTWORK LOCATED IN CONDITIONED AREAS MUST BE SEALED TO CLASS C LEVEL AS PER OBC PART 6-6.2.4.3.(12)

THE UNDERSIGNED HAS REVIEWED AND TAKES RESPONSIBILITY FOR THIS DESIGN ON BEHALF OF GTA DESIGNS INC. AND HAS THE QUALIFICATIONS AND MEETS THE REQUIREMENTS SET OUT IN THE BUILDING CODE TO BE A DESIGNER

QUALIFICATION INFORMATION

Required unless design is exempt under Division C 3.2.5.1 of the $$\operatorname{\textsc{Ontario}}$$ building code

AVID DA COSTA Mare Molecular B.C.I.N. 32964

GROUND REWED

OBC 2012

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.I.I.2.A

NOTES

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO BUILDING CODE.
ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

SPECIFIED.
PROVIDE BALANCING DAMPERS ON ALL BRANCHES.
ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY)

INSULATE DUCTS IN UNCONDITIONED SPACES RI2 UNDERCUT ALL DOORS I" MIN. CONTRACTOR MUST WORK FROM APPROVED PLANS. ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE

RESPONSIBILITY OF GTA DESIGNS.
GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST
FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR
WITH IN THE DWELLING.

2985 DREW ROAD SUITE 202, MISSISSAUGA, ONT.

MISSISSAUGA, ON I.
L4T 0A4 TEL: 905-671-9800
EMAIL: DAVE@GTADESIGNS.CA
WEB: WWW.GTADESIGNS.CA

TO 177	BIU/HK.
32,173	
UNIT MAKE	OR EQUAL.
AMANA	
UNIT MODEL	OR EQUAL.
AMEC960403AN	
UNIT HEATING INPUT	BTU/HR.
40,000	
UNIT HEATING OUTPUT	BTU/HR.
38,400	
A/C COOLING CAPACITY	TONS.
2.0	
FAN SPEED	CFM
772	

_				-
Г	FANS	R/A	S/A	# OF RUNS
ŀ				3RD FLOOR
ı	3	3	7	2ND FLOOR
Г	I	2	6	IST FLOOR
ı		ı	4	BASEMENT
H				

LOOR PLAN				
	GROUND			
RAWN BY:	CHECKED:	SQFT		
JL	DD	1815		
AYOUT NO. DRAWING NO.				
JB-08087		M2		

DATE:
JANUARY 17, 2024

CLIENT:
BAYVIEW WELLINGTON

MODEL:
TH-2 WOB

GREEN VALLEY
BRADFORD,ONT.

CALE: 3/16" = 1'-0"

RETURN AIR GRILLE (SIZE INDICATED ON DRAWING) DUCT CONNECTION FLEX DUCT LOW/HIGH WALL/KICK SUPPLY DIFFUSER 4 TO JOIST LINING HRV EXHAUST GRILLE RETURN AIR RISER UP TO FLOOR ABOVE RIGID ROUND DUCT oll⊶ 0 SUPPLY AIR PIPE RISER RETURN AIR PIPE RISER 8 SUPPLY DIFFUSER RETURN AIR FROM BASEMENT SECOND FLOOR RETURN ROUND DUCT VOLUME DAMPER \mathbf{x}

> ~<u> </u>~ MASTER **BEDROOM** WIC **ENSUITE** 13 AUND. D 17**□** F 5"‡ SHOW 6R HW I4X8 Τ F)5' REFER TO GRAB BAR NOTE M 14 **BATH** (F)5 OTB ‡5R LW 4R LW 14X8 BEDROOM 2 BEDROOM 3 KOOF RFFOM ROOF BELOW

FOR THE PURPOSE OF HEATLOSS/GAIN CALCULATIONS ALL **ELEVATIONS HAVE BEEN** CONSIDERED

INSULATE ALL DUCTS IN UNCONDITIONED SPACES MIN. RI2

ALL DUCTWORK LOCATED IN UNCONDITIONED AREAS MUST BE SEALED TO CLASS A LEVEL AS PER OBC PART 6-6.2.4.3.(II)

ALL DUCTWORK LOCATED IN CONDITIONED AREAS MUST BE SEALED TO CLASS C LEVEL AS PER OBC PART 6-6.2.4.3.(12)

THE UNDERSIGNED HAS REVIEWED AND TAKES RESPONSIBILITY FOR THIS DESIGN ON BEHALF OF GTA DESIGNS INC. AND HAS THE QUALIFICATIONS AND MEETS THE REQUIREMENTS SET OUT IN THE BUILDING CODE TO BE A DESIGNER

QUALIFICATION INFORMATION

REQUIRED UNLESS DESIGN IS EXEMPT UNDER DIVISION C 3.2.5.1 OF THE ONTARIO BUILDING CODE

SIGNATURE OF DESIGNER

SECOND ROLLEWED

OBC 2012

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

SUPPLY AIR

RETURN AIR

THERMOSTAT

PRINCIPAL EXHAUST FAN SWITCH

W/R & PRINCIPAL EXHAUST FAN

R.A

1

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

SPECIFIED. PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY)

INSULATE DUCTS IN UNCONDITIONED SPACES RI2 UNDERCUT ALL DOORS I" MIN. CONTRACTOR MUST WORK FROM APPROVED PLANS. ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE

RESPONSIBILITY OF GTA DESIGNS. GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

2985 DREW ROAD SUITE 202,

MISSISSAUGA, ONT. L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA WEB: WWW.GTADESIGNS.CA

HEAT-LOSS	BTU/HR.
32,173	
UNIT MAKE	OR EQUAL.
AMANA	
UNIT MODEL	OR EQUAL.
AMEC960403ANA	
UNIT HEATING INPUT	BTU/HR.
40,000	
UNIT HEATING OUTPUT	BTU/HR.
38,400	
A/C COOLING CAPACITY	TONS.
2.0	
FAN SPEED	CFM
772	

		IAC	NAUL	
-	_			_
# OF RUNS	S/A	R/A	FANS	[
3RD FLOOR				
2ND FLOOR	7	3	3	ľ
IST FLOOR	6	2	- 1	1
BASEMENT	4	I		ı
				Ī
FLOOR PLAN:				

R PLAN	l:			
	SECOND	FI 0	0R	
/NI DV.	CHECKED:	SQFT	•••	
		Juli	LOIE	
IL .	DD		1815)
UT NO.		DRAWIN	G NO.	
IB-08087			1	43 l

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
JANUARY 17, 2024
BAYVIEW WELLINGTON
MODEL: TH-2 WOB

PROJECT **GREEN VALLEY** BRADFORD, ONT. 3/16" = 1'-0"

FLEX DUCT RIGID ROUND DUCT SUPPLY DIFFUSER

₫-+ 0

LOW/HIGH WALL/KICK SUPPLY DIFFUSER HRV EXHAUST GRILLE SUPPLY AIR PIPE RISER VOLUME DAMPER

DUCT CONNECTION TO JOIST LINING RETURN AIR PIPE RISER RETURN ROUND DUCT

4 \boxtimes

RETURN AIR GRILLE (SIZE INDICATED ON DRAWING) RETURN AIR RISER UP TO FLOOR ABOVE RETURN AIR FROM BASEMENT SECOND FLOOR

R.A 1

SUPPLY AIR RETURN AIR THERMOSTAT PRINCIPAL EXHAUST FAN SWITCH W/R & PRINCIPAL EXHAUST FAN

2R -⊠8 LOW HEADROOM

SUNKEN 4R COND

PARTIAL PLAN SUNKEN 1R COND

PARTIAL PLAN SUNKEN 2R OR MORE COND

THE UNDERSIGNED HAS REVIEWED AND TAKES RESPONSIBILITY FOR THIS DESIGN ON BEHALF OF GTA DESIGNS INC. AND HAS THE QUALIFICATIONS AND MEETS THE REQUIREMENTS SET OUT IN THE BUILDING CODE TO BE A DESIGNER

QUALIFICATION INFORMATION

REQUIRED UNLESS DESIGN IS EXEMPT UNDER DIVISION C 3.2.5.1 OF THE ONTARIO BUILDING CODE

REVIEWED

OBC 2012

3/16" = 1'-0"

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

SPECIFIED. PROVIDE BALANCING DAMPERS ON ALL BRANCHES.

ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY)

INSULATE DUCTS IN UNCONDITIONED SPACES RIZ UNDERCUT ALL DOORS I" MIN. CONTRACTOR MUST WORK FROM APPROVED PLANS. ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE

RESPONSIBILITY OF GTA DESIGNS. GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

2985 DREW ROAD SUITE 202,

MISSISSAUGA, ONT. L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA WEB: WWW.GTADESIGNS.CA

	BTU/HR.
32,173	
UNIT MAKE	OR EQUAL.
AMANA	
UNIT MODEL	OR EQUAL.
AMEC960403ANA	
UNIT HEATING INPUT	BTU/HR.
40,000	
UNIT HEATING OUTPUT	BTU/HR.
38,400	
A/C COOLING CAPACITY	TONS.
2.0	
FAN SPEED	CFM
//2	
	UNIT MAKE AMANA UNIT MODEL AMEC 960403ANA UNIT HEATING INPUT 40,000 UNIT HEATING OUTPUT 38,400 A/C COOLING CAPACITY 2.0

		1 70	1170	AI NEI TABLE OILLEA
# OF RUNS	S/A	R/A	FANS	JANUARY 17, 2024
3RD FLOOR				CLIENT:
2ND FLOOR	7	3	3	BAYVIEW WELLINGTON
IST FLOOR	6	2	- 1	MODEL:
BASEMENT	4	I		TH-2 WOB
FLOOR PLAN: PARTIAL DRAWN BY: CHECKED: JL DD	PLAN SQFT	N(S) 1815	5	GREEN VALLEY BRADFORD,ONT.
	DDAWIN	10. 110		CCALE

M4

JB-08087

2	_	MODEL:
I		TH-2 WOB
		PROJECT:
l(S)		GREEN VALLEY
1815		BRADFORD,ONT.