

Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

Building number, street name Municipality NNINFILL B. Individual who reviews and take Name MICHAEL O'ROURKE Street address BT5 FINLEY AVE Municipality	Postal code s responsibility fo	Plan number/ other desc r design activities	Unit no.	Lot/con.
NNINFILL 3. Individual who reviews and take Name MICHAEL O'ROURKE Street address 175 FINLEY AVE		r design activities	cription	
3. Individual who reviews and take Name MICHAEL O'ROURKE Street address 175 FINLEY AVE	s responsibility fo			
Name MICHAEL O'ROURKE Street address 875 FINLEY AVE	s responsibility fo			
MICHAEL O'ROURKE Street address 875 FINLEY AVE		Firm		
Street address 75 FINLEY AVE				
75 FINLEY AVE		HVAC DESIGNS LTD.	1	
Municipality			Unit no. 202	Lot/con. N/A
	Postal code	Province	E-mail	
AJAX	L1S 2E2	ONTARIO	info@hvacdesigns.ca	
elephone number	Fax number		Cell number	
905) 619-2300	(905) 619-2375		()	
C. Design activities undertaken by ☐ House	individual identifie ⊠ HVAC		ing Code Table 3.5.2.1 (☐ Building S	
☐ Small Buildings		g Services	☐ Plumbing	
☐ Large Buildings		ion, Lighting and Pov		- All Buildings
Complex Buildings Description of designer's work	☐ Fire Pr	otection Model:		ewage Systems
DUCT SIZING RESIDENTIAL MECHANICAL VENTILAT RESIDENTIAL SYSTEM DESIGN per CS D. Declaration of Designer	A-F280-12	ARY Project:	ALCONA	
MICHAEL O'ROURKE			declare that (choose o	one as appropriate):
	(print name)			
☐ I review and take responsibility Division C, of the Building Cod classes/categories.				f opriate
Individual BCIN: Firm BCIN:				
I review and take responsibility designer" under subsection		m qualified in the appropri on C, of the Building Code		
Individual BCIN: Basis for exemption	19669 n from registration and	d qualification:	O.B.C SENTENCE 3	3.2.4.1 (4)
The design work is exempt Basis for exemption from regis			rements of the Building Code	∋.
certify that:				
 The information contained I have submitted this appli 		ule is true to the best of m edge and consent of the fi		
July 6, 2022			Mehad OKO	inhe.
Date			Signatu	re of Designer

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4, and 3.2.5, of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2 Tel: 905.619.2300 Fax: 905.619.2375 Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

HWA DESTGNS LTD.

CSA-F280-12	SB-12 PACKAGE A1																														
83																															
HEAT LOSS AT °F.	HEAT GAIN AT °F.																					_									_
AT LOS	AT GAII	82				_								24							-	82		- «	, 7		•	-	398		1050
빞	뿦	ENS2	9	σ	•	2	80	}			9 210			45 220					,	• •	430	?	0.00		3	•	•			718	•
439	0.097	F									-		_				_						_	i 				_			
WINTER NATURAL AIR CHANGE RATE 0.439	SUMMER NATURAL AIR CHANGE RATE 0																														
AIR CH	AIR CH									•	1135	0	۰	102	•	75)			1312	!		70		0	0	398		2314
TURAL	TURAL	LOFT	24	o	,	216	LOSS	0	•	•	652			918			-		•		1772		0.34			-	•			2378	
TER NA	AER NA							-	-	-	78			188					'				0.10	_				•			
MIN	SUMN	Ŧ					GAIN		0		•			25		0	0	•				216			12	!	0	۰	398		813
		BATH	9	6		54	FOSS	0	0	186	0	0	0	225	0	0	0	•	0	•	4		10.67			0				687	
		L						_	_	∞	9	۰	-	46	-		-						0.20					•			_
21	9	4				_	SGAIN		•		•	0		6 136							۰	1418			76		0	240	398		2771
DATE: Jul-22	LO# 97836	BED	3	6		279	LOSS	0	٥					1226					0	0	227		0.67			0				3793	
DAT	2							_	-			_		251	_								0.20					-	_		
		5-3	_			7	٠							3 55								437		_	23		•	240	398		1428
	_	BED-3	13	6		117	FOS	•						1 493					0	•	866		0.67			0				1447	
	GFA: 2767						z			_	-	•		5									0.20					-			2
	9	7-5	_			6	-	•		0	۰	٥		4 171		•					2	1557		~	83		•	24	398		2962
		BED-2	4	6		369	COSS	0		۰	•	0	439	6 1544	•	•		0	0	0	2752		0 0.67	1847		0				4598	
								_	33	•	•	•	20	316	_	-	_	_					0.20					_			_
	6E																														
	TYPE: RL-6E	_				-	AIN	•	-	3	•	•	0	105	-	- 89	-	-				484			- Se		•		398		1180
	- 1	ENS	23	6		207	FOSS G	0			•			948				0	•		1433	•	0.34	490		0			"	1924	
		ш					3		0	13				194 9							-		0.10	4				0		=	
	ES						GAIN	•	1581		•			148				•				2001	_		107		•	480	398		3881
	N HOM	MBR	37	6		333	LOSS G	•	606	0	0	0	439	1339	0	594	0	0	0	0	3281	•	0.34	1122		0				4403	
	LINGTO						_	•	33	0	0	0	20	274		423		•					0.10	•				7		•	
_	N WEL				S	GAIN		15.0	40.5	23.9	40.5	8.66	5.4	9.0	4.0	9.5	Ξ	0.3					_								7
/LCON/	3AYVIE				FACTORS	SSO-		23.3	23.3	23.3	23.3	40.8	22.0	4.9	3.9	1.4	3.0	2.8										240			
SITE NAME: ALCONA	BUILDER: BAYVIEW WELLINGTON HOMES	ROOM USE	EXP. WALL	CLG. HT.		GRS.WALL AREA LOSS GAIN	GLAZING	NORTH	EAST	SOUTH	WEST	SKYLT.	DOORS	NET EXPOSED WALL	WALL ABOVE GR	EXPOSED CLG	POSED CLG	EXPOSED FLOOR	HEAT LOSS	HEAT LOSS	SUBTOTAL HT LOSS	SUB TOTAL HT GAIN	MULTIPLIER	HEAT LOSS	HEAT GAIN	DUCT LOSS	DUCT GAIN	HEAT GAIN PEOPLE	NCES/LIGHTS	TOTAL HT LOSS BTU/H	х 1.3 ВТИ/Н
						GRS.								NET EXP	NET EXPOSED BSMT WALL ABOVE GR	Ä	NO ATTIC EXPOSED CLG	EXPO	BASEMENT/CRAWL HEAT LOSS	SLAB ON GRADE HEAT LOSS	SUBTOT	FOT BUS	LEVEL FACTOR / MULTIPLIER	AIR CHANGE HEAT LOSS	AIR CHANGE HEAT GAIN			HEAT G	HEAT GAIN APPLIANCES/LIGHTS	TOTAL HT L	TOTAL HT GAIN x 1.3 BTU/H

SVE	200	76	D.	c c	•	So ·		3 5	8 6		> <		,	9			2475		6787				36	3				13572	1166	TOTAL COMMITTED HEAVY COOK
																					-							-		F
																					-									STRUCTURAL DEAT LOSS: 48249
					NIAG		. 11	-			24	52	-	-			,			857	 i		46		-		398		1691	ואסו ועמו
FOY	7	. \$	2	20	880	}	466	-	•	•	220	195	-		0				881		0.87	764		0	,			1645		TOHAT
							, 8														0.30				,	۰				ď
					GAIN	٥		c		0	•	0	٥	42	0	0				42			8		0	0	398		575	
W/R2	0	σ.	,	٥	1088	-		•		0	•	0	0	112	0	0	0	•	112		0.34	88		0				161		
																					0,10					۰				
					GAIN	0	•	311		0	0	3	0	0	0	0				341			18		0	0	398		985	
LAGN	7	10		2	LOSS	0	0	303	0	•	•	278	0	0	0	0	•	•	581		0.87	504		0				1086		1786
							•														0.30					•				H/I
					_		1581																		0	0	398		3646	900
GRT	39	10		390	LOSS	•	909	513	0	0	0	1607	0	0	0	0	0	0	3028		0.87	2628		۰				9999		LNOIT
						•	8	22	0	•	۰	329	۰	۰	•	۰					0.30		-			۰				FNTII
~					GAIN		0	526	933	0	0	105	•	•	•	0				1563			84		0	0	398		2658	LOSS DUE TO VENTIL ATION I GAD BILIVH: 1786
KT/BR	54	10		240	LOSS	0	0	513	536	•	0	953	0	0	0	0	0	•	2001		0.87	1736		•				3737		io sso
						•	•	22	2	•	•	195	۰	•	•	0					0.30					۰				_
																														39
					GAIN	•	•	•	527	•	49	63	•	•	•	0				639			34		•	•	398		1392	TONS: 2.39
MCD	15	9		150	LOSS	0	0	0	303	•	439	572	0	0	0	0	0	0	1314		0.87	1140		0				2453		ĭ
					_	0	0	0	13	0	20	117	0	0	0	0					0.30					0		•		
			4S	GAIN		15.0	40.5	23.9	40.5	8.66	2.4	9.0	0.4	0.5	:	0.3														28710
			FACTORS	SSO		23.3	23.3	23.3	23.3	40.8	22.0	4.9	3.9	4.1	3.0	2.8										240				••
ROOM USE	EXP. WALL	CLG. HT.		GRS.WALL AREA LOSS GAIN	GLAZING	NORTH	EAST	SOUTH	WEST	SKYLT.	DOORS	NET EXPOSED WALL	NET EXPOSED BSMT WALL ABOVE GR	EXPOSED CLG	NO ATTIC EXPOSED CLG	EXPOSED FLOOR	BASEMENT/CRAWL HEAT LOSS	SLAB ON GRADE HEAT LOSS	SUBTOTAL HT LOSS	SUB TOTAL HT GAIN	LEVEL FACTOR / MULTIPLIER	AIR CHANGE HEAT LOSS	AIR CHANGE HEAT GAIN	DUCT LOSS	DUCT GAIN	HEAT GAIN PEOPLE	HEAT GAIN APPLIANCES/LIGHTS	TOTAL HT LOSS BTU/H	TOTAL HT GAIN x 1.3 BTU/H	TOTAL HEAT GAIN BTU/H:

TOTAL COMBINED HEAT LOSS BTU/H: 50034

INDIVIDUAL BCIN: 19669

MICHAEL O'ROURKE

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2 Tel: 905.619.2300 Fax: 905.619.2375

MICHAEL O'ROURKE

Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

H/V/4\ DESTGNS LTD.

			۴	Γ															
	96 % 66,000 63,900	985 E.S.P.	09	23	BAS	4.52	65	0.39	3	18	38	110	148	0.11	9	469	99	4X10	Ш
	AFUE = 9(TU/H) = 6(TU/H) = 6;	DESIGN CFM = 985 CFM @ .6" E.S.P.	RE RISE	22	BAS	4.52	65	0.39	13	0.16	23	140	163	0.1	ေ	469	99	4X10	Ш
	AFUE = INPUT (BTU/H) = OUTPUT (BTU/H) =	DESIGN	EMPERATURE RISE	21	BAS	4.52	92	0.39	13	0.16	17	120	137	0.12	9	469	99	4X10	۵
97836			Щ																
.	1 6	985 1110		19	F0	1.65	34	1.69	28	0.17	39	120	159	0.1	2	250	426	3X10	ш
2767	H070XE36B FAN SPEED	MEDIOW MEDIOW MEDIOM	∃ E	18	W/R2	0.15	ო	0.58	20	0.17	6	200	290	0.06	4	34	229	3X10	4
GFA:	ML196UH070XE36B FAN SPEED	M I)	17	LAUN	1.09	22	0.98	34	0.17	56	130	156	0.11	4	252	390	3X10	ш
	W			16	GRT	2.83	28	1.82	8	0.17	32	120	155	0.11	2	426	463	3X10	Ш
				15	KT/BR	1.87	38	1.33	46	0.17	18	110	128	0.13	4	436	528	3X10	۵
Jul-22		0.17		14	KT/BR	1.87	38	1.33	46	0.17	21	9	121	0.14	4	436	528	3X10	۵
DATE:		r/a pressure	ssure r/a	13	GRT	2.83	28	1.82	63	0.17	45	9	145	0.12	S	426	463	3X10	ш
		r/a pressure	adjusted pressure r/a	12	MUD	2.45	20	1.39	48	0.17	52	110	135	0.13	4	574	551	3X10	۵
		7,2	ad	11	ENS2	0.72	15	1.05	36	0.17	99	140	206	0.08	4	172	413	3X10	A
	0.05			6	MBR	2.20	45	1.94	29	0.17	91	200	291	90.0	9	229	342	4X10	В
RL-6E	furnace pressure furnace filter a/c coil pressure railable pressure for s/a & r/a	n pressure s/a dif press. loss	pressure s/a	6	BED-4	96.	33	1.39	48	0.17	28	170	228	0.08	2	286	352	3X10	A
TYPE:	furnace pressure furnace filter a/c coil pressure available pressure for s/a & r/s	plenum pre	usted pre	æ	LOFT	2.38	49	2.31	8	0.17	106	200	306	90.0	9	220	408	4X10	4
		g m	min adjusted	7	BATH	0.69	4	0.81	78	0.17	48	190	238	0.07	4	161	321	3X10	В
			,	9	BED-4	1.90	39	1.39	48	0.17	23	190	243	0.07	ည	286	352	3X10	۷
HOMES	985 28,512 34.55	Bas 3		2	BED-3	1.45	30	1.43	49	0.17	33	180	219	0.08	S	220	360	3X10	В
INGTON	COOLING CFM TOTAL HEAT GAIN ? FLOW RATE CFM	1st 7	out.		BED-2	2.30	47	1.48	21	0.17	69	160	229	0.08	വ	345	374	3X10	В
TE NAME: ALCONA BUILDER: BAYVIEW WELLINGTON HOMES	COOLING CFM TOTAL HEAT GAIN AIR FLOW RATE CFM	2nd 7	se on layo	က	BED-2	2.30	47	1.48	51	0.17	92	180	226	0.07	S	345	374	3X10	В
SITE NAME: ALCONA BUILDER: BAYVIEV		3rd 5	d otherwis wise on Is	2	ENS	1.92	33	1.18	4	0.17	69	200	569	90.0	2	286	8	3X10	4
E NAME:	985 : 48,249 20.42	#00	less noter		_	2.20	45	1.94		0.17				_	9	229		4	В
SIT	HEATING CFM TOTAL HEAT LOSS AIR FLOW RATE CFM	TN	All S/A diffusers 4"x10" unless noted otherwise on layou All S/A runs 5"Ø unless noted otherwise on layout.	RUN#	ROOM NAME	RM LOSS MBH.	CHM PER RUN HEAT	RM GAIN MBH.	CFM PER RUN COOLING	ADJUSTED PRESSURE	ACTUAL DUCT LGH.	EQUIVALENT LENGTH	TOTAL EFFECTIVE LENGTH	ADJUSTED PRESSURE	ROUND DUCT SIZE	HEATING VELOCITY (fumin)	COOLING VELOCITY (ft/min)	OUTLET GRILL SIZE	TRUNK
	HEA TOTAL H	RUN COUNT S/A R/A	diffusers runs 5"Ø		¥ ;	KM	CFM PER	Z.	A PER RUN	JUSTED	ACTUAL I	QUIVALEN	EFFECTIV	JUSTED	ROUND	NG VELOC	NG VELOC	OUTLET (
	*		All S/A						Ę.	₹		ш	TOTAL	₹		HEAT	000		

				-																
# NOY																				
ROOM NAME																				
RM LOSS MBH.																				
CFM PER RUN HEAT																				
RM GAIN MBH.																				
CFM PER RUN COOLING																				
ADJUSTED PRESSURE																				
ACTUAL DUCT LGH.																				
EQUIVALENT LENGTH																				
TOTAL EFFECTIVE LENGTH																				
ADJUSTED PRESSURE																				
ROUND DUCT SIZE																				
HEATING VELOCITY (fl/min)																				
COOLING VELOCITY (ff/min)																				
OUTLET GRILL SIZE																				
TRUNK																				
SUPPLY AIR TRUNK SIZE														RETUR	RETURN AIR TRUNK SIZE	NK SIZE				
F	TRUNK STATIC	ROUND	RECT			VELOCITY	#	TRUNK S	STATIC F	ROUND	RECT		VELOCITY	CITY	TRUNK	STATIC	ROUND	RECT		VEI OCITY
	CFM PRESS.	DUCT	DUCT			(fVmin)	•		PRESS.		DUCT		(ff/min)	ĵ.	CFM		Dilo	DIIC		(filmin)
TRUNK A 184		α	α	>	α	717	C NIVI ICT					,							,	(1011)

	≽																					
	VELOC	(ff/min)	c	· c	· c	· c	0	0	0	0	c	633	578	488	202	3						
			œ	ο α	ο α	ο α	, ∞	∞	œ	80	· œ	ο α	ο α	ο α	, c	2						
			×	: >	< ×	< ×	×	×	×	×	×	: ×	: >	< >	< >	<						
	RECT	DUCT	0	· C		0	0	0	0	0	0	28	24	: 2	2.7	į						
	ROUND	DUCT	0	0	0	0	0	0	0	0	0	15.7	14.3	10.4	15.7							
3710	STATIC	PRESS.	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0 05							
אוסערע	TRUNK	CFM	0	0	0	0	0	0	0	0	0	985	770	325	985	}						
			TRUNK O	TRUNK P	TRUNK Q	TRUNK R	TRUNK S	TRUNK T	RUNK U	FRUNK V	RUNK W	FRUNK X	TRUNK Y	TRUNK Z	DROP							
-	/ELOCITY	(ff/min)	÷	<u> </u>	÷	<u> </u>	0	÷			R F	÷	÷	<u> </u>			149	0.10	6.2	- ∞	×	4
	_		æ	œ	۵	æ	æ	8				0	0	0.15	-	0	· - -	14.80	0	0	×	0
			×	×	×	×	×	×										_		0		
	RECT	DUCT	0	0	0	0	0	0												0		
							0											_		0		
							0.00											_		0		
		_					0											_		0		
	_						TRUNK K	- 1										_		0		
			딾	Ħ	_	=	¥	۲												0		
	ELOCITY	Vmin)	414	410	464	491	641	738				0	0	_	_		_	14.80		0		
	Æ	=	· &				8				9	0	990	Ŭ			85	•		8	×	30
			×	×	×	×	×	×						Ū				Ŭ		œ		
	ZECT.	UCT	æ	으	91	8	9	4												œ		
	_	_					6													80		
							0.10													80		
		_					356 0.				-			_				_		8		
	E.				-		TRUNK E 35					J	7	0	7	Z	32	õ	7.	w	^	+
			TRU	TRU	TRUN	TRUN	TRUN	TRUI			RETURN AIR #		AIR VOLUME	PLENUM PRESSURE	ACTUAL DUCT LGH.	EQUIVALENT LENGTH	TOTAL EFFECTIVE LH	ADJUSTED PRESSURE	ROUND DUCT SIZE	INLET GRILL SIZE		INLET GRILL SIZE

TYPE: SITE NAME: RL-6E

ALCONA

LO# 97836

RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL VENTILATION CAPACITY 9.32.	3.5.
a) Direct vent (sealed combustion) only		Total Ventilation Capacity 190.8 cfm	
b) Positive venting induced draft (except fireplaces)		Less Principal Ventil. Capacity 79.5 cfm	
c) Natural draft, B-vent or induced draft gas fireplace		Required Supplemental Capacity cfm	
d) Solid Fuel (including fireplaces)	ĺ		
e) No Combustion Appliances		PRINCIPAL EXHAUST FAN CAPACITY	
		Model: VANEE V150H Location: BSMT	
HEATING SYSTEM		79.5 cfm	/ed
Forced Air Non Forced Air		PRINCIPAL EXHAUST HEAT LOSS CALCULATION CFM	
Electric Space Heat		CFM ΔT F FACTOR % LOSS 79.5 CFM X 83 F X 1.08 X 0.25	
Electric opace Fleat		SUPPLEMENTAL FANS BY INSTALLING CONTRACTOR	_
HOUSE TYPE		Location Model cfm HVI Sones	
HOUSE ITPE	9.32.1(2)		4
Type a) or b) appliance only, no solid fuel		BATH BY INSTALLING CONTRACTOR 50 ✓ 3.5 ENS2 BY INSTALLING CONTRACTOR 50 ✓ 3.5	\dashv
		W/R2 BY INSTALLING CONTRACTOR 50 ✓ 3.5	
II Type I except with solid fuel (including fireplaces) III Any Type c) appliance		HEAT RECOVERY VENTILATOR 9.32.3.	11.
/ Ally Type by applicance		Model: VANEE V150H 150	-
IV Type I, or II with electric space heat			
Other: Type I, II or IV no forced air		75 % Sensible Efficiency ✓ HVI Approv @ 32 deg F (0 deg C)	ed
		LOCATION OF INSTALLATION	_
SYSTEM DESIGN OPTIONS (O.N.H.W.P.		
1 Exhaust only/Forced Air System	1	Lot: Concession	
		Township Plan:	
2 HRV with Ducting/Forced Air System		Address	
HRV Simplified/connected to forced air system		Roll # Building Permit #	_
4 HRV with Ducting/non forced air system			
Part 6 Design		BUILDER: BAYVIEW WELLINGTON HOMES	
		Name:	4
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:	
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	cfm	City:	
Other Bedrooms <u>3</u> @ 10.6 cfm <u>31.8</u>	cfm	Telephone #: Fax #:	
Kitchen & Bathrooms5 @ 10.6 cfm53	cfm	INSTALLING CONTRACTOR	٦
Other Rooms 6 @ 10.6 cfm 63.6	cfm	Name:	
Table 9.32.3.A. TOTAL 190.8	cfm	Address:	_
PRINCIPAL VENTILATION CAPACITY REQUIRED	222244	City:	
	9.32.3.4.(1)	Telephone #: Fax #:	
1 Bedroom 31.8	cfm	DESIGNER CERTIFICATION	_
2 Bedroom 47.7	cfm	I hereby certify that this ventilation system has been designed in accordance with the Ontario Building Code.	
3 Bedroom 63.6	cfm	Name: HVAC Designs Ltd.	$ \bot $
4 Bedroom 79.5	cfm	Signature: Muchan Office.	
5 Bedroom 95.4	cfm	HRAI # 001820	$ \bot $
TOTAL 79.5 cfm		Date: July-22	
I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUALIF	FIED IN THE APP	PPROPRIATE CATEGORY AS AN "OTHER DESIGNER" UNDER DIVISION C, 3.2.5 OF THE BUILDING CODE.	_

INDIVIDUAL BCIN: 19669

MICHAEL O'ROURKE

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2 Tel: 905.619.2300 Fax: 905.619.2375 Web: www.hvacdesigns.ca F-mail: info@hvacdesigns.ca

Surger Barylew Wellings ION HOMEs Air Change & Delta T Data Date: 2022-07-06	5	19 John 19 Joh	Form	nula Sheet (For Air Le	Formula Sheet (For Air Leakage / Ventiliation Calculations)	Calculations (alculation)			
$\frac{\text{WINTER NATURAL AIR CHANGE RATE}}{\text{SUMMER NATURAL AIR CHANGE RATE}} \qquad 0.037$ $\frac{\text{Design Temperature Difference}}{\text{Inn }^{\circ}C} \qquad \frac{10 \text{ ut }^{\circ}C}{\text{Tout }^{\circ}C} \qquad \frac{10^{\circ}C}{\text{Af }^{\circ}C}$ $\frac{\text{Winter DTDh}}{\text{Summer DTDc}} \qquad \frac{22}{24} \qquad \frac{-24}{5} \qquad \frac{46}{5}$ $= 6616 \text{ W}$ $= 6616 \text{ W}$ $= 0.097 \qquad \times \qquad 271.71 \qquad \times \qquad 5^{\circ}C \qquad \times \qquad 1.2 \qquad = \qquad $ $= 122575 \text{ Btu/h}$ $= 1786 \text{ Btu/h}$ $= 1786 \text{ Btu/h}$ $= 1786 \text{ Btu/h}$ $= 0.057 \qquad \times \qquad 9^{\circ}F \qquad \times \qquad 1.08 \qquad \times \qquad 0.25 \qquad = \qquad $	Volume Calculation	ΙĒ	uc	BING	ier: BAYVIEW WELLINGIC		ta T Data	Date:	2022-07-06
						WINTER NATURAL AIR CHANG	SE RATE	0.439	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Floor Height (ft) 9 10	-+-	Volume (ft³) 8676 9640	<u> </u>		SUMMER NATURAL AIR CHAN	GE RATE	0.097	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	\sqcup	8676			Design Te	emperature Diff	erence	
	6	\dashv	7551				Tout °C -24	ΔT °C 46	ΔT °F 83
$HG_{salb} = LR_{airc} \times \frac{V_b}{3.6} \times DTD_c \times 1.2$ $= 22575 \text{ Btu/h}$ $= 1786 \text{ Btu/h}$ $= 1786 \text{ Btu/h}$ $HL_{vairb} = PVC \times DTD_h \times 1.08 \times (1-E)$ $= 1786 \text{ Btu/h}$ $= 0.097 \times 271.71 \times \frac{V_b}{3.6} \times DTD_c \times 1.2$ $= 1786 \text{ Btu/h}$ $= 1786 \text{ Btu/h}$ $= 1786 \text{ Btu/h}$	Total: Total:	++	34,543.0 ft³ 978.1 m³				29	2	6
$HG_{salb} = LR_{airc} \times \frac{V_b}{3.6} \times DTD_c \times 1.2$ $= 22575 \text{ Btu/h}$ $= HG_{salb} = LR_{airc} \times \frac{V_b}{3.6} \times DTD_c \times 1.2$ $= 6.2.7 \text{ Sensible heat Gain due to Ventilation}$ $HL_{vairb} = PVC \times DTD_h \times 1.08 \times (1 - E)$ $= 1.786 \text{ Btu/h}$ $= 1.786 \text{ Btu/h}$	5.2.3.1 Heat Loss due to Air Leakage		akage			6.2.6 Sensible Gain due	to Air Leakage		
$= 22575 \text{ Btu/h}$ $= 22575 \text{ Btu/h}$ $= 1786 \text{ Btu/h}$ $= 1786 \text{ Btu/h}$ $= 6.2.7 \text{ Sensible heat Gain due to Ventilation}$ $HL_{vairb} = PVC \times DTD_h \times 1.08 \times (1 - E)$ $= 1786 \text{ Btu/h}$ $= 1786 \text{ Btu/h}$	$HL_{airb} = LR_{airh} \times \frac{V_b}{3.6} \times DTD_h \times 1.2$	DTD	$h \times 1.2$		H	$G_{salb} = LR_{airc} \times \frac{V_b}{2 \cdot \epsilon} \times DTD_c$:	× 1.2		
= 22575 Btu/h	x 46°C x	× 1	1.2		0.097	x 271.71 x 5 °C	1	"	162 W
$HL_{vatrb} = PVC \times DTD_h \times 1.08 \times (1-E)$ = 1786 Btu/h $80 \text{ CFM} \times 9^{\circ}\text{F} \times 1.08 \times 0.25 = 100 \text{ M}$				Ш				"	551 Btu/h
$HL_{vairb} = PVC \times DTD_h \times 1.08 \times (1 - E)$ = 1786 Btu/h	5.2.3.2 Heat Loss due to Mechanical Ventilation	nical V	entilation			6.2.7 Sensible heat Gain d	ue to Ventilatio	u.	
= 1786 Btu/h	$HL_{vairb} = PVC \times DTD_h \times 1.08 \times (1 - E)$	1.08	$\times (1-E)$		HL_{v}	$_{vairb} = PVC \times DTD_h \times 1.08 \times 1.0$	(1 - E)		
	x 1.08 ×	×	0.25	Ш] 80 CFM	9 °F ×		"	197 Btu/h
	$HL_{airr} =$	irr =	Level Fact	or \times $HL_{airbv} \times \{(E)\}$	$IL_{agcr} + HL_{bgcr}$) \div ($(HL_{agclevel} + HL_{bgclevel})$			
$HL_{airr} = Level\ Factor\ imes\ HL_{airbv}\ imes \{(HL_{agcr} + HL_{bgcr}) \div (HL_{agclevel} + HL_{bgclevel})\}$	Level	Le	Level Factor (LF)	HLairve Air Leakage + Ventilation Heat Loss (Btu/h)		Air Leakage Heat Loss Multiplier (LF x HLairbv / HLlevel)			
Level Factor \times $HL_{airbv} \times \{(HL_{agcr} + HL_{bgcr}) \div (HL_{agclevel} + HL_{bgclevel})\}$ Harive Air Leakage + Level Conductive Heat Air Leakage Heat Loss Multiplier (LF x Loss: (HL _{covel})) Harive / HLlevel)			0.4		4,542	1.988			
Level Factor \times $HL_{airbv} \times \{\{HL_{agcr} + HL_{bgcr}\} \div \{HL_{agclevel} + HL_{bgcrlevel}\}\}$ Haive Air Leakage + Level Conductive Heat Air Leakage Heat Loss Multiplier (LF x Loss: (HL _{clevel}) Htairby / HLlevel) (Btu/h)	7	_	0.3	-	7,805	0.868			
Level Factor \times $HL_{airbv} \times \{(HL_{agcr} + HL_{bgcr}) \div (HL_{agclevel} + HL_{bgclevel})\}$ Hairve Air Leakage + Level Conductive Heat Loss Multiplier (LF x Loss: (HL _{clevel}) + Hairby / Hllevel) Conductive Heat Loss (HL _{clevel}) + (HL _{agcr} + HL _{bgclevel}) + (HL _{agcr} + HL _{agcr}	m	_	0.2	22,575	6,728	0.671	-		
er (LF x	4	+	0.1		865'9	0.342		Michael O'Rou	urke
er (LF x	2	_	0		0	0.000		BCIN# 19669	
er (LF x	*HLairbv = Air le *For a balanced	Sec Sec	eakage heat loss	*HLairbv = Air leakage heat loss + ventilation heat loss *For a balanced or supply only ventilation system HLairve = 0	C			Mohan	Motor Charle.

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2 Tel: 905.619.2300 Fax: 905.619.2375

Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL: RL-6E **BUILDER: BAYVIEW WELLINGTON HOMES** SFQT: 2767 LO# 97836 SITE: ALCONA **DESIGN ASSUMPTIONS HEATING** °F COOLING °F OUTDOOR DESIGN TEMP. -11 OUTDOOR DESIGN TEMP. 84 INDOOR DESIGN TEMP. INDOOR DESIGN TEMP. (MAX 75°F) 72 75 WINDOW SHGC 0.50 **BUILDING DATA** ATTACHMENT: **ATTACHED** # OF STORIES (+BASEMENT): 4 FRONT FACES: **EAST** ASSUMED (Y/N): Υ AIR CHANGES PER HOUR: 3.57 ASSUMED (Y/N): Υ AIR TIGHTNESS CATEGORY: AVERAGE ASSUMED (Y/N): Υ WIND EXPOSURE: SHELTERED ASSUMED (Y/N): Υ HOUSE VOLUME (ft3): 34543.0 ASSUMED (Y/N): Υ **INTERNAL SHADING: BLINDS/CURTAINS ASSUMED OCCUPANTS:** 5 INTERIOR LIGHTING LOAD (Btu/h/ft²): 1.60 DC BRUSHLESS MOTOR (Y/N): Υ FOUNDATION CONFIGURATION BCIN_1 **DEPTH BELOW GRADE:** 6.0 ft LENGTH: 47.0 ft WIDTH: 21.0 ft **EXPOSED PERIMETER:** 92.0 ft

2012 OBC - COMPLIANCE PACKAGE		
	Compliand	e Package
Component		A1
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22	17.03
Basement Walls Minimum RSI (R)-Value	20 ci	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	0.28	
Skylights Maximum U-Value	0.49	-
Space Heating Equipment Minimum AFUE	96%	-
HRV/ERV Minimum Efficiency	75%	_
Domestic Hot Water Heater Minimum EF	0.8	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

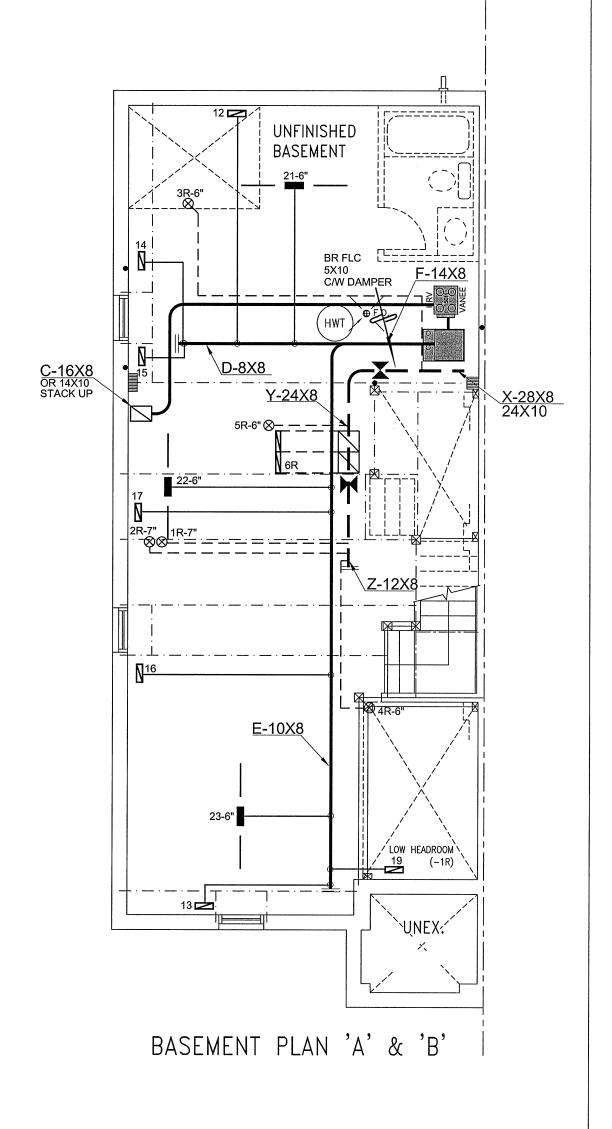
Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

W	eather Stat	tion Description
Province:	Ontario	
Region:	Barrie	
	Site De	escription
Soil Conductivity:	Normal c	onductivity: dry sand, loam, clay
Water Table:	Normal (7	7-10 m, 23-33 ft)
	Foundatio	n Dimensions
Floor Length (m):	14.3	
Floor Width (m):	6.4	
Exposed Perimeter (m):	28.0	
Wall Height (m):	2.7	
Depth Below Grade (m):	1.83	Insulation Configuration
Window Area (m²):	1.1	Commence and an experience of the commence of
Door Area (m²):	0.0	
	Radia	nt Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Design	Months
Heating Month	1	
	Foundat	tion Loads
Heating Load (Watts):	-	930

TYPE: RL-6E **LO#** 97836

HVAC Designs Ltd. 375 Finley Ave, Suite 202 Ajax ON, L1S 2E2 905-619-2300


Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Station	on De	script	ion		
Province:	Onta	rio			
Region:	Barri	e			
Weather Station Location:	Oper	flat te	rrain,	grass	
Anemometer height (m):	10				
Local Sh	ieldir	g			
Building Site:	Subu	rban, f	orest		
Walls:	Heav	У			
Flue:	Heav	y			
Highest Ceiling Height (m):	9.45				
Building Cor	nfigur	ation			
Type:	Semi				
Number of Stories:	Three	9			
Foundation:	Full				
House Volume (m³):	978.2	L			
Air Leakage/	Venti	latior	1		
Air Tightness Type:	Prese	nt (19	61-) (3	.57 ACI	Н)
Custom BDT Data:	ELA (D 10 Pa	a.		1303.9 cm ²
	3.57				ACH @ 50 Pa
Mechanical Ventilation (L/s):	To	otal Sup	ply		Total Exhaust
		37.5			37.5
Flue :	Size				
Flue #:	#1	#2	#3	#4	
Diameter (mm):	0	0	0	0	
Natural Infilt	ration	Rate	:S		
Heating Air Leakage Rate (ACH/H):		C	.43	9	
Cooling Air Leakage Rate (ACH/H):		0	.09	7	

TYPE: RL-6E **LO#** 97836

				HVAC LE	EGEND			3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE	==	RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	E	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

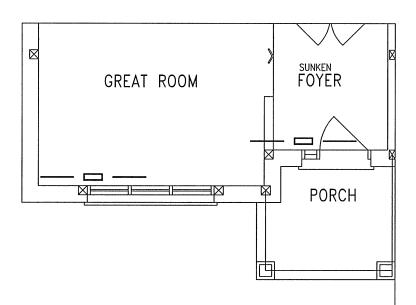
ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD. AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

BAYVIEW WELLINGTON HOMES

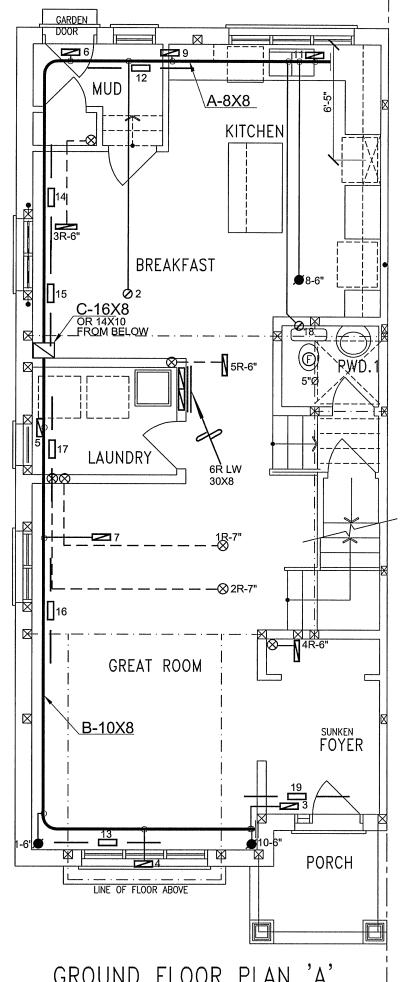
ALCONA INNISFIL, ONTARIO

DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca


Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas profed. branch outlets shall be equipped with a manual balancing damper. adequately insulated and be gas-proofed.


	HEALLO	DSS 50034	BTU/H	# OF RUNS	S/A	R/A	FANS	Sheet Title	
		UNIT DATA	***************************************	3RD FLOOR	5	2	2	BΑ	SEMENT
	MAKE	LENNOX		2ND FLOOR	7	3	2	Н	EATING
	MODEL ML196	6UH070XE3	6B	1ST FLOOR	7	1	2	L	.AYOUT
	INPUT	66	мвти/н	BASEMENT	3	1	0	Date	JUNE/2022
_	OUTPUT	62.0	мвти/н	ALL S/A DIFFUS	SERS	4 "x10	"	Scale 3	3/16" = 1'-0"
_	COOLING	63.9	TONS	UNLESS NOTE ON LAYOUT. AI				В	CIN# 19669
Э	FAN SPEED	2.5	cfm @	UNLESS NOTE ON LAYOUT. U			ISE	I O#	97836
_		985	0.6" w.c.	DOORS 1" min.				LU#	97030

RL-6E

PART. GROUND FLOOR PLAN ELEV. 'B'

GROUND FLOOR PLAN 'A'

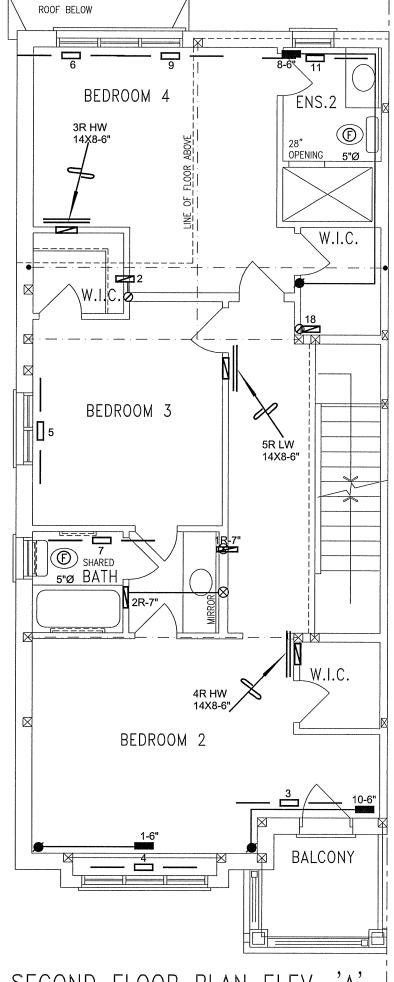
TITAC DESIGNS ETD.										
HVAC LEGEND										
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
— —	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.	· · · · · · · · · · · · · · · · · · ·	
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	2	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	.65	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	Y	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.® AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

BAYVIEW WELLINGTON HOMES

ALCONA INNISFIL, ONTARIO

DESIGNS LTD.


375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR **HEATING LAYOUT** JUNE/2022 3/16" = 1'-0" Scale BCIN# 19669 97836 LO#

RL-6E

PART. SECOND FLOOR PLAN ELEV. 'B'

BEDROOM 2

SECOND FLOOR PLAN ELEV. 'A'

CSA-F280-12

HVAC LEGEND								3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	280	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.® AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

BAYVIEW WELLINGTON HOMES

 \boxtimes

Project Name
ALCONA INNISFIL, ONTARIO

DESIGNS LTD.

W.I.C.

BALCONY

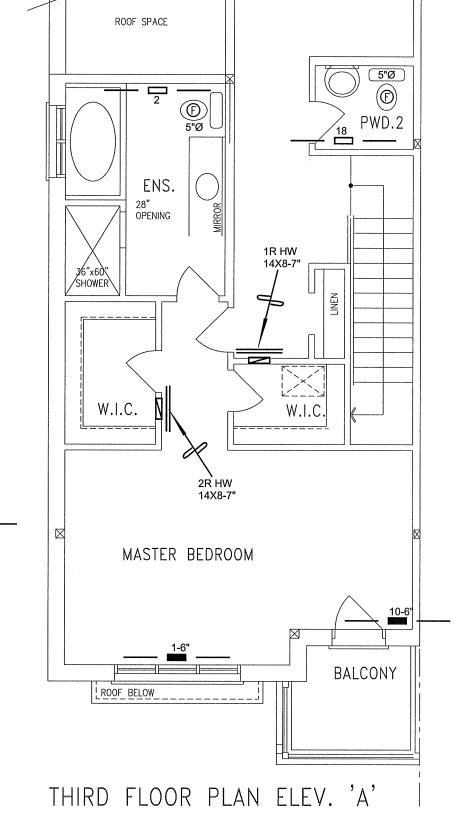
FRENCH

375 Finley Ave. Suite 202 - Ajax, Ontario Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

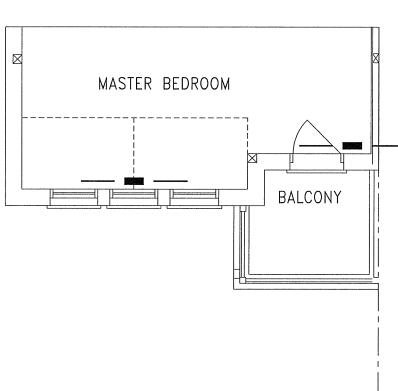
Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR **HEATING** LAYOUT Date JUNE/2022 3/16" = 1'-0"


BCIN# 19669

97836

LO#


RL-6E

MEDIA LOFT

ROOF BELOW

PART. THIRD FLOOR PLAN ELEV. 'B'

I MICHAEL OROURKE HAVE REVIEW
AND TAKE RESPONSIBILITY FOR THE
DESIGN WORK AND AM QUALIFIED
UNDER DIVISION C, 3.2.5 OF THE
BUILDING CODE.

Michael O'Rourke, HiChie 19669

CSA-F280-12 PACKAGE A1

HVAC DESIGNS ETD.										
HVAC LEGEND										
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	E	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
2	SUPPLY AIR BOOT ABOVE	.65	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.® AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

Client

BAYVIEW WELLINGTON HOMES

Project Name ALCONA INNISFIL, ONTARIO HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario
L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375
Email: info@hvacdesigns.ca
Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

THIRD FLOOR
HEATING
LAYOUT

Date JUNE/2022 Scale 3/16" = 1'-0"

BCIN# 19669

97836

LO#

RL-6E