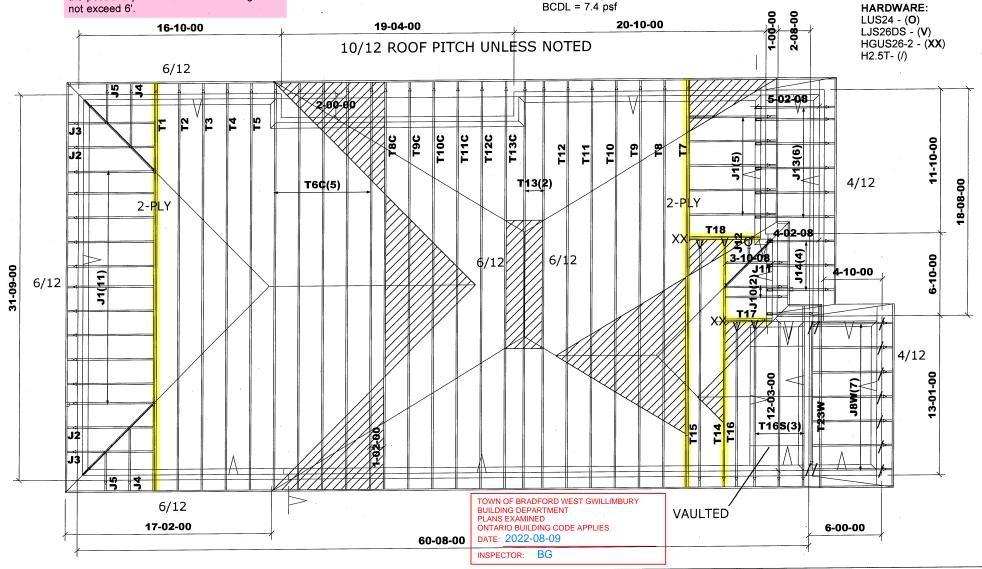
All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.


ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C. DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psf TCDL = 6.0 psf

BCLL = 0.0 psf

TAMARACK BROOK TRUSSES INC

Job Track: **50465**

Plan Log: **205567**

Layout ID: 423565

Builder / Location:

2022-06-28

Date:

BAYVIEW WELLINGTON / BRADFORD

Rick DiCiano

Designer: JG

Model / Elevation:

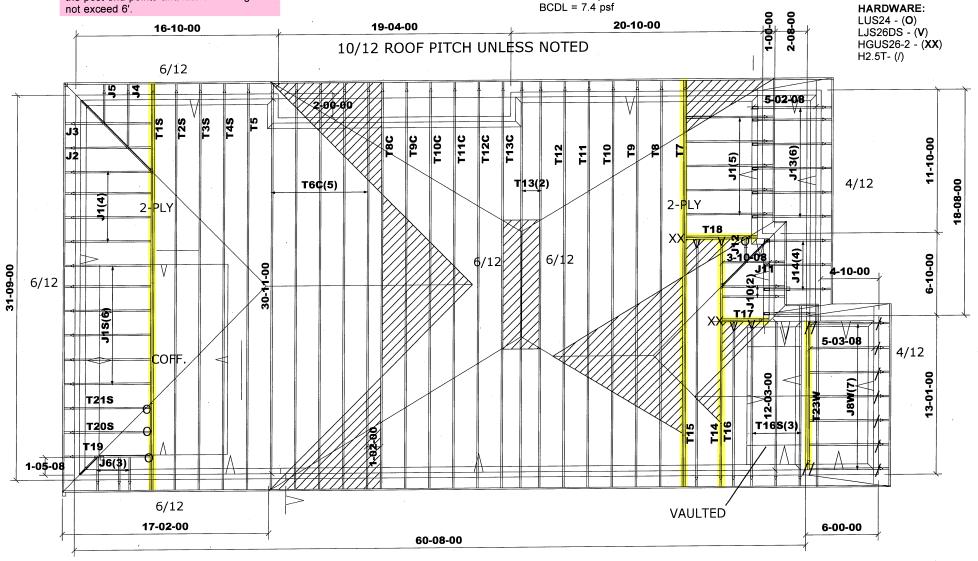
\$38-20 / A-STD. OR 5 BED (NO COFF)

Project: GREEN VALLEY EAST

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUEACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTILIZED FOR ANY OTHER PURPOSE.

Milek MOF & 5.3.23 All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES
FINISHED OVERHANG: 12"
2x6 EXTERIOR WALLS
2x6 FASCIA BOARD
HEEL: R.T.M.C.


DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psf TCDL = 6.0 psf

BCLL = 0.0 psf

TAMARACK ROOF TRUSSES INC. Job Track: **50465**

Plan Log: **205567**

Layout ID: 423564

Builder / Location:

2022-06-28

BAYVIEW WELLINGTON / BRADFORD

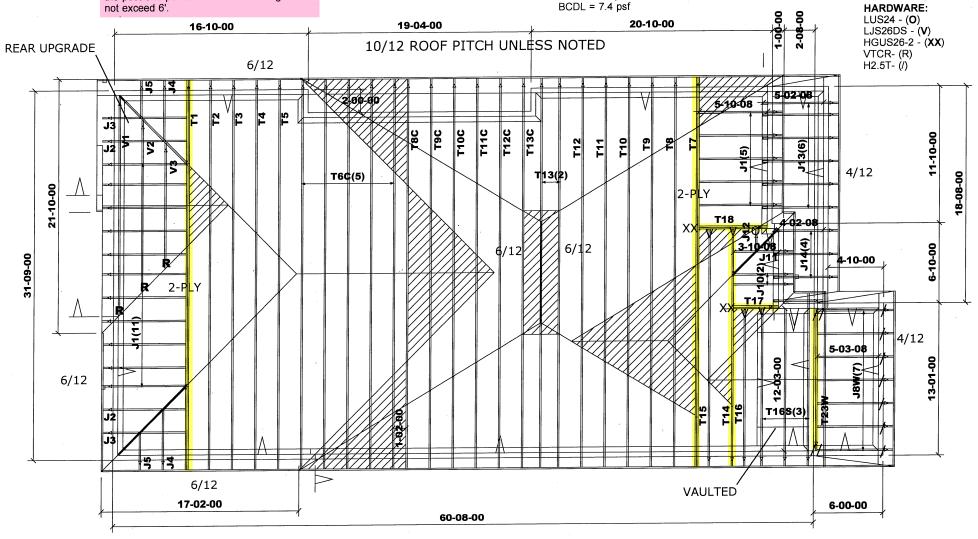
Rick DiCiano

S38-20 / A-OPT.WITH COFF.

Model / Elevation:

Project: GREEN VALLEY EAST

Designer: JG


THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTILIZED FOR ANY OTHER PROPERTY.

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C. DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS: TCSL = 32.5 psf

TCDL = 6.0 psf BCLL = 0.0 psf DENOTES:
CONVENTIONAL
FRAMING

TAMARACK BOOK PRISSES INC Job Track: **50465**

Plan Log: **205567**

Layout ID: **423566**

Builder / Location:

Date:

BAYVIEW WELLINGTON / BRADFORD

Rick DiCiano

Designer: JG

S38-20 / A-REAR UPGRADE

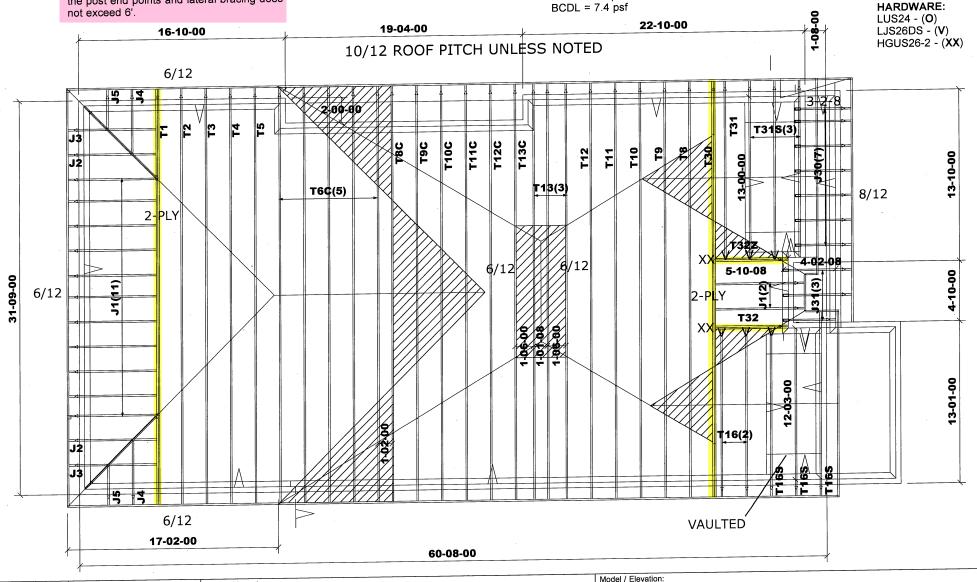
Model / Elevation:

Project: GREEN VALLEY EAST

2022-06-28 Sales:

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISH OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTILIZED FOR ANY OTHER

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does


ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: **RESIDENTIAL | PART: 9** Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psfBCLL = 0.0 psf

DENOTES: CONVENTIONAL

Job Track: 50465

Plan Log: 205567 Layout ID: 423568 Builder / Location:

2022-06-28

BAYVIEW WELLINGTON / BRADFORD

Rick DiCiano

S38-20 / B-STD OR 5 BED (NO COFF)

Project: GREEN VALLEY EAST

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED

Designer: JG PURPOSE

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psfBCLL = 0.0 psf

DENOTES: CONVENTIONAL **FRAMING**

BCDL = 7.4 psfHARDWARE: not exceed 6'. LUS24 - (O) 22-10-00 19-04-00 16-10-00 LJS26DS - (V) HGUS26-2 - (XX) 10/12 ROOF PITCH UNLESS NOTED 6/12 **T31** T31S(3) T12C J2 T13(3 T6¢(5) 8/12 2-PLY 5-10-08T32Z 4-02-08 6/12 6/12 2-P**L**Y 9 T32 1-01-08 1-06-00 COF 12-03-00 T21S 116(2) T16S(3) T205 T19 1-05-08 6/12 **VAULTED** 17-02-00 60-08-00 Model / Elevation:

Job Track: 50465 Plan Log: 205567

Layout ID: 423567

BAYVIEW WELLINGTON / BRADFORD

S38-20 / B-OPT.WITH COFF.

Project: GREEN VALLEY EAST

Rick DiCiano 2022-06-28 Sales:

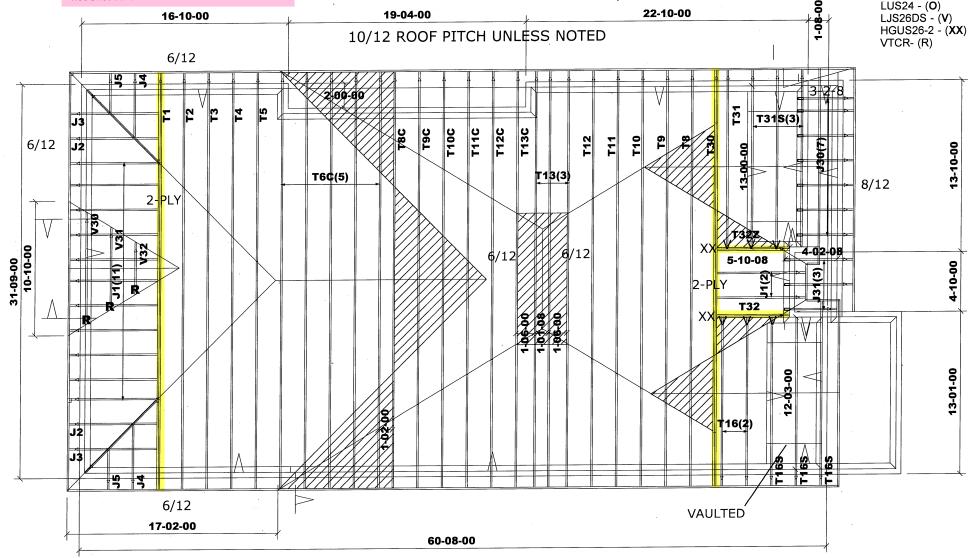
Builder / Location:

Designer: JG

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED PURPOSE.

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.


DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: **RESIDENTIAL | PART: 9** Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psf TCDL = 6.0 psfBCLL = 0.0 psf BCDL = 7.4 psf

DENOTES: CONVENTIONAL **FRAMING**

> HARDWARE: LUS24 - (O) LJS26DS - (V)

Job Track: 50465

Plan Log: **205567**

Layout ID: 423569

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

S38-20 / B-REAR UPGRADE

Model / Elevation:

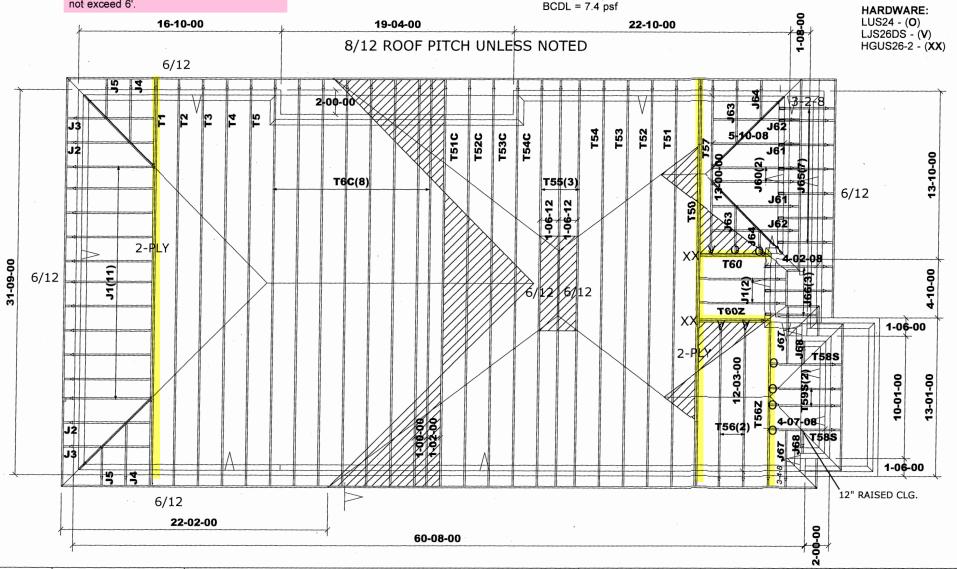
Project: GREEN VALLEY EAST

Designer: JG Date: 2022-06-28 Sales: Rick DiCiano

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED. OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED PURPOSE

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.


DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psf

BCLL = 0.0 psf

Job Track: 50465

Layout ID: 423571

Plan Log: 205567

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

Project: GREEN VALLEY EAST

Date: 2022-06-28 Sales:

Rick DiCiano

Designer: JG

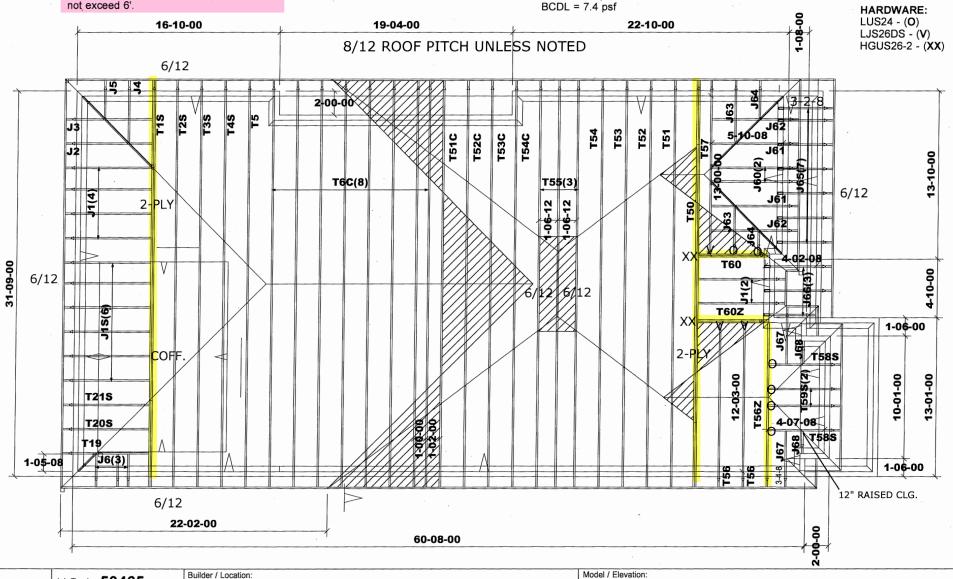
Model / Elevation:

S38-20 / C-STD OR 5 BED(NOCOFF)

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.


DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psf

BCLL = 0.0 psf

Job Track: 50465

Plan Log: **205567**

Layout ID: 423570

Builder / Location:

Date:

BAYVIEW WELLINGTON / BRADFORD

Rick DiCiano

S38-20 / C-OPT.WITH COFF

Project: GREEN VALLEY EAST

2022-06-28 Sales:

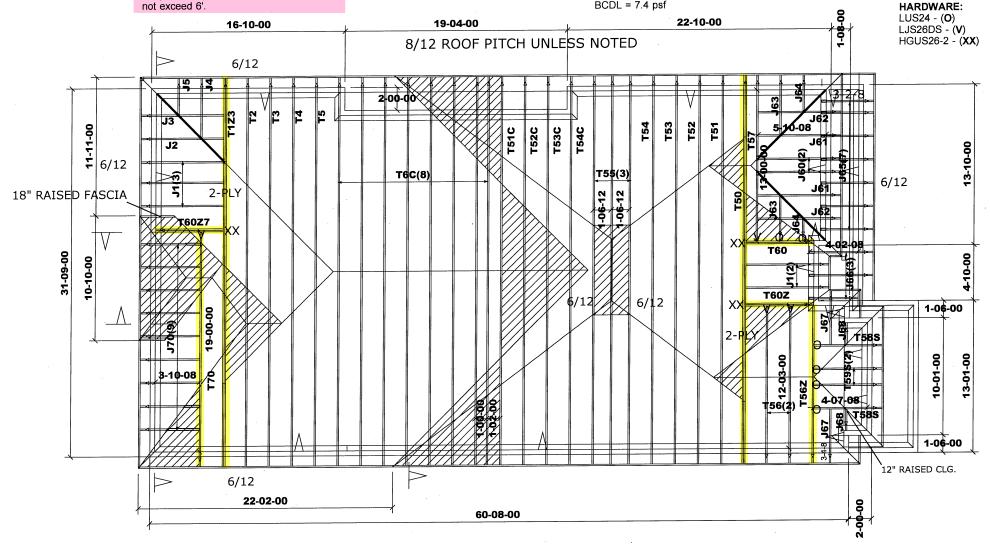
Designer: JG

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PUR TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAN

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf


DESIGN LOADS:

TCSL = 32.5 psf

TCDL = 6.0 psfBCLL = 0.0 psf

BCDL = 7.4 psf

Job Track: 50465

Plan Log: 205567

Lavout ID: 423572

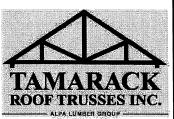
Builder / Location:

Date:

BAYVIEW WELLINGTON / BRADFORD

Rick DiCiano

Designer: JG


Model / Elevation:

S38-20 / C-REAR UPGRADE

Project: GREEN VALLEY EAST

2022-06-28 Sales:

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUEACT TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED B PURPOSE.

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

S38-20

Lot #:

Elevation:

A-STD. OR 5 BED (NO COFF)

Job Track: PlanLog:

50465 205567

Layout ID:

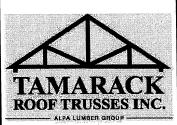
423565

Ref#

Page:

1 of 3

06-28-2022


Date:

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

<u> </u>	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	30-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	277.92 172.67		
	1	T2 Hip	6 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.38 79.83		
	1	T3 Hip	6 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.27 79.33		
	1	T4 Hip	6 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	127.71 79.33		-
	1	T5 Hip	6 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.41 84.17		
	5	T6C Common	6 /12	30-11-00	8-10-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	629.51 392.50		
	1 2-ply	T7 Hip Girder	10 /12	30-11-00	4-01-10	2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	341.08 206.67		
	1	T8 Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		
	1	T8C Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		
	1	T9 Hip	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	144.72 92.33		
	1	T9C Hip	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	144.72 92.33		
	1	T10 Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
	1	T10C Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
	1	T11 Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	173.38 108.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

A-STD. OR 5 BED (NO COFF)

Location: Model:

BRADFORD

Lot #:

Elevation:

S38-20

Page:

Ref#

2 of 3 06-28-2022

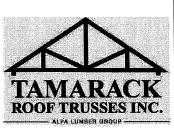
50465

205567

423565

Date:

Job Track:


PlanLog:

Layout ID:

Designer: Sales Rep: Rick DiCiano

Roof Trusses

ROOI III	QTY	MARK	T				OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T11C Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	173.38 108.00		
	1	T12 Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	150.66 94.50		
	1	T12C Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	150.66 94.50	٠	
	2	T13 Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	341.66 214.67		
	1	T13C Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	170.83 107.33		
	1	T14 Hip Girder	10 /12	19-01-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	102.49 65.33		
	1	T15 Hip	10 /12	19-01-00	6-06-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	90.06 57.67		
	1	T16 Common	10 /12	12-03-00	6-08-15	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	59.1 38.17		
	3	T16S Roof Special	10 /12 10 /12	12-03-00	6-08-15	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	182.61 118.50		
	1 2-ply	T17 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	1 2-ply	T18 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
** www.discountercooler contractercoolers in the contracter contra	1	T23W Flat Girder	0 /12	12-03-00	2-01-02	2 x 6		2-01-02 2-01-02	58.33 39.00		
	16	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	268.71 170.67		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

S38-20

Lot #:

Elevation:

A-STD. OR 5 BED (NO COFF)

Job Track:

50465 205567

PlanLog: Layout ID:

423565

Ref#

Page:

3 of 3

Date:

Designer:

Sales Rep:

Rick DiCiano

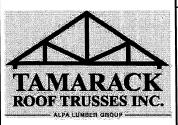
06-28-2022

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
TO THE PROPERTY OF THE PROPERT	7	J8W Jack-Open	4 /12	5-03-08	2-06-00	2 x 4	1-03-08	3-15 2-01-02	98.41 65.33		
	2	J10 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	30.9 20.33		
	1	J11 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	1-07-11 3-01-09	12.02 8.33		
	1	J12 Jack-Open	10 /12	1-10-08	3-01-09	2 x 4		1-07-11 3-02-07	7.79 5.67		
	6	J13 Jack-Open	4 /12	5-02-08	2-05-11	2 x 4	1-03-08	3-15 2-00-12	83.18 52.00		
· ·	4	J14 Jack-Open	4 /12	4-02-08	2-01-11	2 x 4	1-03-08	3-15 1-08-12	46.08 29.33		

TOTAL #TRUSS= 82

TOTAL BFT OF ALL TRUSSES= 3154.81


BFT.

TOTAL WEIGHT OF ALL TRSSES 4999.03 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
7	Hardware	H2.5T	
2	Hardware	HGUS26-2	
4	Hardware	LJS26DS	
1	Hardware	LUS24	

TOTAL NUMBER OF ITEMS= 14

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: GREEN VALLEY EAST BRADFORD

Model:

S38-20

Lot #:

Elevation:

.

A-OPT.WITH COFF

Job Track: PlanLog: 50465 205567

Layout ID:

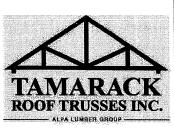
423564

Ref#

Page:

1 of 4

Date:


te: 06-28-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK	1	I		· ·	OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT	LEFT	BFT.	STACK#	REMARKS
	1 2-ply	T1S Hip Girder	6 /12	30-11-00	4-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	293.17 190.00	OIAON#	ILIIIARRO
	1	T2S Hip	6 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	132.39 87.00		
	1	T3S Hip	6 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	135 87.83		
	1	T4S Hip	6 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	138.98 88.50		
	1	T5 Hip	6 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	136.86 86.17		
	5	T6C Common	6 /12	30-11-00	8-10-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	629.51 392.50		·
	1 2-ply	T7 Hip Girder	10 /12	30-11-00	4-01-10	2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	347.72 214.00		
	1	T8 Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		
	1	T8C Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		
	1	T9 Hip	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	144.72 92.33		
	1	T9C Hip	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	144.72 92.33		
	1.	T10 Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
	1	T10C Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
	1	T11 Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	173.38 108.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON GREEN VALLEY EAST

Project: Location:

BRADFORD

A-OPT.WITH COFF

Model:

S38-20

Lot #:

Elevation:

Job Track:

PlanLog:

205567

Layout ID:

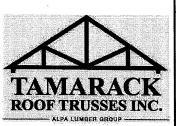
423564

50465

Ref#

Page: Date:

2 of 4 06-28-2022


Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

1,001 11	QTY	MARK	I				OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T11C Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	173.38 108.00		
	1	T12 Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	150.66 94.50		
	1	T12C Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	150.66 94.50		
	2	T13 Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	341.66 214.67		
	1	T13C Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	170.83 107.33		
	1	T14 Hip Girder	10 /12	19-01-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	102.49 65.33	'	
	1	T15 Hip	10 /12	19-01-00	6-06-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	90.06 57.67		
	1	T16 Common	10 /12	12-03-00	6-08-15	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	59.1 38.17		
	3	T16S Roof Special	10 /12 10 /12	12-03-00	6-08-15	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	182.61 118.50		
	1 2-ply	T17 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	1 2-ply	T18 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1	T19 Half Hip Girder	6 /12	5-10-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	23.24 16.50		
	1	T20S Half Hip	6 /12	5-10-08	2-10-12	2 x 4	1-03-08	1-02-00 1-10-12	26.14 19.50		
	1	T21S Half Hip	6 /12	5-10-08	3-10-12	2 x 4	1-03-08	1-02-00 2-10-12	26.46 18.67		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST**

A-OPT.WITH COFF

Model:

BRADFORD

Lot #:

Elevation:

S38-20

Page:

3 of 4

50465

205567

423564

Date:

Ref#

06-28-2022

Designer:

Job Track:

PlanLog:


Layout ID:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
**************************************	1	T23W Flat Girder	0 /12	12-03-00	2-01-02	2 x 6		2-01-02 2-01-02	58.33 39.00		
	9	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	151.15 96.00		
	6	J1S Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 3-01-04	122.34 88.00		
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	14.13 8.67		
	1	J3 Jack-Open	6/12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33		
	1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		
	1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	7.02 4.67		
	3	J6 Jack-Open	6 /12	1-05-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	18.38 14.00		
	7	J8W Jack-Open	4 /12	5-03-08	2-06-00	2 x 4	1-03-08	3-15 2-01-02	98.41 65.33		
	2	J10 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	30.9 20.33		
	1	J11 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	1-07-11 3-01-09	12.02 8.33		
	1	J12 Jack-Open	10 /12	. 1-10-08	3-01-09	2 x 4		1-07-11 3-02-07	7.79 5.67		
	6	J13 Jack-Open	4 /12	5-02-08	2-05-11	2 x 4	1-03-08	3-15 2-00-12	83.18 52.00		
. 4000000000000000000000000000000000000	4	J14 Jack-Open	4 /12	4-02-08	2-01-11	2 x 4	1-03-08	3-15 1-08-12	46.08 29.33	÷	

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location: Model:

BRADFORD

Lot #: Elevation:

S38-20

A-OPT.WITH COFF

Job Track: PlanLog:

50465 205567

Layout ID:

423564

Ref#

Page:

4 of 4

06-28-2022

Date:

Designer:

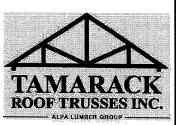
Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS

TOTAL #TRUSS=

TOTAL BFT OF ALL TRUSSES= 3261.65


BFT.

TOTAL WEIGHT OF ALL TRSSES 5107.08 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	LJS26DS	
1	Hardware	LUS24	
7	Hardware	H2.5T	
2	Hardware	HGUS26-2	

TOTAL NUMBER OF ITEMS= 14

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location:

GREEN VALLEY EAST

Model:

BRADFORD

Lot #:

Elevation:

S38-20

A-REAR UPGRADE

Job Track:

PlanLog:

50465 205567

Layout ID:

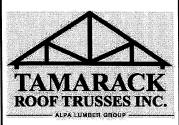
423566

Ref#

Page:

1 of 4

Date: Designer:


Sales Rep:

Rick DiCiano

06-28-2022

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	30-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	277.92 172.67		
	1	T2 Hip	6 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.38 79.83		
	1	T3 Hip	6 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.27 79.33		
	1	T4 Hip	6 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	127.71 79.33		
	1	T5 Hip	6 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	136.86 86.17		
	5	T6C Common	6 /12	30-11-00	8-10-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	629.51 392.50		
	1 2-ply	T7 Hip Girder	10 /12	30-11-00	4-01-10	2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	341.08 206.67		
	1	T8 Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		
	1	T8C Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		
	1	T9 Hip	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	144.72 92.33		
	1	T9C Hip	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	144.72 92.33		
	1	T10 Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
	1	T10C Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
	1	T11 Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	173.38 108.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

Elevation:

BRADFORD

Model: Lot #:

S38-20

A-REAR UPGRADE

Job Track:

50465 205567

PlanLog: Layout ID:

423566

Ref#

Page:

2 of 4

06-28-2022


Date:

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

<u> </u>	QTY	MARK		I		·	OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T11C Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	173.38 108.00		
	1	T12 Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	150.66 94.50		
	1	T12C Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.8 90.83		
	2	T13 Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	341.66 214.67		
	1	T13C Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	163.82 103.67		
	1	T14 Hip Girder	10 /12	19-01-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	102.49 65.33		
	1	T15 Hip	10 /12	19-01-00	6-06-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	90.06 57.67		
	1	T16 Common	10 /12	12-03-00	6-08-15	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	59.1 38.17		
	3	T16S Roof Special	10 /12 10 /12	12-03-00	6-08-15	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11	182.61 118.50		
	1 2-ply	T17 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	1 2-ply	T18 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1	T23W Flat Girder	0 /12	12-03-00	2-01-02	2 x 6		2-01-02 2-01-02	58.33 39.00		-
	1	V1 Valley	6 /12	18-09-00	4-08-04	2 x 4			57.29 37.50		
	1	V2 Valley	6 /12	14-09-00	3-08-04	2 x 4			38.27 24.67		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

S38-20

Lot #:

Elevation:

A-REAR UPGRADE

Job Track: PlanLog:

50465 205567

Layout ID:

423566

Ref# Page:

3 of 4

Date:

06-28-2022

Designer:

Rick DiCiano Sales Rep:

)01 11	usses						OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
	QTY	MARK	-TOU	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
PROFILE	PLY	TYPE	PITCH	SFAIN			RIGHT	RIGHT			
	1	V3 Valley	6 /12	10-09-00	2-08-04	2 x 4			25.97 16.83		
	16	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	268.71 170.67		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
	7	J8W Jack-Open	4 /12	5-03-08	2-06-00	2 x 4	1-03-08	3-15 2-01-02	98.41 65.33		
	2	J10 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	30.9 20.33		
	1	J11 Jack-Open	10 /12	1-09-07	3-01-09	2 x 4	1-03-08 2-01-01	3 1-07-11 3-01-09	12.02 8.33		
	1	J12 Jack-Open	10 /12	2 1-10-08	3-01-09	2 x 4		1-07-11 3-02-07	7.79 5.67		
	6	J13 Jack-Open	4 /12	5-02-08	2-05-11	2 x 4	1-03-0	8 3-15 2-00-12	83.18 52.00		
	4	J14 Jack-Open	4 /1:	2 4-02-08	2-01-11	2 x ·	4 1-03-0	3-15 1-08-12	46.08 29.33		

TOTAL #TRUSS= 85

HARDWARE

TYPE	MODEL	LENGTH
Hardware	H2.5T	
	HGUS26-2	
	TYPE Hardware Hardware	Hardware H2.5T

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location: Model:

BRADFORD

S38-20

Lot #: Elevation:

A-REAR UPGRADE

Job Track: PlanLog:

50465 205567

Layout ID:

423566

Ref# Page:

4 of 4

Date:

06-28-2022

Designer:

Rick DiCiano Sales Rep:

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	LJS26DS	
1	Hardware	LUS24	
3		VTCR	

TOTAL NUMBER OF ITEMS= 17

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON GREEN VALLEY EAST

B-STD OR 5 BED (NO COFF.)

Project: Location:

BRADFORD

Model:

S38-20

Lot #:

Elevation:

Job Track: PlanLog:

50465 205567

Layout ID:

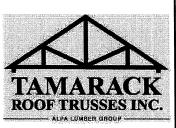
423568

Ref# Page:

1 of 3

Date:

06-28-2022


Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

ROOI III	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	30-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	277.92 172.67		
	1	T2 Hip	6 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.38 79.83	,	
	1	T3 Hip	6 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.27 79.33		
	1	T4 Hip	6 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	127.71 79.33		
	1	T5 Hip	6 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.41 84.17		
	5	T6C Common	6 /12	30-11-00	8-10-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	629.51 392.50	-	
	1	T8 Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		
	1	T8C Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		,
	1	T9 Hip	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	144.72 92.33		
	1	T9C Hip	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	144.72 92.33		
	1	T10 Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
	1	T10C Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
	1	T11 Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	173.38 108.00		
	1	T11C Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	173.38 108.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST**

Model:

BRADFORD

Lot #:

Elevation:

S38-20

B-STD OR 5 BED (NO COFF.)

Job Track: PlanLog:

50465 205567

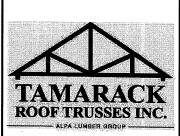
Layout ID:

423568

Ref#

Page:

2 of 3


06-28-2022

Date: Designer:

Sales Rep: Rick DiCiano

Roof Trusses

7,007 11	QTY	MARK					OVERHANG	HEEL NEIGHT	I De	DIIND: C#	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	HEEL HEIGHT LEFT RIGHT	LBS. BFT.	BUNDLE#	LOAD BY
	1	T12 Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	150.66 94.50		
	1.	T12C Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	150.66 94.50		
	3	T13 Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	512.48 322.00		
	1	T13C Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	170.83 107.33		
	2	T16 Common	10 /12	12-03-00	6-08-15	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	118.2 76.33		
	3	T16S Roof Special	10 /12 10 /12	12-03-00	6-08-15	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	182.61 118.50		
	1 2-ply	T30 Hip Girder	10 /12	30-11-00	4-01-10	2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	339.47 208.00		
	1	T31 Common	10 /12	13-00-00	7-00-11	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	62.1 39.50		
	3	T31S Roof Special	10 /12 10 /12	13-00-00	7-00-11	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	190.97 124.00		
	1 2-ply	T32 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T32Z Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	13	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	218.33 138.67		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

Elevation:

BRADFORD

Model: Lot #:

S38-20

3 of 3

50465

205567

423568

06-28-2022

Date: Designer:

Job Track:

PlanLog:

Layout ID:

Ref#

Page:

Sales Rep:

Rick DiCiano

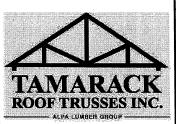
Roof Trusses

QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
7	J30 Jack-Open	8 /12	3-02-08	3-04-03	2 x 4	1-03-08	4-07 2-06-02	73.82 51.33		
3	J31 Jack-Open	8 /12	4-02-08	4-00-03	2 x 4	1-03-08	4-07 3-02-02	39.17 26.00		
	2 2 7	PLY TYPE 2 J4 Jack-Open 2 J5 Jack-Open 7 J30 Jack-Open 3 J31	PLY TYPE PITCH 2 J4 Jack-Open 6 /12 2 J5 Jack-Open 6 /12 7 J30 Jack-Open 8 /12 3 J31 8 /12	PLY TYPE PITCH SPAN 2 J4 Jack-Open 6 /12 1-10-08 2 J5 Jack-Open 6 /12 1-09-07 7 J30 Jack-Open 8 /12 3-02-08 3 J31 8 /12 4 02 08	PLY TYPE PITCH SPAN HEIGHT 2 J4 Jack-Open 6 /12 1-10-08 3-00-12 2 J5 Jack-Open 6 /12 1-09-07 2-00-12 7 J30 Jack-Open 8 /12 3-02-08 3-04-03 3 J31 8 /12 4 02 08 4 00 03	PLY TYPE PITCH SPAN HEIGHT LUMBER 2 J4 Jack-Open 6 /12 1-10-08 3-00-12 2 x 4 2 J5 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 7 J30 Jack-Open 8 /12 3-02-08 3-04-03 2 x 4 3 J31 8 /12 4 02 08 4 00 03 2 x 4	PLY TYPE PITCH SPAN HEIGHT LUMBER LEFT RIGHT 2 J4 Jack-Open 6/12 1-10-08 3-00-12 2 x 4 1-03-08 1-10-15 2 J5 Jack-Open 6/12 1-09-07 2-00-12 2 x 4 1-03-08 1-01 7 J30 Jack-Open 8/12 3-02-08 3-04-03 2 x 4 1-03-08 3 J31 8/12 4.03.08 4.00.03 2 x 4 1-03-08	PLY TYPE PITCH SPAN HEIGHT LUMBER LEFT RIGHT 2 J4 Jack-Open 6/12 1-10-08 3-00-12 2 x 4 1-03-08 1-02-00 2-01-04 2 J5 Jack-Open 6/12 1-09-07 2-00-12 2 x 4 1-03-08 1-01 7 J30 Jack-Open 8/12 3-02-08 3-04-03 2 x 4 1-03-08 4-07 2-06-02 3 J31 8/12 4-02-08 4-00-03 2 x 4 1-03-08 4-07	PLY TYPE PITCH SPAN HEIGHT LUMBER LEFT RIGHT LEFT RIGHT BFT. 2 J4 Jack-Open 6 /12 1-10-08 3-00-12 2 x 4 1-03-08 1-02-00 19.14 12.00 2 J5 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 1-03-08 1-02-00 14.04 9.33 7 J30 Jack-Open 8 /12 3-02-08 3-04-03 2 x 4 1-03-08 4-07 2-06-02 51.33	PLY TYPE PITCH SPAN HEIGHT LUMBER LEFT RIGHT LEFT RIGHT BFT. STACK# 2 J4 Jack-Open 6/12 1-10-08 3-00-12 2 x 4 1-03-08 1-02-00 19.14 12.00 2 J5 Jack-Open 6/12 1-09-07 2-00-12 2 x 4 1-03-08 1-01 2-00-12 14.04 9.33 7 J30 Jack-Open 8/12 3-02-08 3-04-03 2 x 4 1-03-08 4-07 73.82 51.33 3 J31 J31 8/12 4-02-08 4-00-03 2 x 4 1-03-08 4-07 39.17

B-STD OR 5 BED (NO COFF.)

101AL # 1RUSS= 71

TOTAL BFT OF ALL TRUSSES= 3175.14


BFT.

TOTAL WEIGHT OF ALL TRSSES 5028.26 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
6	Hardware	LJS26DS	

TOTAL NUMBER OF ITEMS= 8

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST**

Model:

BRADFORD

Lot #:

Elevation:

S38-20

B-OPT.WITH COFF.

Job Track: PlanLog:

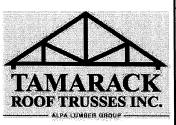
50465 205567

Layout ID:

423567

Ref#

Page: Date:


1 of 3 06-28-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

7,007 11	QTY	MARK	1]			OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT	LEFT			
	FLT	TIPE					RIGHT	RIGHT	BFT.	STACK#	REMARKS
	1	T1S	6 /12	30-11-00	4-01-04	2 x 4	1-03-08	1-02-00	293.17		
	2-ply	Hip Girder	0/12	30-11-00	4-01-04	2 3 4	1-03-08	1-02-00	190.00		
·										<u> </u>	
	1	T2S Hip	6 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	132.39 85.67		
		p					1-00-00	1-02-00	55.57		
ATAN	1	T3S					1-03-08	1-02-00	135		
	,	Hip	6 /12	30-11-00	6-01-04	2 x 4	1-03-08	1-02-00	87.83		
	1	T4S	6 /12	30-11-00	7-01-04	2 x 4	1-03-08	1-02-00	138.87	•	
		Hip					1-03-08	1-02-00	89.83		
	1	TE					1.02.00	1.00.00	400.00		
	'	T5 Hip	6 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	136.86 86.17		
	5	T6C	6 /12	30-11-00	8-10-12	2 x 4	1-03-08	1-02-00	629.51		
		Common	0/12	30-11-00	0-10-12	2 × 4	1-03-08	1-02-00	392.50		
	1	T8 Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		
							1 55-55	1 07-11			
A K T A A	1	T8C	10.45	00.44.05	50101		1-03-08	1-07-11	137.74		
		Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08	1-07-11	88.83		
	1	T9	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11	144.72		
		Hip					1-03-08	1-07-11	92.33		
	. 1	T9C					1-03-08	1-07-11	144.70		
		Hip	10 /12	30-11-00	. 6-01-04	2 x 4	1-03-08	1-07-11	144.72 92.33		
	-					-				-	
	1	T10	10 /12	30-11-00	7-01-04	2 x 4	1-03-08	1-07-11	143.09		
ALL V V V		Hip	.57.12				1-03-08	1-07-11	90.50		
	4										
	1	T10C Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
							30 00				
ATTA	1	T11	10.40	20.44.00	0.04.04	04	1-03-08	1-07-11	173.38		
	•	Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08	1-07-11	108.00		
	1	T11C	10 /12	30-11-00	8-01-04	2 x 4	1-03-08	1-07-11	173.38		
	•	Hip					1-03-08	1-07-11	108.00		
			1	_L							

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location:

GREEN VALLEY EAST

Model:

Elevation:

BRADFORD

Lot #:

S38-20

B-OPT.WITH COFF.

Job Track:

50465 205567

PlanLog: Layout ID:

423567

Ref#

Page:

2 of 3

Date:

06-28-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T12 Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	150.66 94.50		
	1	T12C Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.8 90.83		
	3	T13 Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	512.48 322.00		
	1	T13C Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	163.82 103.67		
	2	T16 Common	10 /12	12-03-00	6-08-15	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	118.2 76.33		
	3	T16S Roof Special	10 /12 10 /12	12-03-00	6-08-15	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	182.61 118.50		
	1	T19 Half Hip Girder	6 /12	5-10-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	23.24 16.50		
	1	T20S Half Hip	6 /12	5-10-08	2-10-12	2 x 4	1-03-08	1-02-00 1-10-12	25.02 18.50		
	1	T21S Half Hip	6 /12	5-10-08	3-10-12	2 x 4	1-03-08	1-02-00 2-10-12	25.33 17.67		
	1 2-ply	T30 Hip Girder	10 /12.	30-11-00	4-01-10	2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	375.14 226.67		
	1	T31 Common	10 /12	13-00-00	7-00-11	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	62.09 39.50		
	3	T31S Roof Special	10 /12 10 /12	13-00-00	7-00-11	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	196.5 128.00		
	1 2-ply	T32 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T32Z Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		

Lumber Yard: TAMARACK LUMBER

Builder: **BAYVIEW WELLINGTON**

Project: **GREEN VALLEY EAST**

Location: **BRADFORD**

Model: S38-20

Lot #:

Elevation: B-OPT.WITH COFF. Job Track:

50465

PlanLog: Layout ID: 205567 423567

Ref#

Page:

3 of 3

06-28-2022

Date: Designer:

Sales Rep: Rick DiCiano

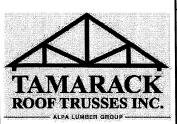
Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	6	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	100.77 64.00		
	6	J1S Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 3-01-04	122.34 88.00		
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	14.13 8.67		
	1	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33		
	1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		
	1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	7.02 4.67	·	
	3	J6 Jack-Open	6 /12	1-05-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	18.38 14.00		
	7	J30 Jack-Open	8 /12	3-02-08	3-04-03	2 x 4	1-03-08	4-07 2-06-02	73.82 51.33		
	3	J31 Jack-Open	8 /12	4-02-08	4-00-03	2 x 4	1-03-08	4-07 3-02-02	39.17 26.00	:	

TOTAL #TRUSS= 72

TOTAL BFT OF ALL TRUSSES= 3287.99

BFT.


TOTAL WEIGHT OF ALL TRSSES 5154.64 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
6	Hardware	LJS26DS	

TOTAL NUMBER OF ITEMS= 8

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: GREEN VALLEY EAST

Model:

BRADFORD S38-20

Lot #:

Elevation:

\$38

B-REAR UPGRADE

Job Track:

50465

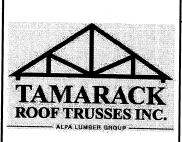
PlanLog: Layout ID: 205567 423569

Ref#

Page:

1 of 3

Date:


te: 06-28-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	30-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	277.92 172.67	C	
	1	T2 Hip	6 /12	30-11-00	5-01-04	.2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.38 79.83		
	1	T3 Hip	6 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00	126.27 79.33		
	1	T4 Hip	6 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	127.71 79.33		
	1	T5 Hip	6 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.41 84.17		
	5	T6C Common	6 /12	30-11-00	8-10-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	629.51 392.50		
	1	T8 Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		
	1	T8C Hip	10 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	137.74 88.83		
	1	T9 Hip	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	144.72 92.33		
	1	T9C Hip	10 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	144.72 92.33		
	1	T10 Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
	1	T10C Hip	10 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	143.09 90.50		
	1	T11 Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	173.38 108.00		
	1	T11C Hip	10 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	173.38 108.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location:

Elevation:

GREEN VALLEY EAST

Model:

BRADFORD S38-20

Lot #:

B-REAR UPGRADE

Job Track:

PlanLog:

50465 205567

Layout ID:

423569

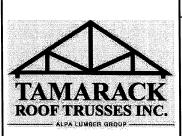
Ref#

Page:

2 of 3

Date:

06-28-2022


Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK				T	OVERHANG	HEEL HEIGHT	LBS.	DUND: = "	
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	BUNDLE #	LOAD BY REMARKS
	1	T12 Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	150.66 94.50		REMARKS
	1	T12C Hip	10 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	150.66 94.50		
	3	T13 Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	512.48 322.00		
	1	T13C Hip	10 /12	30-11-00	10-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	170.83 107.33		
	2	T16 Common	10 /12	12-03-00	6-08-15	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	118.2 76.33	·	
	3	T16S Roof Special	10 /12 10 /12	12-03-00	6-08-15	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	182.61 118.50		
	1 2-ply	T30 Hip Girder	10 /12	30-11-00	4-01-10	2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	339.47 208.00		
	1	T31 Common	10 /12	13-00-00	7-00-11	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	62.1 39.50		
	3	T31S Roof Special	10 /12 10 /12	13-00-00	7-00-11	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	190.97 124.00		
	1 2-ply	T32 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T32Z Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1	. V30 Valley	10 /12	8-11-14	3-08-15	2 x 4			27.37 18.00		
	1	V31 Valley	10 /12	6-07-01	2-08-15	2 x 4			17.83 11.50		
	1	V32 Valley	10 /12	4-02-04	1-07-07	2 x 4			9.82 7.17		

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST**

Model:

BRADFORD

Lot #:

Elevation:

S38-20

B-REAR UPGRADE

Job Track: PlanLog:

50465 205567

Layout ID:

423569

Ref#

Page: Date:

3 of 3 06-28-2022

Designer:

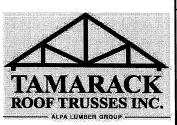
Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	13	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	218.33 138.67		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
	7	J30 Jack-Open	8 /12	3-02-08	3-04-03	2 x 4	1-03-08	4-07 2-06-02	73.82 51.33		
	3	J31 Jack-Open	8 /12	4-02-08	4-00-03	2 x 4	1-03-08	4-07 3-02-02	39.17 26.00		

TOTAL #TRUSS= 74

TOTAL BFT OF ALL TRUSSES= 3211.81


BFT.

TOTAL WEIGHT OF ALL TRSSES 5083.28 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
6	Hardware	LJS26DS	
3		VTCR	

TOTAL NUMBER OF ITEMS= 11

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST**

Model:

BRADFORD

Lot #:

Elevation:

+ *4*4.

S38-20

C-OPT.WITH COFF.

PlanLog:

50465 205567

Layout ID:

Job Track:

423570

Ref#

Page:

1 of 4

Date:

te: 06-28-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1S Hip Girder	6 /12	30-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	292.54 189.33		
	1	T2S Hip	6 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	132.61 85.67		
	1	T3S Hip	6 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	135.28 86.50		
	1	T4S Hip	6 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	139.12 88.50		
	1	T5 Hip	6 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.41 84.17		
	8	T6C Common	6 /12	30-11-00	8-10-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	1007.22 628.00		
	1	T19 Half Hip Girder	6 /12	5-10-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	23.24 16.50		
	1	T20S Half Hip	6 /12	5-10-08	2-10-12	2 x 4	1-03-08	1-02-00 1-10-12	25.02 18.50		
	1	T21S Half Hip	6 /12	5-10-08	3-10-12	2 x 4	1-03-08	1-02-00 2-10-12	25.33 17.67		
	1 2-ply	T50 Hip Girder	8 /12	30-11-00	4-01-06	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	336.29 206.00		
	1	T51 Hip	8 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.95 84.83		
	1	T51C Hip	8 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.95 84.83		
	1	T52 Hip	8 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.82 85.00		
	1	T52C Hip	8 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.82 85.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location:

BRADFORD

Model:

S38-20

Lot #:

Elevation:

GREEN VALLEY EAST

C-OPT.WITH COFF.

Layout ID:

Ref#

2 of 4

50465

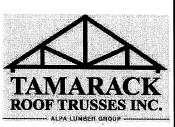
205567

423570

Page: Date:

06-28-2022

Designer:


Job Track:

PlanLog:

Rick DiCiano Sales Rep:

Roof Trusses

	QTY	MARK		. I		Γ	OVERHANG	HEEL HEIGHT	LB\$.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T53 Hip	8 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	131.06 83.17		
	1	T53C Hip	8 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	131.06 83.17		
	1	T54 Hip	8 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	143.29 91.00	*	
	1	T54C Hip	8 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	143.29 91.00		
	3	T55 Hip	8 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	419.18 260.00		
	2	T56 Common	8 /12	12-03-00	5-05-13	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	122.1 78.33		
	1	T56Z Common Girder	8 /12	12-03-00	5-05-13	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	61.05 39.17		
	1	T57 Hip Girder	8 /12	13-00-00	5-03-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	59.54 37.33		
	2	T58S Half Hip Girder	8 /12	4-07-08	3-07-13	2 x 4	1-03-08	1-04-13 3-07-13	55.15 38.33		
	2	T59S Half Hip	. 8 /12	4-07-08	4-11-13	2 x 6 2 x 4	1-03-08	1-04-13 4-11-13	70.21 46.00		
	1 2-ply	T60 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T60Z Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	6	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	100.77 64.00		
	6	J1S Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 3-01-04	122.34 88.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST**

Model:

BRADFORD

Lot #:

Elevation:

S38-20

C-OPT.WITH COFF.

Job Track:

50465

PlanLog: Layout ID: 205567 423570

Ref#

Page:

3 of 4

Date:


06-28-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT:	STACK#	REMARKS
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	14.13 8.67		
	1	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33		
	1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		
	1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	7.02 4.67		
	3	J6 Jack-Open	6 /12	1-05-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	18.38 14.00		
	2	J60 Jack-Open	8 /12	5-10-08	5-03-13	2 x 4	1-03-08	1-04-13 5-03-13	48.44 29.33		
	2	J61 Jack-Open	8 /12	3-09-08	3-11-02	2 x 4	1-03-08 2-01-00	1-04-13 3-11-02	33.12 20.67		
	2	J62 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 4-01-01	1-04-13 2-07-02	26.74 16.67		-
	2	J63 Jack-Open	8 /12	1-10-08	3-11-02	2 x 4	1-03-08 1-10-15	1-04-13 2-07-13	23.21 15.33		
	2	J64 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01	1-04-13 2-07-02	18.34 11.33		
	7	J65 Jack-Open	6 /12	3-02-08	2-06-15	2 x 4	1-03-08	4-03 1-11-07	66.93 46.67		
	3	J66 Jack-Open	6 /12	4-02-08	3-00-15	2 x 4	1-03-08	4-03 2-05-07	35.93 24.00		
	2	J67 Jack-Open	8 /12	3-04-08	3-07-13	2 x 4	1-03-08	1-04-13 3-07-13	26.29 16.67		
	2	J68 Jack-Open	8 /12	1-10-08	2-07-13	2 x 4		1-04-13 2-07-13	14.43 10.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

Model:

S38-20

Lot #:

Elevation:

BRADFORD

C-OPT.WITH COFF.

Job Track: PlanLog:

50465 205567

Layout ID:

423570

Ref#

Page:

4 of 4

Date:

Designer:

Sales Rep:

Rick DiCiano

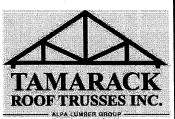
06-28-2022

Roof Trusses

1	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS

TOTAL #TRUSS=

TOTAL BFT OF ALL TRUSSES= 3065.34


BFT.

TOTAL WEIGHT OF ALL TRSSES 4814.03 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
3	Hardware	LJS26DS	·
6	Hardware	LUS24	

TOTAL NUMBER OF ITEMS= 11

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON GREEN VALLEY EAST

Project: Location:

ONLLIN VALLET

Model:

BRADFORD

Lot #:

. .

Elevation:

S38-20

C-STD OR 5 BED (NO COFF)

Job Track:

50465 205567

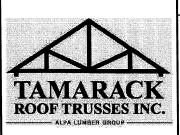
PlanLog: Layout ID:

423571

Ref#

Page:

1 of 3


06-28-2022

Date: Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK		l.			OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE:	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	30-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	277.92 172.67		
	1	T2 Hip	6 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.38 79.83		
	1	T3 Hip	6 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.27 79.33		
	1	T4 Hip	6 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	127.71 79.33		
	1	T5 Hip	6 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.41 84.17		
	8	T6C Common	6 /12	30-11-00	8-10-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	1007.22 628.00		
	1 2-ply	T50 Hip Girder	8 /12	30-11-00	4-01-06	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	336.29 206.00		
	1	T51 Hip	8 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.95 84.83		
	1	T51C Hip	8 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.95 84.83		
	1	T52 Hip	8 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.82 85.00		:
	1	T52C Hip	8 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.82 85.00		
	1	T53 Hip	8 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	131.06 83.17		
	1	T53C Hip	8 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	131.06 83.17		
	1	T54 Hip	8 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	143.29 91.00		

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: GREEN VALLEY EAST

Model:

BRADFORD S38-20

Lot #:

Elevation:

C-STD OR 5 BED (NO COFF)

Job Track: PlanLog: 50465 205567

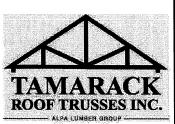
Layout ID:

423571

2 of 3

Ref#

Page: Date:


06-28-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T54C Hip	8 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	143.29 91.00		
	3	T55 Hip	8 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	419.18 260.00		
	2	T56 Common	8 /12	12-03-00	5-05-13	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	122.1 78.33		
	1	T56Z Common Girder	8 /12	12-03-00	5-05-13	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	61.05 39.17		
	1	T57 Hip Girder	8 /12	13-00-00	5-03-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	59.54 37.33		
	2	T58S Half Hip Girder	8 /12	4-07-08	3-07-13	2 x 4	1-03-08	1-04-13 3-07-13	55.15 38.33		
	2	T59S Half Hip	8 /12	4-07-08	4-11-13	2 x 6 2 x 4	1-03-08	1-04-13 4-11-13	70.21 46.00		
	1 2-ply	T60 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T60Z Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	13	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	218.33 138.67		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location: Model:

BRADFORD

Lot #:

Elevation:

S38-20

C-STD OR 5 BED (NO COFF)

Job Track: PlanLog:

50465 205567

Layout ID:

423571

Ref#

Page:

3 of 3

Date:

06-28-2022

Designer:

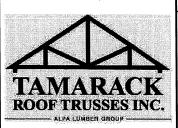
Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK			- 11.10		OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	J60 Jack-Open	8 /12	5-10-08	5-03-13	2 x 4	1-03-08	1-04-13 5-03-13	35.66 21.33		
	2	J61 Jack-Open	8 /12	3-09-08	3-11-02	2 x 4	1-03-08 2-01-00	1-04-13 3-11-02	33.12 20.67		
	2	J62 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 4-01-01	1-04-13 2-07-02	26.74 16.67		
	2	J63 Jack-Open	8 /12	1-10-08	3-11-02	2 x 4	1-03-08 1-10-15	1-04-13 2-07-13	23.21 15.33		
	2	J64 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01	1-04-13 2-07-02	18.34 11.33		
	7	J65 Jack-Open	6 /12	3-02-08	2-06-15	2 x 4	1-03-08	4-03 1-11-07	66.93 46.67		
	3	J66 Jack-Open	6 /12	4-02-08	3-00-15	2 x 4	1-03-08	4-03 2-05-07	35.93 24.00		
	2	J67 Jack-Open	8 /12	3-04-08	3-07-13	2 x 4	1-03-08	1-04-13 3-07-13	26.29 16.67		
	2	J68 Jack-Open	8 /12	1-10-08	2-07-13	2 x 4		1-04-13 2-07-13	14.43 10.00		

TOTAL #TRUSS= 84

TOTAL BFT OF ALL TRUSSES= 2965.16


BFT.

TOTAL WEIGHT OF ALL TRSSES 4705.52 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
3	Hardware	LJS26DS	
6	Hardware	LUS24	

TOTAL NUMBER OF ITEMS= 11

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location: Model:

BRADFORD

Lot #:

Elevation:

S38-20

C-REAR UPGRADE

Job Track:

PlanLog:

50465 205567

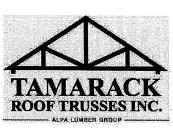
423572

Layout ID:

Ref# Page:

1 of 4

Date:


06-28-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT	LEFT	BFT.	STACK#	REMARKS
	1 2-ply	T1Z3 Hip Girder	6 /12	30-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	277.92 174.67	O I A ON W	ALIMANA
	1	T2 Hip	6 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.38 79.83		
	1	T3 Hip	6 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.27 79.33		
	1	T4 Hip	6 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	127.71 79.33		
	1	T5 Hip	6 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	133.41 84.17		
	8	T6C Common	6 /12	30-11-00	8-10-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	1007.22 628.00		
	1 2-ply	T50 Hip Girder	8 /12	30-11-00	4-01-06	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	336.29 206.00		
	1	T51 Hip	8 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.95 84.83		
	1	T51C Hip	8 /12	30-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.95 84.83		
	1	T52 Hip	8 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.82 85.00		
	1	T52C Hip	8 /12	30-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	133.82 85.00		
	1	T53 Hip	8 /12	30-11-00	7-01-04	2 x 4.	1-03-08 1-03-08	1-04-13 1-04-13	131.06 83.17		
	1	T53C Hip	8 /12	30-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	131.06 83.17		
	1	T54 Hip	8 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	143.29 91.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST**

Model:

BRADFORD

Lot #:

Elevation:

S38-20

C-REAR UPGRADE

Job Track: PlanLog:

50465 205567

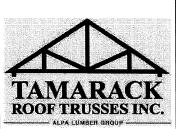
Layout ID:

423572

Ref#

Page:

2 of 4


06-28-2022

Date:

Designer: Sales Rep: Rick DiCiano

Roof Trusses

7,001 11			- 1				·	r			
PROFILE	QTY PLY	MARK TYPE	РІТСН	SPAN	HEIGHT	LUMBER	OVERHANG LEFT RIGHT	HEEL HEIGHT LEFT RIGHT	LBS. BFT.	BUNDLE # STACK #	LOAD BY REMARKS
	1	T54C Hip	8 /12	30-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	143.29 91.00		
	3	T55 Hip	8 /12	30-11-00	9-01-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	419.18 260.00		
	2	T56 Common	8 /12	12-03-00	5-05-13	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	122.1 78.33		
	1	T56Z Common Girder	8 /12	12-03-00	5-05-13	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	61.05 39.17		
	1	T57 Hip Girder	8 /12	13-00-00	5-03-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	59.54 37.33		
	2	T58S Half Hip Girder	8 /12	4-07-08	3-07-13	2 x 4	1-03-08	1-04-13 3-07-13	55.15 38.33		
	2	T59S Half Hip	8 /12	4-07-08	4-11-13	2 x 6 2 x 4	1-03-08	1-04-13 4-11-13	70.21 46.00		
	1 2-ply	T60 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T60Z Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T60Z7 Jack-Closed Girder	· 6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1	T70 Hip Girder	6 /12	19-00-00	3-11-13	2 x 4 2 x 6	1-03-08	1-02-00 2-08-00	86.66 56.00	:	
	5	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	83.97 53.33		
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	14.13 8.67		
	1	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST**

C-REAR UPGRADE

Model:

BRADFORD

Lot #: Elevation: S38-20

Date:

PlanLog:

50465 205567

Layout ID:

Job Track:

423572

Ref#

Page:

3 of 4 06-28-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		
	1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	7.02 4.67		
	2	J60 Jack-Open	8 /12	5-10-08	5-03-13	2 x 4	1-03-08	1-04-13 5-03-13	35.66 21.33		
	2	J61 Jack-Open	8 /12	3-09-08	3-11-02	2 x 4	1-03-08 2-01-00	1-04-13 3-11-02	33.12 20.67		
	2	J62 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 4-01-01	1-04-13 2-07-02	26.74 16.67		
	2	J63 Jack-Open	8 /12	1-10-08	3-11-02	2 x 4	1-03-08 1-10-15	1-04-13 2-07-13	23.21 15.33		
	2	J64 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01	1-04-13 2-07-02	18.34 11.33		-
	7	J65 Jack-Open	6 /12	3-02-08	2-06-15	2 x 4	1-03-08	4-03 1-11-07	66.93 46.67		
	3	J66 Jack-Open	6 /12	4-02-08	3-00-15	2 x 4	1-03-08	4-03 2-05-07	35.93 24.00		
	2	J67 Jack-Open	8 /12	3-04-08	3-07-13	2 x 4	1-03-08	1-04-13 3-07-13	26.29 16.67		
	2	J68 Jack-Open	8 /12	1-10-08	2-07-13	2 x 4		1-04-13 2-07-13	14.43 10.00		
	9	J70 Jack-Open	8 /12	3-10-08	3-11-13	2 x 4	1-03-08	1-04-13 3-11-13	129.59 81.00		

TOTAL #TRUSS= 84

TOTAL BFT OF ALL TRUSSES= 3029.16

BFT.

TOTAL WEIGHT OF ALL TRSSES 4802.75 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	HGUS26-2	
4	Hardware	LJS26DS	

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

Elevation:

Lot #:

S38-20

Ŭ

C-REAR UPGRADE

Job Track: PlanLog: 50465 205567

423572

Layout ID:

4 of 4

Page: Date:

Ref#

e: 06-28-2022

Designer:

Sales Rep: Rick DiCiano

HARDWARE

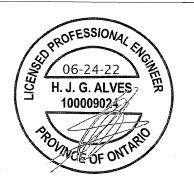
QTY	TYPE	MODEL	LENGTH		
6	Hardware	LUS24			

TOTAL NUMBER OF ITEMS= 13

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423566 TRUSS DESC T1 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:35:30 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-SxNKx53FR_sil1CHOrLIYVs2DpxtDKCEZohl_yz36TB _1-3-8 5-10-8 19-2-0 1-3-8 Scale = 1:54.0 3x8 5x8 = 6.00 12 D G 5x8 / 5x8 < R AC ΑD ΑE AF AG N AH ΑJ ΑK R ۵ 0 М 5x6 =5x6 =3x8 || 5x6 =5x6 = 5x6 = 5x6 =5x6 = 3x8 || 4-0-0 19-0-8 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 2 X 139 = 278 lb

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - J	2x4	DRY	No.2	SPF
S - B	2x6	DRY	No.2	SPF
K - I	2x6	DRY	No.2	SPF
S - P	2x6	DRY	No.2	SPF
P - N	2x6	DRY	No.2	SPF
N - K	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.


DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS		SURFACE	LOAD(PLF)						
		SPACING (IN)	` '						
TOP CHORDS : (0.122"X3") SPIRAL NAILS									
A- C	1	12	SIDE(61.0)						
C-F	1	12	SIDE(61.0)						
F- H	1	12	SIDE(61.0)						
H- J	1	12	SIDE(61.0)						
S-B	2	12	TOP ` ´						
K-I	2	12	TOP						
BOTTO	M CHORDS	: (0.122"X3") SPIRA	L NAILS						
S-P	2	12	SIDE(183.1)						
P-N	2	12	SIDE(183.1)						
N-K	2	12	SIDE(183.1)						
WEBS:	(0.122"X3")	SPIRAL NAILS	(/						
2x3	1	6							

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

Structural component only DWG# T-2215215

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	-
BUILDING DESIGNER	
BEARINGS	

EA	RINGS						
	FACTOR GROSS RE		MAXIMUI GROSS I			INPUT BRG	REQRD BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	3425	0	3425	0	0	5-8	5-8
	3433	0	3433	0	0	5-8	5-8

UNFACTORED REAC	CTIONS	
1CT LCACE	MAN	/8 .

	131 LUASE		<u>VIIN, COMPOI</u>	NENT REACTION	٧S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
S	2402	1693 / 0	0/0	0/0	0/0	709 / 0	0/0
K	2407	1696 / 0	0/0	0/0	0/0	711/0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, K

: PRD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.15 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS		WEBS					
MA)	(. FACTORED	FACTORED				MAX. FACTO	RED	
MEMB.		VERT. LOAD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO		` '	
A-B	0/34	-112.4 -112.4			R- C	-406 / 47	0.05(1)	
B- C	-5074 / 0	-112.4 -112.4			C-Q	0/2613	0.32 (1)	
C-T	-6596 / 0	-112.4 -112.4	0.56(1)	3.32	Q- D	-1436 / 0	0.18 (1)	
T- U	-6596 / 0	-112.4 -112.4	0.56(1)	3.32	D-O	0 / 755	0.09 (1)	
U- D	-6596 / 0	-112.4 -112.4	0.56(1)	3.32	0- E	-803 / 0	0.10 (1)	
D- V	-7190 / 0	-112.4 -112.4	0.59 (1)	3.15	0- G	0 / 747	0.09 (1)	
V-W	-7190 / 0	-112.4 -112.4	0.59 (1)	3.15	M- G	-1431 / 0	0.18 (1)	
W-E	-7190 / 0	-112.4 -112.4	0.59 (1)	3.15	M- H	0 / 2606	0.32 (1)	
E-X	-7190 / 0	-112.4 -112.4	0.59 (1)	3.15	L- H	-405 / 50	0.05 (1)	
X-F	-7190 / 0	-112.4 -112.4	0.59 (1)	3.15	B-R	0 / 4573	0.57 (1)	
F-Y	-7190 / 0	-112.4 -112.4	0.59 (1)	3.15	L-T	0 / 4585	0.57 (1)	
Y- G	-7190 / 0	-112.4 -112.4	0.59 (1)	3.15			. ,	
G-Z	-6602 / 0	-112.4 -112.4	0.56 (1)	3.32				
Z-AA	-6602 / 0	-112.4 -112.4	0.56(1)	3.32				
AA- H	-6602 / 0	-112.4 -112.4	0.56 (1)	3.32				

D- O	-30/4/0			0.60 (1)	3.76	U-Q	0 / 261
C-T	-6596 / 0			0.56(1)	3.32	Q- D	-1436 / 0
T- U	-6596 / 0	-112.4	-112.4	0.56(1)	3.32	D-O	0 / 755
U- D	-6596 / 0	-112.4	-112.4	0.56 (1)	3.32	0- E	-803 / 0
D- V	-7190 / 0	-112.4		0.59 (1)	3.15	0- G	
V-W	-7190 / 0	-112.4	-112.4	0.59 (1)	3.15	M- G	-1431 / 0
W-E	-7190 / 0	-112.4		0.59 (1)	3.15	M- H	0 / 260
E-X	-7190 / 0	-112.4	-112.4	0.59 (1)	3.15	L- H	
X-F	-7190 / 0			0.59 (1)			
F-Y	-7190 / 0	-112.4	-112.4	0.59(1)	3.15	L-T	0 / 458
Y-G	-7190 / 0	-112.4	-112.4	0.59 (1)	3.15		
G-Z	-6602 / 0			0.56 (1)	3.32		
Z-AA	-6602 / 0	-112.4		0.56 (1)			
AA- H	-6602 / 0	-112.4	-112.4	0.56 (1)	3.32		
H-I	-5087 / 0	-112.4	-112.4	0.61 (1)	3.75		
I- J	0/34			0.08(1)	10.00		
S-B	-3345 / 0	0.0	0.0	0.12 (1)			
K-I	-3352 / 0	0.0	0.0	0.12 (1)			
S-AB	0/0	-18.5	-18.5	0.07 (4)	10.00		
AB-AC	0/0	-18.5	-18.5	0.07 (4)	10.00		
AC- R	0/0	-18.5	-18.5	0.07 (4)	10.00		
R-AD	0 / 4524	-18.5	-18.5	0.33 (1)	10.00		
AD-AE	0 / 4524	-18.5	-18.5	0.33 (1)			
AE- Q	0 / 4524	-18.5	-18.5	0.33 (1)			
Q-P	0 / 6597	-18.5	-18.5	0.49 (1)	10.00		
P-AF	0 / 6597	-18.5	-18.5	0.49 (1)	10.00		
AF- O	0 / 6597	-18.5	-18.5	0.49 (1)	10.00		
O-AG	0 / 6603	-18.5	-18.5	0.49 (1)	10.00		
AG- N	0 / 6603	-18.5	-18.5	0.49 (1)	10.00		
N-AH	0 / 6603	-18.5	-18.5	0.49 (1)	10.00		
AH- M	0 / 6603	-18.5	-18.5	0.49 (1)	10.00		
M-Al	0 / 4536	-18.5	-18.5	0.33 (1)	10.00		
AI-AJ	0 / 4536	-18.5	-18.5	0.33 (1)	10.00		
AJ- L	0 / 4536	-18.5	-18.5	0.33 (1)	10.00		
L-AK	0/0	-18.5		0.07 (4)	10.00		
AK-AL	0/0	-18.5	-18.5	0.07 (4)	10.00		
AL- K	0/0	-18.5		0.07 (4)			
				1.7			

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	==	0.0	PSF
		DL		7.4	PSF
TOTA	1 10	ΔD	_	45.0	DCE

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.20")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.35")

CSI: TC=0.61/1.00 (H-I:1) , BC=0.49/1.00 (O-Q:1) , WB=0.57/1.00 (I-L:1) , SSI=0.22/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.86 (L) (INPUT = 0.90) JSI METAL= 0.62 (P) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOI	B DESC.	RΛ	V/IEI	N WELI	INICITO	NI.		DRWG NO.
							(V L	A AAFFI	-IIVG I C	М		DAWG NO.
423566	T1	1	2	TR	RUSS DES	SC.						
Tamarack Roof Truss, Bu	rlington								Varsian 9	E20 C Eab	20.0000 1	MET-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
							ID:c3i	vissuDiia	2nvDkhk	.550 5 Feb ZovZEVIA	CANILAR	MiTek Industries, Inc. Fri Jun 24 10:35:30 2022 Page
							10.00	YIZOUDIJU	ODVINDA	ZDY/3AVV	SXIVIX	33FR sil1CHOrLIYVs2DpxtDKCEZohl yz36T
PLATES (table is in inc	haal											
JT TYPE PLAT		CDEOIEIED OO										
B TMVW-t MT2		SPECIFIED CON										*
C TTWW-m MT2		JT LOC. C 5-10-8			MAX+	FACE	DIR.	TYPE	HEEL	CONN.		
D TMWW-t MT2		E 15-4-12	-308	-308		FRONT	VERT	TOTAL		C1		
E TMW+w MT2		H 25-0-8	-93	-93		FRONT	VERT	TOTAL		C1		
F TS-t MT2		L 24-11-12	-308	-308		FRONT	VERT	TOTAL		C1		
G TMWW-t MT2		O 15-4-12	-21	-21		FRONT	VERT	TOTAL		C1	1	
H TTWW-m MT2		P 11-8-4	-21 -21	-21		FRONT	VERT	TOTAL		C1		
I TMVW-t MT2		R 5-11-4		-21		FRONT	VERT	TOTAL		C1		
K BMV1+p MT2		T 7-8-4	-21	-21		FRONT	VERT	TOTAL		C1		
L BMWW-t MT2		U 9-8-4	-93 -93	-93 -93		FRONT	VERT	TOTAL		C1		
M BMWW-t MT2		V 11-8-4	-93	-93		FRONT	VERT	TOTAL		C1		
N BS-t MT2		W 13-8-4	-93	-93		FRONT	VERT	TOTAL		C1		
O BMWWW-t MT2		X 17-4-12	-93	-93		FRONT	VERT	TOTAL		C1		
P BS-t MT2			-93	-93		FRONT	VERT	TOTAL		C1		
Q BMWW-t MT2		Y 19-4-12 Z 21-4-12	-93	-93		FRONT	VERT	TOTAL		C1		
R BMWW-t MT2			-93	-93		FRONT	VERT	TOTAL		C1		
S BMV1+p MT2			-93	-93		FRONT	VERT	TOTAL		C1	i i	
O BINIVITE INITZ	3.0 8.0 4.50	AB 1-11-4	-20	-20		FRONT.	VERT	TOTAL		C1		
Edge - INDICATES DEE	ERENCE CORNER OF PLATE	AC 3-11-4	-21	-21		FRONT	VERT	TOTAL		C1		
TOUCHES EDGE OF C	HODD	AD 7-8-4	-21	-21		FRONT	VERT	TOTAL		C1		
1000FIES EDGE OF C	HOND.	AE 9-8-4	-21	-21		FRONT	VERT	TOTAL		C1		
		AF 13-8-4	-21	-21		FRONT	VERT	TOTAL		C1		
NOTES- (1)		AG 17-4-12	-21	-21		FRONT	VERT	TOTAL		C1		
		AH 19-4-12	-21	-21		FRONT	VERT	TOTAL		C1		
i) Lateral braces to be a	minimum of 2X4 SPF #2.	Al 21-4-12	-21	-21		FRONT	VERT	TOTAL		C1		
		AJ 23-4-12	-21	-21		FRONT	VERT	TOTAL		Č1		
		AK 26-11-12	-21	-21		FRONT	VERT	TOTAL		C1		
		AL 28-11-12	-20	-20		FRONT	VERT	TOTAL		C1		
		CONNECTION R	EQUIREME	NTS								

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2215215

TRUSS NAME JOB NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** DRWG NO 423572 T1Z3 TRUSS DESC Tamarack Roof Truss Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:56:35 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-5SNRYaV2wsMcLwqBn9jM7bydj6w14IED5Hjkapz34Ow 1-3-8 5-10-8 1-9-12 2-0-0 15-4-4 1-3-8 Scale = 1:54.0 5x8 2x4 || 3x8 = 4x4 = н^{5х8 ≃} 6.00 12 Ε G 5x8 / 5x8 < 81 W Q М R 0 3x8 || 5x6 =5x6 =5x8 = 5x6 5x6 =3x8 || 5x6 =5x6 =1-11-4 2-0-0 2-0-0 1-9-0 2-0-0 19-1-8 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 2 X 139 = 278 II

LUMBER				
N. L. G. A. F	ULES			1
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - J	2x4	DRY	No.2	SPF
S - B	2x6	DRY	No.2	SPF
K - I	2x6	DRY	No.2	SPF
S - Q	2x6	DRY	No.2	SPF
Q - M	2x6	DRY	No.2	SPF
M - K	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	HORDS: (0.	122"X3") SPIRAĹ NAI	LS
A-C	1 .	12	SIDE(61.0)
C-F	1	12	SIDE(61.0)
F- H	1	12	TOP `
H- J	1	12	TOP .
S-B	2	12	TOP
K-I	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL	_ NAILS
S-Q	2	12	SIDE(183.1)
Q- M	2	12	SIDE(0.0)
M- K	2	12	TOP ` ´
WEBS:	: (0.122"X3")	SPIRAL NAILS	
2x3	` 1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY

Structural component only DWG# T-2215259

	AND LOADINGS SPECIFIED	BY FABRIC	CATOR TO BE VI	ERIFIED BY
BUILDING DESIGNER				
BEARINGS				
FACTORED	MAXIMUM FACTORED	INPUT	REORD	

	FACTO GROSS R		MAXIMUI GROSS		INPUT BRG	REQRD BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
3	3966	0	3966	0	0	5-8	5-8
<	3058	0	3058	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	<u> MIN. COMPON</u>	VENT REACTION	IS.		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
S	2775	1986 / 0	0/0	0/0	0/0	790 / 0	0/0
K	2138	1541 / 0	0/0	0/0	0/0	597 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.90 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

WERS

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4) CHORDS

	0 10 0				VV E	88	
MAX	C. FACTORED	FACTORED				MAX. FACTO	DRED
MEMB.	FORCE	VERT. LOAD LC	I MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC	3	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
A-B	0 / 34	-112.4 -112.4	0.08 (1)	10.00	R-C	-665 / 0	0.08 (1)
B- C	-5997 / 0	-112.4 -112.4			C-P	0 / 3683	0.46 (1)
C-T	-8262 / 0	-112.4 -112.4			P- D	-535 / 0	0.07 (1)
T- U	-8262 / 0	-112.4 -112.4			D-O	-424 / 0	0.13 (1)
U-D	-8262 / 0	-112.4 -112.4			0- E	-455 / 0	0.06 (1)
D-E	-7929 / 0	-112.4 -112.4			0- G	0 / 1987	0.25 (1)
E-F	-7929 / 0	-112.4 -112.4			N- G	-1840 / 0	0.23 (1)
F- G	-7929 / 0	-112.4 -112.4			N- H	0 / 3006	0.37 (1)
G-H	-6367 / 0	-112.4 -112.4			L- H	-389 / 0	0.05 (1)
H-1	-4469 / 0	-112.4 -112.4	0.56 (1)	4.00	B-R	0 / 5405	0.67 (1)
I- J	0/34	-112.4 -112.4			L-1	0 / 4028	0.50 (1)
S-B	-3865 / 0	0.0 0.0	0.14 (1)	7.20			. ,
K-1	-3004 / 0	0.0 0.0	0.11 (1)	7.81			
S-V	0/0		0.07 (1)	10.00			
V-W	0/0	-18.5 -18.5	0.07 (1)				
W-R	0/0	-18.5 -18.5	0.07 (1)				
R-X	0 / 5342	-18.5 -18.5	0.52 (1)				
X-Q	0 / 5342	-18.518.5	0.52 (1)				
Q-P	0 / 5342	-18.5 -18.5	0.52 (1)				
P-Y	0 / 8262	-18.5 -18.5	0.96 (1)	10.00			
Y- 0	0 / 8262	-18.5 -18.5	0.96 (1)				
0- N	0 / 6368	-18.5 -18.5	0.49 (1)				
N- M	0 / 3984	-18.5 -18.5	0.31 (1)				
M-L	0 / 3984	-18.5 -18.5	0.31 (1)				
L-K	0/0	-18.5 -18.5	0.04 (4)	10.00			

SPE	CIFIED CON	ICENTRA	TED LOA	(LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
С	5-10-8	-308	-308		FRONT	VERT	TOTAL		C1
Q	9-8-4	-21	-21		FRONT	VERT	TOTAL		C1
R	5-11-4	-21	-21		FRONT	VERT	TOTAL		C1
T	7-8-4	-93	-93		FRONT	VERT	TOTAL	***	C1
U	9-8-4	-93	-93		FRONT	VERT	TOTAL		C1
V	1-11-4	-20	-20		FRONT	VERT	TOTAL		C1
W	3-11-4	-21	-21		FRONT	VERT	TOTAL	***	C1
X	7-8-4	-21	-21		FRONT	VERT	TOTAL .		C1
Υ	11-9-8	-1271	-1271		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: 32.5 PSF LL = DL = 6.0 0.0 7.4 PSF TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.24")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/ 890 (0.42")

CSI: TC=0.69/1.00 (B-C:1) , BC=0.96/1.00 (O-P:1) , WB=0.67/1.00 (B-R:1) , SSI=0.50/1.00 (O-P:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

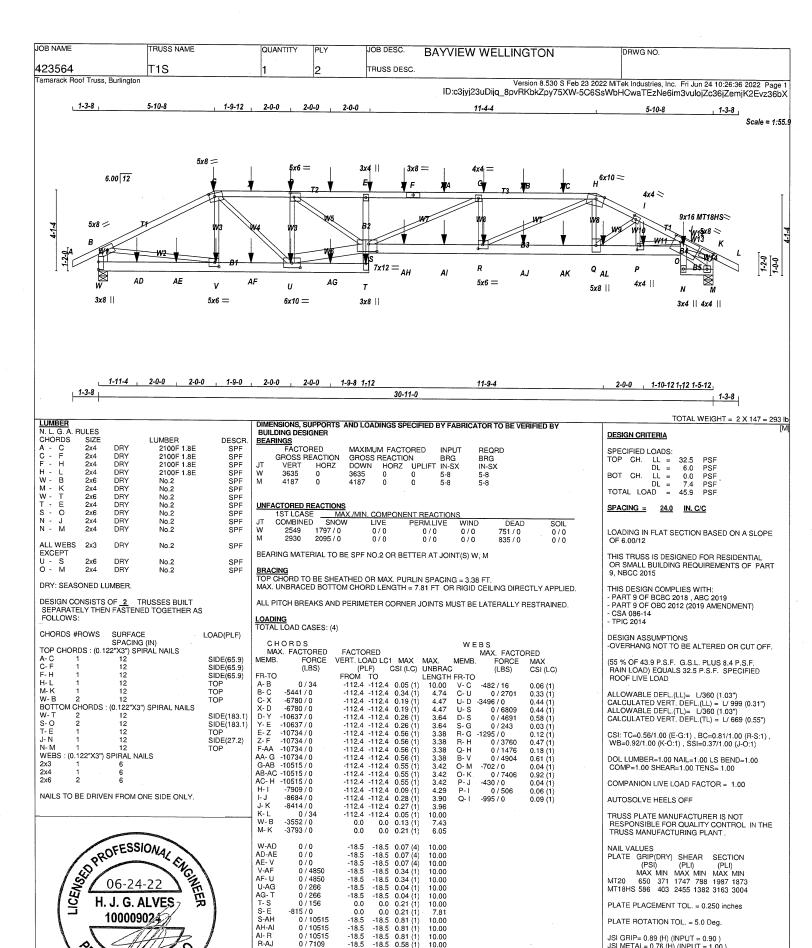
COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (H) (INPUT = 0.90) JSI METAL= 0.61 (R) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423572 T1Z3 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 12:56:35 2022 Page 2 ID:c3jyj23uDijq 8pvRKbkZpy75XW-5SNRYaV2wsMcLwqBn9jM7bydj6w14IED5Hjkapz34Ow Tamarack Roof Truss, Burlington W LEN Y X
5.0 8.0
5.0 8.0
1.75 2.7
4.0 4.0 2.00 1.7
2.0 4.0
3.0 8.0
4.0 4.0 2.00 1.7
5.0 8.0 1.75 2.7
5.0 8.0
3.0 8.0 4.50 Ed
5.0 6.0 2.50 2.2
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0
5.0 6.0 CONNECTION REQUIREMENTS 1.75 2.75 2.00 1.75 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. MT20 MT20 MT20 MT20 MT20 MT20 MT20 MT20 2.00 1.75 1.75 2.75 TMWW-t TTWW-m TMVW-t BMV1+p BMWW-t BS-t BMWW-t BMWWV-t - KLMZOPQR% 4.50 Edge 2.50 2.25 MT20 MT20 MT20 MT20 MT20 BMWW-t BS-t BMWW-t 2.50 2.25 4.50 BMV1+p MT20 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. PROFESSIONAL FINGUES H. J. G. ALVES 100009024 POLYACE OF ONTARIO

Structural component only DWG# T-2215259

Q-AL AL- P P- O -18.5 0.0 -18.5 0.0 0.69 (1) 10.00 0 / 8267 N- O O- J Structural component only 0 / 186 0.0 0.0 0.44 (1) 10.00 RFVIFW N- M 0 / 590 0.06 (1) DWG# T-2215186

0.58 (1) 0.66 (1)

-18.5

-18.5

10.00

10.00

10.00

10.00

JSI METAL= 0.76 (H) (INPUT = 1.00)

-18.5 -18.5 0.58 (1

-18.5 -185 0.58

-18.5 -18.5

-18.5-18.5 0.66

AJ-AK

AK- Q

0 / 7109

0 / 7109 0 / 7844

0 / 7844

POLYACE OF ONTARIO

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.			
423564	T1S	1	2	TRUSS DESC.					
Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:36 2022 Page 2									
					ID:c3jyj23uDijq 8pvRKbkZpy75XW-5C6S	sWbHCwaTEzNe6im3vulojZc36jZemjK2Evz36bX			

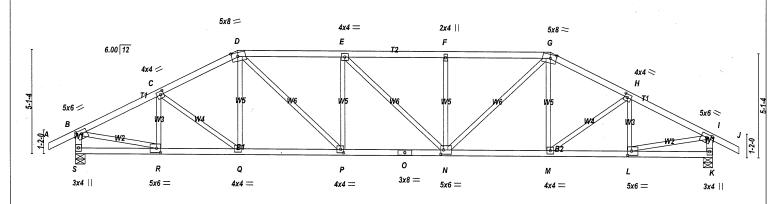
GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

PL	PLATES (table is in inches)												
JT	TYPE	PLATES	w	LEN	Υ	Х							
В	TMVW-t	MT20	5.0	8.0	•								
С	TTWW-m	MT20	5.0	8.0	2.00	3.25							
D	TMWW-t	MT20	5.0	6.0	2.50	2.25							
Ε	TMV+p	MT20	3.0	4.0									
F	TS-t	MT20	3.0	8.0									
G	TMWW-t	MT20	4.0	4.0									
Н	TTWW-m	MT20	6.0	10.0	2.00	4.75							
1	TMWW-t	MT20	4.0	4.0	2.00	1.75							
J													
J	TMBVWWW		9.0	16.0	2.75	4.25							
K	TMVW-t	MT20	5.0	8.0	2.50	3.25							
М	BMVW1+p	MT20	4.0	4.0									
Ν	BMV+p	MT20	3.0	4.0									
0													
Р	BMWW+t	MT20	4.0	4.0	2.50	1.75							
Q	BMWW+t	MT20	5.0	8.0									
R	BMWW-t	MT20	5.0	6.0	2.50	2.75							
S	BVMWWW-I	MT20	7.0	12.0	4.50	5.00							
Т	BMV+p	MT20	3.0	8.0									
U	BMWWW-t	MT20	6.0	10.0	2.75	5.00							
٧	BMWW-t	MT20	5.0	6.0	2.50	2.50							
W	BMV1+p	MT20	3.0	8.0	4.50								

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

SPE	CIFIED CON	ICENTRA	TED LOA	NDS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN
С	5-10-8	-308	-308		FRONT	VERT	TOTAL		C1
D	9-8-4	-93	-93		FRONT	VERT	TOTAL		C1
E	13-8-4	-94	-94		FRONT	VERT	TOTAL		- C1
G	19-4-12	-94	-94		FRONT	VERT	TOTAL		C1
0	29-5-4	-237	-237		FRONT	VERT	TOTAL		C1
P	27-4-12	-243	-243		FRONT	VERT	TOTAL		C1
R	19-4-12	-72	-72		FRONT	VERT	TOTAL		C1
Т	13-5-12	-78	-78		FRONT	VERT	TOTAL		C1
U	9-8-4	-21	-21		FRONT	VERT	TOTAL		C1
٧	5-11-4	-21	-21		FRONT	VERT	TOTAL		C1
X	7-8-4	-93	-93		FRONT	VERT	TOTAL		C1
Υ	11-8-4	-93	-93		FRONT	VERT	TOTAL		C1
Z	15-4-12	-94	-94		FRONT	VERT	TOTAL		C1
AA	17-4-12	-94	-94		FRONT	VERT	TOTAL		C1
AB	21-4-12	-94	-94		FRONT	VERT	TOTAL		C1
AC	23-4-12	-94	-94		FRONT	VERT	TOTAL		C1
AD	1-11-4	-20	-20		FRONT	VERT	TOTAL		C1
AE	3-11-4	-21	-21		FRONT	VERT	TOTAL		C1
AF	7-8-4	-21	-21		FRONT	VERT	TOTAL		C1
AG	11-8-4	-21	-21		· FRONT	VERT	TOTAL		.C1
AH	15-4-12	-72	-72		FRONT	VERT	TOTAL		C1
ΑI	17-4-12	-72	-72		FRONT	VERT	TOTAL		C1
AJ	21-4-12	-72	-72		FRONT	VERT	TOTAL		C1
AK	23-4-12	-72	-72		FRONT	VERT	TOTAL		C1
AL	25-4-12	-243	-243		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS


1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2215186

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423566 TRUSS DESC Version 8.530 S Feb 23 2022 M^Tek Industries, Inc. Fri Jun 24 10:35:31 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-w7xi8R4tCl_ZwBnTyZsX4jPE6DGzymDOoSQsWPz36TA Tamarack Roof Truss, Burlington 1-3-8 7-10-8 15-2-0 7-10-8 1-3-8 Scale = 1:54.0

30-11-0

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
G - J	2x4	DRY	No.2	SPF
S - B	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
S - O	2x4	DRY	No.2	SPF
0 - K	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMVW-t	MT20	5.0	6.0	2.00	2.75					
С	TMWW-t	MT20	4.0	4.0	2.00	1.75					
D	TTWW-m	MT20	5.0	8.0	2.25	3.50					
Ε	TMWW-t	MT20	4.0	4.0							
F	TMW+w	MT20	2.0	4.0							
G	TTWW-m	MT20	5.0	8.0	2.25	3.50					
Н	TMWW-t	MT20	4.0	4.0	2.00	1.75					
1	TMVW-t	MT20	5.0	6.0	2.00	2.75					
K	BMV1+p	MT20	3.0	4.0							
L	BMWW-t	MT20	5.0	6.0	2.50	2.25					
M	BMWW-t	MT20	4.0	4.0							
N	BMWWW-t	MT20	5.0	6.0	2.50	1.50					
0	BS-t	MT20	3.0	8.0							
Р	BMWW-t	MT20	4.0	4.0	2.00	1.75					
Q	BMWW-t	MT20	4.0	4.0							
R	BMWW-t	MT20	5.0	6.0	2.50	2.25					
S	BMV1+p	MT20	3.0	4.0							

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215216

DIME	NSIONS, SUPPORTS	AND LOADINGS SPECIFIED I	BY FABRICA	TOR TO BE VERIFIED BY
BUIL	DING DESIGNER			
BEAL	RINGS			
	FACTORED	MAXIMUM FACTORED	INPUT	REQRD
	GROSS REACTION	GROSS REACTION	BRG	BRG
IT	VERT HORZ	DOWN HODZ HOUET	INL CV	INLOW

	FACTOR GROSS RE	MAXIMUN GROSS F		INPUT BBG	REQRD BRG		
JΤ	VERT	HORZ	DOWN	HORZ		IN-SX	IN-SX
3	2177	0	2177	0	0	5-8	5-8
<	2177	0	2177	0	0	5-8	5-8

UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./	MIN. COMPON	IENT REACTION	NS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
S	1523	1092 / 0	0/0	0/0	0/0	431 / 0	0/0				
K	1523	1092 / 0	0/0	0/0	0/0	431 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.49 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	CHORDS				WEBS						
	. FACTORED	FACTO	RED				MAX. FACTO	RED			
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX			
	(LBS)				UNBRAC	;	(LBS)	CSI (LC)			
FR-TO		FROM	TO		LENGTH	FR-TO					
A-B	0 / 34	-112.4	-112.4	0.15(1)	10.00	R-C	-476 / 0	0.09(1)			
B- C	-2810 / 0			0.30(1)		C-Q	-66 / 0	0.03 (1)			
C- D	-2795 / 0			0.29 (1)		Q-D	0 / 134	0.03 (4)			
D- E	-3227 / 0				3.49	D- P	0 / 1026	0.23 (1)			
E-F	-3226 / 0			0.43 (1)		P-E	-613 / 0	0.24(1)			
F- G	-3225 / 0			0.47(1)		E-N	-3 / 0	0.00(1)			
G- H	-2795 / 0			0.29 (1)		N-F	-612 / 0	0.24 (1)			
H- I	-2810 / 0			0.30(1)		N- G	0 / 1023	0.23(1)			
l- J	0 / 34	-112.4		0.15(1)		M- G	0 / 136	0.04 (4)			
	-2137 / 0	0.0		0.22(1)		M- H	-65 / 0	0.03(1)			
K-I	-2137 / 0	0.0	0.0	0.22(1)	5.80	L- H	-477 / 0	0.09 (1)			
						B-R	0 / 2588	0.58 (1)			
S-R	0/0	-18.5	-18.5	0.07 (4)	10.00	L-I	0 / 2588	0.58 (1)			
R-Q	0 / 2531	-18.5	-18.5	0.45 (1)	10.00			. ,			
Q-P	0 / 2481	-18.5	-18.5	0.45 (1)	10.00						
P- O	0 / 3228			0.57 (1)							
O- N	0 / 3228	-18.5	-18.5	0.57(1)	10.00						
N- M	0 / 2481	-18.5	-18.5	0.45(1)	10.00						
M- L	0 / 2531	-18.5	-18.5	0.46 (1)	10.00						
L- K	0/0	-18.5	-18.5	0.07 (4)	10.00						

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 126 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.17")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.31")

CSI: TC=0.47/1.00 (F-G:1) , BC=0.57/1.00 (N-P:1) , WB=0.58/1.00 (B-R:1) , SSI=0.26/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

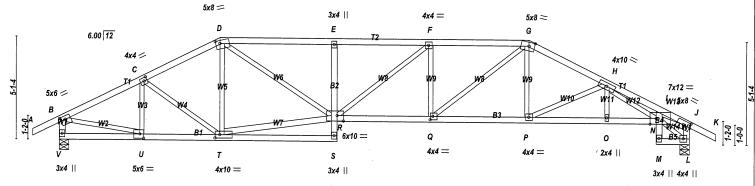
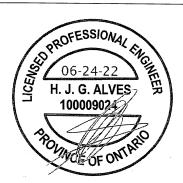

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (B) (INPUT = 0.90) JSI METAL= 0.99 (O) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423564 T2S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 16:49:42 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-3K066DmbzMa0uQcNfA9NWAIv2MnImbW_OuPM0cz31_N 1-3-8 7-10-8 15-2-0 7-10-8 Scale = 1:54.9 5x8 = 3x4 || 4x4 = 5x8 = D Ε F G



13-7-8 15-8-0 1-3-8 30-11-0 1-3-8

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	2100F 1.8E	SPF
D - G	2x4	DRY	No.2	SPF
G - K	2x4	DRY	2100F 1.8E	SPF
V - B	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
V - S	2x4	DRY	No.2	SPF
S - E	2x4	DRY	No.2	SPF
R - N	2x4	DRY	2100F 1.8E	SPF
M - I	2x4	DRY	No.2	SPF
M - L	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
T - R	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	X					
В	TMVW-t	MT20	5.0	6.0	2.00	2.75					
C	TMWW-t	MT20	4.0	4.0	2.00	1.75					
D	TTWW-m	MT20	5.0	8.0	1.75	2.50					
E	TMV+p	MT20	3.0	4.0							
F	TMWW-t	MT20	4.0	4.0							
G	TTWW-m	MT20	5.0	8.0	2.25	3.25					
H	TMWWW-t	MT20	4.0	10.0							
	TMBVWWW*		7.0	12.0	Edge	3.50					
J	TMVW-t	MT20	5.0	8.0	2.50	4.00					
L	BMVW1+p	MT20	4.0	4.0							
M	BMV+p	MT20	3.0	4.0							
N											
0	BMW+w	MT20	2.0	4.0							
P	BMWW-t	MT20	4.0	4.0							
Q	BMWW-t	MT20	4.0	4.0	2.00	1.50					
R	BVMWWW-I	MT20	6.0	10.0	3.25	3.75					
S	BMV+p	MT20	3.0	4.0							
T	BMWWW-t	MT20	4.0	10.0	2.00	2.75					
U	BMWW-t	MT20	5.0	6.0	2.50	2.25					
V	BMV1+p	MT20	3.0	4.0							

Structural component only DWG# T-2215187

DIME	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER									
	RINGS	INEN								
JT V L	FACTOF GROSS RE VERT 2173 2180		MAXIMUN GROSS F DOWN 2173 2180			INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8			

UNF.	UNFACTORED REACTIONS										
	1ST LCASE		MIN. COMPON	IENT REACTION	NS .						
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
٧	1520	1090 / 0	0/0	0/0	0/0	430 / 0	0/0				
L	1525	1094 / 0	0/0	0/0	0/0	431 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) V, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.91 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

		-0,10 0,1020. (7)							
		ORDS					WE	BS		
		C. FACTORED	FACTO					MAX. FACTO	RED	
	MEMB.	FORCE	VERT. LC	DAD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
		(LBS)	(PI	LF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
	FR-TO		FROM	TO		LENGTH	FR-TO	` '	(/	
	A- B	0 / 34	-112.4	-112.4	0.10(1)	10.00	U- C	-483 / 0	0.09(1)	
	B- C	-2802 / 0	-112.4	-112.4	0.16 (1)	4.89	C-T	-56 / 0		1
	C- D	-2795 / 0	-112.4	-112.4	0.16(1)	4.90		-274 / 0	0.11 (1)	
	D- E	-4072 / 0	-112.4	-112.4	0.68 (1)	2.91	T-R	0 / 2404	0.39 (1)	
	E-F	-4102 / 0	-112.4	-112.4	0.54(1)	3.04	D-R	0 / 1927	0.43 (1)	
	F- G	-4016 / 0	-112.4	-112.4	0.51(1)	3.11	R-F	0 / 110	0.02 (1)	
	G- H	-3492 / 0	-112.4	-112.4	0.17(1)	4.48	Q-F	-629 / 0	0.16 (1)	
	H- I	-4549 / 0			0.28 (1)		Q-G	0 / 1148	0.26 (1)	
1	1- J	-4169 / 0			0.25 (1)		P- G	0 / 444	0.10 (1)	
	J- K	0 / 34	-112.4		0.10(1)		P- H	-784 / 0	0.25 (1)	
	V- B	-2133 / 0	0.0		0.22(1)		O- H	0 / 62	0.02 (4)	
1	L- J	-1966 / 0	0.0	0.0	0.20(1)	6.01	B- U	0 / 2580	0.58 (1)	
							N- Ĺ	-357 / 0	0.05 (1)	
	V- U	0/0			0.07 (4)		N- J	0 / 3636	0.82 (1)	
	U- T	0 / 2524	-18.5		0.48 (1)		H- N		0.09 (1)	
1	T-S	0 / 112			0.13 (4)				٠,	
_	S-R	0 / 47	0.0		0.16(1)					
	R-E	-645 / 0	0.0		0.17(1)					
	R-Q	0 / 4016	-18.5	-18.5	0.34(1)	10.00				
	Q-P	0/3115	-18.5		0.27(1)					
	P- 0	0 / 3811	-18.5		0.32(1)					
	0- N	0 / 3811		-18.5	0.32(1)	10.00				
	M- N	0 / 15	0.0		0.40 (1)					
	N- I	0 / 20	0.0		0.41 (1)					
	M- L	0 / 296	-18.5	-18.5	0.05(1)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = PSF PSF 6.0 BOT CH. 0.0 7.4 PSF PSF TOTAL LOAD 45.9

SPACING = <u>24.0</u> IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 132 lb [M][F]

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.24")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL)= L/874 (0.42")

CSI: TC=0.68/1.00 (D-E:1) , BC=0.48/1.00 (T-U:1) , WB=0.82/1.00 (J-N:1) , SSI=0.41/1.00 (I-N:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

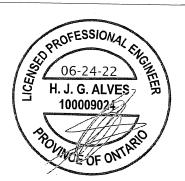
NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (T) (INPUT = 0.90) JSI METAL= 0.76 (J) (INPUT = 1.00)

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
123564	T2S	1	1	TRUSS DESC.		
amarack Roof Truss, Burlington					Version 8.530 S Feb 23 2022 N ID:c3jyj23uDijq 8pvRKbkZpy75XW-3K066DmbzN	//ITek Industries, Inc. Fri Jun 24 16:49:42 2022 Page 2 //Aa0uQcNfA9NWAlv2MnlmbW OuPM0cz31 N
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE					
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.					
					·	
						·
					·	
	-					
	,					
7001						
PROFESS	UNALE					
06-24	22 18					
06-24- 100009	I VES:					
100009	0247					
Ponyoron	TARIO					
ZYCE OF	OMI					
Structural compa	anent only				·	
Structural compo	87				DEV	
					NEV	IE VV EU


JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423566 T3 TRUSS DESC Tamarack Roof Truss, Burlingtor Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:35:32 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-OJV4Mn4Vzc6QXLMfWGNmdwxOTddXhDDX06AP3rz36T9 _ 1-3-8 9-10-8 11-2-0 9-10-8 1-3-8 Scale = 1:54.0 5x6 = 2x4 || 5x6 = D 6.00 12 4x4 / 4x4 < C G 5x8 / 5x8 > 0 0 М N K 3x4 || 3x8 = 5x6 =3x8 = 4x4 = 4×6 = 4x4 = 5x6 =3x4 || 30-11-0 1-3-8 1-3-8 TOTAL WEIGHT = 126 I

LUMBER				
N. L. G. A. F	RULES			
CHORDS A - D	SIZE 2x4	DRY	LUMBER No.2	DESCR. SPF
D - F	2x4	DRY	No.2	SPF
E - L	2x4	DRY	No.2	SPF
R - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
R - O	2x4	DRY	No.2	SPF
O - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

<u>PL</u>	ATES (table					
JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMVW-t	MT20	5.0	8.0	2.50	4.00
С	TMWW-t	MT20	4.0	4.0	2.00	1.75
D	TTWW-m	MT20	5.0	6.0	2.50	2.00
E	TMW+w	MT20	2.0	4.0		
F	TTWW-m	MT20	5.0	6.0	2.50	2.00
G	TMWW-t	MT20	4.0	4.0	2.00	1.75
Н	TMVW-t	MT20	5.0	8.0	2.50	4.00
J	BMV1+p	MT20	3.0	4.0		
K	BMWW-t	MT20	5.0	6.0	2.50	2.25
L	BMWW-t	MT20	4.0	4.0		
M	BS-t	MT20	3.0	8.0		
N	BMWWW-t	MT20	4.0	6.0		
0	BS-t	MT20	3.0	8.0		
Р	BMWW-t	MT20	4.0	4.0		
Q	BMWW-t	MT20	5.0	6.0	2.50	2.25
R	BMV1+p	MT20	3.0	4.0		

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215217

DIMENSIONS SUPPORTS	ANDLOADWOOD
DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

JT R	FACTOR GROSS RE VERT 2177		MAXIMUN GROSS F DOWN 2177			INPUT BRG IN-SX 5-8	REQRD BRG IN-SX 5-8
J	2177	0	2177	0	0	5-8	5-8

	ACTORED RE	MAX.	MIN. COMPO	NENT REACTION			
JT R J	COMBINED 1523 1523	SNOW 1092 / 0 1092 / 0	0/0 0/0	PERM.LIVE 0 / 0 0 / 0	WIND 0/0 0/0	DEAD 431 / 0 431 / 0	SOIL 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.60 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTOR	RED			W E			
MEMB.		VERT. LO.					MAX. FACTO		
	(LBS)				MAX.	MEMB.		MAX	
FR-TO	(LDS)	(PL	.F) '	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
A-B	0.404	FROM			LENGTH				
	0/34	-112.4	-112.4	0.15 (1)	10.00	Q-C	-358 / 0	0.08(1)	
B- C	-2906 / 0			0.46 (1)		C-P	-335 / 0	0.21 (1)	
C-D	-2655 / 0	-112.4	-112.4	0.43 (1)	3.85	P- D	0 / 294	0.07 (1)	
D-E	-2769 / 0	-112.4	-112.4	0.56 (1)	3.60		0 / 601	0.14 (1)	
E-F	-2769 / 0	-112.4	-112.4	0.56 (1)	3.60	N-E	-769 / 0	0.45 (1)	
F-G	-2655 / 0	-112.4	-112.4	0.43 (1)	3.85	N- F	0 / 601	0.14 (1)	
G- H	-2906 / 0	-112.4	-112.4	0.46 (1)	3.67		0/294	0.14 (1)	
H- I	0/34	-112.4	-112.4	0.15 (1)	10.00	Ľ-Ġ	-335 / 0	0.07 (1)	
R-B	-2132 / 0			0.22 (1)		K- G	-358 / 0	0.08 (1)	
J- H	-2132 / 0	0.0		0.22 (1)			0 / 2661		
				0.22 (.)	0.01		0 / 2661	0.60 (1)	
R-Q	0/0	-18.5	-18 5	0.10 (4)	10.00	IX- III	0 / 2001	0.60 (1)	
Q-P	0 / 2624			0.48 (1)	10.00				
P- O	0 / 2352			0.44 (1)	10.00				
0- N	0 / 2352	-18.5		0.44 (1)					
N- M	0 / 2352				10.00				
M- L	0 / 2352			0.44 (1)	10.00				
L- K	0 / 2624			0.44 (1)	10.00				
K-J				0.48 (1)					
1X- U	0/0	-18.5	-18.5	0.10 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = PSF 6.0 PSF BOT CH. LL DL TOTAL LOAD BOT CH. 0.0 7.4 45.9 PSF

SPACING = <u>24.0</u> IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.15")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/999 (0.26")

CSI: TC=0.56/1.00 (D-E:1) , BC=0.48/1.00 (P-Q:1) , WB=0.60/1.00 (B-Q:1) , SSI=0.30/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (K) (INPUT = 0.90) JSI METAL= 0.72 (O) (INPUT = 1.00)

RFVIFWF

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423564 TRUSS DESC T3S Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 16:49:42 2022 Page Tamarack Roof Truss, Burlington ID:c3jyj23uDijq_8pvRKbkZpy75XW-3K066DmbzMa0uQcNfA9NWAI_CMnsma5_OuPM0cz31_N 1-3-8 9-10-8 11-2-0 9-10-8 Scale = 1:54.9 5x8 = 3x4 || 5x6 = 4x4 =D Ε G F 6.00 12 4x10 < 4x4 / Н C 7x12 =5x8 / W15x8 > WAR P B5 0 6x10 == Į 5x6 = 2x4 || Τ s R 3x4 || 5x6 == 5x8 = 3x4 || 3x4 || 4x4 || 13-7-8 15-8-0 1-7-8 1-3-8 30-11-0 TOTAL WEIGHT = 135 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS FACTORED DESIGN CRITERIA LUMBER DESCR 2100F 1.8E No.2 SPF MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLII DRV REQRD SPECIFIED LOADS: DRY GROSS REACTION LL = DL = LL = 32.5 6.0 BRG BRG TOP CH. PSF 2100F 1.8E SPF VERT HORZ UPLIFT IN-SX 0 5-8 IN-SX 5-8 PSF PSF No.2 No.2 SPF DRY BOT CH. 0.0 2180 2180 0 0 5-8 5-8 DRY No.2 SPF TOTAL LOAD SPF DRY No 2 DRY 2100F 1.8E UNFACTORED REACTIONS SPACING = <u>24.0</u> IN. C/C MAX./MIN. COMPONENT REACTIONS
NOW LIVE PERM.LIVE WIND
/ 0 0 / 0 0 / 0 0 / 0 DRY SPF No.2 SNOW 1090 / 0 DRY No.2 SPF COMBINED LOADING IN FLAT SECTION BASED ON A SLOPE 430 / 0 0/0 ALL WEBS DRY 2x3 SPF No.2 1525 1094 / 0 0/0 0/0 0/0 EXCEPT Q DRY No.2 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, L THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART DRY: SEASONED LUMBER 9, NBCC 2015

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMVW-t	MT20	5.0	8.0	2.50	4.00					
С	TMWW-t	MT20	4.0	4.0	2.00	1.75					
D	TTWW-m	MT20	5.0	8.0	1.75	3.25					
Ε	TMV+p	MT20	3.0	4.0							
F	TMWW-t	MT20	4.0	4.0							
G	TTW-m	MT20	5.0	6.0							
Н	TMWWW-t	MT20	4.0	10.0							
1											
1	TMBVWWW ¹	'-IMT20	7.0	12.0	Edge	3.50					
J	TMVW-t	MT20	5.0	8.0	2.50	3.75					
L	BMVW1+p	MT20	4.0	4.0							
M	BMV+p	MT20	3.0	4.0							
Ν											
0	BMW+w	MT20	2.0	4.0							
Ρ	BMWWW-t	MT20	5.0	6.0							
Q	BVMWWW-I	MT20	6.0	10.0	3.00	3.50					
R	BMV+p	MT20	3.0	4.0							
S	BMWWW-t	MT20	5.0	8.0	2.50	1.75					
Т	BMWW-t	MT20	5.0	6.0	2.50	2.25					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

3.0

U BMV1+p

Structural component only DWG# T-2215188

M- N

0 / 15 0/303

<u>BRACING</u> TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.70 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

		,						
СН	ORDS					WE	BS	
MA)	K. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	OAD LC1	I MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	LF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		. ,
A-B	0 / 34	-112.4	-112.4	0.10(1)	10.00	T- C	-356 / 0	0.08(1)
	-2900 / 0			0.26(1)		C-S	-334 / 0	0.21 (1)
C- D	-2652 / 0	-112.4	-112.4	0.25 (1)	4.90	S- D	-350 / 0	0.20 (1)
D- E	-3201 / 0	-112.4	-112.4	0.27(1)	3.70	S-Q	0 / 2371	0.38 (1)
E-F	-3213 / 0			0.28 (1)		D-Q	0 / 1427	0.32(1)
F-G	-2847 / 0	-112.4	-112.4	0.26(1)	3.91	Q-F	0 / 25	0.01 (4)
G-H	-3189 / 0			0.24(1)			-594 / 0	0.39(1)
H-1	-4701 / 0			0.35 (1)		P- G	0 / 1071	0.24 (1)
l- J	-4280 / 0			0.20(1)		P- H	-846 / 0	0.35 (1)
	0 / 34			0.10(1)		O- H	0 / 70	0.02 (4)
U-B	-2130 / 0	0.0		0.22 (1)		B- T	0 / 2656	0.60 (1)
L-J	-1961 / 0	0.0	0.0	0.20(1)	6.01	N- L	-366 / 0	0.05(1)
						N- J		0.85 (1)
U- T	0/0			0.09 (4)		H- N	0 / 848	0.19(1)
T-S	0 / 2618	-18.5		0.48 (1)				
S-R	0 / 60	-18.5	-18.5	0.08 (4)	10.00			
R-Q	0 / 27	0.0		0.08 (1)				
Q-E	-432 / 0	0.0						
Q-P	0 / 3210							
P- 0	0 / 3535			0.34 (1)				
O- N	0 / 3535	-18 5	-18 5	0.31 (1)	10.00			

0.0 0.41 (1) 0.0 0.32 (1)

10.00

0.0

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43 9 P S F G S L PLUS 8 4 P S F RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.03") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.18") ALLOWABLE DEFL.(TL) = L/360 (1.03") CALCULATED VERT. DEFL.(TL) = L/ 988 (0.38")

CSI: TC=0.35/1.00 (H-I:1) , BC=0.48/1.00 (S-T:1) , WB=0.85/1.00 (J-N:1) , SSI=0.42/1.00 (I-N:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (D) (INPUT = 0.90) JSI METAL= 0.78 (J) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	ı	DRWG NO.	·]
423564 Tamarack Roof Truss, Burlington	T3S	1	1	TRUSS DESC.	Version 8.5	30 S Feb 23 2022 Mi	Tek Industries, Inc. Fri Ju	n 24 16:49:42 2022 Page 2
	T		*******	-	Version 8.53 ID:c3jyj23uDijq 8pvRKbkZpy75X	W-3K066DmbzMa	a0uQcNfA9NWALCN	Insma5 OuPM0cz31 N
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.							
						ļ		
	·							
					e de la companya de l			
						-		
			4					
								•
offssic	DAVA							
in PRO	ENC							
06-24- US H. J. G. Al 1000090	22 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
1000090	25/				-		•	
1 2 A								
POLYMONOS	ONTARIO							
Structural compo DWG# T-221518	38		•		R R			

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423566 T4 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 10:35:33 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-sW3SZ757kvEH9Vxs3_v?A8UXH0yDQgMhFmvybHz36T8 Tamarack Roof Truss, Burlington 1-3-8 11-10-8 7-2-0 11-10-8 Scale = 1:54.0 4x6 = 4x6 = 4x4 =D 6.00 12 4x4 / С 5x8 ≥ Н 鬟 Μ 0 N L 3x8 =3x4 || 5x6 =4x6 = 4x6 =5x6 = 3x4 || 30-11-0

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - 1	2x4	DRY	No.2	SPF
P - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
P - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL/	ATES (table i	s in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMVW-t	MT20	5.0	8.0	2.50	4.00					
С	TMWW-t	MT20	4.0	4.0	2.00	1.75					
D	TTW-m	MT20	4.0	6.0							
Ε	TMWW-t	MT20	4.0	4.0							
F	TTW-m	MT20	4.0	6.0							
G	TMWW-t	MT20	4.0	4.0	2.00	1.75					
Н	TMVW-t	MT20	5.0	8.0	2.50	4.00					
J	BMV1+p	MT20	3.0	4.0							
K	BMWW-t	MT20	5.0	6.0	2.50	2.25					
L	BMWWW-t	MT20	4.0	6.0							
M	BS-t	MT20	3.0	8.0							
Ν	BMWWW-t	MT20	4.0	6.0							
0	BMWW-t	MT20	5.0	6.0	2.50	2.25					
D	RMV/1 in	MTOD	2 0	4.0							

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

	FACTOR	RED -	MAXIMUN	/ FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
2	2177	0	2177	0	0	5-8	5-8
J	2177	0	2177	0	0	5-8	5-8

1	UNFACTORED REACTIONS										
		1ST LCASE	MAX./	MIN. COMPOR	NENT REACTION	NS .					
١,	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
1	Ρ.	1523	1092 / 0	0/0	0/0	0/0	431 / 0	0/0			
١,	J	1523	1092 / 0	0/0	0/0	0/0	431 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.38 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

СН	ORDS		WEBS					
MAX	C. FACTORED	FACTORED	MAX. FACTORED					
MEMB.	FORCE	VERT. LOAD LO					MAX	
	(LBS)						CSI (LC)	
FR-TO		FROM TO						
		-112.4 -112.4				-267 / 26	0.07(1)	
		-112.4 -112.4				-581 / 0	0.56 (1)	
	-2474 / 0	-112.4 -112.4	0.61 (1)	3.73	N- D	0 / 682	0.15(1)	
	-2190 / 0	-112.4 -112.4				-270 / 0	0.32 (1)	
	-2190 / 0	-112.4 -112.4			E-L	-270 / 0	0.32 (1)	
	-2474 / 0	-112.4 -112.4			L- F	0/682	0.15(1)	
	-2946 / 0	-112.4 -112.4			L- G	-581 / 0	0.56(1)	
	0/34	-112.4 -112.4			K-G	-267 / 26	0.07(1)	
	-2127 / 0	0.0 0.0	0.21 (1)	5.81	B- O	0 / 2693	0.61 (1)	
J- H	-2127 / 0	0.0 0.0	0.21 (1)	5.81	K- H	0 / 2693	0.61 (1)	
P- O	0/0	105 105	0 14 (4)	40.00				
0- N	0 / 2666		0.14 (4)					
N- M	0 / 2312							
	0 / 2312		0.46 (1)					
	0 / 2666							
K-J	0/2000		0.52 (1)					
1/- 0	0/0	-18.5 -18.5	0.14 (4)	10.00				

SPECIFIED LOADS:										
TOP	CH.	LL	=	32.5	PSF					
		DL	=	6.0	PSF					
BOT	CH.	LL	=	0.0	PSF					
		DL	=	7.4	PSF					
TOTA		40		45.0	DOF					

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 128 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

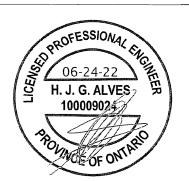
(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL)= L/999 (0.13")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL)= L/999 (0.26")

CSI: TC=0.68/1.00 (B-C:1) , BC=0.52/1.00 (N-O:1) , WB=0.61/1.00 (B-O:1) , SSI=0.29/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

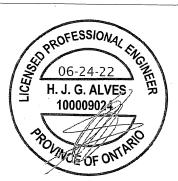

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (O) (INPUT = 0.90) JSI METAL= 0.77 (M) (INPUT = 1.00)


Structural component only DWG# T-2215218

JOB NAME TRUSS NAME QUANTITY BAYVIEW WELLINGTON JOB DESC. PLY DRWG NO. 423564 T4S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:39 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-VnoaUXdAUry25R6DnqJmWXNHzmgjJ6d4ShYirEz36bU , 1-3-8 11-10-8 7-2-0 11-10-8 Scale = 1:55.7 4x6 =4x6 = 4x4 =D F 6.00 12 4x4 < 4x4 / G С 4x4 <> 7x12 =5x8 / 5x8 < R_{6x10} W5 W2 B1 2x4 || ۵ 0 4x4 =U 3x8 = М 3x4 || 6x10 == 2x4 || 2x4 || 3x4 || 4x4 || 15-8-0 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 139 lb

LUMBER				
N. L. G. A. F				
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - K	2x4	DRY	No.2	SPF
V - B	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
V - S	2x4	DRY	No.2	SPF
R - P	2x4	DRY	No.2	SPF
P - N	2x4	DRY	No.2	SPF
M - I	2x4	DRY	No.2	SPF
M - L	2x4	DRY	No.2	SPF
				011
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT			110.2	0. 1
T - D	2x4	DRY	No.2	SPF
U - R	2x4	DRY	No.2	SPF
			110.2	355
DRY: SEASO	ONED LU	JMBER.		

PL	PLATES (table is in inches)											
JΤ		PLATES	w ·	LEN	Υ	Х						
В	TMVW-t	MT20	5.0	8.0	2.50	4.00						
	G, H											
С	TMWW-t	MT20	4.0	4.0	2.00	1.75						
D	TTW-m	MT20	4.0	6.0								
	TMWW-t	MT20	4.Ò	4.0								
F	TTW-I	MT20	4.0	6.0								
1												
ı	TMBVWWW*-		7.0	12.0	Edge	3.50						
J	TMVW-t	MT20	5.0	8.0	2.50	4.00						
L	BMVW1+p	MT20	4.0	4.0								
М	BMV+p	MT20	3.0	4.0								
Ν												
0	BMWW-t	MT20	4.0	4.0								
Р	BS-t	MT20	3.0	8.0								
Q	BMWWW-t	MT20	4.0	6.0								
R	BWMWWW*-I		6.0	10.0	3.00	3.50						
S	NP+w	MT20	2.0	4.0								
Т	BMW+w	MT20	2.0	4.0								
U	BMWWW-t	MT20	6.0	10.0								

BMV1+p NP+w

6.0 10.0 3.0 4.0 2.0 4.0

Structural component only DWG# T-2215189

BUII	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS										
	FACTO GROSS R		MAXIMUI GROSS I			INPUT BRG	REQRD BRG				
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX				
٧	2192	0	2192	0	0	5-8	5-8				
L	2192	0	2192	0	0	5-8	5-8				

UNF	ACTORED REA	CTIONS					
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
٧		090/0	0/0	0/0	0/0	445 / 0	0/0
L	1535 1	094 / 0	0/0	0/0	0/0	440 / 0	0/0

0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) V, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.72 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

MAX. UNBRACED INTERIOR CHORD LENGTH = 10.00 FT

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS X. FACTORED	FACTOR	_D		WEBS			
MEMB.		FACTOR					MAX. FACTO	
IVILIVID.		VERT. LO			MAX.	MEMB.		MAX
FR-TO	(LBS)				UNBRAC		(LBS)	CSI (LC)
A- B	0.404	FROM			LENGTH			
	0/34			0.15 (1)		U-C		0.18 (1)
B- C	-2979 / 0	-112.4	112.4	0.69 (1)	3.36	T-R		0.10(1)
C-D	-2900 / 0			0.66 (1)		R- D	0/870	0.23 (1)
D-E	-2588 / 0			0.24 (1)		Q-F	0 / 885	0.20 (1)
E-F	-2583 / 0			0.24 (1)		Q-G	-954 / 0	0.64 (1)
F-G	-2893 / 0			0.49 (1)		0- G	0 / 359	0.08 (1)
G-H	-3748 / 0			0.40 (1)		B- U	0 / 2722	0.61 (1)
H- I	-4704 / 0	-112.4	112.4	0.58 (1)	2.72	U-R	0 / 2672	0.43 (1)
I- J	-4215 / 0	-112.4 -	112.4	0.42 (1)	3.08	C-R	-150 / 0	0.12(1)
J- K	0/34	-112.4 -	112.4	0.15 (1)	10.00	R-E	-271 / 0	0.23 (1)
V-B	-2145 / 0	0.0	0.0	0.22 (1)	5.79	E-Q	-285 / 0	0.24 (1)
L-J	-1951 / 0	0.0	0.0	0.20 (1)	6.03	N-L	-405 / 0	0.06 (1)
				. ,		N-J	0 / 3693	0.83 (1)
V- U	0/0	-18.5	-18.5	0.18 (4)	10.00	0- H	-449 / 0	0.09 (1)
U- T	0 / 61	-18.5	-18.5			H- N	0 / 634	0.14 (1)
T-S	0/0	-18.5	-18.5				0,00.	0.74(1)
R-Q	0 / 2728	-18.5	-18.5					
Q-P	0 / 3379	-18.5	-18.5					
P- O	0 / 3379	-18.5	-18.5					
O- N	0 / 3735	-18.5	-18.5		10.00			
M-N	0 / 15	0.0	0.0					
N-I	-116/0	0.0	0.0					
M- L	0 / 336	-18.5		0.06 (1)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	32.5	PSI
		DL	=	6.0	PSI
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.4	PSI

TOTAL LOAD = 45.9 SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

PSF

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.03") CALCULATED VERT. DEFL.(LL) = L/999 (0.20") ALLOWABLE DEFL.(TL) = L/360 (1.03") CALCULATED VERT. DEFL.(TL) = L/956 (0.39")

CSI: TC=0.69/1.00 (B-C:1) , BC=0.68/1.00 (N-O:1) , WB=0.83/1.00 (J-N:1) , SSI=0.46/1.00 (I-N:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

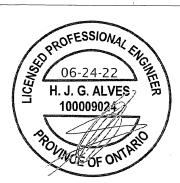
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (J) (INPUT = 0.90) JSI METAL= 1.00 (P) (INPUT = 1.00)

423564 T4S 1 1 TRUSS DESC.	JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.	
Desiredados Bonites do Particio Conser de Particio	423564	T4S	1	1	TRUSS DESC			
Cays - ADDATES REPRESENTE COMBINO OF PLATE TO	Tamarack Roof Truss, Burling	iton			L	Version 8.530 S Feb 23 202	22 MiTek Industries, Ind	:. Fri Jun 24 10:26:39 2022 Page 2
1) (1-broad september	·					-D-SOTY/2002/IQ ODVITION2DY/ SAVV-VIIOOO/	CAOTY25H6DNQJII	IVVXINHZMGJJ604ShYirEz36bU
1) (1-broad september	Edge - INDICATES REFERE TOUCHES EDGE OF CHOR	ENCE CORNER OF PLATE RD.						
BROFESSIONAL BROWN AND THE STATE OF THE STAT								
	Lateral braces to be a min	nimum of 2X4 SPF #2.						
	·							
				. *				
			-					
						·		
							•	
		•						
						·		
		O.L.						
	PROFES	SIONALE						
	06-2	4-22						
	변 H. J. G.	ALVES B						
Town to own the	10000	090247						
OWNER ON THE	12/4	HATO!						
	TOVINA	5- ONTARIL					7	

Structural component only DWG# T-2215189


JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423564 Т5 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 M∏ek Industries, Inc. Fri Jun 24 10:26:40 2022 Page 1 ID:c3jyj23uDija_8pvRKbkZpy75XW-zzMziteoF84vibhQLYr?3kvXsA1T2byEhLIFNgz36bT 1-3-8 13-10-8 13-10-8 Scale = 1:58.0 4x4 = 4x6 = 6.00 12 G 4x4 > 3x8 / Н 3x8 < 5x6 / 5x6 < 3x4 || 3x4 || R Q 0 5x6 =4y4 = 4x4 = 5x6 = 4x6 =3x8 =4x4 =30-11-0 30-11-0 1-3-8

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - G	2x4	DRY	No.2	SPF
G - I	2x4	DRY	No.2	SPF
1 - L	2x4	DRY	No.2	SPF
S - B	2x4	DRY	No.2	SPF
M - K	2x4	DRY	No.2	SPF
S - P	2x4	DRY	No.2	SPF
P - M	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
s - c	2x4	DRY	No.2	SPF
J - M	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

1	PL/	ATES (table	is in inches)				
1	JΤ	TYPE	PLATES	W	LEN	Υ	X
-	В	TMV+p	MT20	3.0	4.0		
I	С	TMWW-t	MT20	5.0	6.0	2.50	2.25
ı	D	TS-t	MT20	3.0	8.0		
ı	Ε	TMWW-t	MT20	4.0	4.0		
ı	F	TTW-m	MT20	4.0	4.0	2.25	1.75
ı	G	TTWW-m	MT20	4.0	6.0	1.75	2.25
	Н	TMWW-t	MT20	4.0	4.0		
ı	1	TS-t	MT20	3.0	8.0		
l	J	TMWW-t	MT20	5.0	6.0	2.50	2.25
ı	Κ	TMV+p	MT20	3.0	4.0		
	M	BMVW1-t	MT20	5.0	6.0	2.50	2.25
1	N,:(O, R					
	Ν	BMWW-t	MT20	4.0	4.0		
	Р	BS-t	MT20	3.0	8.0		
	Q	BMWWW-t	MT20	4.0	6.0		
	S	BMVW1-t	MT20	5.0	6.0	2.50	2.25

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215190

I DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	The second of th
BUILDING DESIGNER	
BEARINGS	
DEATHINGS	

	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
3	2177	0	2177	0	0	5-8	5-8
Λ	2177	0	2177	0	0	5-8	5-8

UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND COMBINED DEAD 1092 / 0 1092 / 0 431 / 0 431 / 0 0/0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, M

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.86 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-S, J-M.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS				W E	BS	
MAX	C. FACTORED	FACTORED				MAX. FACTO	ORED
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB	. FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		, ,
A-B		-112.4 -112.4			C-R	-86 / 44	0.02(1)
B- C	0 / 21	-112.4 -112.4	0.30(1)	10.00	R-E	0 / 230	0.05 (1)
	-2807 / 0	-112.4 -112.4	0.36(1)	3.86	E-Q	-685 / 0	0.70 (1)
D-E	-2807 / 0	-112.4 -112.4			Q-F	0/611	0.14 (1)
E-F	-2240 / 0	-112.4 -112.4			Q-G	0/5	0.00(1)
F-G	-1990 / 0	-112.4 -112.4			0- G	0 / 606	0.14(1)
G-H	-2239 / 0	-112.4 -112.4			O- H	-687 / 0	0.70 (1)
H-1	-2808 / 0	-112.4 -112.4			H- N	0 / 233	0.05 (1)
1- J	-2808 / 0	-112.4 -112.4			N- J	-86 / 44	0.02(1)
J-K	0 / 21	-112.4 -112.4			S-C	-3106 / 0	0.52(1)
	0 / 34				J- M	-3107 / 0	0.52 (1)
		0.0 0.0					
M-K	-368 / 0	0.0 0.0	0.04(1)	7.81			
S-R	0 / 2563	-18.5 -18.5					
R-Q	0 / 2424	-18.5 -18.5					
Q-P	0 / 1989	-18.5 -18.5					
P- O	0 / 1989	-18.5 -18.5					
0- N	0 / 2424	-18.5 -18.5					
N-M	0 / 2564	-18.5 -18.5	0.52 (1)	10.00			
1							

DESIGN CRITERIA

SPEC	IFIED I	LOAI	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LĿ	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 137 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL)= L/999 (0.13")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL)= L/999 (0.25")

CSI: TC=0.36/1.00 (H-J:1) , BC=0.52/1.00 (M-N:1) , WB=0.70/1.00 (H-O:1) , SSI=0.21/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

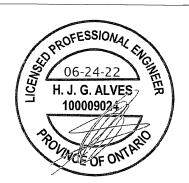
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (J) (INPUT = 0.90) JSI METAL= 0.70 (J) (INPUT = 1.00)


JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423564 T6C TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:41 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-R9wLvDfQ0SCmKkGcvFMEcyScpaOhn5KNw?1pw7z36bS 1-3-8 15-5-8 15-5-8 1-3-8 4x4 || 6.00 12 3x8 / 4x4 / G 3x8 < 5x6 / 5x6 / 5x6 < W4 Q 0 R 5x6 = 3x8 = $3x8 = _{5x6} =$ 5x8 = 3x4 || 4x6 = 3x4 || 5x8 = 30-11-0 1-3-8 30-11-0 1-3-8

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - K	2x4	DRY	No.2	SPF
T - B	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
T - Q	2x4	DRY	No.2	SPF
Q - O	2x4	DRY	No.2	SPF
0 - L	2x4	DRY	No.2	SPF
				0
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				0, ,
M - I	2x4	DRY	No.2	SPF
s - c	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW-t	MT20	5.0	6.0	2.25	2.75				
C	TMWW-t	MT20	5.0	6.0						
D	TS-t	MT20	3.0	8.0						
E	TMWW-t	MT20	4.0	4.0	2.00	1.75				
F	TTW+p	MT20	4.0	4.0						
G	TMWW-t	MT20	4.0	4.0	2.00	1.75				
Н	TS-t	MT20	3.0	8.0						
1	TMWW-t	MT20	5.0	6.0						
J	TMVW-t	MT20	5.0	6.0	2.25	2.75				
L	BMV1+p	MT20	3.0	4.0						
M	BMWW-t	MT20	5.0	8.0	2.50	3.25				
N	BMWW-t	MT20	5.0	6.0	2.50	2.50				
0	BS-t	MT20	3.0	8.0						
P	BMWWW-t	MT20	4.0	6.0						
Q	BS-t	MT20	3.0	8.0						
R	BMWW-t	MT20	5.0	6.0	2.50	2.50				
S	BMWW1-t	MT20	5.0	8.0	2.50	3.25				
Т	BMV+p	MT20	3.0	4.0						

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215191

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	THE TOTAL TO BE VERIFIED BY
DUILDING DESIGNER	
REARINGS	

<u> </u>	mado						
	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
3	2346	0	2346	0	0	5-8	5-8
	2007	0	2007	0	0	5-8	5-8

UNF	ACTORED R	EACTIONS					
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
S	1641	1177/0	0/0	0/0	0/0	464 / 0	0/0
L	1404	1007/0	0/0	0/0	0/0	397 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.56 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF G-P, E-P.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

		ORDS . FACTORED	FACTORED			W E	BS MAX, FACTO	RED.
.	MEMB.	FORCE	VERT. LOAD I	_C1 MAX	MAX.	MEMB		MAX
ı		(LBS)					(LBS)	
	FR-TO	, -,	FROM TO					001 (LO)
	A-B	0/34						0.21 (1)
		0 / 213		4 0 45 (1	10.00	P- G		0.45 (1)
	C-D	-2021 / 0	-112.4 -112	4 0.65 (1	4.00		0/127	0.43 (1)
	D- E	-2021 / 0					0 / 1.90	0.04 (4)
	E-F	-1741 / 0						0.04 (1)
	F-G	-1742 / 0	-112.4 -112			E-P		0.00 (1)
	G-H	-2497 / 0	-112.4 -112	2.4 0.73 (1	3.56		-472 / 0	0.10 (1)
	H- I	-2497 / 0	-112.4 -112				0 / 2041	0.46 (1)
	I- J	-2263 / 0	-112.4 -112				-2162 / 0	0.24 (1)
	J-K	0/34	-112.4 -112	2.4 0.15 (1	10.00	B-S	-145 / 0	0.02 (1)
	T-B	0 / 34 -22 / 0 -1997 / 0	0.0	0.00 (1	7.81	M- J		0.50 (1)
	L- J	-1997 / 0	0.0	0.0 0.20 (1	5.97		0, ==.0	0.00 (1)
	T-S	0/0	-18.5 -18	3.5 0.14 (4	10.00			
	S-R	-136 / 0	-18.5 -18	3.5 0.12 (4	6.25			
	R-Q	0 / 1820		3.5 0.39 (1				
	Q-P	0 / 1820	-18.5 -18	3.5 0.39 (1	10.00			
ı	P- O	0 / 2251	-18.5 -18	3.5 0.46 (1)	10.00			
	O- N	0 / 2251	-18.5 -18	3.5 0.46 (1)	10.00			
	N- M	0 / 2069		3.5 0.42 (1				
	M- L	0/0	-18.5 -18	3.5 0.10 (4	10.00			
į								

TOTAL WEIGHT = 5 X 126 = 630 lb

DESIGN CRITERIA SPECIFIED LOADS

DL = DL = DL = DL = DD = 6.0 PSF 0.0 PSF TOTAL LOAD 45.9

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018, ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.09")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.18")

CANTILEVER DEFLECTION: ALLOWABLE DEFL.(LL)= L/120 (0.22") CALCULATED VERT. DEFL.(LL)= L/999 (0.00") ALLOWABLE DEFL.(TL)= L/120 (0.22") CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.73/1.00 (G-I:1) , BC=0.46/1.00 (N-P:1) , WB=0.50/1.00 (J-M:1) , SSI=0.32/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

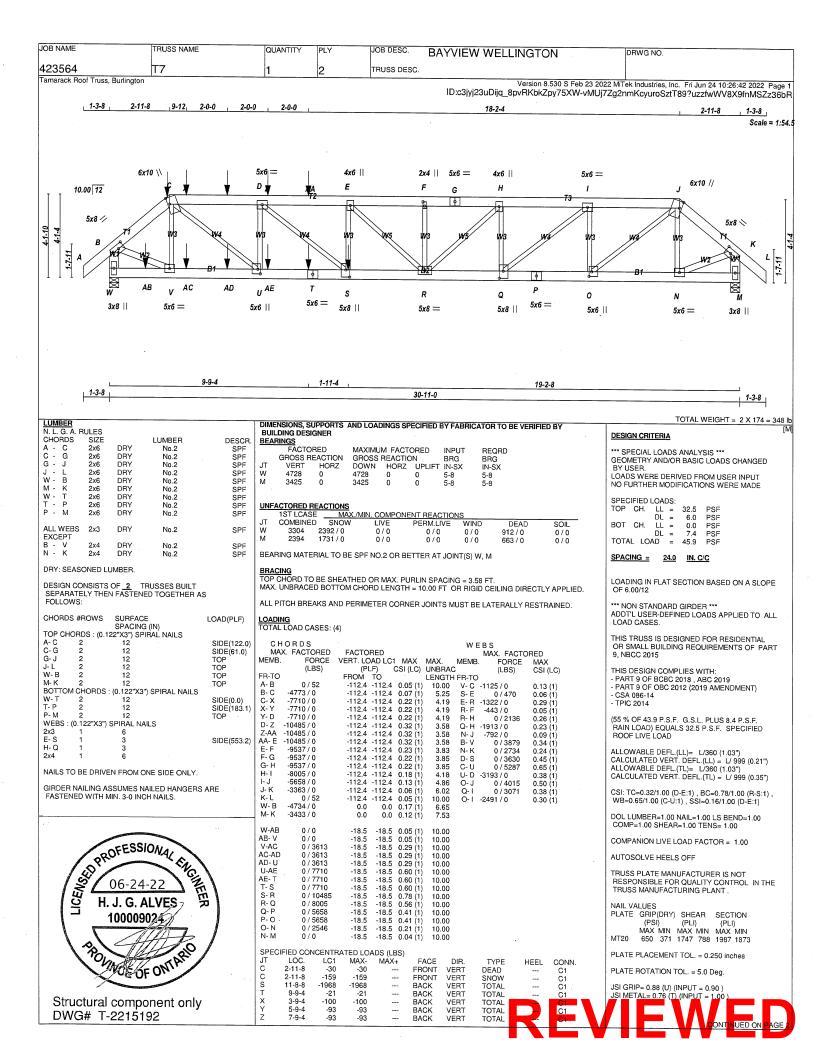
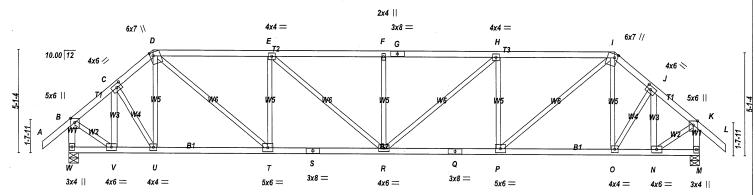

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (I) (INPUT = 0.90) JSI METAL= 0.64 (Q) (INPUT = 1.00)

RFVIFW

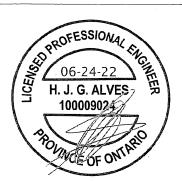


JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423564 T7 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 10:26:42 2022 Page 2 ID:c3jyj23uDijq 8pvRKbkZpy75XW-vMUj7Zg2nmKcyuroSztT89?uzzfwWV8X9fnMSZz36bR | PLATES | (table is in inches) | JT | TYPE | PLATES | B | TMWV-t | MT20 | D | TMWW-t | MT20 | E | TMWW+t | MT20 | F | TMWW-t | MT20 | TWW-t | MT LEN Y X 8.0 2.50 3.25 10.0 4.00 1.25 6.0 4.00 2.50 1.00 6.0 6.0 4.00 1.25 8.0 2.50 3.25 8.0 2.50 3.25 8.0 4.25 2.25 8.0 4.25 2.25 6.0 4.25 2.25 6.0 2.75 1.50 6.0 2.75 1.50 6.0 3.0 4.25 2.25 6.0 4.25 2.25 6.0 8.0 4.25 2.25 6.0 8.0 4.25 2.25 6.0 8.0 4.25 2.25 6.0 8.0 4.25 2.25 6.0 8.0 4.25 2.25 DIR. VERT VERT VERT VERT TYPE TOTAL TOTAL TOTAL TOTAL TOTAL CONN. C1 C1 C1 C1 C1 HEEL ---------FACE BACK BACK BACK BACK TMW+w TS-t TMWW+t CONNECTION REQUIREMENTS TMWW+t
TMWW-t
TTWW+m
TMVW-t
BMV1+p
BMWW-t
BMWW+t 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. JKMNOPQRSTU>V BS-t BMWW+t BMWWW-t BMWW+t BS-t BMWW+t BMWW-t MT20 MT20 MT20 BMV1+p NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. PROFESSIONAL FINGUES TO THE PROPERTY OF THE PR 100009024

Structural component only DWG# T-2215192

POMACE OF ONTARIO

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423564 Т8 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 10:26:43 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-NY15KvhgY3STZ2P_0gOihNXxxN39F0HgNJWv_?z36bQ Tamarack Roof Truss, Burlingtor 1-3-8 4-1-14 22-7-4 1-3-8 Scale = 1:54.5



30-11-0 30-11-0 1-3-8

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
G - i	2x4	DRY	No.2	SPF
lĭ - i	2x4	DRY	No.2	SPF
W - B	2x4	DRY	No.2	SPF
M - K	2x4	DRY	No.2	SPF
W-S	2x4	DRY	No.2	SPF
S - Q	2x4	DRY	No.2	SPF
Q - M	2x4	DRY	No.2	SPF
		551		
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
V - C	2x4	DRY	No.2	SPF
N - J	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DI.	PLATES (table is in inches)											
JT	TYPE	PLATES	w	LEN	Υ :	X						
В	TMVW+p	MT20	5.0	6.0	Edge	``						
C	TMWW-t	MT20	4.0	6.0		2.75						
D	TTWW+m	MT20	6.0	7.0	2.00	1.75						
E	TMWW-t	MT20	4.0	4.0								
F	TMW+w	MT20	2.0	4.0								
G	TS-t	MT20	3.0	8.0								
H	TMWW-t	MT20	4.0	4.0								
1	TTWW+m	MT20	6.0	7.0		1.75						
J	TMWW-t	MT20	4.0	6.0		2.75						
K	TMVW+p	MT20	5.0	6.0	Edge							
M	BMV1+p	MT20	3.0	4.0								
N	BMWW-t	MT20	4.0	6.0								
0	BMWW-t	MT20	4.0	4.0								
P	BMWW-t	MT20	5.0	6.0								
Q	BS-t	MT20	3.0	8.0								
R	BMWWW-t	MT20	4.0	6.0								
s	BS-t	MT20	3.0	8.0								
T.	BMWW-t	MT20	5.0	6.0								
U	BMWW-t	MT20	4.0	4.0								
V	BMWW-t	MT20	4.0	6.0								
W	BMV1+p	MT20	3.0	4.0								

Structural component only DWG# T-2215193

DIME	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY										
BUIL	BUILDING DESIGNER										
BEA	BEARINGS										
	FACTO	RED	MAXIMUM FACTORED			INPUT	REORD				
	GROSS R	EACTION	GROSS REACTION			BRG	BRG				
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX				
w	2180	0	2180	0	0	5-8	5-8				
N/I	2190	Λ	2100	Λ		F 0	E 0				

UNI	UNFACTORED REACTIONS									
	1ST LCASE	MAX.	MIN. COMPOR	NENT REACTION	NS					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
W	1525	1094/0	0/0	0/0	0/0	431 / 0	0/0			
M	1525	1094/0	0/0	0/0	0/0	431 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) W, M

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.04 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS				WEBS						
	K. FACTORED						MAX. FACTO	ORED		
MEMB.	FORCE	VERT. LOA	D LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)				UNBRAC			CSI (LC)		
FR-TO		FROM 7			LENGTH					
A-B	0 / 50	-112.4 -	112.4	0.15(1)	10.00	V- C	-780 / 0	0.12(1)		
	-1722 / 0	-112.4 -	112.4	0.10(1)	4.99	C- U		0.08(1)		
	-2026 / 0	-112.4 -	112.4	0.11(1)	4.68	U- D	-211 / 0	0.08(1)		
D- E	-2908 / 0	-112.4 -	112.4	0.76(1)	3.29	D- T	0 / 1799	0.40 (1)		
E-F	-3305 / 0					T-E	-1055 / 0	0.41(1)		
F- G	-3305 / 0	-112.4 -	112.4	0.82 (1)	3.04	E-R	0 / 523	0.12(1)		
G- H	-3305 / 0	-112.4 -	112.4	0.82 (1)	3.04	R-F	-580 / 0	0.22 (1)		
H- I	-2908 / 0			0.76 (1)		R- H	0 / 523	0.12 (1)		
l- J	-2026 / 0	-112.4 -	112.4	0.11 (1)	4.68	P- H	-1055 / 0	0.41 (1)		
J- K	-1722 / 0	-112.4 -	112.4	0.10(1)	4.99	P- I	0 / 1799	0.40 (1)		
K-L	0 / 50	-112.4 -	112.4	0.15(1)	10.00	O- I	-211 / 0	0.08 (1)		
W-B	-2152 / 0	. 0.0	0.0	0.23(1)	5.78	O- J	0/374	0.08 (1)		
M-K	-2152 / 0	0.0	0.0	0.23 (1)	5.78	N- J	-780 / 0	0.12 (1)		
						B- V	0 / 1545	0.35(1)		
W-V	0/0	-18.5	-18.5	0.03(4)	10.00	N-K	0 / 1545	0.35(1)		
V- U	0 / 1333	-18.5		0.28 (1)						
U- T	0 / 1531	-18.5		0.31(1)						
T-S	0 / 2909	-18.5	-18.5	0.52 (1)	10.00					
S-R	0 / 2909	-18.5	-18.5	0.52 (1)	10.00					
R-Q	0 / 2909	-18.5	-18.5	0.52 (1)	10.00					
Q-P	0 / 2909	-18.5	-18.5	0.52 (1)	10.00					
P- O	0 / 1531			0.31 (1)						
O- N	0 / 1333	-18.5	-18.5	0.28 (1)	10.00					
N- M	0/0	-18.5	-18.5	0.03 (4)	10.00					

DESIGN CRITERIA

SPECIFIED LOADS: DL = DL = DL = DL = AD = TOP CH. 32.5 PSF 6.0 PSF PSF TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 138 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.17")
ALLOWABLE DEFL.(TL) = L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/999 (0.29")

CSI: TC=0.82/1.00 (E-F:1) , BC=0.52/1.00 (R-T:1) , WB=0.41/1.00 (E-T:1) , SSI=0.30/1.00 (H-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
 NAIL VALUES

 PLATE
 GRIP(DRY)
 SHEAR
 SECTION

 (PSI)
 (PLI)
 (PLI)

 MAX
 MIN
 MAX
 MIN

 MT20
 650
 371
 1747
 788
 1987
 1873

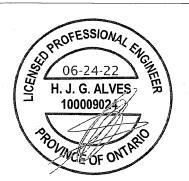
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (K) (INPUT = 0.90) JSI METAL= 0.91 (S) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW W	ELLINGTON	I	DRWG NO	-	·	
423564 Famarack Roof Truss, Burlington	Т8	1	1	TRUSS DESC.		Varsias 9 Es	00 S F-b 00 0000 b	*T-la la da akti	- I - 5:1 - 6!		
					ID:c3jyj23uDijq	8pvRKbkZpy75	XW-NY15Kvhg\	3STZ2P 0	s, inc. Fri Jun 24 gOihNXxxN39F	0:26:43 2022 0HgNJWv	?z36bQ
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE								•		
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.										
•											
	.*										
											-
OROFESS/C	DNALE										
06-24- UN H. J. G. Al 1000090	22										
일 H. J. G. AI 1000090	LVES,另										
POUNCEOF	ONTAR						-				
Structural compo	nent only								' \		
DVVG# 1-221519	13					K		HE	: VV		IJ

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. T8C 423564 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:44 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-skbTXFhlJNbKBC_BaNvxDa47unQH_SUpczGTWSz36bP 1-3-8 4-1-14 Scale = 1:54.5 2x4 || 4x4 =3x8 == 4x4 =6x7 \\ 6x7 // D Ε F Н G 10.00 12 5x6 🖊 5x6 > C 5x6 || 5x6 || s ۵ W U Τ R 0 3x8 = 3x8 == 3x4 || 5x8 = 4x6 || 5x6 =5x6 =5x6 = 4x6 || 5x8 = 3x4 || 30-11-0 1-3-8 30-11-0 1-3-8


LUMBER N. L. G. A. R	IIIES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
G - I	2x4	DRY	No.2	SPF
I - L	2x4	DRY	No.2	SPF
W - B	2x4	DRY	No.2	SPF
M - K	2x4	DRY	No.2	SPF
W - S	2x4	DRY	No.2	SPF
S - Q	2x4	DRY	No.2	SPF
Q - M	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
V - C	2x4	DRY	No.2	SPF
N - J	2x4	DRY	. No.2	SPF
1				

JΤ	TYPE	PLATES	W	LEN	Y X
В	TMVW+p	MT20	5.0	6.0	Edge
С	TMWW-t	MT20	5.0	6.0	2.00 2.50
D	TTWW+m	MT20	6.0	7.0	2.00 1.75
Е	TMWW-t	MT20	4.0	4.0	
F	TMW+w	MT20	2.0	4.0	
G	TS-t	MT20	3.0	8.0	
Н	TMWW-t	MT20	4.0	4.0	
1	TTWW+m	MT20	6.0	7.0	2.00 1.75
J	TMWW-t	MT20	5.0	6.0	2.00 2.50
K	TMVW+p	MT20	5.0	6.0	Edge
M	BMV1+p	MT20	3.0	4.0	•
	DAMADAL L	MITOO			

DRY: SEASONED LUMBER

PLATES (table is in inches)

Ν	BMWW-t	MT20	5.0	8.0		
0	BMWW+t	MT20	4.0	6.0		
Ρ	BMWW-t	MT20	5.0	6.0	2.50	2.75
Q	BS-t	MT20	3.0	8.0		
R	BMWWW-t	MT20	5.0	6.0		
S	BS-t	MT20	3.0	8.0		
Т	BMWW-t	MT20	5.0	6.0	2.50	2.75
U	BMWW+t	MT20	4.0	6.0		
٧	BMWW1-t	MT20	5.0	8.0		
W	BMV+p	MT20	3.0	4.0		

Structural component only DWG# T-2215194

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	

	mado						
	FACTOR		MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
٧	2349	0	2349	0	0	5-8	5-8
M	2010	0	2010	0	0	5-8	5-8

UNF	UNFACTORED REACTIONS									
	1ST LCASE	MAX./	MIN. COMPO	VENT REACTION	4S					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
٧	1643	1179 / 0	0/0	0/0	0/0	464 / 0	0/0			
M	1406	1009/0	0/0	0/0	0/0	397 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) V. M.

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 3.38 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 6.25 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	CHORDS WEBS							
	. FACTORED	FACTO	RED				MAX. FACTO	RED
мемв.	FORCE	VERT. LO		1 MAX	MAX.	MEMB		MAX
	(LBS)	(PL						
FR-TO	, ,							(/
A-B	0 / 50	-112.4	-112.4	0.15(1)	10.00	V- C	-2180 / 0	0.32 (1)
B- C	0 / 244			0.16 (1)			0 / 1435	0.32(1)
C-D	-825 / 0	-112.4	-112.4	0.13 (1)	6.25	U- D	-1145 / 0	0.44 (1)
D-E	-2168 / 0	-112.4	-112.4	0.67 (1)	3.84	D- T	0 / 2071	0.47 (1)
E-F	-2762 / 0	-112.4	-112.4	0.74(1)	3.38	T-E	-1227 / 0	0.47 (1)
F-G	-2762 / 0	-112.4	-112.4	0.74 (1)	3.38	E-R	0 / 782	0.18 (1)
G-H	-2762 / 0	-112.4	-112.4	0.74(1)	3.38	R-F	-580 / 0	0.22 (1)
H- I	-2562 / 0	-112.4	-112.4	0.72 (1)	3.53	R- H	0 / 263	0.06 (1)
I- J	-1832 / 0			0.10(1)		P- H	-887 / 0	0.34(1)
J- K	-1567 / 0			0.09 (1)		P- I	0 / 1539	0.35 (1)
	0 / 50			0.15 (1)		O- I	-167/9	0.06(1)
	-3 / 16	0.0	0.0	0.00(4)	7.81	O- J	0/319	0.07(1)
M-K	-1983 / 0	0.0	0.0	0.21 (1)	5.99		-708 / 0	0.10(1)
						B- V		0.03(1)
W-V		-18.5				N-K	0 / 1408	0.32 (1)
V- U	-168 / 0			0.09 (4)				
U-T	0 / 583			0.16 (4)				
T-S	0 / 2169			0.40 (1)				
S-R	0 / 2169	-18.5		0.40 (1)				
R-Q	0 / 2562	-18.5		0.46 (1)				
Q-P	0 / 2562			0.46 (1)				
	0 / 1384			0.28 (1)				
0- N	0 / 1215	-18.5		0.26 (1)				
N- M	0/0	-18.5	-18.5	0.03 (4)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 138 II

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.13")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.24")

CANTILEVER DEFLECTION: ALLOWABLE DEFL.(LL)= L/120 (0.22") CALCULATED VERT. DEFL.(LL)= L/1999 (0.01") ALLOWABLE DEFL.(TL)= L/120 (0.22") CALCULATED VERT. DEFL.(TL)= L/1999 (0.01")

CSI: TC=0.74/1.00 (E-F:1) , BC=0.46/1.00 (P-R:1) , WB=0.47/1.00 (E-T:1), SSI=0.30/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL I) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

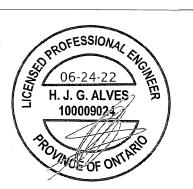
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (T) (INPUT = 0.90) JSI METAL= 0.81 (S) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLING	TON!	DRWG NO.	
123564	твс	1	1	TRUSS DESC.	DATVIEW WELLINGT	ON	DRWG NO.	
amarack Roof Truss, Bur	rlington	!'			Versio ID:c3jyj23uDijq 8pvRKbkZp	n 8.530 S Feb 23 2022 N	MiTek Industries, Inc. Fri Ju	n 24 10:26:44 2022 Page 2
					ID:c3jyj23uDijq 8pvRKbkZp	y75XW-skbTXFhIJN	bKBC BaNvxDa47unC	H SUpczGTWSz36bP
Edge - INDICATES REFE	ERENCE CORNER OF PLATE HORD.							
NOTES- (1) 1) Lateral braces to be a	minimum of 2X4 SPF #2.							
		r				-		
					•			
				j		,		
								-
		<u> </u>						
PROFE	SSIONALENCE							
18	16							

Structural component only DWG# T-2215194


H. J. G. ALVES

JOB NAME TRUSS NAME JOB DESC. QUANTITY DRWG NO PLY **BAYVIEW WELLINGTON** 423564 TRUSS DESC Т9 Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 10:26:45 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-Kx9rlaiw4hjBpMZN85QAmocLBBnvjuVzrd?03uz36bO Tamarack Roof Truss, Burlington 1-3-8 20-2-7 Scale = 1:54.5 2x4 || 3x8 =4x4 = 6x7 \\ 6x7 // D Н G 10.00 12 4x6 / 4x6 < 5x6 || S ۵ ν U T R 0 N 3x8 =3x8 3x4 || 4x6 =4x4 : 4x6 || 4x6 = 4x6 || 4x4 =4x6 =3x4 || 30-11-0 1-3-8 1-3-8 30-11-0 TOTAL WEIGHT = 145 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER DESIGN CRITERIA** SPECIFIED LOADS:

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
G - I	2x4	DRY	No.2	SPF
1 - L	2x4	DRY	No.2	SPF
W - B	2x4	DRY	No.2	SPF
M - K	2x4	DRY	No.2	SPF
W - S	2x4	DRY	No.2	SPF
S - Q	2x4	DRY	No.2	SPF
Q - M	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
V - C N - J	2x4 2x4	DRY	No.2 No.2	SPF
1				

DRY: SEASONED LUMBER.

	ATES (table i								
JT	TYPE	PLATES	W	LEN	Y X				
В	TMVW+p	MT20	5.0	6.0	Edge				
С	TMWW-t	MT20	4.0	6.0	2.00 2.75				
D	TTWW+m	MT20	6.0	7.0	2.00 2.25				
E	TMWW-t	MT20	4.0	4.0					
F	TMW+w	MT20	2.0	4.0					
G	TS-t	MT20	3.0	8.0					
Н	TMWW-t	MT20	4.0	4.0					
1	TTWW+m	MT20	6.0	7.0	2.00 2.25				
J	TMWW-t	MT20	4.0	6.0	2.00 2.75				
K	TMVW+p	MT20	5.0	6.0	Edge				
M	BMV1+p	MT20	3.0	4.0	-				
N	BMWW-t	MT20	4.0	6.0					
0	BMWW-t	MT20	4.0	4.0					
Р	BMWW+t	MT20	4.0	6.0					
Q	BS-t	MT20	3.0	8.0					
R	BMWWW-t	MT20	4.0	6.0					
S	BS-t	MT20	3.0	8.0					
T	BMWW+t	MT20	4.0	6.0					
U	BMWW-t	MT20	4.0	4.0					
V	BMWW-t	MT20	4.0	6.0					
W	BMV1+p	MT20	3.0	4.0					

Structural component only DWG# T-2215195

	nings						
	FACTOR		MAXIMUN			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
Г	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
•	2180	0	2180	0	0	5-8	5-8
	2180	0	2180	0	0	5-8	5-8

UNFACTORED REACTIONS

	TO LONGE	101/-1/1./19	MIN. OCIVIL CI	VENT TIEACTION			
	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
W	1525	1094 / 0	0/0	0/0	0/0	431 / 0	0/0
M	1525	1094 / 0	0/0	0/0	0/0	431 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) W, M

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.61 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

i		•	•						
	CH	ORDS					WE	BS	
ı	MAX	. FACTORED	FACTOR	RED				MAX. FACTO	RED
	MEMB.	FORCE	VERT. LO.	AD LC1	MAX	MAX.	MEMB.		MAX
ı		(LBS)	(PL	F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
ı	FR-TO		FROM	TO		LENGTH	FR-TO	. ,	, ,
	A-B	0 / 50	-112.4	-112.4	0.15(1)	10.00	V- C	-759 / 0	0.11 (1)
	B- C	-1731 / 0						0 / 289	0.07 (1)
	C-D	-2053 / 0	-112.4	-112.4	0.19 (1)	4.57	U- D	-111 / 29	0.06(1)
	D-E	-2466 / 0			0.55 (1)			0 / 1378	0.31 (1)
	E-F	-2727 / 0	-112.4	-112.4	0.58 (1)	3.61	T-E	-941 / 0	0.55 (1)
	F-G	-2727 / 0	-112.4	-112.4	0.58 (1)	3.61	E-R	0 / 399	0.09 (1)
	G- H	-2727 / 0	-112.4	-112.4	0.58 (1)	3.61	R-F	-517 / 0	0.30 (1)
	H-I	-2466 / 0	-112.4	-112.4	0.55 (1)	3.80	R-H	0 / 399	0.09 (1)
	I- J	-2053 / 0			0.19 (1)		P- H	-941 / 0	0.55 (1)
	J- K	-1731 / 0	-112.4	-112.4	0.16(1)	4.91	P- I	0 / 1378	0.31 (1)
	K-L	0 / 50		-112.4	0.15 (1)	10.00	O-1	-111 / 29	0.06 (1)
	W-B	-2155 / 0	0.0	0.0	0.23 (1)	5.78	O- J	0 / 289	0.07 (1)
	M-K	-2155 / 0	0.0	0.0	0.23 (1)	5.78	N- J	-759 / 0	0.11 (1)
							B-V	0 / 1565	0.35 (1)
	W-V	0/0	-18.5	-18.5	0.02(1)	10.00	N-K	0 / 1565	0.35 (1)
	V- U	0 / 1350	-18.5	-18.5	0.27 (1)				. ,
	U- T	0 / 1555	-18.5		0.30(1)				
	T-S	0 / 2466	-18.5	-18.5	0.44 (1)	10.00			
	S-R	0 / 2466	-18.5	-18.5	0.44(1)	10.00			
	R-Q	0 / 2466	-18.5		0.44 (1)				
	Q-P	0 / 2466	-18.5		0.44 (1)	10.00			
	P- O	0 / 1555		-18.5					
	O- N	0 / 1350			0.27 (1)				
	N- M	0/0	-18.5	-18.5	0.02 (1)	10.00			
	l								

32.5 6.0 0.0 7.4 PSF PSF PSF CH. LL DL BOT CH. LL 45.9 LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL)= L/999 (0.12")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL)= L/999 (0.21")

CSI: TC=0.58/1.00 (F-H:1) , BC=0.44/1.00 (R-T:1) , WB=0.55/1.00 (H-P:1) , SSI=0.27/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

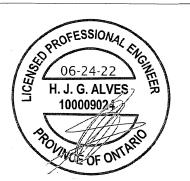
NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (K) (INPUT = 0.90) JSI METAL= 0.75 (S) (INPUT = 1.00)

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
123564 amarack Roof Truss, Burlington	Т9	1	1	TRUSS DESC.		
amarack noor muss, builington					Version 8.530 S Feb 23 2022 N ID:c3jyj23uDijq 8pvRKbkZpy75XW-Kx9rlaiv	niTek Industries, Inc. Fri Jun 24 10:26:45 2022 Page 2 w4hjBpMZN85QAmocLBBnvjuVzrd?03uz36bO
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	E CORNER OF PLATE					
NOTES- (1) 1) Lateral braces to be a minimur	n of 2X4 SPF #2.					
				,		
OFFSS	ONA					
PROFESSI 06-24 H. J. G. A 100009	-22 Figure					
H. J. G. A	LVES B					
Romond	OWTARIO					
Structural compo DWG# T-22151	95				KEV	IEWED


JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423564 T9C TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:46 2022 Page ID:c3jyj23uDija_8pvRKbkZpy75XW-o7jEywjZr_r2QW8ZhoyPJ?9Vcb7vSJA63HIZbKz36bN 1-3-8 20-2-7 1-3-8 Scale = 1:54.5 5x8 \\ 4x4 =2x4 || 3x8 = 4x4 =5x8 // D Ε F Н G 10.00 12 5x6 🖊 5x6 💉 5x6 || 5x6 || 1-7-11 L s Q U R 0 3x8 = 3x8 =5x8 = 3x4 || 5x6 5x6 =4x6 =5x6 =5x6 = 3x4 || 30-11-0 1-3-8 1-3-8 TOTAL WEIGHT = 145 lb

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
G - I	2x4	DRY	No.2	SPF
1 - L	2x4	DRY	No.2	SPF
W - B	2x4	DRY	No.2	SPF
M - K	2x4	DRY	No.2	SPF
W - S	2x4	DRY	No.2	SPF
S - Q	2x4	DRY	No.2	SPF
Q - M	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
V - C N - J	2x4 2x4	DRY DRY	No.2 No.2	SPF SPF

DRY: SEASONED LUMBER

PL	PLATES (table is in inches)									
JT		PLATES	W	LEN	Y X					
В	TMVW+p	MT20	5.0	6.0	Edge					
С	TMWW-t	MT20	5.0	6.0	2.25 2.50					
D	TTWW+m	MT20	5.0	8.0	2.25 1.50					
E	TMWW-t	MT20	4.0	4.0						
F	TMW+w	MT20	2.0	4.0						
G	TS-t	MT20	3.0	8.0						
Н	TMWW-t	MT20	4.0	4.0						
1	TTWW+m	MT20	5.0	8.0	2.25 1.50					
J	TMWW-t	MT20	5.0	6.0	2.25 2.50					
K	TMVW+p	MT20	5.0	6.0	Edge					
M	BMV1+p	MT20	3.0	4.0	-					
N	BMWW-t	MT20	5.0	8.0						
	P, T, U									
0	BMWW-t	MT20	5.0	6.0						
Q	BS-t	MT20	3.0	8.0						
R	BMWWW-t	MT20	4.0	6.0						
S	BS-t	MT20	3.0	8.0						
V	BMWW1-t	MT20	5.0	8.0						
W	BMV+p	MT20	3.0	4.0						
1										

Edge - INDICATES REFERENC TOUCHES EDGE OF CHORD. - INDICATES REFERENCE CORNER OF PLATE

Structural component only DWG# T-2215196

DIMENSIONS, SUPPORTS BUILDING DESIGNER BEARINGS	AND LOADINGS SPECIFIED	BY FABRIC	ATOR TO BE VERIFIED BY
FACTORED	MAXIMUM FACTORED GROSS REACTION	INPUT	REQRD
GROSS REACTION		BRG	BRG

	FACTOR GROSS RE		MAXIMUN GROSS F		INPUT BRG	REQRD BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
/	2349	0	2349	0	0	5-8	5-8
VI	2010	0	2010	0	0	5-8	5-8

UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW /MIN. COMPONENT REACTIONS WIND LIVE PERM.LIVE DEAD SOII 1179 / 0 0/0 1643 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) V, M

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.95 FT.

ON CHORD LENGTH - 6.25 FT. OR RIGID CEIL MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	CHORDS WEBS								
	K. FACTORED						MAX. FACTO)RED	
MEMB.		VERT. LC	AD LC1	1 MAX	MAX.	MEMB	 FORCE 	MAX	
	(LBS)	(PL	_F) '	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 50	-112.4	-112.4	0.15(1)	10.00	V- C	-2181 / 0	0.32(1)	
B- C	0 / 244			0.21 (1)			0 / 1374	0.31(1)	
C-D	-1099 / 0	-112.4	-112.4	0.19 (1)	5.80	U- D	-890 / 0	0.52(1)	
D-E	-1871 / 0			0.50 (1)		D- T		0.36 (1)	
E-F	-2277 / 0			0.53 (1)			-1113/0	0.65 (1)	
F-G	-2277 / 0			0.53 (1)		E-R	0 / 622	0.14 (1)	
G-H	-2277 / 0			0.53 (1)		R-F	-517 / 0	0.30 (1)	
H- I	-2162 / 0			0.53 (1)		R- H		0.04 (1)	
I- J	-1848 / 0			0.18 (1)		P- H		0.45 (1)	
J-K	-1576 / 0			0.16 (1)		P- I	0 / 1155	0.26 (1)	
K-L	0 / 50			0.15 (1)		0-1		0.04 (1)	
W-B	0/14			0.00 (4)		O- J	0 / 235	0.05 (1)	
M-K	-1986 / 0	0.0		0.21 (1)		Ñ- J	-688 / 0	0.10(1)	
				,		B- V	-185 / 0	0.03 (1)	
W-V	0/0	-18.5	-18.5	0.06 (1)	10.00		0 / 1427	0.32 (1)	
V- U	-160 / 0	-18.5		0.07 (4)				0.02 (.)	
U-T	0 / 806	-18.5		0.17 (1)					
T- S	0 / 1871			0.35 (1)					
S-R	0 / 1871	-18.5							
R-Q	0 / 2162	-18.5		0.39 (1)					
Q-P	0 / 2162	-18.5							
P- O	0 / 1398			0.27 (1)					
0- N	0 / 1232								
N-M	0/0	-18.5		0.02 (1)					
					. 3.00				

DESIGN CRITERIA

SPECIFIED LOADS: LL = 32.5 DL = 6.0 LL = 0.0 DL = 7.4 AD = 45.9 TOP PSF CH. PSF PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.18")

CANTILEVER DEFLECTION: ALLOWABLE DEFL.(LL)= L/120 (0.22") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00") ALLOWABLE DEFL.(TL)= L/120 (0.22") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

CSI: TC=0.53/1.00 (F-H:1) , BC=0.39/1.00 (P-R:1) , WB=0.65/1.00 (E-T:1) , SSI=0.27/1.00 (H-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

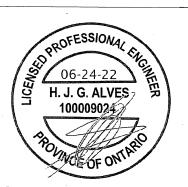
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (D) (INPUT = 0.90) JSI METAL= 0.66 (S) (INPUT = 1.00)

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. BAYVIEW WELLINGTON	DRWG NO.	
23564	тэс	1	1	TRUSS DESC.		
amarack Roof Truss, Burlington	·			Version 8.530 \$ ID:c3jyj23uDijq 8pvRKbkZpy7	Feb 23 2022 MiTek Industries, Inc. Fri Ju XW-o7jEywjZr r2QW8ZhoyPJ?9Vc	n 24 10:26:46 2022 Page 2 b7vSJA63HIZbKz36bN
NOTES- (1) 1) Lateral braces to be a minimum	: OVA SDE #0					
Lateral braces to be a minimum	1 01 2X4 SPF #2.					
•						
					,	
		•				
				· ·		
				•		
						·
PROFESSI 06-24 0 H. J. G. A 100009	ONALS					
9 06.24	33 18					
H. J. G. A	LVES					
100009	0247					
1 a A	ALSO!					
Pouvos	ONTARI					
X COE O	- 01					
Structural compo DWG# T-22151	onent only			DI	·	
DVVG# 1-22151	96		· · · · · · · · · · · · · · · · · · ·	RE	:VIEV	VEU

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423564 T10 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 10:26:46 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-o7jEywjZr_r2QW8ZhoyPJ?9Spb7lSKW63HIZbKz36bN Tamarack Roof Truss, Burlingtor 1-3-8 6-6-11 17-9-10 6-6-11 Scale = 1:54.5 4x4 = 3x8 = 5x6 = 2x4 || 5x6 ≥ G 10.00 12 4x6 / 4x6 <> C 5x6 || 5x6 || W2 s R Q 0 N М 3x8 =5x6 =4x4 = 5x6 = 3x4 || 4x4 = 4**y**4 5x6 =


LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - K	2x4	DRY	No.2	SPF
T - B	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
T - P	2x4	DRY	No.2	SPF
P - L	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				-
S - C	2x4	DRY	No.2	SPF
M - I	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER

PL	PLATES (table is in inches)										
JT		PLATES	W	LEN	Y X						
В	TMVW+p	MT20	5.0	6.0	Edge						
C	TMWW-t	MT20	4.0	6.0	2.00 2.75						
D	TTWW-m	MT20	5.0	6.0	1.75 1.75						
E	TMWW-t	MT20	4.0	4.0							
F	TS-t	MT20	3.0	8.0							
G	TMW+w	MT20	2.0	4.0							
H	TTWW-m	MT20	5.0	6.0	1.75 1.75						
1	TMWW-t	MT20	4.0	6.0	2.00 2.75						
J	TMVW+p	MT20	5.0	6.0	Edge						
L	BMV1+p	MT20	3.0	4.0							
M	BMWW-t	MT20	5.0	6.0							
N	BMWW-t	MT20	4.0	4.0							
0	BMWWW-t	MT20	5.0	6.0	2.50 1.50						
P	BS-t	MT20	3.0	8.0							
Q	BMWW-t	MT20	4.0	4.0	2.00 1.50						
R	BMWW-t	MT20	4.0	4.0							
S	BMWW-t	MT20	5.0	6.0							
T	BMV1+p	MT20	3.0	4.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)

Structural component only DWG# T-2215197

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
D	AND LOADINGS OF COLLED BY LADRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DOILDING DESIGNER	
DEADINGO	
BEARINGS	

30-11-0 30-11-0

EA	RINGS						
	FACTOR GROSS RE		MAXIMUI GROSS F		INPUT BBG	REQRD BRG	
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2180	0	2180	0	0	5-8	5-8
	2180	0	2180	0	0	5-8	5-8

UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	4S						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
T	1525	1094 / 0	0/0	0/0	0/0	431 / 0	0/0				
L	1525	1094 / 0	0/0	0/0	0/0	431 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.71 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-O.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	CHORDS WEBS								
MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(Pi	LF) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO		. ,	
A-B	0 / 50	-112.4	-112.4	0.15(1)	10.00	S-C	-758 / 0	0.11(1)	
B- C	-1746 / 0	-112.4	-112.4	0.29(1)	4.72	C-R	0 / 205	0.05 (1)	
C-D	-2047 / 0	-112.4	-112.4	0.35(1)	4.41	R- D	-12 / 73	0.03 (4)	
D-E	-2277 / 0	-112.4	-112.4	0.71(1)	3.71	D-Q	0/1104	0.25 (1)	
E-F	-2275 / 0	-112.4	-112.4	0.70(1)	3.71	Q-E	-720 / 0	0.63 (1)	
F- G	-2275 / 0	-112.4	-112.4	0.70(1)	3.71	E-O	-3/0	0.00 (1)	
G-H	-2275 / 0			0.70(1)		0- G	-720 / 0	0.63 (1)	
H- I	-2048 / 0			0.35 (1)		O- H	0/1101	0.25 (1)	
l- J	-1745 / 0			0.29(1)		N- H	-11 / 73	0.03 (4)	
J- K	0 / 50	-112.4	-112.4	0.15(1)	10.00	N- I	0 / 205	0.05 (1)	
	-2159 / 0	0.0	0.0	0.23(1)	5.78	M- I	-759 / 0	0.11 (1)	
L- J	-2159 / 0	0.0	0.0	0.23(1)	5.78	B-S	0 / 1601	0.36(1)	
						M- J	0 / 1600	0.36(1)	
T-S	0/0	-18.5	-18.5	0.03(4)	10.00				
S-R	0 / 1381	-18.5	-18.5	0.29(1)	10.00				
R-Q	0 / 1548	-18.5	-18.5	0.32 (1)	10.00				
Q-P	0 / 2277	-18.5	-18.5	0.43 (1)	10.00				
P- 0	0 / 2277	-18.5	-18.5	0.43 (1)	10.00				
O- N	0 / 1548	-18.5	-18.5	0.32(1)	10.00				
N- M	0 / 1381	-18.5		0.29(1)					
M-L	0/0	-18.5							
				, ,					

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
			=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 143 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/999 (0.18")

CSI: TC=0.71/1.00 (D-E:1) , BC=0.43/1.00 (O-Q:1) , WB=0.63/1.00 (E-Q:1) , SSI=0.31/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (B) (INPUT = 0.90) JSI METAL= 0.73 (P) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423564 T10C TRUSS DESC Tamarack Boof Truss Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:47 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-GJHcAGkBclzv2gjmFWTerDieE_TeBjQGlwU77mz36bM 1-3-8 6-6-11 17-9-10 Scale = 1:54.6 5x8 \\ 4x4 =3x8 == 2x4 || 5x6 // D Ε G н 10.00 12 5x6 // 4x6 < C 4x4 || 5x6 || Ρ R Q 0 N М 3x8 =3x4 || 4x6 =4x6 || 5x6 = 3x4 || 4x4 =5x6 =30-11-0 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 143 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY A. RULES **BUILDING DÉSIGNER DESIGN CRITERIA** DESCR. SPF SPF CHORDS SIZE LUMBER DRY DRY DRY A D F No.2 No.2 D MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: 2x4 2x4 GROSS REACTION DOWN HORZ L BRG IN-SX BRG IN-SX GROSS REACTION TOP CH. LL = DL = LL = 32.5 PSF SPF SPF SPF Н No 2 VERT 2349 HORZ HORZ UPLIFT 6.0 PSF DRY DRY K B 5-8 BOT CH 0.0 7.4 PSF PSF No.2 2010 2010 2x4 DRY No.2 SPF TOTAL LOAD 45.9 SPF DRY UNFACTORED REACTIONS
1ST LCASE MA SPACING = 24.0 IN. C/C MAX SNOW 1179 / 0 ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND ALL WERS 2x3 DRY No.2 SPF COMBINED DEAD SOIL EXCEPT S - C LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12 0/0 0/0 0/0 0/0 DRY No.2 SPF 1009 / 0 DRY BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S. L. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART DRY: SEASONED LUMBER. BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.99 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. 9. NBCC 2015 THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)
 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 C
 TMWW+t
 MT20

 D
 TTWW+m
 MT20

 E
 TMWW-t
 MT20

 F
 TS-t
 MT20
 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED - CSA 086-14 - TPIC 2014 Y X 1.00 2.00 4.0 LOADING TOTAL LOAD CASES: (4) 6.0 2.50 2.25 5.0 Edge 1.25 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD 8.0 3.0 2.0 5.0 4.0 5.0 3.0 TMW+w 4.0 6.0 6.0 6.0 4.0 TTWW+m TMWW-t ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATEO VERT. DEFL.(LL)= L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.15") 2.25 1.50 2.00 2.75 MT20 TMVW+p MT20 MT20 BMV1+p BMWW-t 5.0 MT20 6.0 CANTILEVER DEFLECTION: ALLOWABLE DEFL_(IL)= \(\text{L120}\) (0.22") CALCULATED VERT. DEFL_(IL)= \(\text{L7999}\) (0.00") ALLOWABLE DEFL_(IL)= \(\text{L712}\) (0.22") CALCULATED VERT. DEFL_(IL)= \(\text{L7999}\) (0.00") 4.0 5.0 3.0 BMWW-t MT20 4.0 BMWWW-t MT20 8.0 4.0 4.0 5.0 BMWW+t MT20 6.0 BMWW-MT20 MT20 3.00 2.25 BMV+p MT20

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)

Structural component only DWG# T-2215198

СН	ORDS					W E	BS	
	C. FACTORED						MAX. FACTO	RED
MEMB.								MAX
	(LBS)	(PI	LF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	I FR-TO		
A- B	0 / 50	-112.4	-112.4	0.15(1)	10.00	S-C	-2188 / 0	0.32(1)
B- C	0 / 232	-112.4	-112.4	0.32 (1)	10.00		0 / 1330	0.30 (1)
C-D	-1270 / 0			0.33(1)		R- D	-679 / 0	0.59(1)
D- E	-1820 / 0			0.66(1)		D-Q	0 / 1334	0.30 (1)
E-F	-1964 / 0			0.67 (1)		Q-E	-891 / 0	0.78 (1)
F-G	-1964 / 0			0.67 (1)		E-O	0 / 221	0.05(1)
G- H	-1964 / 0			0.66 (1)		0- G	-721 / 0	0.63(1)
H- 1	-1833 / 0			0.33 (1)		O- H	0 / 878	0.20 (1)
I- J	-1591 / 0	-112.4		0.28 (1)		N- H	0 / 82	0.03(4)
	0 / 50			0.15(1)		N- I	0 / 150	0.03(1)
		0.0				M- I	-688 / 0	0.10 (1)
L- J	-1990 / 0	0.0	0.0	0.21(1)	5.98	B-S	-154 / 0	0.03(1)
						M- J	0 / 1463	0.33 (1)
T-S		-18.5						
S-R	-133 / 0	-18.5	-18.5	0.10 (4)	6.25			
R-Q	0 / 939	-18.5	-18.5	0.22(1)	10.00			
Q-P	0 / 1820			0.36(1)				
P- 0	0 / 1820	-18.5	-18.5	0.36 (1)	10.00			
	0 / 1384							
	0 / 1262	-18.5	-18.5	0.27(1)	10.00			
M-Ł	0/0	-18.5	-18.5	0.03 (4)	10.00			

CSI: TC=0.67/1.00 (E-G:1), BC=0.36/1.00 (O-Q:1), WB=0.78/1.00 (E-Q:1), SSI=0.31/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

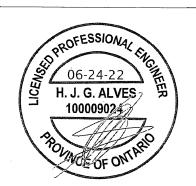
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.86 (C) (INPUT = 0.90) JSI METAL= 0.60 (P) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423564 TRUSS DESC T11 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:48 2022 Page 1 $ID: c3jyj23uDijq_8pvRKbkZpy75XW-kWr_NckpNc5mgplypD_tOQEqeOpnwE4PXaEgfDz36bLine (Compared to the compared to$ 1-3-8 7-9-1 7-9-1 Scale = 1:54.5 5x8 = 2x4 || 4x4 =5x8 < Ε G 10.00 12 4x6 / 4x6 < C Н 5x6 || 5x6 || 1-7-11 0 R Q N М 3x8 =5x6 == 4x4 =4x10 = 4x4 =3x4 || 4x4 =5y6 = 30-11-0 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 173 lb LUMBER N. L. G. A. CHORDS DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER RULES DESIGN CRITERIA LUMBER DESCR BEARINGS FACTORED A - D D - G G - J S - B K - I S - K No.2 No.2 No.2 SPF SPF SPF MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLI 2x4 DRY REQRD SPECIFIED LOADS: DRY 2x4 GROSS REACTION 32.5 6.0 PSF PSF PSF BRG BRG CH. VERT HORZ UPLIFT IN-SX IN-SX 2x4 DRY No.2 SPF 2180 2180 LL 0.0 SPF SPF SPF 2x4 DRY No.2 No.2 5-8 5-8 DΙ 45.9 No.2 UNFACTORED REACTIONS
1ST LCASE MA SPACING = 24.0 IN. C/C ALL WEBS 2×4 DRY SPF MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND DRY: SEASONED LUMBER. COMBINED DEAD SOIL 1094 / 0 1094 / 0 431 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 0/0 0 / 00/0 431 / 0 0/0 OF 6.00/12 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, K THIS TRUSS IS DESIGNED FOR RESIDENTIAL PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 OR SMALL BUILDING REQUIREMENTS OF PART 5.0

BCDEF Edge 2.00 2.75 1.75 2.75 6.0 8.0 4.0 4.0 8.0 6.0 TMWW-i MT20 40 TTWW-m MT20 MT20 5.0 2.0 4.0 5.0 4.0 5.0 TMWW-t MT20 G H TTWW-m MT20 MT20 1.75 2.75 2.00 2.75 TMWW-t TMVW+p MT20 6.0 Edge KLMMOPR BMV1+p BMWW-t MT20 4.0 6.0 ۷, Q BMWW-t MT20 4.0 8.0 40 BS-t BMWWW-t MT20 MT20 4.0 10.0 BMWW-t MT20 5.0 BMV1+p

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215199

BACKING
TO BE SHEATHED OR MAX. PURLIN SPACING = 4.15 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-P.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS CFACTORED		WEBS					
							MAX. FACTO	
MEMB.	FORCE	VERT. LO						MAX
	(LBS)			CSI (LC)			(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	0 / 50	-112.4	-112.4	0.15(1)	10.00	R- C	-759 / 0	0.11(1)
B- C	-1771 / 0	-112.4	-112.4	0.47 (1)	4.39	C-Q	0/99	0.02 (1)
C-D	-2013 / 0			0.63 (1)			0/98	0.02 (4)
D-E	-1989 / 0	-112.4					0/98	0.02 (4)
E-F	-1989 / 0			0.49 (1)		M- H	0/99	0.02 (1)
F- G	-1990 / 0			0.49 (1)		L- H	-758 / 0	0.11 (1)
G-H	-2013 / 0			0.63 (1)		B- R	0 / 1656	0.27 (1)
H- I	-1771 / 0			0.47 (1)			0 / 1656	0.27 (1)
	0 / 50			0.15 (1)			0 / 855	0.14 (1)
	-2169 / 0	0.0		0.23 (1)			0 / 852	0.14 (1)
K- I	-2169 / 0	0.0		0.23 (1)		N- F	-621 / 0	
14-1	-210370	, 0.0	0.0	0.23 (1)	5.77	P- E		0.56 (1)
S-R	0/0	10 5	10.5	0.00 (4)	10.00		-620 / 0	0.56 (1)
R- Q		-18.5		0.08 (4)		P-F	-3 / 0	0.00 (1)
	0 / 1429	-18.5	-18.5					
Q-P	0 / 1517	-18.5	-18.5					
P-O	0 / 1990	-18.5		0.36 (1)				
0- N	0 / 1990	-18.5		0.36(1)				
N- M	0 / 1517	-18.5	-18.5	0.31(1)	10.00			
M- L	0 / 1429	-18.5	-18.5	0.30 (1)	10.00			
L- K	0/0	-18.5	-18.5	0.08 (4)	10.00			
				- (- /				

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (1.03") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.14")

CSI: TC=0.63/1.00 (C-D:1) , BC=0.36/1.00 (N-P:1) . WB=0.56/1.00 (F-N:1) , SSI=0.27/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

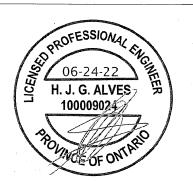
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.90 (G) (INPUT = 0.90) JSI METAL= 0.65 (I) (INPUT = 1.00)


JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423564 T11C TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 10:26:49 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-CiPMbylR8vDdlzt8NxV6wen?voAjehJZmEzECfz36bK 1-3-8 7-9-1 15-4-14 7-9-1 Scale = 1:54.6 6x7 \\ 2x4 4x4 =5x8 < Ε G 10.00 12 5x6 // 4x6 📏 Н 4x4 || 0 ۵ 5x6 = 3x8 =3y4 || 4x6 =4x10 = 3x4 || 4x4 = 4x4 =5x6 = 30-11-0 30-11-0 1-3-8

į					
	LUMBER				
	N. L. G. A. F	RULES			
	CHORDS	SIZE		LUMBER	DESCR.
	A - D	2x4	DRY	No.2	SPF
	D - G	2x4	DRY	No.2	SPF
	G - J	2x4	DRY	No.2	SPF
	S - B	2x4	DRY	No.2	SPF
	K - I	2x4	DRY	No.2	SPF
	s - o	2x4	DRY	No.2	SPF
	0 - к	2x4	DRY	No.2	SPF
	ALL WEBS	2x4	DRY	No.2	SPF
	DRY: SEAS	ONED L	JMBER.		0

PLATES (table is in inches)													
JT	TYPE	PLATES	W	LEN	Υ	Х							
В	TMVW+p	MT20	4.0	4.0	1.00	2.00							
С	TMWW-t	MT20	5.0	6.0	2.50	2.25							
D	TTWW+m	MT20	6.0	7.0	2.00	1.75							
Ε	TMW+w	MT20	2.0	4.0									
F	TMWW-t	MT20	4.0	4.0									
G	TTWW-m	MT20	5.0	8.0	Edge	3.00							
Н	TMWW-t	MT20	4.0	6.0	2.00	2.75							
1	TMVW+p	MT20	5.0	6.0	Edge								
K	BMV1+p	MT20	3.0	4.0	•								
L	BMWW-t	MT20	5.0	6.0									
М	BMWW-t	MT20	4.0	4.0									
N	BMWW-t	MT20	4.0	4.0									
0	BS-t	MT20	3.0	8.0									
Р	BMWWW-t	MT20	4.0	10.0									
Q	BMWW-t	MT20	4.0	6.0									
R	BMWW1-t	MT20	5.0	6.0									
l s	BMV+n	MT20	3.0	40									

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215200

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	THE TOTAL TO SE TON IED BY TABLED AT TO BE TELLINED BY
READINGS	

	FACTOR GROSS RE		MAXIMUN GROSS F		INPUT BBG	REQRD BRG	
JT	VERT	HORZ	DOWN	HOR7		IN-SX	IN-SX
R	2349	0	2349	0	0	5-8	5-8
K	2010	0	2010	0	Ō	5-8	5-8

UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	NS.						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
R	1643	1179 / 0	0/0	0/0	0/0	464 / 0	0/0				
K	1406	1009/0	0/0	0/0	0/0	397 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.37 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-P.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHORDS				WEBS					
MAX	C. FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	_F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO		` '	
A-B	0 / 50	-112.4	-112.4	0.15 (1)	10.00	R- C	-2194 / 0	0.33(1)	
B- C	0 / 211	-112.4	-112.4	0.48 (1)	10.00	C-Q	0 / 1273	0.20 (1)	
C-D	-1371 / 0	-112.4	-112.4	0.56 (1)	4.85	Q- D	-521 / 0	0.47 (1)	
	-1599 / 0		-112.4	0.46 (1)	4.67	M- G	0 / 106	0.03 (4)	
E- F	-1599 / 0	-112.4	-112.4	0.46 (1)	4.65	M- H	0 / 41	0.01 (1)	
F- G	-1710 / 0	-112.4	-112.4	0.47 (1)	4.52	L- H	-688 / 0	0.10 (1)	
G-H	-1793 / 0	-112.4	-112.4	0.59 (1)	4.37	B-R	-104 / 0	0.01 (1)	
H- I	-1616 / 0		-112.4	0.46 (1)	4.57	L- I	0 / 1519	0.24 (1)	
I- J	0 / 50	-112.4	-112.4	0.15(1)	10.00	N- G	0 / 653	0.10 (1)	
S-B	-6 / 0	0.0	0.0	0.00(1)	7.81	D- P	0 / 1060	0.17 (1)	
K- I	-2000 / 0	0.0	0.0	0.21 (1)	5.97	N-F	-453 / 0	0.41 (1)	
						P-E	-621 / 0	0.56 (1)	
	0/0	-18.5	-18.5	0.10 (4)	10.00	P-F	-204 / 0	0.09(1)	
	-90 / 0	-18.5	-18.5	0.11 (4)	6.25				
Q-P	0 / 1012	-18.5	-18.5	0.22 (1)	10.00				
P- 0	0 / 1710	-18.5	-18.5	0.32 (1)	10.00				
O- N	0 / 1710	-18.5	-18.5	0.32 (1)	10.00				
N- M	0 / 1348	-18.5	-18.5	0.28 (1)	10.00				
M- L	0 / 1311	-18.5	-18.5	0.28 (1)	10.00				
L- K	0/0	-18.5	-18.5	0.08 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS:										
TOP	CH.	LL	=	32.5	PSF					
		DL	=	6.0	PSF					
BOT	CH.	LL	=	0.0	PSF					
		DL		7.4	PSF					
TOTA	L LO	AD	=	45.9	PSF					

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 173 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

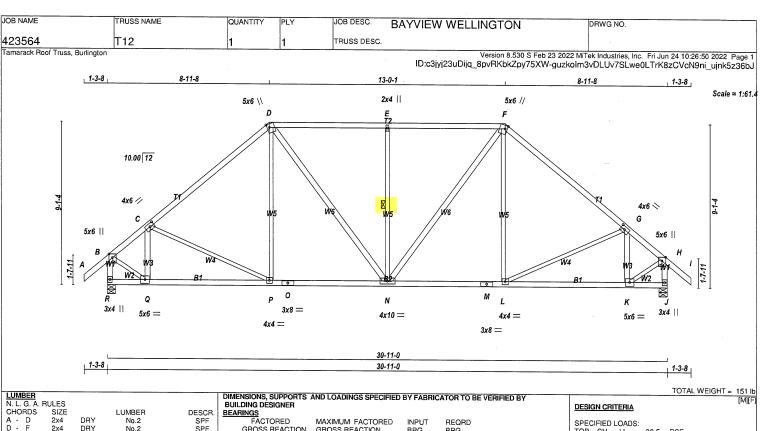
ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.11")

CANTILEVER DEFLECTION: ALLOWABLE DEFL.(LL)= L/120 (0.22") CALCULATED VERT. DEFL.(LL)= L/999 (0.00") ALLOWABLE DEFL.(TL)= L/120 (0.22") CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

CSI: TC=0.59/1.00 (G-H:1) , BC=0.32/1.00 (N-P:1) , WB=0.56/1.00 (E-P:1) , SSI=0.27/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.83 (C) (INPUT = 0.90) JSI METAL= 0.60 (I) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
R - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2 .	SPF
R - O	2x4	DRY	No.2	SPF
O - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
Q - C	2x4	DRY	No.2	SPF
D - N	2x4	DRY	No.2	SPF
N - F	2x4	DRY	No.2	SPF
K - G	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Χ					
В	TMVW+p	MT20	5.0	6.0	Edge						
С	TMWW-t	MT20	4.0	6.0	2.00	2.75					
D	TTWW+m	MT20	5.0	6.0	2.25	1.50					
E	TMW+w	MT20	2.0	4.0							
F	TTWW+m	MT20	5.0	6.0	2.25	1.50					
G	TMWW-t	MT20	4.0	6.0	2.00	2.75					
H	TMVW+p	. MT20	5.0	6.0	Edge						
J	BMV1+p	MT20	3.0	4.0							
K	BMWW-t	MT20	5.0	6.0							
L	BMWW-t	MT20	4.0	4.0							
M	BS-t	MT20	3.0	8.0							
N	BMWWW-t	MT20	4.0	10.0							
0	BS-t	MT20	3.0	8.0							
P	BMWW-t	MT20	4.0	4.0							
Q	BMWW-t	MT20	5.0	6.0							
R	BMV1+p	MT20	3.0	4.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)

Structural component only

DWG# T-2215201

	IIIII						
	FACTOR GROSS RE		MAXIMUN GROSS F		INPUT BRG	REQRD BRG	
Т	VERT	HORZ	DOWN -	HORZ	UPLIFT	IN-SX	IN-SX
₹	2180	0	2180	0	0	5-8	5-8
	2180	0	2180	0	0	5-8	5-8

UNF	UNFACTORED REACTIONS									
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	VS.					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
R	1525	1094 / 0	0/0	0/0	0/0	431 / 0	0/0			
J	1525	1094 / 0	0/0	0/0	0/0	431 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRALING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.92 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS K. FACTORED	FACTO	RED		WEBS MAX. FACTORED				
MEMB.		VERT. LC		MAX	MAX.	MEMB.		MAX	
	(LBS)				UNBRAC				
FR-TO					LENGTH		\/	()	
A-B	0 / 50	-112.4	-112.4	0.15(1)	10.00	Q-C	-776 / 0	0.12(1)	
B- C	-1798 / 0	-112.4	-112.4	0.54 (1)	4.31		-16/9	0.02 (1)	
C-D	-1965 / 0	-112.4	-112.4	0.76 (1)	3.92	P- D	0 / 139	0.05 (4)	
D-E	-1846 / 0	-112.4	-112.4	0.67(1)	4.03	D- N	0 / 626	0.10 (1)	
	-1846 / 0	-112.4	-112.4	0.67 (1)	4.03	N- E	-897 / 0	0.48 (1)	
	-1965 / 0	-112.4	-112.4	0.76 (1)	3.92	N-F	0 / 626	0.10(1)	
G-H	-1798 / 0	-112.4				L-F	0 / 139	0.05 (4)	
	0 / 50			0.15 (1)		L- G	-16/9	0.02(1)	
				0.23 (1)		K-G	-776 / 0	0.12(1)	
J- H	-2176 / 0	0.0	0.0	0.23 (1)	5.76	B-Q	0 / 1723	0.39(1)	
						K- H	0 / 1723	0.39 (1)	
R-Q	0/0								
Q-P	0 / 1487	-18.5	-18.5	0.34(1)	10.00				
P-O	0 / 1474	-18.5	-18.5	0.34(1)	10.00				
O- N	0 / 1474	-18.5	-18.5	0.34(1)	10.00				
N- M	0 / 1474	-18.5	-18.5	0.34(1)	10.00				
M- L	0 / 1474	-18.5	-18.5	0.34 (1)	10.00				
L-K	0 / 1487			0.34 (1)					
K-J	0/0	-18.5		0.12 (4)					
				. ,					

SPECIFIED LOADS: TOP CH. LL = LL = DL = LL = DL = AD = 32.5 PSF 6.0 0.0 7.4 PSF TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/999 (0.13")

CSI: TC=0.76/1.00 (C-D:1) , BC=0.34/1.00 (P-Q:1) , WB=0.48/1.00 (E-N:1) , SSI=0.35/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

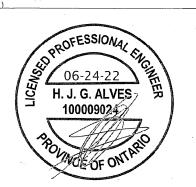
NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (H) (INPUT = 0.90) JSI METAL= 0.66 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423564 TRUSS DESC T12C Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:51 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-85W7?enhgXTLXH1XUMXa03sJFcr86c?rDYSKGYz36bl 1-3-8 8-11-8 13-0-1 8-11-8 1-3-8 Scale = 1:61.4 2x4 || 5x6 // 5x6 \\ D F 10.00 12 5x6 // 5x6 > G C 5x6 || 5x6 || W4 0 М Р N 5x6 = 3x8 =3x4 || 3x4 || 4x10 =4x4 = 5x6 4x4 = 3x8 30-11-0 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 151 lb


LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
R - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
R - 0	2x4	DRY	No.2	SPF
0 - M				
	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
Q - C	2x4	DRY	No.2	SPF
D - N	2x4	DRY		
			No.2	SPF
N - F	2x4	DRY	No.2	SPF
K - G	2x4	DRY	No.2	SPF
1				

DRY: SEASONED LUMBER.

PLA	PLATES (table is in inches)							
JT	TYPE	PLATES	W	LEN	Y X			
В	TMVW+p	MT20	5.0	6.0	Edge			
С	TMWW-t	MT20	5.0	6.0	2.50 2.25			
D	TTWW+m	MT20	5.0	6.0	2.25 1.50			
Ε	TMW+w	MT20	2.0	4.0				
F	TTWW+m	MT20	5.0	6.0	2.25 1.50			
G	TMWW-t	MT20	5.0	6.0	2.50 2.25			
Н	TMVW+p	MT20	5.0	6.0	Edge			
J	BMV1+p	MT20	3.0	4.0				
K	BMWW-t	MT20	5.0	6.0				
L	BMWW-t	MT20	4.0	4.0	2.00 1.50			
M	BS-t	MT20	3.0	8.0				
N	BMWWW-t	MT20	4.0	10.0				
0	BS-t	MT20	3.0	8.0				
P	BMWW-t	MT20	4.0	4.0	2.00 1.50			
Q	BMWW1-t	MT20	5.0	6.0				
R	BMV+p	MT20	3.0	4.0				

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)

Structural component only DWG# T-2215202

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	_
BUILDING DESIGNER	
BEARINGS	
BEARINGS	

	FACTORED GROSS REACTION					INPUT	REQRD	
	GROSS RE	BRG				BRG		
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX	
2	2349	0	2349	0	0	5-8	5-8	
J	2010	0	2010	0	0	5-8	5-8	

UNFACTORED REACTIONS

	IOI LUAGE	- IVI/AX./I	VIII V. COIVIF OI	VEIVE REACTION	VO		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1643	1179 / 0	0/0	0/0	0/0	464 / 0	0/0
J	1406	1009/0	0/0	0/0	0/0	397 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.15 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-P, E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СНО						W E	BS	
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(Pl	_F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		• •
A-B	0 / 50	-112.4	-112.4	0.15(1)	10.00	Q-C	-2211 / 0	0.33(1)
B- C	0 / 183	-112.4	-112.4	0.71 (1)	10.00	C-P	0 / 1195	0.27 (1)
C- D -	1422 / 0	-112.4	-112.4	0.69(1)	4.53	P- D	-379 / 0	0.20 (1)
D- E -	1549 / 0	-112.4	-112.4	0.66 (1)	4.37	D- N	0 / 841	0.14 (1)
E-F -	1549 / 0	-112.4	-112.4	0.66(1)	4.37	N-E	-899 / 0	0.49 (1)
F- G -	1740 / 0	-112.4	-112.4	0.73 (1)	4.15	N- F	0 / 418	0.07 (1)
	1643 / 0		-112.4	0.53 (1)	4.48	L-F	0 / 163	0.05 (4)
H-1	0 / 50	-112.4	-112.4	0.15 (1)	10.00	L- G	-76 / 0	0.09 (1)
R-B	-14/0	0.0	0.0	0.00(1)	7.81	K- G	-705 / 0	0.10 (1)
J- H -:	2007 / 0	0.0	0.0	0.21 (1)	5.96	B- Q	-35 / 0	0.01 (1)
						K- H	0 / 1586	0.36 (1)
R-Q	0/0	-18.5	-18.5	0.14 (4)	10.00			,
Q-P	-30 / 0	-18.5	-18.5	0.13 (4)	6.25			
P-O	0 / 1050	-18.5	-18.5	0.26 (1)	10.00			
O- N	0 / 1050	-18.5	-18.5	0.26(1)	10.00			
N-M	0 / 1301	-18.5	-18.5	0.31 (1)	10.00			
M-L	0 / 1301	-18.5	-18.5	0.31 (1)	10.00			
L- K	0 / 1368	-18.5	-18.5	0.32 (1)	10.00			
K-J	0/0	-18.5	-18.5	0.12 (4)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSI
		DL	=	6.0	PSI
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.4	PSI
TOTA		A D		45.0	DO

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.11")

CANTILEVER DEFLECTION: ALLOWABLE DEFL.(LL)= L/120 (0.22") CALCULATED VERT. DEFL.(LL)= L/999 (0.00") ALLOWABLE DEFL.(TL)= L/120 (0.22") CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

CSI: TC=0.73/1.00 (F-G:1) , BC=0.32/1.00 (K-L:1) , WB=0.49/1.00 (E-N:1) , SSI=0.35/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

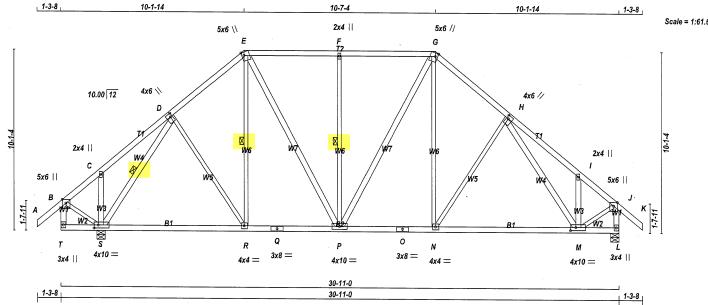
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (L) (INPUT = 0.90) JSI METAL= 0.61 (B) (INPUT = 1.00)


JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423564 T13 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:52 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-dH4VD_oJRqbC9Rbj232pYGPZa?Bdr3w?SCCup_z36bH 1-3-8 10-1-14 10-7-4 10-1-14 1-3-8 Scale = 1:61. 5x6 \\ 2x4 || 5x6 // Ε G 5x6 // 10.00 12 5x6 > 10-1-4 2x4 || 2x4 || 5x6 / 5x6 <> × Q 0 R Ρ N М 3x4 || 3x8 = 3x8 = 4x10 = 3x4 || 4x4 =4x10 =4×4 == 4x10 =30-11-0 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 2 X 171 = 342 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER [M][F N. L. G. A. CHORDS **DESIGN CRITERIA** LUMBER DESCR BEARINGS FACTORED A - E E - G G - K T - B No.2 No.2 2x4 DRY SPF MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: DRY SPF SPF GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ L BRG BRG TOP CH. PSF 32.5 No.2 HORZ UPLIFT IN-SX IN-SX 2x4 DRY No.2 SPF 2180 0 2180 5-8 5-8 LL 0.0 PSF 2x4 DRY No.2 SPF SPF 5-8 DΙ ao No.2 Q - C DRY No.2 SPF 2×4 DRY No.2 SPF UNFACTORED REACTIONS SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMITIVE Y ALL WEBS DRY 2x4 SPF No.2 COMBINED WIND DEAD 1094 / 0 1094 / 0 EXCEPT 431 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE DRY No.2 No.2 SPF 0/0 0/0 0/0 431 / 0 0/0 OF 6.00/12 2x3 SPF 2x3 DRY No.2 SPF BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T, L THIS TRUSS IS DESIGNED FOR RESIDENTIAL N -G 2x3 DRY No 2 SPF SPF OR SMALL BUILDING REQUIREMENTS OF PART SPE TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.66 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED 2x3 DRY No.2 DRY THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) DRY: SEASONED LUMBER. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. CSA 086-14 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-P. END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F PLATES (table is in inches)
JT TYPE PLATES RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD Y X 2.25 2.50 TMVW-t MT20 5.0 6.0 LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/999 (0.15") TMW+w TMWW-t MT20 4.0 CHORDS MT20 5.0 6.0 WEBS MAX. FACTORED FACTORED VERT. LOAD LC1 MAX TTWW+m MT20 5.0 6.0 2.25 1.50 MAX. FACTORED TTWW+m TMWW-t MT20 MT20 2.25 1.50 MEMB. MEMB MAX FORCE MAX (PLF) CSI (LC)
FROM TO
-112.4 -112.4 0.15 (1)
-112.4 -112.4 0.25 (1)
-112.4 -112.4 0.25 (1)
-112.4 -112.4 0.27 (1)
-112.4 -112.4 0.44 (1) 5.0 6.0 (LBS) LINBRAC (LBS) CSI (LC) CSI: TC=0.44/1.00 (E-F:1) , BC=0.37/1.00 (R-S:1) , WB=0.51/1.00 (F-P:1) , SSI=0.29/1.00 (E-F:1) TMVW-t MT20 5.0 6.0 2 25 2 50 FR-TO BMV1+p MT20 A- B B- C C- D -337 / 0 0.05 (1) 10.00 S-C S-D MMZOQRT -1765 / 0 0.32 (1) 0.33 (1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 4 94 403 / 0 BMWWW-t MT20 4.0 10.0 -1756 / 0 4.80 Ď D- E E- F F- G BMWW-t MT20 4.0 4.0 -1878 / 0 -1634 / 0 0/373 4.66 0.08(1)BS-t BS-t MT20 8.0 4.68 E-P 0 / 452 0.07 (1 COMPANION LIVE LOAD FACTOR = 1.00 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.44 (1) 0.27 (1) 0.25 (1) P-F P-G N-G MT20 3.0 8.0 -1634/04.68 -726 / 0 BMWW-t MT20 4.0 G- H H- I -1878 / 0 0 / 452 0 / 373 0.07 (1 BMV1+p 4.80 0.08 (1) TRUSS PLATE MANUFACTURER IS NOT -1765 / 0 -1124 -1124 N- H H- M 0.12 4 94 -282 / 0 0.33 (1) RESPONSIBLE FOR QUALITY CONTROL IN THE 0 / 50 -112.4 -112.4 403/0 0.32 (1) TRUSS MANUFACTURING PLANT. NOTES- (1) 0.0 0.23 M- I -337 / 0 0.05 (1) NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION 0.23 (1) L-J -2189 / 0 0.0 0.0 5.74 B-S 0 / 1593 T-S -18.5 -18.5 -18.5 0.19 (4) 10.00 (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 S-R 0 / 1572 -18.5 PROFESSIONAL ENGINEERS H. J. G. ALVES 7 0.37 (1) 10.00 R- Q Q- P P- O O- N 0.35 0.35 0.35 -18.5 -18.5 0 / 1419 -18.5 10.00 0/1419 -18.5 -18.5 -18.5 10.00 -18.5 10.00 PLATE PLACEMENT TOL. = 0.250 inches -18.5 -18.5 0.35 0.37 0/1419 10.00 N- M 0 / 1572 PLATE ROTATION TOL. = 5.0 Deg 0/0 JSI GRIP= 0.88 (J) (INPUT = 0.90) JSI METAL= 0.44 (J) (INPUT = 1.00) 100009024 POWACE OF ONT ARIO

REVIEWE

Structural component only

DWG# T-2215203

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423564 T13C TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 10:26:53 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-5TetQKoyB8j3mbAvcma25UykWPWHaVa8gsxRLQz36bG Tamarack Roof Truss, Burlingtor

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
G - K	2x4	DRY	No.2	SPF
T - B	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
T - Q	2x4	DRY	No.2	SPF
Q - O	2x4	DRY	No.2	SPF
O - L	2x4	DRY	No.2	SPF
ALL WEBS	2x4	DRY	No.2	SPF
EXCEPT				
D - R	2x3	DRY	No.2	SPF
R - E	2x3	DRY	No.2	SPF
P - F	2x3	DRY	No.2	SPF
N - G	2x3	DRY	No.2	SPF
N - H	2x3	DRY	No.2	SPF
B - S	2x3	DRY	No.2	SPF
M - J	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	X		
В	TMVW+p	MT20	5.0	6.0	Edge			
C,	F, I				•			
С	TMW+w	MT20	2.0	4.0				
D	TMWW+t	MT20	4.0	6.0	2.25	1.25		
Ε	TTWW+m	MT20	5.0	6.0	2.25	1.50		
G	TTWW+m	MT20	5.0	6.0	2.25	1.50		
Н	TMWW+t	MT20	4.0	6.0	2.25	1.25		
J	TMVW+p	MT20	5.0	6.0	Edge			
L	BMV1+p	MT20	3.0	4.0	-			
M	BMWWW-t	MT20	4.0	10.0	2.00	3.50		
N	BMWW-t	MT20	4.0	4.0				
0	BS-t	MT20	3.0	8.0				
P	BMWWW-t	MT20	4.0	10.0				
Q	BS-t	MT20	3.0	8.0				
R	BMWW-t	MT20	4.0	4.0				
S	BMWWW1-t	MT20	4.0	10.0	2.00	3.00		
Т	BMV+p	MT20	3.0	4.0				

Structural component only DWG# T-2215204

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	THE DESCRIPTION OF THE PROPERTY OF THE PERSON OF THE PERSO
READINGS	

BEAL	RINGS						
	FACTORED					INPUT	REQRD
	GROSS RE	BRG				BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
S	2349	0	2349	0	0	5-8	5-8
L	2010	0	2010	0	Q	5-8	5-8

UNFACTORED REACTIONS

1ST LCASE MAX/MIN. COMPONENT REACTIONS
1 N/E PERM.LIVE V

JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
S	1643	1179 / 0	0/0	0/0	0/0	464 / 0	0/0	
L	1406	1009 / 0	0/0	0/0	0/0	397 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, L

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.92 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-S, E-R, F-P.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

ORDS		,			WE	BS	
C. FACTORED	FACTOR	RED				MAX FACTO	RED
FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB		MAX
(LBS)							CSI (LC)
\ <i>-</i>							001 (20)
0 / 50							0.06(1)
							0.54 (1)
							0.06 (1)
							0.07 (1)
							0.10 (1)
							0.51 (1)
							0.04 (1)
							0.04 (1)
							0.09 (1)
							0.25 (1)
							0.05 (1)
-2020 / 0	0.0	0.0	0.21(1)	5.94			0.03 (1)
0.70	10 5	40.5	0.04 (4)	10.00	IVI- J	0 / 1455	0.33 (1)
0/0	-18.5	-18.5	0.19 (4)	10.00			
	C. FACTORED	(. FACTORED FORCE (LBS) (PL FROM 0 / 50 -112.4 -112.4 -1368 / 0 -112.4 -1368 / 0 -112.4 -1602 / 0 -112.4 -1602 / 0 -112.4 -1602 / 0 -112.4 -1611 / 0 -112.4 -1611 / 0 -112.4 -1611 / 0 -112.4 -1611 / 0 -112.4 -1611 / 0 -112.4 -1611 / 0 -112.4 -1611 / 0 -112.4 -17 / 0 -112.4 -17 / 0 -112.4 -17 / 0 -112.4 -17 / 0 -112.4 -18.5 0 / 1059 -18.5 0 / 1059 -18.5 0 / 1244 -18.5 0 / 1244 -18.5 0 / 1244 -18.5 0 / 1244 -18.5 0 / 1244 -18.5 0 / 1244 -18.5 0 / 1244 -18.5	(FACTORED FACTORED FACTORED FORCE (LBS) (PLF) ((LEACTORED FACTORED FORCE (LBS) (PLF) CS1 (LC) FROM TO (PLF) CS1 (LC) (LBS) (PLF) CS1 (LC) (LBS) (PLF) CS1 (LC) (PLF) CS1 (PLF	(FACTORED FORCE FORCE (UBS) (PLF) CSI (LC) UNBRAC (LBS) (PLF) CSI (LC) UNBRAC (LBC) (PLF) (P	(LEACTORED FACTORED FACTORED FACTORED FORCE (LBS) (PLF) CSI (LC) UNBRAC (LBS) (PLF) CSI (LC) UNBRAC (LBS) (PLF) CSI (LC) UNBRAC (LBC) (PLF) CSI (LC) UNBRAC (LBC) (PLF) CSI (LC) (PLF) (PL	(LES) FACTORED FACTORED FACTORED (LBS) FORCE (LBS) (PLF) CSI (LC) UNBRAC (LBS) (PLF) CSI (LC) UNBRAC (LBS) (LBS) (LBS) (PLF) CSI (LC) UNBRAC (LBS) (LB

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 171

[M][F

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.14")

CANTILEVER DEFLECTION: ALLOWABLE DEFL.(LL)= L/120 (0.22") CALCULATED VERT. DEFL.(LL)= L/999 (0.01") ALLOWABLE DEFL.(TL)= L/120 (0.22") CALCULATED VERT. DEFL.(TL)= L/1999 (0.01")

CSI: TC=0.43/1.00 (E-F:1) , BC=0.34/1.00 (M-N:1) , WB=0.54/1.00 (D-S:1) , SSI=0.29/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

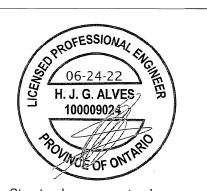
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (S) (INPUT = 0.90) JSI METAL= 0.84 (D) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
423564 Tamarack Roof Truss, Burlington	T13C	1 1	TRUSS DESC.		
ramarack hoof fruss, builington				Version 8.530 S Feb 23 2022 ID:c3jyj23uDijq 8pvRKbkZpy75XW-5TetQKoyE	MiTek Industries, Inc. Fri Jun 24 10:26:53 2022 Page 2 8j3mbAvcma25UykWPWHaVa8gsxRLQz36bG
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE				
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.				
	· · · ·				
			-		
				•	
	·				
				•	
		+ -			
OFESSIO	ONA				
UD PRO	THE				
06-24- US H. J. G. Al 1000090	22				
의 H. J. G. Al 1000090	LVES 7 70				
POLYMONOS	ONTARIO				*.
ANCIE OF	Ow.				
Structural compo DWG# T-221520	nent only			DEV	
DWG# 1-221520)4			REV	HEWED

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423564 TRUSS DESC T14 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:54 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-ZfCFefpaySrvOkl69U5HdhUukprbJzjlvWh?ttz36bF 3-10-8 1-3-8 10-5-4 10-12 3-10-8 Scale = 1:34.9 6x10 \\ 2x4 || 2x4 || 6x10 // 4x4 =С 10.00 12 1-10-7 5x8 = В W2 Μ R S o N L 3x6 || 5x6 =5x6 =7×8 = 7x8 =5x6 == 3x6 || 12-4-8 1-11-4 19-1-0 1-3-8 TOTAL WEIGHT = 102 lb


LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - G	2x4	DRY	No.2	SPF
G - I	2x4	DRY	No.2	SPF
P - B	2x6	DRY	No.2	SPF
J - H	2x6	DRY	No.2	SPF
P - M	2x6	DRY	No.2	SPF
M - J	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

ı	PL/	ATES (table	is in inches)				
	JT	TYPE	PLATES	W	LEN	Υ	Χ
I	В	TMVW-p	MT20	5.0	8.0	Edge	
ı	С	TTWW+m	MT20	6.0	10.0	Edge	1.75
ı	D	TMW+w	MT20	2.0	4.0		
ı	E	TMWW-t	MT20	4.0	4.0		
į	F	TMW+w	MT20	2.0	4.0		
ı	G	TTWW+m	MT20	6.0	10.0	Edge	1.75
	Н	TMVW-p	MT20	5.0	8.0	Edge	
ı	J	BMV1+p	MT20	3.0	6.0	-	
ļ	K	BMWW-t	MT20	5.0	6.0	2.50	2.50
	L	BMWWW-t	MT20	7.0	8.0		
	M	BS-t	MT20	5.0	6.0		
	N	BMWWW-t	MT20	7.0	8.0		
	0	BMWW-t	MT20	5.0	6.0	2.50	2.50
	Р	BMV1+p	MT20	3.0	6.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215205

ı	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
ı	
ı	BUILDING DESIGNER
۱	DEADINGS
ı	BEARINGS

BEA	RINGS						
	FACTOR	RED	MAXIMUN	/ FACTO	RED	INPUT	REQRD
	GROSS RE	EACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Ρ	1946	0	1946	0	0	5-8	5-8
J	2567	0	2567	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J. MINIMUM BEARING LENGTH AT JOINT J = 3-8.

UNFACTORED REACT	TIONS
1CT L CACE	MAAN

0111	ACTORED HE	LACTIONS					
	1ST LCASE	MAX./N	JIN. COMPO	VENT REACTION	4S		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ρ	1359	991 / 0	0/0	0/0	0/0	367 / 0	0/0
J	1792	1308 / 0	0/0	0 / 0	0 / 0	484 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.87 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

C H O R D S MAX. FACTORED FACTORED				250	WEBS							
1										MAX. FACT		
1	MEMB.			VERT. LC				ΛΑΧ.				
ı	CO TO	(LI	3S)							(LBS)	CSI (LC)
ı	FR-TO			FROM					FR-TO			
1	A- B	0 / :			-112.4				O- C		0.11	
1	B- C	-1757 /			-112.4					0 / 1304	0.32	
ı	C-D	-2036 /			-112.4				N- D		0.11	
ı	D-E	-2036 /			-112.4				L-F	-362 / 0	0.12	
ı	E-F	-2699 /			-112.4				L-G	0 / 1543		
	F-Q	-2699 /			-112.4				K- G		0.14	
1	Q-G	-2699 /			-112.4					0 / 1408		(1)
1	G- H	-2458 /			-112.4				K- H			
	H- I		50		-112.4					-808 / 0	0.38	(1)
1	P-B	-1916 /		0.0				7.22	E-L	0 / 437	0.11	(1)
	J- H	-2532 /	0	0.0	0.0	0.19	(1)	6.47				
										•		
	P- 0	0/		-18.5				10.00				
	O- N			-18.5				10.00				
	N- M		2466	-18.5				10.00				
	M-L.		2466	18.5				10.00				
	L-R		1873	-18.5	-18.5			10.00				
	R-K		1873	-18.5				10.00				
	K-S	0 /		-18.5				10.00		•		
	S- J	0 /	0	-18.5	-18.5	0.05	(4)	10.00				
				ATED LC								
	JT	LOC.	LC1	MAX-					DIR.	TYPE	HEEL	CONN.
		15-2-8	-175	-175			FRO		ERT	TOTAL		C1
			-14	-14			FRO		ERT	TOTAL		C1
		12-4-8	-894	-894			FRO		ERT	TOTAL		C1
		14-3-12	-76	-76			FRO		ERT	TOTAL		C1
		14-3-12	-14				FRO		ERT	TOTAL		Ç1
	S 1	17-1-12	-14	-14	-	I	FRO	NT V	ERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL		6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.64") CALCULATED VERT. DEFL.(LL) = L/999 (0.06") ALLOWABLE DEFL.(TL) = L/360 (0.64") CALCULATED VERT. DEFL.(TL) = L/999 (0.11")

CSI: TC=0.46/1.00 (G-H:1) , BC=0.40/1.00 (L-N:1) , WB=0.49/1.00 (H-K:1) , SSI=0.19/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

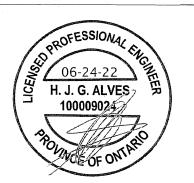
NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (O) (INPUT = 0.90) JSI METAL= 0.52 (M) (INPUT = 1.00)


JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423564 T15 TRUSS DESC Tamarack Roof Truss, Burlingtor Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:54 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-ZfCFefpaySrvOkl69U5HdhUzvptsJzhlvWh?ttz36bF 1-3-8 5-10-8 7-4-0 5-10-8 1-3-8 4x4 = Scale = 1:39.4 4x4 > 4x4 =D F 10.00 12 5x6 🖊 5x6 < G 3x4 || 3x4 || М κ 3x8 4x6 =4x6 = 4x6 =19-1-0 19-1-0 TOTAL WEIGHT = 90 lb

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - 1	2x4	DRY	No.2	SPF
N - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
N - L	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL	ATES (table i					
JT	TYPE	PLATES	W	LEN Y	1	Χ
В	TMV+p	MT20	3.0	4.0		
С	TMWW-t	MT20	5.0	6.0		
D	TTW-m	MT20	4.0	4.0		
E	TMWW-t	MT20	4.0	4.0		
F	TTW-m	MT20	4.0	4.0		
G	TMWW-t	MT20	5.0	6.0		
H	TMV+p	MT20	3.0	4.0		
J	BMVW1-t	MT20	4.0	6.0		
K	BMWWW-t	MT20	4.0	6.0		
L	BS-t	MT20	3.0	8.0		
M	BMWWW-t	MT20	4.0	6.0		
N	BMVW1-t	MT20	4.0	6.0		

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215206

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	-
PRINCIPIOS TO THE AND LOADINGO OF LOW FED BY TABINGATOR TO BE VERIFIED BY	
BUILDING DESIGNER	
DOILDING DESIGNER	
DEADINGS	

<u>BEA</u>	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
4	1405	0	1405	0	0	5-8	5-8
J	1405	0	1405	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J. MINIMUM BEARING LENGTH AT JOINT J = 3-8

UNF	ACTORED REA	CTIONS			
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTIO	NS
.IT	COMBINED	SNOW	LIVE	PERMITVE	١/

JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
N	982	710 / 0	0/0	0/0	0/0	272 / 0	0/0
J	982	710 / 0	0/0	0/0	0/0	272 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) N

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.91 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS	3			WEE	3.5	
	ORED FACTO	RED			MAX. FACTOR	RED
MEMB. F	ORCE VERT. LO	AD LC1 MAX	MAX.			MAX
		F) CSI (LC)			(LBS)	CSI (LC)
FR-TO		TO				
		-112.4 0.15 (1			-22 / 32	0.01 (4)
		-112.4 0.14 (1				0.09(1)
		-112.4 0.12 (1				0.29 (1)
D- E -833 /		-112.4 0.19 (1				0.29 (1)
E-F -833 /		-112.4 0.19 (1			0/399	0.09 (1)
		-112.4 0.12 (1			-22 / 32	0.01 (4)
		-112.4 0.14 (1			1367 / 0	0.49 (1)
H-1 0/		-112.4 0.15 (1		G-J -1	1367 / 0	0.49 (1)
	0.0					
J- H -284	0.0	0.0 0.03 (1	7.81			
N M	/040 405	40.5 0.04/4	1000			
N-M 0/		-18.5 0.24 (4				
1 L-K 0/		-18.5 0.26 (1 -18.5 0.26 (1				
N-3 0/	1040 -18.5	-18.5 0.24 (4) 10.00			

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	===	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	AΠ	-	45 9	PSE

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.64")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.64")
CALCULATED VERT. DEFL.(TL) = L/999 (0.07")

CSI: TC=0.19/1.00 (D-E:1) , BC=0.26/1.00 (K-M:1) , WB=0.49/1.00 (C-N:1) , SSI=0.20/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

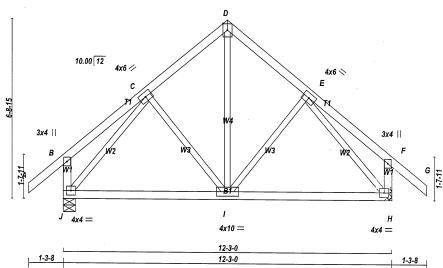
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (J) (INPUT = 0.90) JSI METAL= 0.38 (L) (INPUT = 1.00)


REVIEWE

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423564 T16 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:55 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-1smdr?qCjlzm0uKljBcWAv183DEW2TpR8AQYPJz36bE

N. L. G. A. RULES CHORDS SIZE DESCR. SPF SPF SIZE LUMBER DRY DRY DRY No.2 No.2 No.2 No.2 DGB 2x4 2x4 2x4 SPE SPF SPF ALL WEBS 2x3 DRY SPF EXCEPT

DRY: SEASONED LUMBER

PLATES (table is in inches) TYPE TMV+p **PLATES** LEN Y MT20 MT20 3.0 4.0 4.0 4.0 3.0 4.0 4.0 BCDEF TMWW-t MT20 6.0 Edge TMWW-t MT20 TMV+p BMVW1-i MT20 MT20 4.0 BMWWW-t 10.0 BMVW1-t

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	AND ECADINGS SPECIFIED BY PADRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	

BEAF	RINGS				
IT I	FACTOR GROSS RE VERT 958 958	MAXIMUI GROSS I DOWN 958 958	N	INPUT BRG IN-SX 5-8 MECHANIO	REQRD BRG IN-SX 5-8 CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8.

UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE V SOIL 0/0 0/0 WIND DEAD 669 488 / 0 0/0 0/0 181 / 0 181 / 0 J 669 488 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

M EDC

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4) CHORDS

0110	,,,,,,,				VV C	00		
MAX.	FACTORED	FACTORED				MAX. FACTO	DRED	
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC	2	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO			
A-B	0 / 50	-112.4 -112.4	0.15 (1)	10.00	I- D	0 / 388	0.09(1)	
B- C	0 / 25	-112.4 -112.4	0.17(1)	10.00	I- E	-160 / 0	0.06 (1)	
C- D	-539 / 0	-112.4 -112.4	0.13(1)	6.25	C-1	-160 / 0	0.06 (1)	
D- E	-539 / 0	-112.4 -112.4	0.13 (1)	6.25	J- C	-799 / 0	0.31 (1)	
E-F	0 / 25	-112.4 -112.4	0.17 (1)	10.00	E- H	-799 / 0	0.31 (1)	
F- G	0 / 50	-112.4 -112.4	0.15 (1)	10.00			٠,	
J- B	-287 / 0	0.0 0.0	0.03 (1)	7.81				
H- F	-287 / 0	0.0 0.0	0.03 (1)	7.81				
J- I	0 / 496	-18.5 -18.5	0.23 (4)	10.00				
I- H	0 / 496	-18.5 -18.5	0.23 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: 32.5 PSF LL = DL = 6.0 0.0 7.4 PSF TOTAL LOAD 45.9 PSF

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 59 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.41")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.41")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04")

CSI: TC=0.17/1.00 (B-C:1) , BC=0.23/1.00 (H-I:4) , WB=0.31/1.00 (C-J:1) . SSI=0.13/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

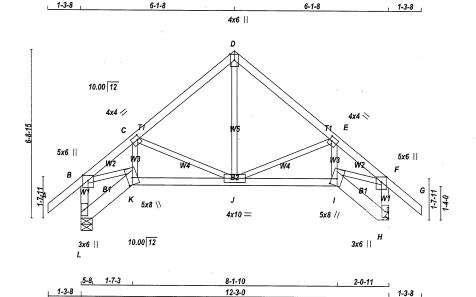
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.60 (H) (INPUT = 0.90) JSI METAL= 0.18 (E) (INPUT = 1.00)



JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423564 T16S TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:56 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-V2K03LrqU35dd2vUHv7lj6al_dbOnxiaNqA5ylz36bD

TOTAL WEIGHT = 3 X 61 = 183 I

Scale = 1:44.2

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D`	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
L - B	2x4	DRY	No.2	SPF
L - K	2x6	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
1 - H	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
H - F	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW+p	MT20	5.0	6.0	Edge					
С	TMWW-t	MT20	4.0	4.0	2.00	1.25				
D	TTW+p	MT20	4.0	6.0	Edge					
Ε	TMWW-t	MT20	4.0	4.0	2.00	1.25				
F.	TMWW+p	MT20	5.0	6.0	Edge					
Н	BMW1+p	MT20	3.0	6.0						
1	BBWW+m	MT20	5.0	8.0	3.25	2.50				
J	BMWWW-t	MT20	4.0	10.0						
K	BBWW+m	MT20	5.0	8.0	3.25	2.50				
l 1	BMV/1 in	MTOO	2 0	60						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS	SPECIFIED BY	/ FABRICATOR	TO BE VERIFIED B	v
BUILDING DESIGNER					•
BEARINGS					

<u>sea</u>	KINGS						
	FACTORED		MAXIMU			INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
Τ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	925	0	925	0	0	5-8	5-8
ł	985	0	985	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8.

UNF	ACTORED REAC	CTIONS
	1CT LCACE	MAA V

	151 LUASE	MAX./I	MIN. COMPO	VENT REACTION	1S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
L	646	471 / 0	0/0	0/0	0/0	175 / 0	0/0
Н	687	505 / 0	0/0	0/0	0/0	182 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.82 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS									
MAX	(. FACTORED	FACTOR	RED				MAX. FACTO	ORED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 50	-112.4	-112.4	0.15 (1)	10.00	J- D	0 / 375	0.08 (1)	
B- C	-1115/0	-112.4	-112.4	0.16 (1)	5.82	J- E	-295 / 0	0.09(1)	
C-D	-611 / 0	-112.4	-112.4	0.21 (1)	6.25	I-E	-22 / 34	0.01 (4)	
D- E	-608 / 0	-112.4	-112.4	0.22 (1)	6.25	C-J	-472 / 0	0.15 (1)	
E-F	-938 / 0	-112.4	-112.4	0.15 (1)	6.23	K-C	0/110	0.02(1)	
F- G	0 / 55	-112.4	-112.4	0.19 (1)	10.00	B-K	0 / 890	0.20 (1)	
L-B	-906 / 0	0.0	0.0	0.10(1)	7.81	H-F	-900 / 0	0.09 (1)	
						I- F	0/812	0.18 (1)	
L- K	0/0	-18.5	-18.5	0.01 (4)	10.00				
K- J	0 / 882	-18.5	-18.5	0.19 (1)	10.00				
J- I	0 / 720	-18.5	-18.5	0.16 (1)	10.00				
1- H	-118/0	-18.5	-18.5	0.01 (4)	6.25				

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL		6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL		7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.40")
CALCULATEO VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.40")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03")

CSI: TC=0.22/1.00 (D-E:1) , BC=0.19/1.00 (J-K:1) , WB=0.20/1.00 (B-K:1) , SSI=0.16/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

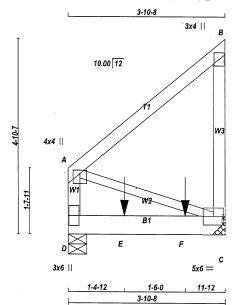
AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES | PLATE | GRIP(DRY) | SHEAR | SECTION | (PSI) | (PLI) | (PLI) | (PLI) | (MAX MIN MAX MIN MAX MIN MT20 | 650 | 371 | 1747 | 788 | 1987 | 1873 |

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.68 (B) (INPUT = 0.90) JSI METAL= 0.43 (K) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423564 TRUSS DESC T17

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:57 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-zEuOGhrSFNDUFCUhrce_FK6Uh0sWWR3kbUvfUBz36bC

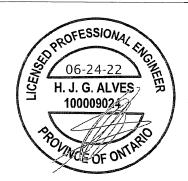
TOTAL WEIGHT = 2 X 22 = 43 lb

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
D - A	2x4	DRY	No.2	SPF
A - B	2x4	DRY	No.2	SPF
C - B	2x4	DRY	No.2	SPF
D - C	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED L	UMBER.		

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CH	ORDS: (0.1	22"X3") SPIRAL NAII	LS
D- A	1	12	TOP
A-B	1	12	TOP
B- C	1	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL	. NAILS
D-C	2	12	SIDE(0.0)
WEBS:	(0.122"X3")	SPIRAL NAILS	` ′
2x3	1 1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.


GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.
REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES	(table is in	inches)

JT	TYPE	PLATES	W	LEN	Υ	X	
Α	TMVW+p	MT20	4.0	4.0	1.00	2.00	
В	TMV+p	MT20	3.0	4.0			
С	BMVW1-t	MT20	5.0	6.0			
D	BMV1+p	MT20	3.0	6.0			

Structural component only DWG# T-2215209

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY		
	DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY EARDICATOR TO BE VERIFIED BY
		AND LOADINGS OF EGII IED BY FABRICATOR TO BE VERIFIED BY
	BUILDING DESIGNER	

<u>BEA</u>	RINGS						
	FACTORED		MAXIMUI	M FACTO	ORED	INPUT	REQRD
	GROSS REACTION		GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	1109	0	1109	0	0	5-8	5-8
С	1304	0	1304	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 4-0.

UNFACTORED REACTIONS

	1ST LUASE	MAX./	MIN. COMPO	VENT REACTION	4S		
JT.	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D.	773	572 / 0	0/0	0/0	0/0	201 / 0	0/0
С	909	672 / 0	0/0	0/0	0/0	236 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT. OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	HORDS AX. FACTOR	RED I	FACTO	RED			W E	BS MAX. FAC	TORED	
MEME	B. FOF	RCE VE	RT. LC	AD LC1	MAX	MAX.	MEMB.			
	(LBS	S)	(Pl	_F) (CSI (LC)	UNBRA	С	(LBS)	CSI	LC)
FR-TC		F	ROM	TO		LENGTH	HFR-TO			,
D- A	-218/0		0.0		0.01 (1)		A- C	0/0	0.00	(1)
A- B	0/0				0.16 (1)					
C-B	-218/0		0.0	0.0	0.04 (1)	7.81				
D- E	0/0		-18 5	-18 5	0.45 (1)	10.00				
E- F	0/0				0.45 (1)					
F- C	0/0		-18.5		0.45 (1)					
SPEC	IFIED CONC	ENTRAT	ED LO	ADS (LE	3S)					
JT	LOC.	LC1	MAX-	MAX	+ F.	ACE	DIR.	TYPE	HEEL	CONN.
E	1-4-12	-672	-672	-	BA		ERT	TOTAL		C1
F	2-10-12	-654	-654	-	BA	CK V	ERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:								
TOP	CH.	LL	=	32.5	PS			
		DL	=	6.0	PS			
BOT	CH.	LL	=	0.0	PS			
		DL	=	7.4	PS			
TOTA	L LO	AD	=	45.9	P.S			

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/940 (0.05")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.45/1.00 (C-D:1) , WB=0.00/1.00 (A-C:1) , SSI=0.36/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

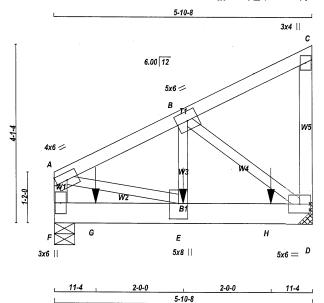
NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION

(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.08 (A) (INPUT = 0.90) JSI METAL= 0.04 (B) (INPUT = 1.00)



Processing the process of the proces	OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
Classed Section Class Cl	123564	T17	1	2	TRUSS DESC.		
OF ESSIONAL CHARACTER STATE OF OUT OF STATE OF STATE OF OUT OF STATE	amarack Hoof Truss, Burlington					Version 8.530 S Feb 23 2022 Mill ID:c3jyj23uDijq 8pvRKbkZpy75XW-zEuOGhrSFND	ek Industries, Inc. Fri Jun 24 10:26:57 2022 Page 2 UFCUhrce FK6Uh0sWWR3kbUvfUBz36bC
OF ESSIONAL CHARACTER STATE OF OUT OF STATE OF STATE OF OUT OF STATE	NOTES- (1)						
Standard OF ONTARIO	Lateral braces to be a minimur	n of 2X4 SPF #2.					
Standard OF ONTARIO							
Standard OF ONTARIO						·	
Standard OF ONTARIO							
Standard OF ONTARIO							,
Standard OF ONTARIO			,		•		
Standard OF ONTARIO			,				
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO					ř		•
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO						·	
Standard OF ONTARIO							
Standard OF ONTARIO						·	
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO		•					
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO							
Standard OF ONTARIO	1200	loui					
Standard OF ONTARIO	PROFESS	ONAL EX					
Standard OF ONTARIO	06-24	-22					
Standard OF ONTARIO	H. J. G. A	ALVES? B					
Chrystowel as many and and the	100009	024					
Chrystowel as many and and the	1 al A	HI SO					
Chrystowel as many and and the	Povinde	ONTARI					
Structural component only DWG# T-2215209	STOR O	FOR					
DWG# T-2215209	Structural comp	onent only					
	DWG# T-22152	209		•		KEV	IEVVEI)

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423564 T18 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 10:26:58 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-RRRmT1s40gLLtM3tOK9DoXfgHQCJFp0tq8fC0ez36bB

TOTAL WEIGHT = 2 X 29 = 58 lb

Scale = 1:25.

<u> LUMBER</u>									
N. L. G. A. RULES									
CHORDS	SIZE		LUMBER	DESCR.					
F - A	2x4	DRY	No.2	SPF					
A - C	2x4	DRY	No.2	SPF					
D - C	2x4	DRY	No.2	SPF					
F - D	2x6	DRY	No.2	SPF					
ALL WEBS	2x3	DRY	No.2	SPF					
DRY: SEASO	DNED L	UMBER.							

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	HORDS: (0.1	22"X3") SPIRAL NAILS	
F- A	1	12	TOP
A- C	1	12	TOP
C- D	1	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
F- D	2	11	SIDE(244.1)
WEBS:	(0.122"X3")	SPIRAL NAILS	
B-E	1	2	SIDE(420.7)
2x3	1	6	. ,

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.

REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR OF THE OPPOSITE SIDE OR OF THE OPPOSITE SIDE OR OF THE TOPPOSITE SIDE OR OF THE T SIDE OR ON THE TOP.

PLA	TES	(table is in inches)
TT	TVDE	DLATEC

JT	TYPE	PLATES	w	LEN Y	X
Α	TMVW-t	MT20	4.0	6.0	Edge
В	TMWW-t	MT20	5.0	6.0	•
С	a+VMT	MT20	3.0	4.0	

Structural component only DWG# T-2215210

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	AND COMBINGO OF COMPLETE BY TABINGATOR TO BE VEIN IED BY
BUILDING DESIGNER	
DEADIMOO	

	RINGS						
	FACTO	RED	MAXIMU	MAXIMUM FACTORED			REQRD
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
=	1966	0	1966	0	0	5-8	5-8
)	2841	0	2841	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./	MIN. COMPOR	VENT REACTION	NS			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
F	1372	1007 / 0	0/0	0/0	0/0	365 / 0	0/0	
D	1983	1450 / 0	0/0	0/0	0/0	532 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.62 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

WEBS

TOTAL

LOADING TOTAL LOAD CASES: (4)

CHORDS

MA)	X. FACTORED	FACTO	RED				MAX. FACT	ORED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB	. FORCE	MAX	
	(LBS)	(PI	_F) (CSI (LC)	UNBRA	С	(LBS)	CSI (LC)
FR-TO		FROM	ΤΌ		LENGTH	+ FR-TO	` '	,	- '
F- A	-1869 / 0	0.0	0.0	0.10(1)	7.81	A-E	0 / 2339	0.29	(1)
A- B	-2519 / 0	-112.4	-112.4	0.09(1)	5.62	E-B	0 / 2482	0.31	(1)
B- C	-10/0	-112.4	-112.4	0.07(1)	6.25	B- D	-2846 / 0	0.34	(1)
D- C	-142 / 0	0.0	0.0	0.02 (1)	7.81				
F- G	0/0	-18 5	-18.5	0.03 (1)	10.00				
G-E	0/0			0.03 (1)					
E- H	0 / 2262	-18.5							
H- D	0 / 2262			0.48 (1)					
SPECII	FIED CONCENT	RATED LO	ADS (LE	3S)					
JT		1 MAX-			ACE	DIR.	TYPE	HEEL	CONN.
Ē	2-11-4 -177					ERT	TOTAL		C1
^	44.4 7	0 70		D.4.		EDT	TOTAL		~ :

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

OF EC	HE IED	LOAL	JO.		
TOP	CH.	LL	=	32.5	PSI
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PSI
TOTA	1 10	AΠ	=	45.9	PSI

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9 NRCC 2015

- THIS DESIGN COMPLIES WITH:
 PART 9 OF BCBC 2018, ABC 2019
 PART 9 OF OBC 2012 (2019 AMENDMENT)
 CSA 086-14
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALGULATED VERT. DEFL.(LL)= L/999 (0.02") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALGULATED VERT. DEFL.(TL)= L/999 (0.03")

CSI: TC=0.10/1.00 (A-F:1) , BC=0.48/1.00 (D-E:1) , WB=0.34/1.00 (B-D:1) , SSI=0.32/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE	GRIP(DRY)		SHE	AR	SECTION		
	(PSI)		(PLI)	(PLI)		
	MAX	MIN	MAX	MIN	MAX	MIN	
MT20	650	371	1747	788	1987	1873	

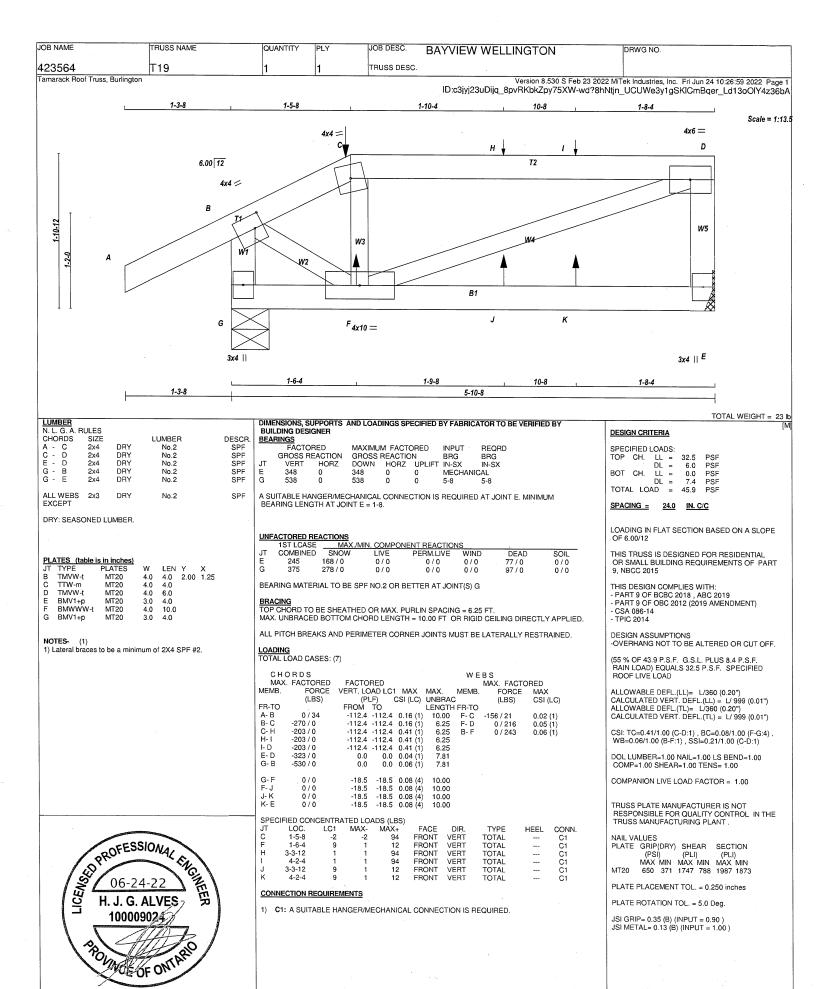

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.76 (B) (INPUT = 0.90) JSI METAL= 0.43 (E) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WEL	LINGTON	DRWG NO.
423564 Tamarack Roof Truss, Burlington	T18	1	2	TRUSS DESC.		V	
Tamarack Hoor Truss, bullington					ID:c3jyj23uDijq 8	version 8.530 S Feb 23 202 pvRKbkZpy75XW-RRRm	2 MiTek Industries, Inc. Fri Jun 24 10:26:58 2022 Pag T1s40gLLtM3tOK9DoXfgHQCJFp0tq8fC0ez3f
E BMWW+t MT20 5. F BMV1+p MT20 3. Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	0 6.0 0 8.0 4.25 2.50 0 6.0					;	
NOTES- (1) 1) Lateral braces to be a minimum	n of 2X4 SPF #2.						
					-		
					•		
				•			
	·						
PROFESSI	ONAL EN						
PROFESSION 06-24-	22						
의 H.J.G.A 1000090	LVES 70					•	
78	100			¥			
POMOCOF	ONTA						
Structural compo DWG# T-22152	onent only					RF\	JEWE
	<u></u>					NEV	' E

Structural component only

DWG# T-2215211

REVIEWED

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423564 T20S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:27:00 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-OpZWujuLYlc36fDGWlChtyk?6EzQjnyAHS8J5Wz36b9 1-3-8 3-5-8 2-5-0 Scale = 1:18.8 4x4 = 4x4 = ח Ε 6.00 12 4x4 / W7 W5 4x4 / 4x10 =W3 4x6 =1-0-0 3x4 || R1 13x4 | 1-7-8 1-3-8 5-10-8

LUMBER N. L. G. A. RULES DESCR SPF SPF CHORDS LUMBER D No.2 No.2 A D F 2x4 DRY SPF SPF SPF 2x4 No.2 DRY 2x4 No.2 С 2×4 DRY No 2 SPE SPF SPF ALL WEBS 2x3 DRY No.2 EXCEPT

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES Y X 2.00 1.25 2.00 1.25 TMVW-t MT20 4.0 4.0 В 4.0 TMVW-t MT20 MT20 TMVW-t MT20 4.0 40 3.0 4.0 4.0 BMV1+p BMWWW 4.0 6.0 10.0 2.75 5.50 BVMWW-I MT20 RMV+n MT20 3.0

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BUILDING -BEARINGS FACTORED MAXIMUM FACTORED INPUT REORD **GROSS REACTION** GROSS REACTION DOWN HORZ U N BRG BR UPLIFT IN-SX IN-0 MECHANICAL BRG IN-SX VERT 367 HORZ 5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8.

UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW

(./MIN. COMPONENT REACTIONS LIVE PERM.LIVE V WIND SOIL 77 / 0 97 / 0 0/0 181 / 0 0/0 0/0289 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

<u>LOADING</u> TOTAL LOAD CASES: (4)

	ORDS					WE		
	FACTORED	FACTO					MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	_F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	ΤΌ		LENGTH	FR-TO	` '	
A-B	0/34	-112.4	-112.4	0.15(1)	10.00	C-G	-364 / 0	0.06(1)
B- C	-627 / 0	-112.4	-112.4	0.15(1)	6.25	G-D	-110/4	0.02 (1)
C- D	-339 / 0	-112.4	-112.4	0.10(1)	6.25	G-E	0 / 365	0.08 (1)
D- E	-296 / 0	-112.4	-112.4	0.11 (1)	6.25	J- H	-73 / 0	0.01 (1)
F-E	-348 / 0	0.0	0.0	0.04(1)	7.81	B- H	0 / 532	0.12 (1)
J- B	-497 / 0	0.0	0.0	0.05 (1)	7.81			
J- I	0 / 58	-18.5		0.02 (1)				
I- H	0 / 15	0.0	0.0	0.09(1)	10.00			
H-C	0/117	0.0	0.0	0.11 (1)	10.00			
H-G	0 / 661	-18.5	-18.5	0.12(1)	10.00			
G-F	0/0	-18.5	-18.5	0.02 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: 32.5 6.0 0.0 7.4 CH. PSF PSF PSF LL TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 26 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.12/1.00 (G-H:1) , WB=0.12/1.00 (B-H:1) , SSI=0.12/1.00 (B-C:1)

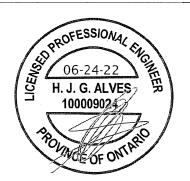
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)


MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.64 (B) (INPUT = 0.90) JSI METAL= 0.25 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423564 TRUSS DESC T21S Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:27:01 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-s07v63uzJbkwkpnS4SjwQAH8SeH9SBTKW6tsdzz36b8 1-3-8 5-10-8 3x4 || Scale: 1/2"=1 6.00 12 W5 W4 4x4 || **B**3 1-0-0 4x6 =3x4 || 1-7-8 4-3-0

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
E - D	2x4	DRY	No.2	SPF
H - B	2x4	DRY	No.2	SPF
H - G	2x4	DRY	No.2	SPF
G - C	2x4	DRY	No.2	SPF
F-E	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Χ				
В	TMVW+p	MT20	4.0	4.0	1.50	2.00				
С	TMVW+p	MT20	4.0	4.0	1.50	2.00				
D	TMV+p	MT20	3.0	4.0						
Ε	BMVW1-t	MT20	4.0	6.0						
F	BVMWW-I	MT20	4.0	10.0	2.75	5.50				
G	BMV+p	MT20	3.0	4.0						
н	BMVW1-t	MT20	40	40						

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

5-10-8

JLMI	MINGS						
	FACTOR		MAXIMUN		INPUT	REQRD	
	GROSS RE	ACTION	GROSS REACTION			BRG	BRG
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
=	367	0	367	0	0	MECHANIC	CAL
4	555	0	555	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

UNE	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ε	257	181 / 0	0/0	0/0	0/0	77 / 0	0/0
Н	386	289 / 0	0/0	0/0	0/0	97/0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	DRDS FACTORED	FACTO	DCD			W E		
		FACTO					MAX. FACTO	
MEMB.	FORCE	VERT. LO			MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	, ,	, ,
A-B	0/34	-112.4	-112.4	0.15(1)	10.00	C-E	-964 / 0	0.29(1)
B- C	-856 / 0	-112.4	-112.4	0.16(1)	6.25	H- F	-101 / 0	0.01 (1)
C-D	-11/0	-112.4	-112.4	0.30(1)	6.25	B- F	0 / 779	0.18 (1)
E- D	-222 / 0	0.0	0.0	0.03(1)	7.81			. ,
H- B	-480 / 0	0.0	0.0	0.05 (1)	7.81			
H- G	0 / 80	-18.5	-18.5	0.02(1)	10.00			
G-F	0 / 15	0.0	0.0	0.12(1)	10.00			
F-C	0 / 155	0.0	0.0	0.15(1)	10.00			
F-E	0 / 956	-18.5	-18.5	0.21 (1)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PSI
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.4	PSI
TOTA	1 10	AΠ	_	45 9	PSI

24.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 26 lb

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.05")

CSI: TC=0.30/1.00 (C-D:1) , BC=0.21/1.00 (E-F:1) , WB=0.29/1.00 (C-E:1) , SSI=0.19/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE

TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

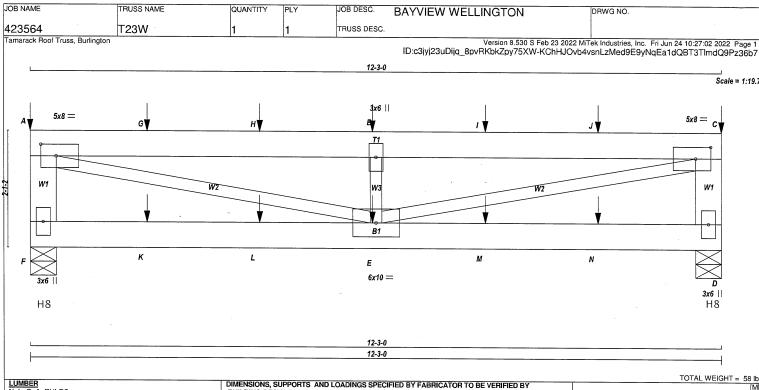

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.73 (C) (INPUT = 0.90) JSI METAL= 0.32 (C) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
F - A	2x6	DRY	No.2	SPF
A - C	2x6	DRY	No.2	SPF
D - C	2x6	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	DNED L	UMBER.		

PLATES (table is in inches)
JT TYPE PLATES
A TMVW-t MT20 Y X 2.50 3.25 5.0 8.0 TMW+w MT20 3.0 6.0 8.0 TMVW-t MT20 5.0 3.0 2.50 3.25 6.0

6.0 10.0

MT20 BMV1+p

BMWWW-t

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

DIMENSIONS, SUPPORTS AND LOADINGS SPECI BUILDING DESIGNER END VERTICALS ARE NOT EXPOSED TO WIND. BEARINGS FACTORED MAXIMUM FACTORI GROSS REACTION REQRD BRG BRG VERT HORZ DOWN HORZ UPLIFT IN-SX IN-SX 1543 0 0 -773 -765 5-8 5-8

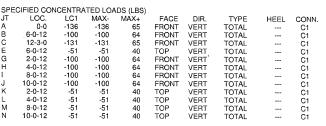
VIDE ANCHORAGE AT BEARING JOINT F FOR VIDE ANCHORAGE AT BEARING JOINT D FOR

UNFACTORED REACTIONS

ļ	1ST LCASE	MAX./I	MIN. COMPO	VENT REACTION	4S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	1079	777 / 0	0/0	0/0	0 / -746	302 / 0	0/0
D	1068	769 / 0	0/0	0/0	0 / -739	299 / 0	0/0
1							

5-8

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, D


D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.22 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (12)

	ORDS					W E	BS		
MAX	. FACTORED	FACTO	RED				MAX. FACT	FORED	
NEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(Pl	_F) (CSI (LC)	UNBRAG	0	(LBS)	CSI (LC)	
R-TO					LENGTH			` '.	
	-1399 / 656		0.0	0.10(1)	7.81	A- E	-1576 / 3075	0.98 (7)	
	-2971 / 1523								
	-2971 / 1523	-112.4	-112.4	0.53(1)	4.22	E- C	-1576 / 3075	0.98 (7)	
	-2971 / 1523								
B- I	-2971 / 1523	-112.4	-112.4	0.53(1)	4.22				
	-2971 / 1523								
	-2971 / 1523								
D- C	-1386 / 651	0.0	0.0	0.10(1)	7.81				
F-K		-18.5							
K- L	0/0			0.21(1)					
L-E	0/0			0.21 (1)					
	0/0			0.21 (1)					
M- N		-18.5							
N- D	0/0	-18.5	-18.5	0.21 (1)	10.00				

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

TOP CH. 32.5 PSF LL = DL = 6.0 PSF DL TOTAL LOAD 45 9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 . ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.41")
CALCULATED VERT. DEFL.(LL)= L/999 (0.12")
ALLOWABLE DEFL.(TL)= L/360 (0.41")
CALCULATED VERT. DEFL.(TL)= L/679 (0.22")

CSI: TC=0.53/1.00 (B-C:1) , BC=0.21/1.00 (E-F:1) , WB=0.98/1.00 (C-E:7) , SSI=0.38/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (E) (INPUT = 0.90) JSI METAL= 0.53 (C) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.	
423564	T23W	1	1	TRUSS DESC.			
Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:27:02 2022							
					ID:c3jyj23uDijq 8pvRKbkZpy75XW-KCh	HJOvb4vsnLzMed9E9yNqEa1dQBT3TlmdQ9Pz36b7	

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF { 7.5} PSF AT {15-0-0}, FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE {MAIN WIND FORCE RESISTING SYSTEM}.INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 6.0 PSF AND 7.4 PSF RESPECTIVELY.

Structural component only DWG# T-2215214

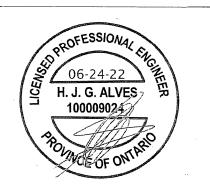
REVIEWED

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423567 T30 TRUSS DESC Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 11:14:49 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-tmQ71jczuo3_pZ2f4nAUfz3Epk49REIT0JddHkz35uK Tamarack Roof Truss, Burlington 1-3-8 2-11-8 12-1-4 2-11-8 Scale = 1:54.5 5x6 =3x8 || 3x8 || 5x6 = 5x6 =8x9 \\ 4x6 || 8x9 // c D Ε G 10.00 12 5x8 / 5x8 🚿 4-1-10 4-1-4 1-7-11 ₩ \mathbb{R} X Q s R 0 Ν 6x7 = 3x8 || 5x6 =5x6 = 6x10 = 6x10 = 5x6 =5x6 =3x8 ||

1-11-4 2-0-0 1-5-12 12-4-8 1-3-8 30-11-0 1-3-8

LUMBER N. L. G. A. CHORDS LUMBER DESCR. SIZE CH No.2 No.2 2x6 DRY SPE DRY SPF 2x6 No.2 2x6 DRY No.2 SPF 2x6 DRY DRY No.2 No.2 SPF B K Q M U -Q -2x6 DRY 2100F 1.8F SPF 2x6 DRY 2100F 1.8E SPF DRY ALL WEBS 2x4 No.2 SPF **EXCEPT**

DRY: SEASONED LUMBER,


DESIGN CONSISTS OF $\underline{2}$ TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS	s #ROWS	SURFACE	LOAD(PLF)					
		SPACING (IN)						
TOP CH	ORDS : (0.1	22"X3") SPIRAL NAILS						
A-C	2	12	TOP					
C- H	2	12	SIDE(0.0)					
H- J	2	12	TOP ` ´					
J- L	2	12	TOP					
U-B	2	12	TOP					
M-K	2	12	TOP					
BOTTON	A CHORDS	: (0.122"X3") SPIRAL NA	AILS					
U-Q	2	12	SIDE(197.8)					
Q- M	2	12	SIDE(0.0)					
WEBS:	WEBS: (0.122"X3") SPIRAL NAILS							
E-R	. 1	6	SIDE(295.8)					
2x4	1 -	6	(/					

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

Structural component only DWG# T-2215224

DILIENDIQUE OF IDDODES	
DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
REARINGS	

DEAL	TINGS						
	FACTOR	ED	MAXIMUN	1 FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
U	4233	0	4233	0	0	5-8	5-8
M	4360	0	4360	0	0	5-8	5-8
	.000	•	4000	0	0	J-U	0.0

UNFACTORED REACTIONS								
	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	NS			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
U	2955	2154 / 0	0/0	0/0	0/0	802 / 0	0/0	
М	3044	2219 / 0	0/0	0/0	0/0	825 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, M

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.39 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	HORDS	FACTORED) .		W E	EBS MAX. FACT	ORED	
MEMB		VERT. LOAD		MAX.	MEMB			
	(LBS)	(PLF)		UNBRA		(LBS)	CSI (
FR-TC		FROM TO		LENGTI			00. (_0,
A-B	0 / 52	-112.4 -11:	2.4 0.05 (1	10.00	T- C	-1030 / 0	0.09	(1)
B- C	-4253 / 0	-112.4 -11:	2.4 0.07 (1	5.50	C-S	0 / 5727	0.51	
C-D	-7876 / 0	-112.4 -11:				-3190 / 0	0.27	
D-E	-11450 / 0	-112.4 -11:				0 / 4398	0.39	(1)
E-V	-11450 / 0	-112.4 -11:	2.4 0.26 (1	3.50	R-E	-339 / 0	0.03	
V-F	-11450 / 0	-112.4 -11:			R-F	-523 / 0	0.06	
F-W	-11696 / 0	-112.4 -11:	2.4 0.29 (1	3.44	F-P	-65 / 3	0.01	
W-G	-11696 / 0	-112.4 -11:	2.4 0.29 (1	3.44	P- G	-411/0	0.04	
G-H	-11696 / 0	-112.4 -11	2.4 0.36 (1	3.39	P-I	0 / 4298	0.38	
H-I	-11696 / 0	-112.4 -11	2.4 0.36 (1	3.39	O- I	-3126 / 0	0.27	
I- J	-8203 / 0	-112.4 -11	2.4 0.22 (1	4.10	O- J	0 / 6020	0.53	
J-K	-4373 / 0	-112.4 -11			N-J	-1126 / 0	0.10	
K-L	0 / 52	-112.4 -11	2.4 0.05 (1	10.00	B- T	0 / 3451	0.31	
U-B	-4238 / 0		0.0 0.15 (1		N-K	0 / 3549	0.31	
M-K	-4349 / 0	0.0	0.0 0.16 (1	6.87				• •
U-T	0/0		8.5 0.02 (1					
T-S	0 / 3207		8.5 0.11 (1					
S-R	0 / 7876		8.5 0.28 (1					
R-X	0 / 11732		8.5 0.39 (1					
X-Q	0 / 11732		8.5 0.39 (1					
Q-Y	0 / 11732		8.5 0.39 (1					
Y- P	0 / 11732		8.5 0.39 (1					
P-Z	0 / 8203		8.5 0.41 (1					
Z- O	0 / 8203		8.5 0.41 (1					
0- N	0 / 3295		8.5 0.12 (1					
N- M	0/0	-18.5 -1	8.5 0.01 (4) 10.00				
	IFIED CONCENT							
JT	LOC. LC				DIR.	TYPE	HEEL	CONN.
R	13-1-8 -131				ERT	TOTAL		C1
\ V.	15-0-12 -9				ERT	TOTAL		C1
W	17-0-12 -9				ERT	TOTAL		C1
X	15-0-12 -2				ERT	TOTAL		C1
Y	17-0-12 -2				ERT	TOTAL		C1
Z	18-6-8 -139	6 -1396	B	ACK V	ERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

SPECIAL LOADS ANALYSIS *** GEOMETRY AND/OR BASIC LOADS CHANGED BYUSER

TOTAL WEIGHT = 2 X 188 = 375 lb

LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS: LL = DL = LL = 32.5 PSF CH. 6.0 0.0 7.4 PSF BOT CH. DL PSF TOTAL LOAD 45 9 PSE

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9 NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.21")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL)= L/999 (0.36")

CSI: TC=0.36/1.00 (G-I:1) , BC=0.41/1.00 (O-P:1) , WB=0.53/1.00 (J-O:1) , SSI=0.60/1.00 (O-P:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION

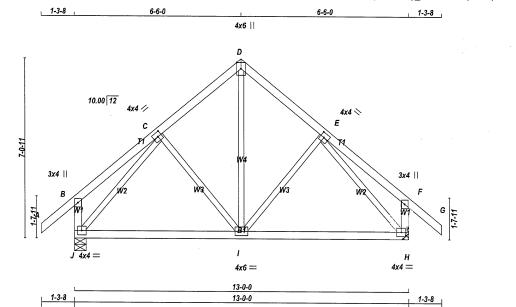
(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (D) (INPUT = 0.90) JSI METAL= 0.87 (Q) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. BAYVIEW WELLINGTON DRWG NO. 423567 T30 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 11:14:49 2022 Page 2 ID:c3jyj23uDija 8pvRKbkZpy75XW-tmQ71jczuo3 pZ2f4nAUfz3Epk49REIT0JddHkz35uK Tamarack Roof Truss, Burlington W 5.0 8.0 5.0 3.0 4.0 5.0 5.0 6.0 6.0 6.0 5.0 3.0 CONNECTION REQUIREMENTS 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2. PROFESSIONAL FINGUEST TOPOGOGO 100009024 POWAGE OF ONTARIO


JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423567 T31 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MITek Industries, Inc. Fri Jun 24 11:14:50 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-My_VF3dbf5BrQjdreVhjBAcSA8ShAjfcFzMApAz35uJ

Scale = 1:43.3

TOTAL WEIGHT = 62 lb

N. L. G. A. RULES DESCR. SPF SPF LUMBER DRY DRY DRY No.2 No.2 2x4 2x4 No 2 SPF 2x4 No.2 SPF

ALL WEBS 2x3 DRY EXCEPT

DRY: SEASONED LUMBER.

BMWWW-

CHORDS

DGBF

- H

A D

PLATES (table is in inches)
JT TYPE PLATES LEN Y TMV+p TMWW-t 3.0 4.0 4.0 2.00 1.75 TTW+p MT20 4.0 6.0 Edge 2.00 1.75 4.0 4.0 TMWW-t MT20 TMV+p BMVW1-t MT20 4.0 4.0

4.0 4.0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD

4.0

MT20

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

FACTORED MAXIMUM FACTORED INPUT REORD GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX BRG IN-SX GROSS REACTION VERT HORZ 0 1007 1007 5-8 MECHANICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8.

UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE SOIL 0/0 0/0 WIND DEAD 703 512/0 0/0 0/0 0/0 191 / 0 191 / 0 512/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

SPF

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

MEDC

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS

0110	1100					VV ⊏	00			
MAX.	FACTORED	FACTORE	D				MAX. FA	CTOF	RED	
ИЕМВ.	FORCE	VERT. LOAI	LC1	MAX	MAX.	MEMB.	FOR	CE	MAX	
	(LBS)	(PLF)		CSI (LC)	UNBRAC	;	(LBS	()	CSI (LC)	
R-TO		FROM T	0		LENGTH	FR-TO		•	, ,	
A- B	0 / 50	-112.4 -1	12.4	0.15(1)	10.00	C- I	-177 / 0		0.08(1)	
B- C	0 / 27	-112.4 -1	12.4	0.19(1)	10.00	I- D	0 / 42	2	0.09 (1)	
C- D	-579 / 0	-112.4 -1	12.4	0.15(1)	6.25	I-E	-177 / 0		0.08 (1)	
D- E	-579 / 0	-112.4 -1	12.4	0.15(1)	6.25	J- C	-855 / 0		0.36 (1)	
E-F	0 / 27	-112.4 -1	12.4	0.19 (1)	10.00	E- H	-855 / 0		0.36(1)	
F- G	0 / 50	-112.4 -1	12.4	0.15(1)	10.00					
J- B	-295 / 0	0.0	0.0	0.03 (1)	7.81					
H- F	-295 / 0	0.0	0.0	0.03 (1)	7.81					
J- I	0 / 537	-18.5 -								
I- H	0 / 538	-18.5 -	18.5	0.26 (4)	10.00					

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. PSF LL = DL = 6.0 PSF BOT CH. 0.0 7.4 PSF PSF TOTAL LOAD = 45.9 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.43") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01") ALLOWABLE DEFL.(TL)= L/360 (0.43") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.05")

CSI: TC=0.19/1.00 (E-F:1), BC=0.26/1.00 (H-I:4), WB=0.36/1.00 (E-H:1), SSI=0.14/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

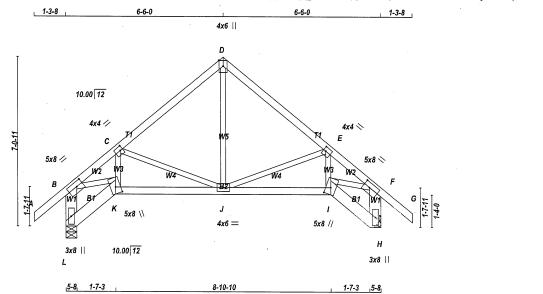
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES | PLATE | GRIP(DRY) | SHEAR | SECTION | (PSI) | (PLI) | (PLI) | (PLI) | MAX | MIN | MAX | MIN | MAX | MIN | MT20 | 650 | 371 | 1747 | 788 | 1987 | 1873 |

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (E) (INPUT = 0.90) JSI METAL= 0.29 (C) (INPUT = 1.00)



DWG# T-2215225

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC 423567 T31S

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 11:14:51 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-q9YtSPdDQPJi2tB2CCCykO8ctYpYvC?mTd6jMcz35uI

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR No.2 No.2 SPF A D G DRY DRY L -H -B F 2x6 No.2 SPF 2x6 DRY DRY No.2 No.2 SPF SPF SPF DRY No.2 2×6 DRY No.2 SPF ALL WEBS SPF DRY No.2 2x3 EXCEPT

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 2.25 3.25 2.00 1.25 Edge 2.00 8.0 4.0 6.0 5.0 TMWW-t MT20 4.0 TTW+p TMWW-t 4.0 TMVW-t MT20 5.0 8.0 2 25 3 25 3.0 5.0 4.0 8.0 8.0 6.0 BMV1+p BBWW+n MT20 3.25 2.50 BMWWW-t MT20 BBWW+m MT20 3.25 2.50

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

13-0-0

ĿΑ	RINGS						
	FACTOR	RED	MAXIMUI	M FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS I	REACTIO	N	BRG	BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1007	0	1007	0	0	5-8	5-8
	1007	0	1007	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8.

UNFACTORED REACTIONS
1ST LCASE MAX MA: SNOW

X./MIN. COMPONENT REACTIONS
PERM.LIVE WIND COMBINED SOIL 0/0 0/0 191 / 0 191 / 0 0/0 0/0 703 512 / 0 0/0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

1-3-8

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 5.51 FT. MAX. UNBRACED BOTTOM CHORD I ENGTH = 10 00 FT. OR RIGID CEILING DIRECTLY APPLIED

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	EACTORED			WE	B S MAX. FACTO	NDED.
MEMB.		VERT. LOAD I					
	(LBS)	(PLF)	CSI (LC)	UNBRA	С	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	H FR-TO		. ,
A-B	0 / 50	-112.4 -112	.4 0.15 (1) 10.00	K-C	0 / 120	0.03(1)
	-1264 / 0	-112.4 -112	.4 0.20 (1	5.51	C-J	-521 / 0	0.19(1)
	-704 / 0					0 / 461	0.10(1)
	-704 / 0	-112.4 -112	2.4 0.25 (1	6.25	J- E	-522 / 0	0.19(1)
E-F	-1266 / 0	-112.4 -112	2.4 0.20 (1	5.51	I- E	0 / 121	0.03(1)
F-G	0 / 50	-112.4 -112	2.4 0.15 (1	10.00	B-K	0 / 1012	0.23 (1)
L-B	-988 / 0	0.0	0.07 (1	7.81	I- F	0 / 1013	0.23 (1)
H-F	-988 / 0	0.0	0.07 (1	7.81			• •
L-K	0/0	-18.5 -18	3.5 0.01 (4	10.00			
K-J	0 / 1003	-18.5 -18	3.5 0.22 (1	10.00			
J- I	0 / 1005	-18.5 -18	3.5 0.22 (1	10.00			
I- H	0/0	-18.5 -18					

TOTAL WEIGHT = 3 X 66 = 197 lb [M][F **DESIGN CRITERIA**

Scale = 1:45.9

SPECIFIED LOADS:

1-3-8

TOP CH. PSF 0.0 LL PSF DΙ LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , ABC 2019 PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BOOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.43")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.43")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.04")

CSI: TC=0.25/1.00 (D-E:1) , BC=0.22/1.00 (I-J:1) , WB=0.23/1.00 (F-I:1) , SSI=0.17/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

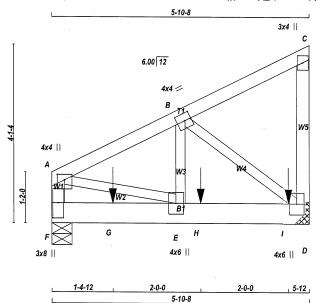
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.49 (K) (INPUT = 0.90) JSI METAL= 0.49 (K) (INPUT = 1.00)



JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423567 T32 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 11:14:52 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-IL6FglerBjRZg1mEmvjBHbhpQy9VefcviHrHu2z35uH

TOTAL WEIGHT = 2 X 29 = 58 lb

Scale = 1:25.

LUMBER								
N. L. G. A. RULES								
CHORDS	SIZE		LUMBER	DESCR.				
F - A	2x4	DRY	No.2	SPF				
A - C	2x4	DRY	No.2	SPF				
D - C	2x4	DRY	No.2	SPF				
F - D	2x6	DRY	No.2	SPF				
ALL WEBS	2x3	DRY	No.2	SPF				
DRY: SEASO	JNEDII	IMRER						

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

SURFACE SPACING (IN)	LOAD(PLF)						
TOP CHORDS : (0.122"X3") SPIRAL NAILS							
12	TOP						
12	TOP						
10	SIDE(124.2)						
(0.122"X3") SPIRAL NAILS							
12	SIDE(122.0)						
WEBS: (0.122"X3") SPIRAL NAILS							
	SPÁCING (IN) 22"X3") SPIRAL NAILS 12 12 10 (0.122"X3") SPIRAL NAILS 12						

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Х
Α	TMVW+p	MT20	4.0	4.0	1.50	2.00
В	TMWW-t	MT20	4.0	4.0	2.00	1.75
С	TMV+p	MT20	3.0	4.0		
D	BMVW1+p	MT20	4.0	6.0		

Structural component only DWG# T-2215227

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER
BEADINGS

DEAL	niivuo						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS F	REACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	1594	0	1594	0	0	5-8	5-8
D	2024	. 0	2024	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPON	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	1111	821 / 0	0/0	0/0	0/0	290 / 0	0/0
D	1411	1041 / 0	0/0	0/0	0/0	370 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	ORDS K. FACTORED	FACTO	RED			W E	B S MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)				UNBRAC		(LBS)	CSI (LC)	
FR-TO	. ,	FROM	TO -	, ,	LENGTH	FR-TO		()	
F- A	-1183 / 0	0.0	0.0	0.07(1)	7.81	A-E	0 / 1419	0.18 (1)	
A-B	-1521 / 0	-112.4	-112.4	0.08(1)	6.25	E-B	0 / 1343	0.17(1)	
B- C	-14/0	-112.4	-112.4	0.07(1)	6.25	B- D	-1727 / 0	0.21 (1)	
D- C	-135 / 0	0.0	0.0	0.02 (1)	7.81			. ,	
F- G	0/0	-18.5		0.20 (1)					
G-E	0/0			0.20(1)					
E- H	0 / 1372	-18.5		0.24(1)					
H- I	0 / 1372			0.24(1)	10.00		*		
I- D .	0 / 1372	-18.5	-18.5	0.24 (1)	10.00				

SPECIFIED CONCENTRATED LOADS (LBS)

0, 20		OLIVITOR	11 20 207	1D3 (LD3)					
JT	LOC.		MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
G	1-4-12	-672	-672		BACK	VERT	TOTAL		C1
Н	3-4-12	-654	-654		BACK	VERT	TOTAL		C1
1	5-4-12	-658	-658		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:

TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
				7.4	PSF
TOTA	L LO	ΑD	=	45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.02")

CSI: TC=0.08/1.00 (A-B:1) , BC=0.24/1.00 (D-E:1) , WB=0.21/1.00 (B-D:1) , SSI=0.36/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

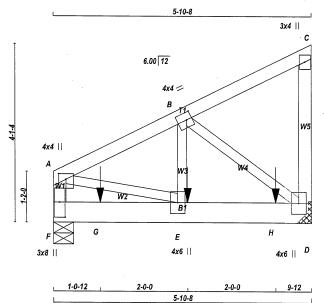
NAIL VALUES

PLATE	GRIP(DRY)	SHEAR	SECTION
	(PSI)	(PLI)	(PLI)
	MAX MIN	MAX MIN	MAX MIN
MT20	650 371	1747 788	1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (B) (INPUT = 0.90) JSI METAL= 0.31 (D) (INPUT = 1.00)



Towns a Suit 7 to 3 MRX Street Annies 10, 154 3 MRX Street	JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELL	INGTON	DRWG NO.
Column C	423567	T32	1	2	TRUSS DESC.		Version 0 500 C Feb 00 0000 M	
**************************************						ID:c3jyj23uDijq	8pvRKbkZpy75XW-IL6Fgle	erBjRZg1mEmvjBHbhpQy9VefcviHrHu2z35uH
	PLATES (table is in inches) JT TYPE PLATES W E BMWW+t MT20 4. F BMV1+p MT20 3.	LEN Y X . 0 6.0 0 8.0 4.25 1.50						
	NOTES- (1) 1) Lateral braces to be a minimum	n of 2X4 SPF #2.						
						٠	·	
						÷		
						·		
		-						
	•							
	PROFESSI	ONAL EN						
	06-24	22 6						
	의 H. J. G. A 1000090	LVES 労)						
POLING OF ON IREO	TO MONTH	ONTARIU						
Structural component only DWG# T-2215227	DWG# T-22152	27					REV	IEWED

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423567 T32Z TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 11:14:53 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-mXfet5fTy0aQHBLQJdEQppE_BMUtN6f2xxbqQVz35uG

TOTAL WEIGHT = 2 X 29 = 58 lb

Scale = 1:25.4

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
F - A	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS DRY: SEASO	2x3 ONED L	DRY UMBER.	No.2	SPF

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	` ,
TOP CH	IORDS: (0.1	22"X3") SPIRAL NAILS	
F- A	1 `	12	TOP
A- C	1	12	TOP
C-D	1	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
F- D	2	12	SIDE(183.1)
WEBS:	(0.122"X3")	SPIRAL NAILS	, ,
B-E	1	6	SIDE(74.7)
2x3	1	6	` '

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.
REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PLATES (table is in inches)

JΤ	TYPE	PLATES	W	LEN	Υ	Χ
Α	TMVW+p	MT20	4.0	4.0	1.50	2.00
В	TMWW-t	MT20	4.0	4.0	2.00	1.50
С	TMV+p	MT20	3.0	4.0		

Structural component only DWG# T-2215228

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	_
	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	į.
BUILDING DESIGNER		
DOILDING DESIGNER		
DEADMOO		

REAL	RINGS						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
=	1825	0	1825	0	0	5-8	5-8
D	1911	0	1911	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
F	1273	937 / 0	0/0	0/0	0/0	335 / 0	0/0			
D	1332	981 / 0	0/0	0/0	0/0	351 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	ORDS X. FACTO	חבה	FACTO	050			W E	BS		
			FACTO					MAX. FACT		
MEMB.			VERT. LC				MEMB			
	(LE	S)			CSI (LC)			(LBS)	CSI (LC)
FR-TO			FROM	TO		LENGT	TH FR-TC			
F- A	-1243 / 0		0.0	0.0	0.07 (1)	7.81	A-E	0 / 1500	0.19	(1)
A- B	-1609 / 0		-112.4	-112.4	0.07(1)	6.25	E- B	0 / 1444	0.18	
B- C	-13 / 0							-1825 / 0	0.22	
D- C	-136 / 0		0.0		0.02 (1)				0.22	
				0.0	0.00 (1)					
F- G	0/0		-18.5	-18.5	0.22 (1)	10.00)			
G-E	0/0		-18.5		0.22 (1)					
E- H		451			0.29 (1)					
H- D	0/1				0.29 (1)					
11- 0	0/1	451	-10.5	-10.5	0.29(1)	10.00	,			
SDECI	IFIED CON	CENTE	ATEDIO	ADC /I	DC)					
JT	LOC.	LC1	MAX-	MAX		ACE	DIR.	TYPE	HEEL	CONN.
E	3-0-12	-688	-688				VERT .	TOTAL		C1.
G	1-0-12	-688	-688	-	FR	ONT '	VERT .	TOTAL		C1
Н	5-0-12	-690	-690	-	FR	ONT '	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA SPECIEIED I OADS

5 1	,, ,LD	LOAL	JU.		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	1 10	AD	=	45.9	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 . ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BOOF LIVE LOAD

ALLOWABLE DEFL.(LL) = 1./360 (0.20")
CALCULATED VERT. DEFL.(LL) = 1./ 999 (0.01")
ALLOWABLE DEFL.(TL) = 1./360 (0.20")
CALCULATED VERT. DEFL.(TL) = 1./ 999 (0.02")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.29/1.00 (D-E:1) , WB=0.22/1.00 (B-D:1) , SSI=0.22/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

ALUES

GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.86 (A) (INPUT = 0.90) JSI METAL= 0.33 (D) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423567 T32Z 2 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 11:14:53 2022 Page 2 ID:c3jyj23uDijq 8pvRKbkZpy75XW-mXfet5fTy0aQHBLQJdEQppE BMUtN6f2xxbqQVz35uG LEN Y X 0 6.0 0 6.0 0 8.0 4.25 1.3 W 4.0 4.0 3.0 4.25 1.50 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. PROFESSIONAL FINGUEST PROPERTY OF THE PROPERTY 100009024 POLIACE OF ONTARIO Structural component only DWG# T-2215228

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423570 T50 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:11 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-cylEBkgGlalehFjnkib6GfbOAlbFxn7COX6uoVz34Xk 1-3-8 4-0-10 22-9-12 1-3-8 Scale = 1:54.0 8x9 \\ 5x6 = 2x4 || 2x4 || 5x6 = 5x6 = 3x4 || 8x9 // 8.00 12 C D Ε G V F w 0 5x8 < 4-1-4 - B2 \bigotimes х ۵ Z s R P 0 N M 5x6 =3x8 || 5x6 =5x6 =6x7 =6x7 == 5x6 = 5x6 =3x8 || 30-11-0 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 2 X 168 = 336 lb

LUMBER N. L. G. A. RULES CHORDS SIZE DESCR. SPF SPF LUMBER DRY DRY DRY ACH - C 2x6 2x6 No.2 No.2 H | J -| U - B | M - K | U - Q | - M SPF SPF SPF 2x6 No.2 DRY DRY No.2 2x6 DRY No.2 SPF SPF ALL WEBS 2x3 DRY No.2 SPF EXCEPT

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)				
		SPACING (IN)					
TOP CH	IORDS: (0.1	22"X3") SPIRAL	NAILS				
A-C	2	12	TOP				
C- H	2	12	TOP				
H- J	2	12	TOP				
J- L	2	12	TOP				
U-B	2	12	TOP				
M-K	2	12	TOP				
BOTTO	M CHORDS	(0.122"X3") SPI	RAL NAILS				
U-Q	2	12	TOP				
Q- M	2	12	TOP				
WEBS:	WEBS: (0.122"X3") SPIRAL NAILS						
2x3	1 1	6					

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Χ
В	TMVW-t	MT20	5.0	8.0	2.50	3.75
С	TTWW+m	MT20	8.0	9.0	Edge	2.50
D	TMWW-t	MT20	5.0	6.0	٠	

Structural component only DWG# T-2215241

I	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
ı	BUILDING DESIGNER
ı	BOILDING DESIGNER
١	READINGS

BEA	RINGS						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REORD
	GROSS R	EACTION	GROSS	GROSS REACTION			BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
U	2183	0	2183	0	0	5-8	5-8
M	2183	0	2183	0	0	5-8	5-8

UNFACTORED REACTIONS

	ISILUASEMAX.	MIN. COMPO	VENT REACTION	4S		
JT	COMBINED SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
U	1528 1096 / 0	0/0	0/0	0/0	431 / 0	0/0
M	1528 1096 / 0	0/0	0/0	0/0	431 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, M

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.49 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS				W F	BS		
MAX	K. FACTORED	FACTORED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD LC1	I MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)				(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH				
A- B	0 / 44	-112.4 -112.4	0.04(1)	10.00		-327 / 0	0.04(1)	
B- C	-2396 / 0	-112.4 -112.4			C-S	0 / 1940	0.24 (1)	
C-D	-3502 / 0	-112.4 -112.4				-1132 / 0	0.14(1)	
	-4197 / 0	-112.4 -112.4	0.10 (1)	5.49		0 / 896	0.11(1)	
E-V	-4197 / 0	-112.4 -112.4				-368 / 0	0.04(1)	
	-4197 / 0	-112.4 -112.4				-1132 / 0	0.14(1)	
F- W	-4197 / 0	-112.4 -112.4	0.05 (1)		O- J	0 / 1939	0.24(1)	
W-G	-4197/0	-112.4 -112.4			N- J		0.04(1)	
G- H	-4197 / 0	-112.4 -112.4			B-T		0.25 (1)	
H-1	-4197 / 0	-112.4 -112.4				0 / 2035	0.25 (1)	
I- J	-3502 / 0	-112.4 -112.4			P- G	-368 / 0	0.04(1)	
J- K	-2397 / 0	-112.4 -112.4			R-F	-135 / 0	0.02(1)	
K- L	0 / 44	-112.4 -112.4			F-P	-135 / 0	0.02(1)	
	-2154 / 0				P- I	0 / 895	0.11 (1)	
M-K	-2154 / 0	0.0 0.0	0.08 (1)	7.81				
U- T	0/0	-18.5 -18.5	0.00 (4)	40.00				
T- S	0 / 1979		0.02 (4)					
S-R	0 / 3502	-18.5 -18.5	0.15 (1)					
R-X	0 / 4270		0.20 (1)					
X-Q	0 / 4270	-18.5 -18.5	0.31 (1)					
Q-Y	0 / 4270							
Ϋ́- P	0 / 4270							
P-Z	0 / 3502		0.26 (1)					
Z- O	0 / 3502	-18.5 -18.5	0.26 (1)					
O- N	0 / 1980		0.15 (1)					
N- M	0/1300	-10.5 -10.5						

0.15 (1) 0.02 (4)

DESIGN CRITERIA

OADS.
LL =
DL =
LL = 0
TL = 7.4
= 45.9 SPECIFIED LOADS: TOP CH. LL = PSF TOTAL LOAD

SPACING = IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.09")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/999 (0.16")

CSI: TC=0.10/1.00 (D-E:1) , BC=0.31/1.00 (P-R:1) , WB=0.25/1.00 (K-N:1) , SSI=0.10/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.83 (F) (INPUT = 0.90) JSI METAL= 0.40 (Q) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423570 T50 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 12:47:11 2022 Page 2 ID:c3jvj23uDijq 8pvRKbkZpy75XW-cylEBkgGlalehFjnkib6GfbOAlbFxn7COX6uoVz34Xk PLATES (table is in inches)

JT TYPE PLATES

E TMW+w MT20

F TMWW+t MT20

G TMW+w MT20

H TS-t MT20

J TTWW+m MT20

M BMV1+p MT20

M BMV1+p MT20

O BMWW-t MT20

O BSMWW-t MT20

O BST MT20

O BST MT20

O BSMWW-t MT20

O BMWW-t MT20

O BMWW-t MT20

O BMWW-t MT20 LEN Y X - 4.0 2.50 1.00 4.0 2.50 1.00 6.0 - 2.50 2.50 8.0 2.50 8.0 2.50 2.50 6.0 2.50 2.50 6.0 2.50 2.50 6.0 2.50 2.50 6.0 2.50 2.50 6.0 2.50 2.50 6.0 2.50 2.50 6.0 2.50 2.50 6.0 2.50 2.50 6.0 2.50 2.50 6.0 2.50 2.50 8.0 W LEN 2.0 4.0 3.0 4.0 5.0 6.0 5.0 6.0 5.0 8.0 3.0 8.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 Edge 2.50 2.50 3.75 4.00 Edge 2.50 2.75 2.50 2.00 3.50 1.50 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. PROFESSIONAL FINGUISMENT 100009024 POMACE OF ONTARIO Structural component only

DWG# T-2215241

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 423570 T51 Version 8.530 S Feb 23 2022 Mirek Industries, Inc. Fri Jun 24 12:47:12 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-49rcO3huWtQVJPI_IP6Lpt8R_9t3gBoLdBrRKyz34X Tamarack Roof Truss, Burlington 1-3-8 5-6-10 19-9-12 5-6-10 Scale = 1:54.0 5x8 = 4x4 == 3x8 =2x4 || 4x4 = 5x8 < D Ε G Н F 8.00 12 4x4 / 4x4 < 5x6 🗸 5x6 < s Q ν U R 0 N 3x8 = 3x8 = 3x4 || 5x6 4x4 5x6 =4x6 =5x6 =4x4 =5x6 =3x4 || 30-11-0 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 134 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DÉSIGNER N. L. G. A. **DESIGN CRITERIA** CHORDS SIZE LUMBER DESCR BEARINGS 2x4 2x4 DRY DRY DRY No.2 No.2 SPF D MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: **GROSS REACTION** BRG IN-SX GROSS REACTION BRG TOP CH. 32.5 6.0 PSF PSF 2x4 No.2 SPF VERT HORZ DOWN HORZ UPLIFT IN-SX 0 5-8 2×4 DRY No.2 No.2 SPF SPF SPF 5-8 5-8 LL 0.0 PSF 2x4 Ó 2178 0 5-8 DΙ M -Κ 2x4 DRY No.2 45.9 LOAD SPF SPF SPF w -DRY UNFACTORED REACTIONS SPACING = 24.0 IN. C/C DRY 2x4 No.2 1ST LCASE ./MIN. COMPONENT REACTIONS SNOW COMBINED LIVE 0/0 ALL WEBS EXCEPT DRY SPF 1093/0 2x3 0/0 0/0 431 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 1524 1093 / 0 0/0 0/0 0/0 431 / 0 0/0 OF 6.00/12 - C 2x4 DRY No.2 SPF No.2 SPF BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) W, M THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART DRY: SEASONED LUMBER. BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.29 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED PLATES (table is in inches) CSA 086-14 LOADING TOTAL LOAD CASES: (4) Y X 2.25 2.75 2.00 1.00 LEN Y TYPE TMVW-t В MT20 5.0 6.0 TMWW-t TTWW-m TMWW-t 4.0 5.0 4.0 MT20 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. CHORDS WEBS RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED MT20 MAX. FACTORED FACTORED MAX. FACTORED ROOF LIVE LOAD 3.0 2.0 4.0 VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH MEMB. FORCE MEMB. G H TMW+w ALLOWABLE DEFL.(LL)= L/360 (1.03") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.16") ALLOWABLE DEFL.(TL)= L/360 (1.03") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.28") (LBS) (LBS) CSI (LC) TMWW-t MT20 4.0 FR-TO LENGTH FR-TO 8.0 4.0 6.0 A-B B-C C-D D-E E-F F-G 5.0 4.0 1.75 3.00 2.00 1.00 -112.4 -112.4 0.15 (1) -112.4 -112.4 0.18 (1) TTWW-m MT20 0.10(1) TMWW-t 1974 / 0 4.63 0 / 336 -107 / 31 0.08 (1) 0- J K M 5.0 0.04 (1) 0.04 (1) MT20 2.25 2.75 -2344 / 0 -1124 -1124 0.23 4 28 -112.4 -112.4 -112.4 -112.4 0.58 0.61 BMV1+p MT20 3.0 40 2987 / 0 -106/3 CSI: TC=0.61/1.00 (E-G:1) , BC=0.53/1.00 (P-R:1) , WB=0.42/1.00 (K-N:1) , SSI=0.26/1.00 (D-E:1) ZZOGRSU 0 / 335 -775 / 0 0.08(1)BMWW-5.0 4.0 6.0 -112.4 -112.4 -3291 / 0 0.61 3.29 0.10 (1 G- H H- I I- J -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.61 0.58 0 / 1849 0 / 1850 0.42 (1) 0.42 (1) BMWW-MT20 4.0 -3291 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 3.0 4.0 3.0 8.0 MT20 COMP=1.10 SHEAR=1.10 TENS= 1.10 BMWWW-t 0.23 (1) -2345 / 0 4.28 0 / 1464 0.33 (1 0.18 (1) 0.15 (1) 0.33 (1) 0.36 (1) BS-t MT20 8.0 J-K -1977 / 0 -112.4 -112.4 4 63 D- T 0/1464 COMPANION LIVE LOAD FACTOR = 1.00 K- L W- B M- K 0 / 43 -2151 / 0 BMWW-I MT20 40 BMV1+p T-E -924 / 0 0.0 0.0 0.36 (1) 0 / 425 0 / 425 -507 / 0 -2151 / 0 0.0 0.0 0 22 (1) B- H 0.10 (1) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE E-R R-G NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. W- V -18.5 -18.5 0.03(1) 10.00 0.20 (1) TRUSS MANUFACTURING PLANT. V- U U- T 0 / 1663 -18.5 0.32 (1) 10.00 NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION 0 / 1930 0 / 2987 -18.5 -18.5 -18.5 -18.5 0.36 0.53

10.00

10.00

10.00 10.00

10.00

10.00

S-R

R- Q Q- P P- O O- N

0 / 2987

0 / 2988

0 / 1931

0 / 1665

-18.5 -18.5 0.53 (1)

-18.5 -18.5 0.53 (1)

-18.5-18.5 0.36

-18.5 -18.5 0.32

Structural component only DWG# T-2215242

REVIEWE

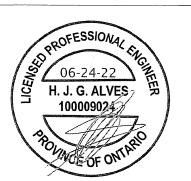

(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg JSI GRIP= 0.90 (I) (INPUT = 0.90 JSI METAL= 0.90 (S) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PI Y **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC 423570 T51C Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:13 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-ZLP_bPiWGBYMwZtAs7daL4gdeZDFPeyVsrb_sOz34Xi 1-3-8 5-6-10 19-9-12 5-6-10 Scale = 1:54 0 6x7 \\ 4x4 == 3x8 = 2x4 || 4x4 = 6x7 // ח E G Н 8.00 12 5x6 / 5x6 < 5x6 / s Q W U R 0 N 3x8 =3x8 3x4 5x6 == 4x6 5x6 = 4x6 =5x6 =4x6 =5x6 =3x4 || 30-11-0 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 134 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES CHORDS SIZE **DESIGN CRITERIA** BEARINGS FACTORED GROSS REACTION LUMBER SIZE DESCR SPECIFIED LOADS: No.2 No.2 SPF SPF SPF D F DRY MAXIMUM FACTORED REQRD 2x4 2x4 32.5 6.0 0.0 7.4 DRY GROSS REACTION DOWN HORZ L BRG **BRG** LL DL PSF UPLIFT IN-SX No.2 VERT HORZ IN-SX 2x4 DRY No.2 SPE 2348 0 LL PSF . W -2x4 DRY SPF BKSQM 0 2009 5-8 5-8 DΙ 2x4 No.2 TOTAL LOAD W -S -2x4 DRY No 2 SPE No.2 No.2 SPF UNFACTORED REACTIONS SPACING = 24.0 IN. C/C 1ST LCASE MAX,/MIN, COMPONENT REACTIONS SNOW COMBINED LIVE WIND DEAD SOIL ALL WEBS 2x3 DRY No.2 SPF 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 464 / 0 0/0 EXCEPT M 1008 / 0 0/0 0/0 0/0 397 / 0 OF 6.00/12 V - C DRY SPF No.2 2x4 DRY No.2 SPF BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) V, M THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART DRY: SEASONED LUMBER. BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.63 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 CSA 086-14 LOADING TOTAL LOAD CASES: (4) Y X 2.25 3.00 BCDEF 5.0 6.0 6.0 7.0 2.25 2.75 2.25 1.75 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED TMWW-t MT20 5.0 TTWW+m TMWW-t MT20 4.0 4.0 ROOF LIVE LOAD 8.0 TS-t MT20 2.0 4.0 TMM MT20

4.0 7.0 6.0 6.0 4.0 2.25 1.75 2.25 2.75 2.25 3.00 TTWW+m MT20 6.0 5.0 5.0 TMWW-t MT20 K M BMV1+p MT20 3.0 BMWW-t BMWW-t MT20 5.0 4.0 NOORSU 6.0 MT20 6.0 3.0 8.0 6.0 BS-t MT20 BMWWW-MT20 MT20 3.0 4.0 8.0 6.0 6.0 4.0 BMWW-t MT20 BMWW1-

BMV+p NOTES- (1)

Structural component only DWG# T-2215243

IOIALI	OTAL EDAD GAGES. (4)								
	ORDS				W E	BS			
	C. FACTORED	FACTORED				MAX. FACT	ORED		
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	. FORCE	MAX		
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)		
FR-TO		FROM TO	. ,	LENGTH	FR-TO				
A-B	0 / 43	-112.4 -112.4	0.15 (1)	10.00	V- C	-2178 / 0	0.27(1)		
B- C	0 / 262	-112.4 -112.4	0.23 (1)	10.00	C- U	0 / 1552	0.35 (1)		
C-D	-1290 / 0	-112.4 -112.4	0.21 (1)	5.43	U- D	-859 / 0	0.33 (1)		
D- E	-2272 / 0	-112.4 -112.4	0.51 (1)	3.99	0-1	-69 / 41	0.03 (1)		
E-F	-2747 / 0	-112.4 -112.4	0.55 (1)	3.63	O-J	0 / 271	0.06 (1)		
F-G	-2747 / 0	-112.4 -112.4	0.55 (1)	3.63	N- J	-703 / 0	0.09(1)		
G- H	-2747 / 0	-112.4 -112.4	0.55 (1)	3.63	B- V	-211/0	0.03(1)		
H- I	-2617 / 0	-112.4 -112.4	0.54 (1)	3.72	N- K	0 / 1688	0.38 (1)		
l- J	-2108 / 0	-112.4 -112.4	0.21 (1)	4.49	P- I	0 / 1222	0.27 (1)		
J- K	-1801 / 0	-112.4 -112.4	0.17 (1)	4.82	D- T	0/1716	0.39 (1)		
K-L	0 / 43	-112.4 -112.4	0.15 (1)	10.00	P- H	-756 / 0	0.29 (1)		
W-B	0 / 13	0.0 0.0	0.00 (4)	10.00	T-E	-1095 / 0	0.42 (1)		
M-K	-1983 / 0	0.0 0.0	0.20 (1)	5.99	R- H	0 / 183	0.04 (1)		

0 / 183 0 / 666 -507 / 0

0.04 (1) 0.15 (1)

W-B	0 / 13	0.0	0.0	0.00 (4)	10.00
M-K	-1983 / 0	0.0	0.0	0.20(1)	5.99
W-V	0/0	-18.5	-18.5	0.06(1)	10.00
V- U	-190 / 0	-18.5	-18.5	0.07 (4)	6.25
U- T	0 / 1034	-18.5	-18.5	0.20(1)	10.00
T-S	0 / 2272	-18.5	-18.5	0.41 (1)	10.00
S-R	0 / 2272	-18.5	-18.5	0.41(1)	10.00
R-Q	0 / 2617	-18.5	-18.5	0.47 (1)	10.00
Q-P	0 / 2617	-18.5	-18.5	0.47(1)	10.00
P- 0	0 / 1735	-18.5	-18.5	0.33 (1)	10.00
O- N	0 / 1519	-18.5	-18.5	0.29 (1)	10.00
N-M	0/0	-18.5	-18.5	0.03(1)	10.00
				` '	

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.13")
ALLOWABLE DEFL.(TL)= L/360 (0.96") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.22")

CANTILEVER DEFLECTION: OANTIEVEH DEFLEVIOUS
ALLOWABLE DEFL.(IL.)= L/120 (0.22")
CALCULATED VERT. DEFL.(IL.)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL.)= L/120 (0.22")
CALCULATED VERT. DEFL.(TL.)= L/ 999 (0.02")

CSI: TC=0.55/1.00 (E-G:1) , BC=0.47/1.00 (P-R:1) , WB=0.42/1.00 (E-T:1) , SSI=0.26/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

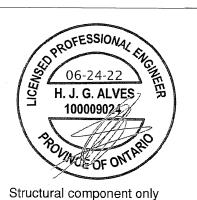
NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (K) (INPUT = 0.90) JSI METAL= 0.79 (S) (INPUT = 1.00)

TRUSS NAME JOB NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423570 T52 TRUSS DESC Tamarack Boof Truss Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:14 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-1XzMplj81VgDYjRMQq9puIDmazZG854e4VKYQqz34Xh 1-3-8 7-0-10 16-9-11 7-0-10 Scale = 1:54.0 5x8 = 4x4 = 3x8 = 2x4 || 5x8 < D E G н 8.00 12 4x4 / 4x4 > 5x6 🖊 5x6 < Q 0 Ν М 3x8 =3x4 || 5x6 == 4x4 =4x4 = 5x6 = 4x4 =5x6 =30-11-0 1-3-8 30-11-0 1-3-8 TOTAL WEIGHT = 134 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER DESIGN CRITERIA DESCR. SPF SPF CHORDS LUMBER A -D -F -No.2 No.2 D FACTORED MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: GROSS REACTION VERT HORZ 2178 0 DRY BRG IN-SX BRG IN-SX 32.5 6.0 0.0 7.4 2x4 **GROSS REACTION** CH. LL = DL = H K B 2x4 DRY SPF DOWN HORZ UPLIFT PSF 2x4 2x4 DRY SPF 5-8 5-8 BOT CH. LL PSF No.2 2178 2178 ō DL TOTAL LOAD 2x4 DRY No.2 SPF 45.9 PSF SPF UNFACTORED REACTIONS
1ST LCASE MAX SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND ALL WEBS 2x3 DRY No.2 SPF COMBINED DEAD UVE 0/0 SOIL EXCEPT 1093 / 0 0/0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 2x4 DRY No.2 SPF 1093 / 0 0/0 DRY No.2 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T, L THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 DRY: SEASONED LUMBER BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.54 FT THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED
 PLATES
 (table is in inches)


 JT
 TYPE
 PLATES

 B
 TMVW-t
 MT20

 C
 TMWW-t
 MT20
 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED Y X 2.00 2.75 2.00 1.00 2.00 3.25 CSA 086-14 6.0 4.0 8.0 4.0 5.0 4.0 TTWW-(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED TMWW-t MT20 3.0 2.0 5.0 8.0 4.0 8.0 4.0 TS-t MT20 ROOF LIVE LOAD TMW+w TTWW-m ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.12")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.22") 2.00 3.25 2.00 1.00 MT20 TMWW-t MT20 40 TMVW-t BMV1+p 6.0 BMWW-t MT20 5.0 6.0 RMWW-t MT20 CSI: TC=0.67/1.00 (D-E:1) , BC=0.48/1.00 (O-Q:1) , BMWWW-2.50 1.50 WB=0.43/1.00 (J-M:1) , SSI=0.29/1.00 (D-E:1) BS-t MT20 3.0 8.0 BMWW-t MT20 2.00 1.50 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10

4.0 4.0 4.0 Q R S T BMWW-t BMWW-t MT20 MT20 5.0 6.0 BMV1+p MT20

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

DWG# T-2215244

<u>LOADING</u> TOTAL LOAD CASES: (4)									
	C H O R D S W E B S MAX. FACTORED FACTORED MAX. FACTORED								
MEMB.	FORCE (LBS)	VERT. LOA			MAX. UNBRAC		FORCE (LBS)	MAX CSI (LC)	
FR-TO	\ - _/	FROM		00. (20)	LENGTH		(230)	001 (20)	
A-B	0 / 43	-112.4 -	-112.4	0.15(1)	10.00	S-C	-777 / 0	0.10(1)	
	-2009 / 0				4.36	C-R	0/216	0.05(1)	
C-D	-2324 / 0			0.45 (1)			0 / 80	0.03 (4)	
D- E	-2670 / 0			0.67 (1)		D-Q	0 / 1090	0.25 (1)	
E-F	-2668 / 0			0.66 (1)				0.40(1)	
F- G	-2668 / 0			0.66 (1)		E-O	-2 / 0	0.00(1)	
G- H	-2668 / 0			0.66 (1)		0- G	-680 / 0	0.40 (1)	
H- I	-2325 / 0			0.45 (1)		O- H	0 / 1087	0.24 (1)	
I- J	-2011 / 0			0.36 (1)			0/81	0.03 (4)	
J- K	0 / 43			0.15 (1)		N- I	0/215	0.05(1)	
	-2158 / 0	0.0		0.22 (1)		M- I	-776 / 0	0.10(1)	
L- J	-2158 / 0	0.0	0.0	0.22 (1)	5.78	B-S	0 / 1910	0.43(1)	
						M- J	0 / 1911	0.43 (1)	
T-S	0/0	-18.5		0.05 (4)					
S-R	0 / 1718	-18.5		0.34 (1)					
R-Q	0 / 1910	-18.5	-18.5	0.37 (1)	10.00				
Q-P	0 / 2670			0.48 (1)					
P- O	0 / 2670	-18.5	-18.5	0.48 (1)	10.00				
O- N	0 / 1911	-18.5	-18.5	0.38 (1)	10.00				
N- M	0 / 1720	-18.5	-18.5	0.35 (1)	10.00				
M- L	0/0	-18.5	-18.5	0.05 (4)	10.00				

COMP=1.10 SHEAR=1.10 TENS= 1.10

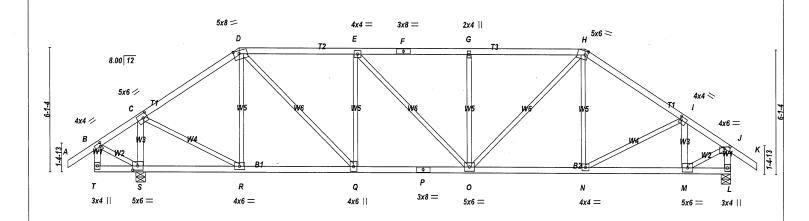
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.90 (M) (INPUT = 0.90) JSI METAL= 0.84 (P) (INPUT = 1.00)

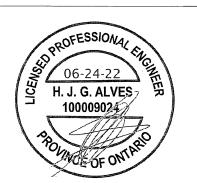
REVIEW

JOB NAME TRUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** DRWG NO. 423570 TRUSS DESC T52C Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 12:47:14 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-1XzMplj81VgDYjRMQq9puIDnKzaX84?e4VKYQqz34Xh

1-3-8 7-0-10 16-9-11 7-0-10 1-3-8

30-11-0 1-3-8 30-11-0 1-3-8


LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR. SPF SPF SPF No.2 No.2 D F 244 DRY DRY 2x4 No.2 H -T -2x4 DRY No.2 SPF SPF SPF K B J P 2x4 2x4 DRY DRY No.2 DRY No 2 SPE SPF

ALL WEBS 2x3 DRY No.2 EXCEPT DRY DRY No.2 No.2

DRY: SEASONED LUMBER.

PL.	ATES (table i	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Х
B	TMVW-t	MT20	4.0	4.0	2.00	1.00
C	TMWW-t	MT20	5.0	6.0	2.50	2.50
D	TTWW-m	MT20	5.0	8.0	1.75	3.25
E	TMWW-t	MT20	4.0	4.0		
F	TS-t	MT20	3.0	8.0		
G	TMW+w	MT20	2.0	4.0		
H	TTWW-m	MT20	5.0	6.0	2.25	1.50
1	TMWW-t	MT20	4.0	4.0	2.00	1.00
J	q-WVMT	MT20	4.0	6.0	1.00	3.25
L	BMV1+p	MT20	3.0	4.0		
M	BMWW-t	MT20	5.0	6.0		
N	BMWW-t	MT20	4.0	4.0		
0	BMWWW-t	MT20	5.0	6.0		
P	BS-t	MT20	3.0	8.0		
Q	BMWW+t	MT20	4.0	6.0		
R	BMWW-t	MT20	4.0	6.0		
S	BMWW1m	MT20	5.0	6.0	2.50	2.75
T	BMV+p	MT20	3.0	4.0		

1) Lateral braces to be a minimum of 2X4 SPF #2

Structural component only DWG# T-2215245

DIME	IMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY								
	BUILDING DESIGNER								
REA	RINGS								
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD		
	GROSS R	EACTION	GROSS	GROSS REACTION			BRG		
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX		
S	2348	0	2348	0	0	5-8	`5-8		
L	2009	0	2009	0	0	5-8	5-8		

UNF	UNFACTORED REACTIONS									
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	IS					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL			
S	1642	1178 / 0	0/0	0/0	0/0	464 / 0	0/0			
L	1406	1008 / 0	0/0	0/0	0/0	397 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, L

SPF

SPF SPF

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 3.82 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 6.25 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

			. 7						
CHORDS						WEBS			
١			FACTORED				MAX. FACTO	RED	
١	MEMB.		VERT. LOAD LC1						
		(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
۱	FR-TO		FROM TO		LENGTH	FR-TO			
ı	A- B	0 / 43	FROM TO -112.4 -112.4	0.15(1)	10.00	S-C	-2186 / 0	0.27(1)	
ı	B- C	0 / 231	-112.4 -112.4	0.39 (1)	10.00	C-R	0 / 1535	0.35 (1)	
ı			-112.4 -112.4				-616 / 0		
ı	D-E	-2140 / 0	-112.4 -112.4	0.61 (1)	3.96	D-Q	0 / 1332		
	E-F	-2299 / 0	-112.4 -112.4	0.62 (1)	3.82	Q-E	-851 / 0	0.50 (1)	
ı	F-G	-2299 / 0	-112.4 -112.4	0.62 (1)	3.82	E-O	0 / 231		
ı	G- H	-2299 / 0	-112.4 -112.4				-681 / 0	0.40(1)	
ı	H- I	-2077 / 0					0 / 853		
I	I- J	-1835 / 0	-112.4 -112.4	0.35 (1)	4.53	N- H	0/89	0.03 (4)	
	J- K	0 / 43	-112.4 -112.4	0.15 (1)	10.00	N- I	0 / 146	0.03 (1)	
			0.0 0.0				-704 / 0		
	L-J	-1989 / 0	0.0 0.0	0.20 (1)	5.98	B-S	-154 / 0		
						M- J	0 / 1748		
	T-S	0/0	-18.5 -18.5	0.08 (4)	10.00			` '	
	S-R	-139 / 0	-18.5 -18.5	0.10 (4)	6.25				
	R-Q	0/1211	-18.5 -18.5	0.25 (1)	10.00				
	Q-P	0 / 2140	-18.5 -18.5	0.40 (1)	10.00				
	P-O	0 / 2140	-18.5 -18.5	0.40 (1)	10.00				
	O- N	0 / 1704	-18.5 -18.5	0.34 (1)	10.00				
	N- M	0 / 1574	-18.5 -18.5	0.32 (1)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = 32.5 6.0 0.0 7.4 CH. PSF PSF PSF PSF DL TOTAL LOAD 45.9

24.0 IN. C/C SPACING =

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 134 lb

Scale = 1:54.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.17")

CANTILEVER DEFLECTION: ALLOWABLE DEFL.(LL)= L/120 (0.22") CALCULATED VERT. DEFL.(LL)= L/999 (0.00") ALLOWABLE DEFL.(TL)= L/120 (0.22") CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.62/1.00 (E-G:1) , BC=0.40/1.00 (O-Q:1) , WB=0.50/1.00 (E-Q:1) , SSI=0.29/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

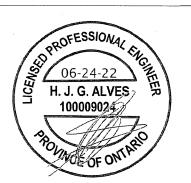
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (J) (INPUT = 0.90) JSI METAL= 0.69 (P) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423570 T53 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:15 2022 Page _ 1-3-8 8-6-10 13-9-11 8-6-11 Scale = 1:54.0 5x6 \\ 2x4 || 5x6 // D F 8.00 12 4x6 / 4x6 < c G 5x6 / 5x6 < 1-4-13 B1 0 М ۵ P N 3x8 = 3x4 | 3x8 = 5x6 =5x6 = 3x4 || 4y4 = 5x6 =30-11-0 30-11-0 1-3-8 TOTAL WEIGHT = 131 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. CHORDS BUILDINGS BEARINGS FACTORED DESIGN CRITERIA LUMBER DESCR A - D D - F F - I SPF SPF SPF 2x4 DRY No.2 MAXIMUM FACTORED REQRD SPECIFIED LOADS: DRY DRY **GROSS REACTION** GROSS REACTION DOWN HORZ L BRG BRG CH. 32.5 6.0 PSF PSF No.2 VERT HORZ UPLIFT IN-SX IN-SX R - B 2x4 DRY No.2 SPF SPF SPF 2178 PSF LL 0.0 - H 2x4 DRY No.2 5-8 5-8 LOAD 45.9 DRY No.2 SPF 2x4 DRY SPF UNFACTORED REACTIONS SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS ALL WEBS 2x3 DRY SNOW SPF No.2 COMBINED LIVE PERM.LIVE WIND DEAD EXCEPT 0/0 431 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE DRY SPF 1093 / 0 0/0 0/00/0431 / 0 0/0 OF 6.00/12 No.2 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J THIS TRUSS IS DESIGNED FOR RESIDENTIAL DRY: SEASONED LUMBER OR SMALL BUILDING REQUIREMENTS OF PART BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.34 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) PLATES (table is in inches)
JT TYPE PLATES ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED LEN CSA 086-14 TMVW-t MT20 MT20 2.00 2.75 LOADING TOTAL LOAD CASES: (4) TMWW-t TTWW+m 5.0 MT20 6.0 2.50 1.50 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD 2.0 5.0 4.0 TMW+w MT20 WEBS TTWW+m TMWW-t 2.50 1.50 MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX. (PLF) CSI (LC) UNBRAC FROM TO LENGTH MT20 6.0 MEMB. FORCE FORCE TMVW-t MT20 5.0 6.0 2.00 2.75 (LBS) ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (1.03") (LBS) CSI (LC) BMV1+p BMWW-t MT20 MT20 FR-TO LENGTH FR-TO -112.4 -112.4 0.15 (1) -112.4 -112.4 0.48 (1) -112.4 -112.4 0.67 (1) 5.0 2.50 2.25 10.00 4.17 Q- C C- P P- D 6.0 A-B 0 / 43 L M BMWW-t MT20 4.0 -2059 / 0 0.01 (1) 0.05 (4) 0.17 (1) 0.83 (1) 0 / 58 CALCULATED VERT. DEFL.(TL) = L/ 999 (0.18") MT20 3.0 5.0 RS-t -2265 / 0 3.83 0 / 131 N O P 0.81 0.81 D- N N- E 0 / 766 -955 / 0 0 / 765 6.0 -2400 / 0 -1124 -1124 3.34 CSI: TC=0.81/1.00 (E-F:1) , BC=0.40/1.00 (L-N:1) , WB=0.83/1.00 (E-N:1) , SSI=0.38/1.00 (E-F:1) -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.0 0.0 BS-t MT20 3.0 8.0 -2400 / 0 BMWW-t MT20 4.0 2265 / 0 0.67 3.83 N-F BMWW-t BMV1+p G-H 2.50 2.25 0 / 131 0 / 56 0.05 (4) 0.01 (1) -2062 / 0 0.48 (1) 4 17 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 L-G K-G B-Q MT20 0 / 43 0.15 10.00 -2167/0 -791 / 0 0.22(1)0.10 (1) J-H COMPANION LIVE LOAD FACTOR = 1.00 -2167 / 0 0.0 0.0 0.22 (1) 5.77 0 / 1999 0 45 11 (1) R- Q Q- P P- O 1) Lateral braces to be a minimum of 2X4 SPF #2 -18.5 0.10 (4) 10.00 0 / 1799 -18.5 -18.5 -18.5 -18.5 -18.5 0.39 (1) 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE 0.40 (1) 0.40 (1) 0/1854-18.5 10.00 -18.5 -18.5 -18.5 O- N N- M 0 / 1854 0 / 1855 TRUSS MANUFACTURING PLANT. 0.40 (1) 10.00 0.40 (1) 0.39 (1) M-L 0 / 1855 -18.5 10.00 NAIL VALUES 0 / 1801 PLATE GRIP(DRY) SHEAR SECTION 0/0 (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 0.10 (4) PROFESSIONAL ENGINEERS H. J. G. ALVES 7 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg JSI GRIP= 0.87 (D) (INPUT = 0.90 JSI METAL= 0.53 (O) (INPUT = 1.00) 100009024 POLYACE OF ONT ARIO Structural component only REVIEWE

DWG# T-2215246


JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423570 T53C TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:16 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-zw56ERkPZ6xxn0bIXFBHzjl4PmHTcuDxYppfTjz34Xf 1-3-8 8-6-10 13-9-11 8-6-11 Scale = 1:54.0 5x6 = 2x4 || 5x6 < D 8.00 12 5x6 // 5x6 <> С G 5x6 // 0 М P ĸ 4x6 = 3x8 =3x8 = 3x4 || 5x6 =5x6 =3x4 || 4x6 =5x6 = 30-11-0 30-11-0 TOTAL WEIGHT = 131 lb

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
R - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
R - O	2x4	DRY	No.2	SPF
0 - м	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
				• • •
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				· · ·
Q - C	2x4	DRY	No.2	SPF
Ř-G	2x4	DRY	No.2	SPF
				O

DRY: SEASONED LUMBER

PL	ATES (table i					
JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMVW-t	MT20	5.0	6.0	2.25	2.75
C	TMWW-t	MT20	5.0	6.0	2.50	2.50
D	TTWW-m	MT20	5.0	6.0	2.00	1.75
E	TMW+w	MT20	2.0	4.0		
F	TTWW-m	MT20	5.0	6.0	2.00	1.75
G	TMWW-t	MT20	5.0	6.0	2.50	2.50
H	TMVW-t	MT20	5.0	6.0	2.25	2.75
J	BMV1+p	MT20	3.0	4.0		
K	BMWW-t	MT20	5.0	6.0		
L	BMWW-t	MT20	4.0	6.0		
M	BS-t	MT20	3.0	8.0		
N	BMWWW-t	MT20	5.0	6.0	2.25	3.00
0	BS-t	MT20	3.0	8.0		
P	BMWW-t	MT20	4.0	6.0		
Q	BMWW1-t	MT20	5.0	6.0		
R	BMV+p	MT20	3.0	4.0		

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215247

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	
REARINGS	

CA	niivas						
	FACTOR		MAXIMUN			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
2	2348	0	2348	0	0	5-8	5-8
1	2009	0	2009	0	0	5-8	5-8

3	
WIND DEAD	SOIL
0/0 464/0	0/0
0/0 397/0	0/0
	WIND DEAD 0/0 464/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.66 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

1										
1	CH	ORDS				WEBS				
MAX. FACTORED FA			FACTOR					MAX. FACTO	RED	
ı	MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
ı								(LBS)		
ı	FR-TO		FROM	TO		LENGTH	FR-TO			
	A-B	0 / 43 0 / 183	-112.4	-112.4	0.15 (1)	10.00	Q-C	-2205 / 0	0.27 (1)	
ı									0.33 (1)	
ı		-1606 / 0	-112.4	-112.4	0.60 (1)	4.48	P- D	-422 / 0	0.37(1)	
ı	D- E	-2016 / 0	-112.4	-112.4	0.77 (1)			0/1012	0.23(1)	
ı	E-F	-2016 / 0						-957 / 0	0.84(1)	
ı	F- G	-2009 / 0			0.64 (1)			0 / 526	0.12(1)	
I	G-H	-1886 / 0				4.34	L-F	0 / 139	0.05 (4)	
i		0 / 43						-17 / 13	0.01 (1)	
ı		-11 / 0					K- G	-719 / 0	0.09(1)	
	J- H	-1998 / 0	0.0	0.0	0.21 (1)	5.97	B- Q	-67 / 0	0.01 (1)	
ı							K- H	0 / 1838	0.41(1)	
ı	R-Q	0/0	-18.5	-18.5	0.13(4)	10.00				
	Q-P	-60 / 0			0.12 (4)					
	P-O	0 / 1296			0.30(1)					
	O- N	0 / 1296			0.30(1)					
	N- M	0 / 1641			0.37 (1)					
		0 / 1641			0.37 (1)					
		0 / 1655								
	K- J	0/0	-18.5	-18.5	0.10 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS:							
TOP	CH.	LL	=	32.5	PSF		
		DL	=	6.0	PSF		
BOT	CH.	LL	=	0.0	PSF		
		DL		7.4	PSF		
TOTA	L LO	AD	=	45.9	PSF		

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96") ALLOWABLE DEFL.(LL) = 1/399 (0.08")

ALLOWABLE DEFL.(TL) = 1/399 (0.08")

ALLOWABLE DEFL.(TL) = 1/360 (0.96")

CALCULATED VERT. DEFL.(TL) = 1/999 (0.15")

CANTILEVER DEFLECTION: ALLOWABLE DEFL.(LL)= L/120 (0.22") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00") ALLOWABLE DEFL.(TL)= L/120 (0.22") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.00")

CSI: TC=0.77/1.00 (D-E:1) , BC=0.37/1.00 (K-L:1) , WB=0.84/1.00 (E-N:1) , SSI=0.38/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (F) (INPUT = 0.90) JSI METAL= 0.47 (O) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423570 T54 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MITek Industries, Inc. Fri Jun 24 12:47:16 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-zw56ERkPZ6xxn0blXFBHzjl93mGWctcxYppfTjz34Xf 1-3-8 10-0-10 10-9-11 10-0-11 Scale = 1:54.0 5x6 \\ 2x4 || 5x6 // G 8.00 12 4x4 // 4x4 <> 2x4 || 2x4 || C 5x6 / 5x6 <> Q a R N 7 3x8 = 3y4 || 3x8 =4x10 =4x4 = 4x6 = 4x4 = 3x4 || 4x10 =30-11-0 1-3-8 30-11-0 TOTAL WEIGHT = 143 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY [M][F BUILDING DESIGNER **DESIGN CRITERIA**

LUMBER	= 0			
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
G - K	2x4	DRY	No.2	SPF
T - B	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
T - Q	2x4	DRY	No.2	SPF
Q - O	2x4	DRY	No.2	SPF
OL	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
S - C	2x4	DRY	No.2	SPF
M - I	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Y X			
В	TMVW-t	MT20	5.0	6.0	2.00 2.75			
C, I	F, I							
С	TMW+w	MT20	2.0	4.0				
D	TMWW-t	MT20	4.0	4.0				
Ε	TTWW+m	MT20	5.0	6.0	Edge 1.75			
G	TTWW+m	MT20	5.0	6.0	Edge 1.75			
Н	TMWW-t	MT20	4.0	4.0	•			
J	TMVW-t	MT20	5.0	6.0	2.00 2.75			
L	BMV1+p	MT20	3.0	4.0				
M	BMWWW-t	MT20	4.0	10.0	2.00 3.00			
N	BMWW-t	MT20	4.0	4.0				
0	BS-t	MT20	3.0	8.0				
P	BMWWW-t	MT20	4.0	6.0				
Q	BS-t	MT20	3.0	8.0				
R	BMWW-t	MT20	4.0	4.0				
S	BMWWW-t	MT20	4.0	10.0	2.00 3.50			
Т	BMV1+p	MT20	3.0	4.0				
1								

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215248

CA	RINGS						
	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Γ	2178	0	2178	0	0	5-8	5-8
-	2178	0	2178	0	0	5-8	5-8

UNF	ACTORED RE	EACTIONS					
	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
T	1524	1093 / 0	0/0	0/0	0/0	431 / 0	0/0
L	1524	1093 / 0	0/0	0/0	0/0	431 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T, L

M-L

0/0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.21 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					W E	RS	
	K. FACTORED	FACTO	RED			*** =	MAX. FACTO	DED
MEMB.		VERT. LO		MAY	MAY	MEMB		MAX
	(LBS)				UNBRAC			
FR-TO	(200)				LENGTH			CSI (LC)
A-B	0 / 43							0.04(4)
		-112.4					-353 / 0	0.04 (1)
	-2012 / 0			0.13 (1)		S-D	-440 / 0	0.33 (1)
C-D	-2006 / 0			0.25 (1)		D-R	-291 / 0	0.23 (1)
D-E	-2154 / 0			0.25 (1)		R-E	0/369	0.08 (1)
E-F	-2054 / 0			0.48 (1)		E-P	0 / 495	0.11(1)
F-G	-2054 / 0	-112.4	-112.4	0.48 (1)	4.21	P-F	-742 / 0	0.94 (1)
G-H	-2155 / 0	-112.4	-112.4	0.25 (1)	4.42	P-G	0 / 494	0.11 (1)
H-1	-2008 / 0	-112.4	-112.4	0.25 (1)	4.55	N- G	0/370	0.08 (1)
I- J	-2014 / 0			0.13 (1)		N- H	-292 / 0	0.23 (1)
J-K	0 / 43			0.15 (1)		H- M	-438 / 0	0.33 (1)
T-B	-2185 / 0			0.23 (1)		M- I	-353 / 0	0.04 (1)
L-J	-2184 / 0			0.23 (1)			0 / 1881	0.42 (1)
		0.0	0.0	0.23 (1)	3.75		0 / 1882	
T-S	0/0	-18.5	-19.5	0.10 (4)	10.00	IVI- U	0 / 1002	0.42 (1)
S-R	0/1946			0.43 (1)				
R-Q	0 / 1773							
Q-P				0.40 (1)				
	0 / 1773			0.40 (1)				
P- O	0 / 1773			0.40 (1)				
O- N	0 / 1773			0.40 (1)				
N- M	0 / 1947	-18.5	-18.5	0.43 (1)	10.00			

-18.5 -18.5 0.18 (4) 10.00

SPECIFIED LOADS: 32.5 6.0 0.0 7.4 CH. PSF PSF PSF DΙ TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/999 (0.17")

CSI: TC=0.48/1.00 (E-F:1) , BC=0.43/1.00 (M-N:1) , WB=0.94/1.00 (F-P:1) , SSI=0.29/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

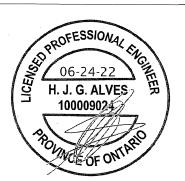
NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (L) (INPUT = 0.90) JSI METAL= 0.50 (Q) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423570 T54C TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 12:47:17 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-R6fVRnl1KQ3nPAAx5ziWWwrK5AcHLJp4nTZC?9z34Xe 1-3-8 10-0-10 10-9-11 10-0-11 Scale = 1:54.0 5x6 \\ 2x4 || 5x6 // G 8.00 12 4x6 / 4x6 < 2x4 || 2x4 || C 5x6 / Q O R N М 6x10 =3x8 =3x8 =3x4 || 4y4 = 4x6 = 4x4 =6x10 =30-11-0 30-11-0 1-3-8 TOTAL WEIGHT = 143 lb


LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
G - K	2x4	DRY	No.2	SPF
Т - В	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
T - Q	2x4	DRY	No.2	SPF
Q - O	2x4	DRY	No.2	SPF
0 - L	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
S - C	2x4	DRY	No.2	SPF
M - I	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER

PL	PLATES (table is in inches)								
JΤ	TYPE	PLATES	W	LEN	Y X				
В	TMVW-t	MT20	5.0	6.0	2.25 2.75				
C, 1	F, I								
С	TMW+w	MT20	2.0	4.0					
D	TMWW-t	MT20	4.0	6.0	2.00 1.75				
E	TTWW+m	MT20	5.0	6.0	Edge 1.75				
G	TTWW+m	MT20	5.0	6.0	Edge 1.75				
Н	TMWW-t	MT20	4.0	6.0	2.00 1.75				
J	TMVW-t	MT20	5.0	6.0	2.25 2.75				
L	BMV1+p	MT20	3.0	4.0					
M	BMWWW-t	MT20	6.0	10.0					
Ν	BMWW-t	MT20	4.0	4.0					
0	BS-t	MT20	3.0	8.0					
Ρ	BMWWW-t	MT20	4.0	6.0					
Q	BS-t	MT20	3.0	8.0					
R	BMWW-t	MT20	4.0	4.0					
S	BMWWW1-t	MT20	6.0	10.0					
Т	BMV+p	MT20	3.0	4.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215249

DIMENSIONS, SUPPORTS AND LOADINGS SPE	ECIFIED BY FABRICATOR TO BE VE	RIFIED BY
BUILDING DESIGNER		
BEARINGS	the state of the s	

<u> </u>	middo						
	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
3	2348	0	2348	0	0	5-8	5-8
-	2009	0	2009	0	0	5-8	5-8

UNFACTORED REACTIONS
1ST LCASE MA MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND COMBINED DEAD SOIL 1178 / 0 1008 / 0 464 / 0 397 / 0 0/0 0/0 0/0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, L

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.55 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-S.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS								
MA)	K. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	I MAX	MAX.	MEMB		MAX
	(LBS)				UNBRAC			CSI (LC)
FR-TO	, ,			,	LENGTH			
A-B	0 / 43	-112.4	-112.4	0.15(1)			-404 / 0	0.05(1)
B- C	0 / 223			0.24 (1)			-2158 / 0	0.63 (1)
C-D	0 / 201			0.26 (1)		Ď-R		0.07 (1)
D- E	-1612 / 0			0.22 (1)		R-E	-109 / 54	0.14 (1)
E-F	-1720 / 0	-112.4	-112.4	0.46 (1)	4.55	E-P	0 / 706	0.16 (1)
F- G	-1720 / 0	-112.4	-112.4	0.46 (1)	4.55	P-F	-744 / 0	0.94(1)
G-H	-1891 / 0	-112.4	-112.4	0.24 (1)	4.67	P-G		0.07(1)
H- I	-1833 / 0	-112.4	-112.4	0.24 (1)	4.74	N- G	0/392	0.09(1)
I- J	-1838 / 0	-112.4	-112.4	0.13(1)	4.85	N- H	-321 / 0	0.25(1)
J- K	0 / 43	-112.4	-112.4	0.15 (1)	10.00	H- M	-348 / 0	0.26(1)
T-B	-28 / 0	0.0	0.0	0.00(4)	7.81	M- I	-353 / 0	0.04 (1)
L- J	-2016 / 0	0.0	0.0	0.21(1)	5.94	B-S	-170 / 0	0.03(1)
						M- J	0 / 1719	0.39 (1)
T-S	0/0		-18.5	0.21 (4)	10.00			. ,
S-R	0 / 1135	-18.5	-18.5	0.33 (1)	10.00			
R-Q	0 / 1318	-18.5	-18.5	0.31 (1)	10.00			
Q-P	0 / 1318	-18.5	-18.5	0.31(1)	10.00			
P- O	0 / 1554	-18.5	-18.5	0.36(1)	10.00			
O- N	0 / 1554	-18.5	-18.5	0.36(1)	10.00			
N- M	0 / 1746	-18.5	-18.5	0.40 (1)	10.00			
M- L	0/0	-18.5	-18.5	0.18 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: 32.5 6.0 PSF PSF TOP CH. 0.0 7.4 PSF LL DΙ LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (0.96") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.15")

CANTILEVER DEFLECTION: CANTILEVEN DEFLECTION (0.22")

CALCULATED VERT. DEFL.(LL) = L/ 999 (0.01")

ALLOWABLE DEFL.(TL) = L/ 200 (0.22")

CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

CSI: TC=0.46/1.00 (E-F:1) , BC=0.40/1.00 (M-N:1) , WB=0.94/1.00 (F-P:1) , SSI=0.29/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (P) (INPUT = 0.90) JSI METAL= 0.47 (D) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423570 T55 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:18 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-vIDtf7mf5jBe1Kl7fgDl28OSPay14s6E?7llXbz34Xd 1-3-8 11-6-10 7-9-12 11-6-10 Scale = 1:57.9 4x4 = 4x4 =D F 8.00 12 4x4 / 4x4 < С G 5x6 / 5x6 < 66 55 W2 W2 0 1 3x4 || 3x8 = 3x4 || 4x6 =4x6 =4x6 =4x6 =30-11-0 1-3-8

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
P - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
P - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)							
JT	TYPE	PLATES	W	LEN	Υ	Х	
В	TMVW-t	MT20	5.0	6.0	2.25	2.75	
С	TMWW-t	MT20	4.0	4.0	2.00	1.50	
D	TTW-m	MT20 ·	4.0	4.0			
Ε	TMWW-t	MT20	4.0	4.0			
F	TTW-m	MT20	4.0	4.0			
G	TMWW-t	MT20	4.0	4.0	2.00	1.50	
Н	TMVW-t	MT20	5.0	6.0	2.25	2.75	
J	BMV1+p	MT20	3.0	4.0			
K	BMWW-t	MT20	4.0	6.0	2.00	1.75	
L	BMWWW-t	MT20	4.0	6.0			
М	BS-t	MT20	3.0	8.0			
N	BMWWW-t	MT20	4.0	6.0			
0	BMWW-t	MT20	4.0	6.0	2.00	1.75	
Р	BMV1+p	MT20	3.0	4.0			

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215250

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	THE CONDITION OF LOW IED BY LABRIDATION TO BE VEIN IED BY
BUILDING DESIGNER	
REARINGS	

LA	nings						
	FACTORED GROSS REACTION		MAXIMUN GROSS F		INPUT BRG	REQRD BRG	
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
•	2178	0	2178	0	0	5-8	5-8
	2178	0	2178	0	0	5-8	5-8

UNFACTORED REACTIONS								
	1ST LCASE	MAX./	MIN. COMPO	VENT REACTION	NS.			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
Ρ	1524	1093 / 0	0/0	0/0	0/0	431 / 0	0/0	
J	1524	1093 / 0	0/0	0/0	0/0	431 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.81 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N, E-L.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS		WEBS				
MA)	K. FACTORED	FACTORED				MAX. FACTO	ORED
MEMB.	FORCE	VERT. LOAD L					MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH			, ,
	0 / 43	-112.4 -112.	4 0.15 (1)	10.00	O- C	-264 / 21	0.11(1)
B- C	-2391 / 0	-112.4 -112.	4 0.61 (1)	3.81	C-N	-471 / 0	0.56 (1)
	-2052 / 0	-112.4 -112.			N- D	0 / 701	0.16 (1)
D- E	-1677 / 0	-112.4 -112.	4 0.23 (1)	4.90	N- E	-286 / 0	0.19 (1)
E-F	-1677 / 0	-112.4 -112.	4 0.23 (1)	4.90	E-L	-286 / 0	0.19 (1)
F- G	-2052 / 0	-112.4 -112.	4 0.56 (1)	4.11	L-F	0 / 701	0.16 (1)
G- H	-2392 / 0	-112.4 -112.	4 0.61 (1)	3.81	L- G	-472 / 0	0.56 (1)
H-I	0 / 43	-112.4 -112.	4 0.15 (1)	10.00	K- G	-263 / 21	0.11 (1)
P-B		0.0 0.	0 0.22 (1)	5.81	B-O	0 / 2059	0.46 (1)
J- H	-2131 / 0	0.0 0.	0 0.22 (1)	5.81	K- H	0 / 2059	0.46 (1)
							` '
P- O		-18.5 -18.					
O- N	0 / 2025						
N- M	0 / 1790	-18.5 -18.	5 0.39 (1)	10.00			
	0 / 1790	-18.5 -18.					
		-18.5 -18.					
K-J	0/0	-18.5 -18.	5 0.13 (4)	10.00			
1							

TOTAL WEIGHT = 3 X 140 = 419 lb [M][F] **DESIGN CRITERIA**

SPECIFIED LOADS:							
TOP	CH.	LL	=	32.5	PSF		
		DL	=	6.0	PSF		
BOT	CH.	LL	=	0.0	PSF		
		DL	=	7.4	PSF		
TOTA	J IO	AΠ	_	45 9	PSF		

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

1-3-8

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.09")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.21")

CSI: TC=0.61/1.00 (G-H:1) , BC=0.43/1.00 (K-L:1) , WB=0.56/1.00 (G-L:1) , SSI=0.26/1.00 (G-H:1)

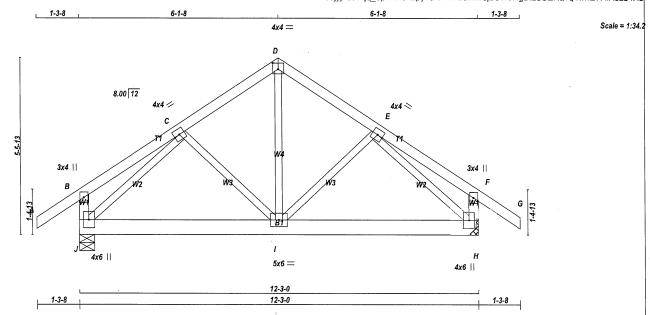
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (O) (INPUT = 0.90) JSI METAL= 0.65 (M) (INPUT = 1.00)

REVIEWE

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 423570 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:18 2022 Page 1

ID:c3jyj23uDijq_8pvRKbkZpy75XW-vIDtf7mf5jBe1Kl7fgDl28OZRa1q4wnE?7llXbz34Xd

LUMBER N. L. G. A CHORDS . A. RULES OS SIZE LUMBER DESCR A -D -J -H -DRY SPF D 2x4 No 2 GBF 2x4 2x4 DRY DRY No.2 No.2 SPF SPF DRY SPF 2x4 No.2 Н 2×6 DRY No.2 SPF SPF ALL WEBS 2x3 DRY No.2 EXCEPT

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 JBCDEF 3.0 4.0 TMWW-t MT20 4.0 4.0 TTW-p TMWW-t MT20 MT20 4.0 4.0 2.25 2.00 4.0 TMV+p BMVW1+p BMWWW-i 3.0 4.0 5.0 MT20 4.0 6.0 BMVW1+p MT20 4.0 6.0

NOTES-(1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER**

BEAL	RINGS						
	FACTOR	ED	MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	956	0	956	0	0	5-8	5-8
ł	956	0	956	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8

UNFACTORED REACTIONS

	ISI LUASE	IVIAX./I	VIIIN. COIVIPOI	VEINT REACTION	VO		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
J	668	487 / 0	0/0	0/0	0/0	181 / 0	0/0
Н	668	487 / 0	0/0	0/0	0/0	181 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD.CASES: (4)

0 / 625

CHORDS MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBF
FROM TO LENC
-112.4 -112.4 0.15 (1) 10.4 MEMB. FORCE MEMB. FORCE CSI (LC) UNBRAC LENGTH FR-TO (LBS) (LBS) CSI (LC) FR-TO 0 / 43 A-B 10.00 I- D 0 / 390 0.09(1)-112.4 -112.4 0.16 (1) -112.4 -112.4 0.13 (1) -112.4 -112.4 0.13 (1) -112.4 -112.4 0.13 (1) 10.00 10.00 6.25 6.25 0 / 21 -615 / 0 I- E C- I -184 / 0 -184 / 0 0.06 (1) B- C C- D D- E E- F J- B H- F -615 / 0 J- C -881 / 0 0.26 (1) -112.4 -112.4 0.16 (1) -112.4 -112.4 0.15 (1) 0.0 0.0 0.03 (1) 0 / 21 0 / 43 10.00 E-H -881 / 0 0.26 (1) -112.4 -112.4 -112.4 -112.4 0.0 0.0 0.0 0.0 10.00 -287 / 0 -287/0 0.03(1) J- I I- H -18.5 0.12 (4) -18.5 0.12 (4) 10.00

TOTAL WEIGHT = 2 X 61 = 122 I [M][F **DESIGN CRITERIA**

SPECIFIED LOADS

LL =
DL =
LL =
DL =
AD = CH. PSF 6.0 CH. 0.0 7.4 PSF TOTAL LOAD 45.9 PSF

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.41")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.41")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02")

CSI: TC=0.16/1.00 (B-C:1) , BC=0.12/1.00 (H-I:4) , WB=0.26/1.00 (C-J:1) . SSI=0.14/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.70 (C) (INPUT = 0.90) JSI METAL= 0.28 (E) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423570 T56Z TRUSS DESC Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:19 2022 Page 1 Tamarack Roof Truss, Burlington ID:c3jyj23uDijq_8pvRKbkZpy75XW-NVnFsTmHs1JVeUKKCOk_bLwkq_EnpKCNEn2J42z34Xc 1-3-8 6-1-8 1-3-8 Scale = 1:34.2 4x6 || D 8.00 12 4x6 / 4x6 <> E 3x4 || 3x4 || G κ L 5x6 = 5x6 =

LUMBER N. L. G. A N. L. G. A. RULES CHORDS SIZE LUMBER SIZE DESCR SPF SPF SPF SPF D 244 DRY No.2 2x4 2x4 DRY DRY 2x4 DRY No.2 SPF ALL WEBS 2x3 DRY SPF No.2 **EXCEPT**

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 3.0 4.0 4.0 4.0 4.0 TMWW-t MT20 TTW+p TMWW-t Edge MT20 6.0 TMV+p BMVW1-t BMWWW-t 4.0 6.0 6.0 MT20 2.75 3.00 BMVW1-t MT20

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

12-3-0

2-0-0

3-5-4

CA	RINGS						
	FACTOR		MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
1	1591	0	1591	0	0	5-8	5-8
4	1591	0	1591	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
J	1109	819 / 0	0/0	0/0	0/0	290 / 0	0/0		
Н	1109	819 / 0	0/0	0/0	0/0	290 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J, H

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.29 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CH	ORDS				W E	EBS		
MAX	K. FACTORED	FACTORED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB	. FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO		. ,	
A-B	0 / 43	-112.4 -112.4	0.17 (1)	10.00	I- D	0 / 1243	0.31(1)	
B- C	0 / 19	-112.4 -112.4	0.16 (1)	10.00	I- E	-28 / 30	0.01 (4)	
C-D	-1390 / 0	-112.4 -112.4	0.19 (1)	5.29	C- I	-28 / 30	0.01 (4)	
D-E	-1390 / 0	-112.4 -112.4	0.19 (1)	5.29	J- C	-1636 / 0	0.50 (1)	
E-F	0 / 19	-112.4 -112.4	0.16 (1)	10.00	E- H	-1636 / 0	0.50(1)	
F- G	0 / 43	-112.4 -112.4	0.17 (1)	10.00				
J- B	-292 / 0	0.0 0.0	0.03 (1)	7.81				
H-F	-292 / 0	0.0 0.0	0.03 (1)	7.81				
J- K	0 / 1161	-18.5 -18.5	0.59 (1)	10.00				
K-L	0 / 1161	-18.5 -18.5	0.59 (1)	10.00				
L-I	0 / 1161	-18.5 -18.5	0.59 (1)	10.00				
I- M	0 / 1161	-18.5 -18.5	0.59 (1)	10.00				
M- N	0 / 1161	-18.5 -18.5	0.59 (1)	10.00				
N- H	0 / 1161	-18.5 -18.5	0.59 (1)	10.00				
1								

SPECIFIED CONCENTRATED LOADS (LBS) CONN. C1 C1 C1 C1 LC1 -244 -197 MAX-FACE DIR TYPE -244 -197 FRONT TOTAL VERT TOTAL -197 FRONT VERT TOTAL

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

TOTAL WEIGHT = 61 lb

SPECIFIED LOADS: TOP CH. LL = LL = 32.5 DL = 6.0 LL = 0.0 DL = 7.4 AD = 45.9 PSF CH. TOTAL LOAD PSF

1-3-8

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.41")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.41")
CALCULATED VERT. DEFL.(TL)= L/999 (0.08")

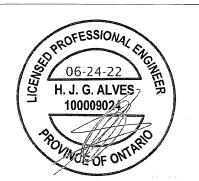
CSI: TC=0.19/1.00 (D-E:1) , BC=0.59/1.00 (I-J:1) , WB=0.50/1.00 (E-H:1) , SSI=0.40/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR - SECTION (PSI) (PLI) (PLI)


MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (I) (INPUT = 0.90) JSI METAL= 0.36 (C) (INPUT = 1.00)

JOB NAME JOB DESC. TRUSS NAME QUANTITY **BAYVIEW WELLINGTON** DRWG NO. 423570 TRUSS DESC Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:20 2022 Page 1 Tamarack Roof Truss, Burlington ID:c3jyj23uDijq_8pvRKbkZpy75XW-rhKd3onvdLRMGevWm5FD7ZTveOZ4YmNXTRnscUz34Xb 1-3-8 5-10-7 1-3-8 Scale: 3/8"=1 4x4 = 4x4 = 8.00 12 5x6 / 5x6 < 3x4 || 3x4 || М Ν 0 Q 5x6 4x10 =5x6 1-11-15 2-0-0 1-1-9 2-0-0 2-0-0 1-11-4 13-0-0 1-3-8 1-3-8 TOTAL WEIGHT = 60 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. RULES **DESIGN CRITERIA** BEARINGS FACTORED LUMBER CHORDS SIZE DESCR SPF SPF SPF DEH 2x4 2x4 DRY DRY DRY No.2 No.2 MAXIMUM FACTORED INPUT REQRD GROSS REACTION VERT HORZ LL = DL = LL = DL = GROSS REACTION DOWN HORZ L BRG BRG CH. 32.5 No.2 6.0 2x4 UPLIFT. IN-SX IN-SX PSF B G DRY SPF MECHANICAL DRY No.2 SPF TOTAL LOAD 45.9 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING ALL WEBS DRY SPF SPACING = 24.0 IN. C/C EXCEPT DRY: SEASONED LUMBER LOADING IN FLAT SECTION BASED ON A SLOPE UNFACTORED REACTIONS OF 6.00/12 MAX./MIN. COMPONENT REACTIONS COMBINED SNOW LIVE 0/0 PERM.LIVE 0/0 WIND THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART DEAD 859 / 0 0/0 346 / 0 0/0 PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 1205 859 / 0 0/0 0/0 0/0 346 / 0 0/0 9, NBCC 2015 LEN Y BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K THIS DESIGN COMPLIES WITH: TMWW-t 5.0 4.0 4.0 5.0 3.0 5.0 4.0 - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) MT20 6.0 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.94 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. TTW-m MT20 40 6.0 TMV+p MT20 4.0 BMVW1-t MT20 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED LOADING TOTAL LOAD CASES: (4) BMVW1-t MT20 5.0 6.0 ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.43")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.43")
CALCULATED VERT. DEFL.(TL)= L/999 (0.10") CHORDS NOTES-WEBS FACTORED VERT. LOAD LC1 (PLF) C FROM TO 1) Lateral braces to be a minimum of 2X4 SPF #2 MAX. FACTORED MAX. FACTORED MEMB. (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) FR-TO LENGTH FR-TO CSI: TC=0.18/1.00 (E-F:1) , BC=0.65/1.00 (I-J:1) , WB=0.57/1.00 (F-I:1) , SSI=0.31/1.00 (I-J:1) A- B B- C C- D -112.4 -112.4 0.17 (1) -112.4 -112.4 0.14 (1) 0 / 43 0.02 (4) 0.57 (1) 0 / 18 10.00 0/71 -1885 / 0 -1885 / 0 0 / 314 -1661/0 -112.4 -112.4 0.18 (1) 4.94 K- C F- I DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 0.06 (1) 0.18 (1) 0.14 (1) D-E E-F -1403 / 0 -112.4 -112.4 -112.4 -112.4 5.43 4.94 -1661 / 0 F- G G- H K- B COMPANION LIVE LOAD FACTOR = 1.00 -112.4 -112.4 0 / 18 0 / 43 10.00 J- E 0/314 -112.4 -112.4 0.0 0.0 0.17 (1) 10.00 0.0 I- G -287 / 0 0.0 0.03(1) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. K- L L- M -18.5 0 / 1309 10.00 -18.5 0.65 (1) -18.5 0.65 (1) -18.5 0.65 (1) -18.5 0.65 (1) -18.5 0.65 (1) -18.5 0.65 (1) -18.5 0.65 (1) 0 / 1309 -18.5 10.00 M-N 0 / 1309 -18.5 10.00 NAIL VALUES N- J J- O O- P P- Q 0 / 1309 0 / 1310 0 / 1310 -18.5 -18.5 -18.5 PLATE GRIP(DRY) SHEAR 10.00 (PLI) (PSI) (PLI) 10.00 MAX MIN MAX MIN MAX MIN PROFESSIONAL ENGINEERS H. J. G. ALVES 0 / 1310 0 / 1310 650 371 1747 788 1987 1873 Q-PLATE PLACEMENT TOL. = 0.250 inches SPECIFIED CONCENTRATED LOADS (LBS) MAX--275 -275 -29 -29 -171 LOC. 5-10-7 CONN PLATE ROTATION TOL. = 5.0 Deg. TOTAL TOTAL TOTAL TOTAL -275 BACK BACK VERT C1 C1 C1 C1 C1 C1 C1 JSI GRIP= 0.79 (E) (INPUT = 0.90) JSI METAL= 0.42 (C) (INPUT = 1.00) 7-1-8 -275 VERT -29 -29 -171 1-11-4 BACK 3-11-4 VERT 100009024 5-11-3 7-0-12 NOPQ BACK VERT TOTAL BACK TOTAL TOTAL -171 -171 9-0-12 VERT TO NO OF ONTARIO 11-0-12 BACK VERT TOTAL CONNECTION REQUIREMENTS C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2215253

REVIEWE

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 423570 T58S Version 8.530 S Feb 23 2022 Mirlek Industries, Inc. Fri Jun 24 12:47:21 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-Ktu?H8oXOeZDuoUiKonSgm03tn3YHLdgh5XP8wz34Xe Tamarack Roof Truss, Burlington Scale = 1:21. D 5x6 8.00 12 4x4 // 3-7-13 B2 W5 W1 B1 J 6x10 = 3x4 || 3x4 || Ε 4x4

JLES			
SIZE		LUMBER	DESCR.
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x3	DRY	No.2	SPF
2x3	DRY	No.2	SPF
NED LU	JMBER.		
	SIZE 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x3 2x3	SIZE 2x4 DRY 2x3 DRY	SIZE LUMBER 2x4 DRY No.2 2x3 DRY No.2 2x3 DRY No.2 2x3 DRY No.2

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

PLATES (table is in inches) JT TYPE PLATES B TMVW-t MT20 LEN Y X 4.0 2.00 1.00 4.0 4.0 5.0 TTV-m TMVW-t MT20 Edge 4.0 4.0 3.0 4.0 4.0 4.0 MT20 BMVW1-t BMV+p MT20 MT20 BVMWWW-I MT20 6.0 10.0 3.00 3.50

PROFESSIONAL ENGINEER

06-24-22

H. J. G. ALVES? 100009024 POLYNOE OF ONTARIO

Structural component only DWG# T-2215254

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER**

1-2-4

4-7-8

SEAL	RINGS						
	FACTOR	ED	MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Ξ	369	0	369	0	0	MECHANIC	CAL
⊣	498	0	498	0	0	5-8	5-8

1-9-12

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

UNFACTORED REACTIONS

1-3-8

	IST LUASE	IVIAX./	MIN. COMPO	NENT REACTION	VS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ε	259	182 / 0	0 / .0	. 0/0	0/0	77 / 0	0/0
Н	347	258 / 0	0/0	0/0	0/0	89 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	DRDS			WEBS					
MAX.	FACTORED	FACTOR	ED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOA	D LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM T	O		LENGTH	FR-TO			
A-B	0 / 43	-112.4 -	112.4	0.17(1)	10.00	G-E	-8 / 0	0.00(1)	
B- C	-218 / 0	-112.4 -	112.4	0.08 (1)	6.25	G- D	0 / 230	0.06(1)	
C-I	-167 / 0	-108.9 -				B- G	0 / 204	0.05 (1)	
I- D	-167/0	-108.9 -	108.9	0.22(1)	6.25				
E-D	-339 / 0	0.0		0.07 (1)					
H-B	-478 / 0	0.0	0.0	0.05 (1)	7.81				
H- J	0/0			0.03 (4)					
J- G	0/0			0.03 (4)					
F- G	0 / 33			0.02 (1)					
G-C	-201 / 0	0.0	0.0	0.01 (1)	7.81				
F-K	0/8	-17.9	-17.9	0.05 (4)	10.00				
K-E	0/8	-17.9	-17.9	0.05 (4)	10.00				

SPEC	PECIFIED CONCENTRATED LOADS (LBS)										
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.		
С	2-0-0	-17	-17		FRONT	VERT	TOTAL		C1		
1	3-2-4	-53	-53		FRONT	VERT	TOTAL		C1		
J	1-9-12	-4	-4		FRONT	VERT	TOTAL		C1		
K	3-2-4	-10	-10		FRONT	VERT	TOTAL		. C1		

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 28 = 55 lb **DESIGN CRITERIA**

CDE	En	10	\ADS

TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	1 10	ΔD	=	45 9	PS

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

GIRDER TYPE: CPrimeHip LEFT SETBACK = 2-0-0 RIGHT SETBACK = 0-0 END SETBACK = 2-0-0 END WALL WIDTH = 1-8 END WALL WITH = 1-6 CORNER FRAMING TYPE: CONVENTIONAL END JACK TYPE: CONVENTIONAL APPLIED TO FRONT SIDE - ADDT'L LOADS BASED ON 55 % OF GSL.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.22/1.00 (C-D:1) , BC=0.05/1.00 (E-F:4) , WB=0.06/1.00 (D-G:1) , SSI=0.16/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.32 (B) (INPUT = 0.90) JSI METAL= 0.12 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY DRWG NO. PLY BAYVIEW WELLINGTON 423570 T59S TRUSS DESC

Tamarack Roof Truss, Burlington

LUMBER N. L. G. A. RULES CHORDS SIZE

D

BGC

ALL WEBS EXCEPT

B - G G - D

BCDEF

SIZE

DRY

DRY

DRY

DRY

DRY

DRY

PLATES MT20

MT20

MT20

MT20

1) Lateral braces to be a minimum of 2X4 SPF #2

2x6 2x4

2x4

244

2x4

2x3

DRY: SEASONED LUMBER.

PLATES (table is in inches)

TMVW+p

TMV+p TMVWm

BMVW1-t

BMV1+p

BMV+p BVMWWW-I

LUMBER

No.2 No.2

No.2

No 2

No.2

No.2

No 2

LEN Y

4.0

2.50 3.00

10.0 3.00 3.50

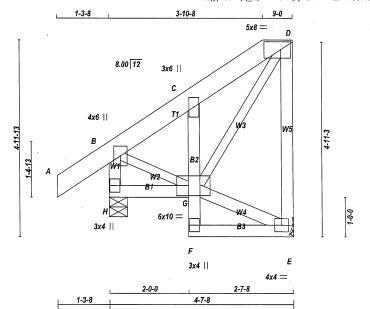
40 6.0

3.0 5.0 4.0 6.0 8.0 4.0

3.0

DESCR

SPF SPF SPF


SPF SPF SPF

SPF

SPF

SPE

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:21 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-Ktu?H8oXOeZDuoUiKonSgm04En3sHLXgh5XP8wz34Xa

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

EA	MINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS RI	EACTION	GROSS	REACTIC	N	BRG	BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	303	0	303	0	0	MECHAN	ICAL
1	462	0	462	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

ı	UNF	ACTORED REA	CTIONS
		1ST LCASE	MAX./MIN
	177	COMPINIED	CNIONA

	151 LUASE	IVIAX./I	MAX./MIN. COMPONENT REACTIONS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
Е	212	150 / 0	0/0	0/0	0/0	62 / 0	0/0		
Н	321	242 / 0	0/0	0/0	0/0	79 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHO	RDS		WEBS						
MAX.	FACTORED	FACTOR	ED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOA	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF	=) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	ГО		LENGTH	FR-TO			
A-B	0 / 44	-112.4 -	112.4	0.08 (1)	10.00	G-E	-16 / 0	0.00(1)	
B- C	-192 / 0	-112.4 -	112.4	0.03(1)	6.25	B-G	0 / 185	0.04(1)	
C-D	-185 / 0	-112.4 -	112.4	0.05 (1)	6.25	G-D	0 / 282	0.06(1)	
	-274 / 0	0.0	0.0	0.13(1)	7.81				
H-B	-442 / 0	0.0	0.0	0.04(1)	7.81				
H- G	0/0	-18.5	-18.5	0.02 (4)	10.00				
F- G	0 / 26	0.0	0.0	0.02 (1)	10.00				
G-C	-282 / 0	0.0		0.02 (1)					
F-E	0 / 15	-18.5	-18.5	0.03 (4)	10.00				

TOTAL WEIGHT = 2 X 35 = 70 lb **DESIGN CRITERIA**

Scale = 1:27.9

SPECIEIED I OADS

TOP	CH.	LL	=	32.5	PSF
		DL	==	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL.	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BU 9, NBCC 2015 BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.19")
CALCULATED VERT. DEFL. (LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

CSI: TC=0.13/1.00 (D-E:1) , BC=0.03/1.00 (E-F:4) , WB=0.06/1.00 (D-G:1) , SSI=0.08/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

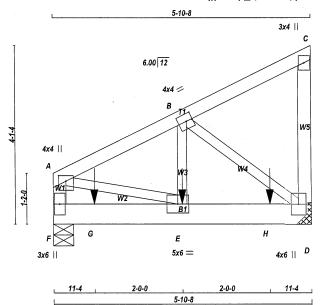
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.25 (B) (INPUT = 0.90) JSI METAL= 0.16 (B) (INPUT = 1.00)

JOB DESC. **BAYVIEW WELLINGTON** JOB NAME TRUSS NAME QUANTITY PLY DRWG NO. 423570 T60 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:22 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-o4SOUUp99yh4Vx3vuWlhD_YGmBJj0mDpwlGzgNz34XZ

TOTAL WEIGHT = 2 X 29 = 58 lb

Scale = 1:25.4

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
F - A	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEAS	ONED L	UMBER.		
	N. L. G. A. F CHORDS F - A A - C D - C F - D	N. L. G. A. RULES CHORDS SIZE F - A 2x4 A - C 2x4 D - C 2x4 F - D 2x6 ALL WEBS 2x3	N. L. G. A. RULES CHORDS SIZE F - A 2x4 DRY A - C 2x4 DRY D - C 2x4 DRY F - D 2x6 DRY	N. L. G. A. RULES CHORDS SIZE F - A 2x4 DRY No.2 A - C 2x4 DRY No.2 D - C 2x4 DRY No.2 F - D 2x6 DRY No.2 ALL WEBS 2x3 DRY No.2

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)				
TOP C	10RDS : (0.	122"X3") SPIRAL N	IAILS				
F- A	1	12	TOP				
A-C	1	12	TOP				
C-D	1	12	TOP				
BOTTO	M CHORDS	: (0.122"X3") SPIF	RAL NAILS				
F-D	2	12	SIDE(0.0)				
WEBS: (0.122"X3") SPIRAL NAILS							
2x3	· 1	6					

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.
REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

ı	PL/	ATES (table	is in inches)				
	JT	TYPE	PLATES	W	LEN	Υ	Х
ļ	Α	TMVW+p TMWW-t TMV+p	MT20	4.0	4.0	1.50	2.00
	В	TMWW-t	MT20	4.0	4.0	2.00	1.75
	С	TMV+p	MT20	3.0	4.0		
	D	BMVW1+p	MT20	4.0	6.0		

Structural component only DWG# T-2215256

DIMENSIONS SHIPPOPTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
DINILIASIONS, SUFFORTS	AND ECADINGS SPECIFIED BY LABRICATOR TO BE VEHILLED BY
BUILDING DESIGNER	
BUILDING DESIGNER	
DEADINGO	

EA	<u>IRINGS</u>						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REQRE
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG -
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
:	1106	0	1106	0	0	5-8	5-8
)	2052	0	2052	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	AIN. COMPO	VENT REACTION	1S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	768	586 / 0	0/0	0/0	0/0	181 / 0	0/0
D	1432	1048 / 0	0/0	0/0	0/0	384 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	CHORDS WEBS MAX. FACTORED MAX. FACTORED MB. FORCE VERT. LOAD LC1 MAX MAX. MEMB. FORCE MAX									
MEMB.	FC	RCE	VERT, LC	AD LC1	MAX	MAX.	MEME	. FORCE	MAX	
	(LE	3S)	(PI	_F) (CSI (LC)	UNBRA	C	(LBS)	CSI	(LC)
FR-TO	,	,	FROM	ΤΌ		LENGT	H FR-TC) ` ` `		. ,
F-A	-963 / (0	0.0	0.0	0.05 (1)	7.81	A-E	0 / 1125	0.14	(1)
		0	-112.4	-112.4	0.08 (1)	6.25	E-B	0/979	0.12	(1)
B- C	-15/	0	-112.4	-112.4	0.07 (1)	6.25	B- D	-1368 / 0	0.16	(1)
D- C	-133 /	0	0.0	0.0	0.02 (1)	7.81				
F-G	0/	0	-18.5	-18.5	0.11(1)	10.00				
G-E	0/	0	-18.5	-18.5	0.11 (1)	10.00				
E-H	0 /	1087	-18.5	-18.5	0.44 (1)	10.00				
H- D	0 /	1087	-18.5	-18.5	0.44 (1)	10.00				
SPECI	FIED CON	CENT	RATED LC	ADS (LI	3S)					
JT	LOC.	LC1	MAX-	MÀX	+ É	ACE	DIR.	TYPE	HEEL	CONN.
E	2-11-4	-253	-253	-	TO	P \	/ERT	TOTAL		C1
	11-4	-216	-216	-	TO	Ρ \	/ERT	TOTAL		C1
	4-11-4	-1191	-1191	-	FR	ONT \	/ERT	TOTAL		C1
l										

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN C	RITERIA

SFE	NLIED	LOAL	JO.		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.4	PSF
TOTA	AL LO	AD	=	45.9	PSF

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.08/1.00 (A-B:1) , BC=0.44/1.00 (D-E:1) , WB=0.16/1.00 (B-D:1) , SSI=0.36/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

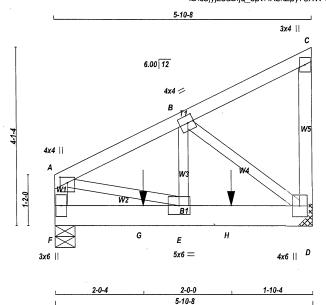
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 MT20

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.65 (A) (INPUT = 0.90) JSI METAL= 0.24 (D) (INPUT = 1.00)



JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
423570	T60	1	2	TRUSS DESC.		
Tamarack Roof Truss, Burlingto					Version 8.530 S Feb 23 2022 ID:c3jyj23uDijq 8pvRKbkZpy75XW-o4SOUUpS	MiTek Industries, Inc. Fri Jun 24 12:47:22 2022 Page 2 39yh4Vx3vuWIhD YGmBJi0mDowlGzaNz:34X7
					2,7,2,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7	, GSJESPWINZELVESTAL
PLATES (table is in inches) JT TYPE PLATES E BMWW-t MT20 F BMV1+p MT20	W LEN Y X 5.0 6.0 3.0 6.0					
NOTES- (1) 1) Lateral braces to be a minir	num of 2X4 SPF #2.					
·						
ED PROFES	SSIONALENCE			·		
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	SSIONAL ENGINE 24-22 . ALVES SO0024					
	OF ONTARIO					
					DE\	IEWED
Structural com DWG# T-221	5256				KEV	

JOB DESC. TRUSS NAME QUANTITY JOB NAME PLY **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 423570 T60Z

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:22 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-o4SOUUp99yh4Vx3vuWlhD_YGoBMq0mqpwlGzgNz34XZ

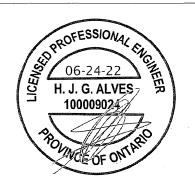
TOTAL WEIGHT = 2 X 29 = 58 lb

Scale = 1:25.4

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
F - A	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONEDI	UMBER		

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS	SURFACE	LOAD(PLF)
	SPACING (IN)	
TOP CHORDS: (0.1)	22"X3") SPIRAL NAILS	
F- A 1	12	TOP
A- C 1	12	TOP
C-D 1	12	TOP
BOTTOM CHORDS:	(0.122"X3") SPIRAL NAILS	
F- D 2	12	SIDE(0.0)
WEBS: (0.122"X3")	SPIRAL NAILS	
00		


NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE

PL/	ATES (table	is in inches)				
JT	TYPE	PLATES	w	LEN	Υ	X
A	TMVW+p	MT20	4.0	4.0	1.50	2.00
В	TMWW-t	MT20	4.0	4.0	2.00	1.75
С	TMV+p	MT20	3.0	4.0		
D	BMVW1+p	MT20	4.0	6.0		

Structural component only DWG# T-2215257

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTOR	ED	MAXIMUN	/ FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	1296	0	1296	0	0	5-8	5-8
D	1349	0	1349	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO				
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	904	664 / 0	0/0	0/0	0/0	240 / 0	0/0
D	941	692/0	0/0	0/0	0/0	249 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

DITION OF THE STREET OF MAX. PURLIN SPACING = 6.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT. OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS	ED FACTO	BED			W E	EBS MAX. FACT	ORED	
MEMB.	FORC	E VERT. LO	DAD LC1	MAX CSI (LC)	MAX. UNBRA				
FR-TO	(200)	FROM			LENGT			00. (20)
F-A	-1095 / 0	0.0	0.0	0.06(1)	7.81	A- E	0 / 1302	0.16	(1)
A-B	-1393 / 0	-112.4	-112.4	0.08(1)	6.25	E-B	0 / 1198	0.15	(1)
B- C	-14/0	-112.4	-112.4	0.07(1)	6.25	B- D	-1584 / 0	0.19	(1)
D- C	-134 / 0	0.0	0.0	0.02 (1)	7.81				
- 0	0.40	40.5	40.5	0 4 4 (4)	40.00				
F- G	0/0			0.14 (1)					
G-E	0/0			0.14 (1)					
E- H	0 / 125			0.24 (1)					
H- D	0 / 125	9 -18.5	-18.5	0.24 (1)	10.00				
SPECIF	FIED CONCE	NTRATED LO	DADS (LE	3S)					
JT		LC1 MAX-			ACE	DIR.	TYPE	HEEL	CONN.
G			-			ERT	TOTAL		C1
H		-653 -653				ERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA SPECIFIED LOADS

01 LC	111111111111111111111111111111111111111	LOAL	JU.		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PSI
TOTA	1 10	AΠ		45.9	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 PART 9 OF OBC 2012 (2019 AMENDMENT)
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.20") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.01") ALLOWABLE DEFL.(TL) = L/360 (0.20") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.02")

CSI: TC=0.08/1.00 (A-B:1) , BC=0.24/1.00 (D-E:1) , WB=0.19/1.00 (B-D:1) , SSI=0.26/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

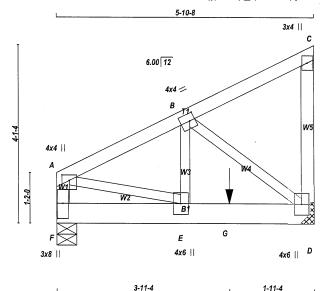
NAIL VALUES

ALUES
GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (B) (INPUT = 0.90) JSI METAL= 0.28 (D) (INPUT = 1.00)



JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON		DRWG NO.
423570	T60Z	1.	2	TRUSS DESC.			·
Tamarack Roof Truss, Burlington					Version 8.530 S I	Feb 23 2022 MiT	Tek Industries, Inc. Fri Jun 24 12:47:22 2022 Page : h4Vx3vuWlhD YGoBMq0mqpwlGzgNz34X.
					ID.COJYJZOUDIJQ ODVRNOKZDY/OAVV-C	14300001999	114 VX3 VUVVIIID TGOBINGOMQDWIGZGNZ34X.
PLATES (table is in inches) JT TYPE PLATES V E BMWW-t MT20 5 F BMV1+p MT20 3	V LEN Y X 5.0 6.0 8.0 6.0						
F BMV1+p M120 3	3.0 6.0						
NOTES- (1) 1) Lateral braces to be a minimul	m of 2X4 SPF #2.						
	•						
	**			•			
	-						
ROFESS	IONAL						
W. C. C.	TEE!						
PROFESS 100009 H. J. G. A 100009	1-22						
의 H. J. G. /	ALVES 7						
100009	10/4/)						
13/1							,
Roynold	EONTAIN						
N S S S S S S S S S S S S S S S S S S S							
Structural comp DWG# T-22152	onent only						IEWED
DWG# 1-22152	25/	1				- 🚺	

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423572 T60Z7 TRUSS DESC

Tamarack Roof Truss, Burlington

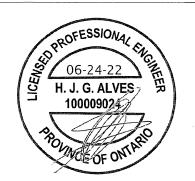
Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:56:36 2022 Page 1 $ID: c3jyj23uDijq_8pvRKbkZpy75XW-afxpmwWghAUTz4PNLsEbgpVx0WNdpJRMJxTH7Fz34OvRMsPVx0WNdpJRMsPVx0WNdpJRMJxTH7Fz34OvRMsPVx0WNdpJRMsPVx0WNdpWpx0WNdpJRMsPVx0WNdpJRMsPVx0WNdpJRMsPVx0WNdpJRMsPVx0WNdpJ$

Scale = 1:25.4

N. L. G. A. RULES DESCR. SPF SPF SIZE 2x4 CHORDS LUMBER No.2 No.2 DRY A C C D 2x4 DRY 2x4 DRY No.2 SPF SPF ALL WEBS 2x3 DRY No 2 SPE DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	IORDS: (0.1	22"X3") SPIRAL NAILS	
F-A	1	12	TOP
-A- C	1	12	TOP
C-D	1	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
F- D	2	12	SIDE(58.0)
WEBS:	(0.122"X3")	SPIRAL NAILS	` '
2x3	1 1	6	


NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х			
Α	TMVW+p	MT20	4.0	4.0	1.50	2.00			
В	TMWW-t	MT20	4.0	4.0	2.00	1.50			
С	TMV+p	MT20	3.0	4.0					
D	BMVW1+p	MT20	4.0	6.0					

Structural component only DWG# T-2215260

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRIC	CATOR TO BE VERIFIED BY
BUILDING DESIGNER	or the second se
BUILDING DESIGNER	
DEADINGO	

5-10-8

BEA	HINGS						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	1329	0	1329	0	0	5-8	5-8
D	1841	0	1841	0	0	MECHAN	IICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	151 LUASE	MAX./	<u>MIN. COMPOR</u>	VENT REACTION	4S			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
F	929	670 / 0	0/0	0/0	0/0	259 / 0	0/0	
D	1286	935 / 0	0/0	0/0	0/0	350 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS				WE	BS		
MAX	. FACTORED	FACTORED				MAX. FACT	ORED	
MEMB.	FORCE	VERT. LOAD LO	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRA	С	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGT	H FR-TO	. ,	,	,
F- A	-1274 / 0	0.0 0.0	0.07(1)	7.81	A-E	0 / 1541	0.19	(1)
A-B	-1653 / 0	-112.4 -112.4	0.07(1)	6.25	E-B	0 / 1495	0.18	
B- C	-13 / 0	-112.4 -112.4	0.06 (1)	6.25	B- D	-1875 / 0	0.22	
D- C	-136 / 0	0.0 0.0	0.02 (1)	7.81				` '
F-E	0/0	-134.4 -134.4	0.15 (1)	10.00				
E-G	0 / 1491	-134.4 -134.4						
G-D	0 / 1491	-18.5 -18.5						
SPECIF	IED CONCENT	RATED LOADS (L	BS)					
CTC	100	1 1447	, , -	• • •	010	T) (D.C.		

MAX--1356 MAX+ FACE DIR TYPE HEEL CONN. JT G -1356 FRONT VERT TOTAL

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 29 = 58 lb

DESIGN CRITERIA

OF EC	MEIED	LUA	JO.		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
				7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

GIRDER TYPE: CStdGirder START DISTANCE = 0-0
START SPAN CARRIED = 5-10-8
END DISTANCE = 3-11-4
END SPAN CARRIED = 5-10-8
END WALL WIDTH = 4-0
APPLIED TO FRONT SIDE OF BOTTOM CHORD. ADDT'L LOADS BASED ON 55 % OF GSL.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

- THIS DESIGN COMPLIES WITH:
 PART 9 OF BCBC 2018 , ABC 2019
 PART 9 OF OBC 2012 (2019 AMENDMENT)
 CSA 086-14
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.20") CALCUIATED VERT. DEFL.(LL) = L/ 999 (0.02") ALLOWABLE DEFL.(TL) = L/360 (0.20") CALCUIATED VERT. DEFL.(TL) = L/ 999 (0.03")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.49/1.00 (D-E:1) , WB=0.22/1.00 (B-D:1) , SSI=0.51/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

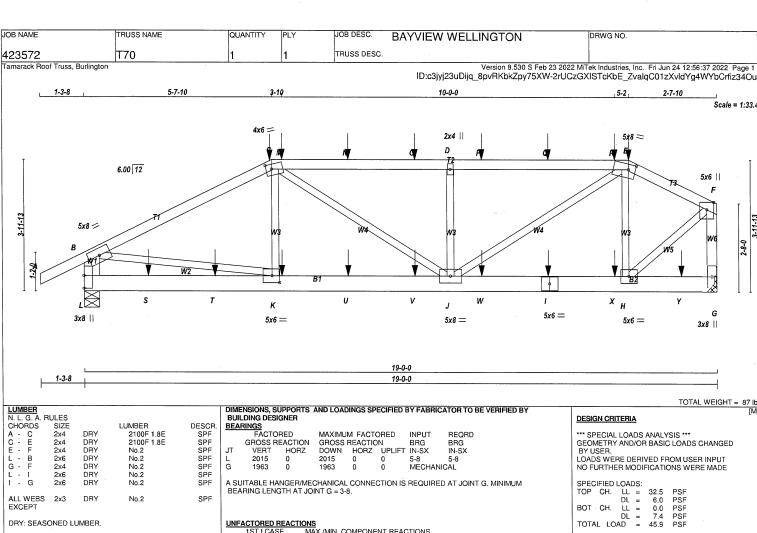
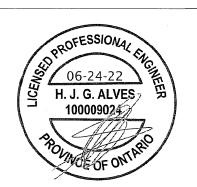

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (A) (INPUT = 0.90) JSI METAL= 0.34 (D) (INPUT = 1.00)


JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
423572	T60Z7	1	2	TRUSS DESC.		
Tamarack Roof Truss, Burlington					Version 8.530 S Feb 23 2022 N ID:c3jyj23uDijq 8pvRKbkZpy75XW-afxpmwWgh/	AITEK Industries, Inc. Fri Jun 24 12:56:36 2022 Page 2
						O. 2 n NESCOSE VAUVINAPARINIST I I F 2340V
E BMWW+t MT20 4.0 F BMV1+p MT20 3.0	LEN Y X 0 6.0 0 8.0 4.25 1.50					-
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.					
				•		
					•	
•						
•						
+					,	
-						
PROFESSION 06-24 H. J. G. A 1000090	ONAL ENG.					
H. J. G. A 1000090	LVES EN					
POLYCETOR						
Structural compo DWG# T-22152	60		· · · · · · · · · · · · · · · · · · ·		REV	IEWED

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Χ					
В	TMVW-t	MT20	5.0	8.0							
С	TTWW-m	MT20	4.0	6.0	1.75	2.00					
D	TMW+w	MT20	2.0	4.0							
Ε	TTWW-m	MT20	5.0	8.0	2.00	2.50					
F	TMVW+p	MT20	5.0	6.0	Edge						
G	BMV1+p	MT20	3.0	8.0							
Н	BMWW-t	MT20	5.0	6.0							
i	BS-t	MT20	5.0	6.0							
J	BMWWW-t	MT20	5.0	8.0							
K	BMWW-t	MT20	5.0	6.0	2.50	2.75					
L	BMV1+p	MT20	3.0	8.0	4.50						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215261

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	IS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
L	1408	1021 / 0	0/0	.0/0	0/0	387 / 0	0/0
G	. 1371	998 / 0	0/0	0/0	0/0	373 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.14 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

ı		20,100,100	-0. (1)								
	СН	ORDS						W F	BS		
		C. FACTORI	ED EA	CTORED				•••	MAX. FAC	TORED	
ı	MEMB.	FOR		T. LOAD LO	1 MA	X M	AX.	MEMB.			
ı	WILLWID.	(LBS)		(PLF)			NBRAC		(LBS)	CSI (I	C
ı	FR-TO	(200)		OT MC	001 (ENGTH			001 (1	_0,
į	A- B	0/34		12.4 -112.4	1 0 11		10.00	K- C	-142 / 103	0.04	(4)
	B- C	-2605 / 0		12.4 -112.4			4.49	C-J	0 / 470	0.12	
	C- M	-2715 / 0		12.4 -112.			4.49		-1090 / 0	0.12	
ı	M- N	-2715 / 0		12.4 -112.			4.14	J- E	0 / 1671		
	N- O	-2715 / 0		12.4 -112.			4.14	H- E			
	0- D	-2715 / 0		12.4 -112.			4.14	п- с В- К	0 / 2350	0.23	
	D- P	-2715/0		12.4 -112.			4.14	H-F	0 / 2350		
	P- Q	-2715/0		12.4 -112.				п- г	0 / 1 / 6 1	0.44	(1)
	Q-R	-2715/0					4.14				
				12.4 -112.			4.14				
	R-E E-F	-2715 / 0 -1517 / 0		12.4 -112.			4.14				
			-1	12.4 -112.			5.11				
	L-B	-1951 / 0			0.14		7.17				
	G-F	-1955 / 0		0.0 0.	0 0.27	7 (1)	5.97				
	L-S	0/0		105 10	- 040	2 (4)	40.00				
	S- T	0/0			5 0.10		10.00				
	T- K				5 0.10		10.00				
		0/0			5 0.10		10.00				
	K- U U- V	0 / 23			5 0.37		10.00				
	V- J	0 / 23			5 0.37		10.00				
		0 / 23			5 0.37		10.00				
	J- W	0 / 13			5 0.24		10.00				
	W-I	0 / 13:			5 0.24		10.00				
	I-X	0 / 13			5 0.24		10.00				
	X- H	0 / 13:			5 0.24		10.00				
	H-Y	0/0			5 0.0		10.00				
	Y- G	0/0	-	18.5 -18.	5 0.0	/ (4)	10.00				
	CDEO		CAITDATE	D 1 O 1 D 0	1.00						
	JT	FIED CONC LOC.							T) (D.E.		00111
					X+	FAC		DIR.	TYPE	HEEL	CONN.
	C	5-7-10	-34	-34		FRO		RT	DEAD		C1
	C	5-11-4	-99	-99		BACK		RT	TOTAL		C1
	C	5-7-10		-181		FRO		RT	SNOW		C1
	E	16-4-6		-109		FRO		RT	SNOW		C1
		13-11-4	-14	-14		BAC		RT	TOTAL		C1
	K	5-11-4	-14	-14		BAC		ERT	TOTAL		C1 '
	N	7-11-4	-72	-72		BAC		RT	TOTAL		C1 \
	0	9-11-4	-72	-72		BACH		RT	TOTAL		C1
	Ρ.	11-11-4	-72	-72		BAC	VE	RT	TOTAL		C1

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

*** NON STANDARD GIRDER ***
ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018, ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.63")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.08")
ALLOWABLE DEFL.(TL) = L/360 (0.63")
CALCULATED VERT. DEFL.(TL) = L/999 (0.13")

CSI: TC=0.67/1.00 (C-D:1) , BC=0.37/1.00 (J-K:1) , WB=0.58/1.00 (B-K:1) , SSI=0.48/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (C) (INPUT = 0.90) JSI METAL= 0.66 (C) (INPUT = 1.00

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. BA	YVIEW WE	LLINGTON	DRWG NO.
423572	T70	1	1	TRUSS DESC.			
Tamarack Roof Truss, Burl	lington				ID:c3ivi23uDi	Version 8.530 S F ig 8pvRKbkZpv75	Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:56:37 2022 Par 5XW-2rUCzGXISTcKbE ZvalqC01zXvldYg4WYbCrfiz3
		SPECIFIED CC JT LOC. Q 13-11-4 R 15-11-4 S 1-11-4 T 3-11-4 U 7-11-4 V 9-11-4 W 11-11-4 X 15-11-4 Y 17-11-4	-72 -94 -14 -14 -14 -14 -14	LOADS (LBS) X- MAX+ FACE 94 BACK 14 BACK	DIR. TYPE VERT TOTAL	L 01 L 01 L 01 L 01 L 01 L 01 L 01	
		CONNECTION	REQUIREMENT	<u> </u>			
		1) C1: A SUI	TABLE HANGE	R/MECHANICAL CONNEC	CTION IS REQUIRE	ED.	

Structural component only DWG# T-2215261

REVIEWED

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423566 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:35:34 2022 Page 1 $ID:nILGo_NjgYcxML5PtcHS2Qy6REy-KidqmT6IVDM7nfV2dhQEiL1rpQP09FqqUQfW7kz3\acute{6}Tidalication and the control of th$ 9-4-8 9-4-8 Scale = 1:34.0 4x4 =F 2x4 || 2x4 || 6.00 12 ח 2x4 || 2x4 || G T1 2x4 || 2x4 || ξ. XXXXXXXXX ٥ 0 N М K T 3x4 / 2x4 || 2x4 || 3x8 = 3x4 < 2x4 || 2x4 || 2x4 || 2x4 || 2x4 || 18-9-0 0₁₈ 18-8-0 <u>0₁8</u> TOTAL WEIGHT = 57 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER DESIGN CRITERIA LUMBER DESCR BEARINGS FACTORED SPF SPF SPF 2x4 2x4 No.2 No.2 DRY MAXIMUM FACTORED REQRE SPECIFIED LOADS DRY GROSS REACTION LL = DL = LL = 32.5 6.0 PSF PSF GROSS REACTION BRG BRG TOP CH. 2x4 No.2 VERT HORZ DOWN HORZ UPLIFT IN-SX IN-SX 18-8-0 (6-8-4)8-8-0 DRY SPF BOT CH. 0.0 PSF 159 159 0 18-8-0 (6-8-4 18-8-0 DI 18-8-0 (6-8-4)8-8-0 18-8-0 (6-8-4)8-8-0 18-8-0 (6-8-4)8-8-0 ALL WEBS 2x3 DRY No.2 SPF 283 283 0 TOTAL LOAD 310 186 DRY: SEASONED LUMBER SPACING = 186 0 24.0 IN. C/C 18-8-0 (6-8-4) 8-8-0 18-8-0 (6-8-4) 8-8-0 Q M K J 425 425 ٥ 310 186 THIS TRUSS IS DESIGNED FOR RESIDENTIAL 0 18-8-0 (6-8-4 18-8-0 186 OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES ō 425 425 18-8-0 (6-8-4 18-8-0 w LEN Y TRM1-h MT20 3.0 4.0 VALUE IN PARENTHESIS INDICATES EFFECTIVE BEARING LENGTH THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) TMW+w MT20 2.0 4.0 TTW-p 4.0 MT20 4.0 UNFACTORED REACTIONS CSA 086-14 TBM1-r MT20 3.0 ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE V MAX - TPIC 2014 J. K. M. N. O. P. Q SNOW COMBINED WIND DEAL MT20 80 / 0 80 / 0 BMW1+w 20 40 0/0 0/0 0/0 31 / 0 31 / 0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. BS-t 0/0 0/0 0/0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED NOPOZKJ 199 136 / 0 0/0 0/0 0/0 63 / 0 0/0 ROOF LIVE LOAD 156 / 0 92 / 0 0/0 0/0 217 NOTES-0/0 0/0 39 / 0 1) Lateral braces to be a minimum of 2X4 SPF #2. CSI: TC=0.12/1.00 (B-S:1) , BC=0.10/1.00 (Q-R:1) , WB=0.08/1.00 (E-N:1) , SSI=0.12/1.00 (B-S:1) 298 210 / 0 0/0 0/0 0/0 88 / 0 0/0 0/0 0/0 0/0 217 156 / 0 0/0 0/0 61 / 0 39 / 0 0/0 210/0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 0/0 0/0 88 / 0 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, I, N, O, P, Q, M, K, J COMPANION LIVE LOAD FACTOR = 1.00 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. <u>LOADING</u> TOTAL LOAD CASES: (4) NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) CHORDS MAX. FACTORED WEBS MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 FACTORED MAX. FACTORED MT20 FORCE VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH MAX. MEMB. MEMB (LBS) CSI (LC) (LBS) PLATE PLACEMENT TOL. = 0.250 inches FR-TO LENGTH FR-TO -112.4 -112.4 0.05 (1) -112.4 -112.4 0.12 (1) -112.4 -112.4 0.12 (1) N- E O- D P- C 0 / 34 0 / 70 A- S S- B B- C C- D D- E E- F F- G PLATE ROTATION TOL. = 5.0 Deg. 0.06 (1) 0.03 (1) 0.04 (1) 0.06 (1) -264 / 0 0 / 52 JSI GRIP= 0.39 (E) (INPUT = 0.90) JSI METAL= 0.13 (H) (INPUT = 1.00) 10.00 -182 / 0 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 Q-B M-F K-G 0.08 10.00 -309 / 0 -264 / 0 0 / 76 PROFESSIONAL ENGINEERS H. J. G. ALVES 7 0.08 (1) 0 / 65 0 / 76 10.00 -182 / 0 0.03(1) -309 / 0 -95 / 3 0.04 (1) 0.00 (1) -112.4 -112.4 0.08 (1) 10.00 J- H G- H H- U 0/52 -112.4 -112.4 -112.4 -112.4 0.12 (1) 0.12 (1) 10.00 T- U -95/3 0.00(1) U-I 0 / 34 -112.4 -112.4 0.05 (1) 10.00 -18.5 0.10 (1) -18.5 0.10 (1) -18.5 0.06 (1) -18.5 0.02 (4) A- R R- Q Q- P P- O N- M M- L L- K K- J -18.5 -18.5 6.25 6.25 6.25 6.25 -43 / 0 -58 / 0 100009024 -18.5 -18.5 -63 / 0 -68 / 0 -18.5 -18.5 0.02 (4) 6.25 6.25 6.25 6.25 POLYADE OF ONT ARIO -18.5 -18.5 -68 / 0 -18.5 0.02 (4) -18.5 0.02 (4) -18.5 0.02 (4) -63 / 0 -58 / 0 -18.5-18.5 0.06 (1) -18.5 0.10 (1) -18.5 0.10 (1) 6.25 6.25 -185 -43 / 0 -53 / 0 -18.5 6.25

REVIEWE

Structural component only

DWG# T-2215219

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423566 V2 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 10:35:35 2022 Page 1 ID:nlLGo_NjgYcxML5PtcHS2Qy6REy-puBD_p7NGXU_0p4EBPxTFZZzLqmqui0_j4O3fAz36T6 Tamarack Roof Truss, Burlington Scale = 1:24.9 4x4 =С 6.00 12 2x4 || D В 3x4 / 2x4 || 2x4 || 244 || 3x4 > 14-9-0 14-8-0 018

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
A - E	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	NEDI	IMPER		

PL/	ATES (table	is in inches)			
JT	TYPE	PLATES	W	LEN Y	Х
Α	TBM1-h	MT20	3.0	4.0	
В	TMW+w	MT20	2.0	4.0	
С	TTW-p	MT20	4.0	4.0	
D	TMW+w	MT20	2.0	4.0	
Ε	TBM1-h	MT20	3.0	4.0	
F, (3, H				
_	DMMM/1	MTOO	2.0	4.0	

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

BEA	BEARINGS									
	FACTO	RED	MAXIMU	MAXIMUM FACTORED			REQRD			
	GROSS R	REACTION	GROSS REACTION			BRG	BRG			
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX			
Α	148	0	148	0	0	14-8-0	14-8-0			
Е	148	0	148	0	0	14-8-0	14-8-0			
G	454	0	454	0	0	14-8-0	14-8-0			
Н	586	0	586	0	0	14-8-0	14-8-0			
F	586	0	586	0	0	14-8-0	14-8-0			

UNF	ACTORED RE	ACTIONS			
	1ST LCASE	MAX./	MIN. COMPON	ENT REACTION	NS.
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND
Α	103	74 / 0	0/0	0/0	0/0
E	103	74 / 0	0/0	0/0	0/0
G	321	212 / 0	0/0	0/0	0/0
Н	409	296 / 0	0/0	0/0	0/0
F	409	296 / 0	0/0	0/0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, E, G, H, F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.

WITH A SECTION OF THE PROPERTY OF THE PROP MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

DEAD

114 / 0

0/0 0/0 0/0 0/0 0/0

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS				W E		
	FACTORED	FACTORED				MAX. FACTO	ORED
MEMB.	FORCE	VERT. LOAD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO	, ,	
A- J	-16 / 6	-112.4 -112.4	0.06(1)	6.25	G-C	-388 / 0	0.08(1)
J- B	0 / 45	-112.4 -112.4	0.26 (1)	10.00	H-B	-492 / 0	0.07(1)
B- C	0 / 12	-112.4 -112.4	0.26 (1)	10.00	F- D	-492 / 0	0.07(1)
C-D	0 / 12	-112.4 -112.4	0.26 (1)	10.00	l- J	-39 / 6	0.00(1)
D-L	0 / 45	-112.4 -112.4	0.26 (1)	10.00	K-L	-39 / 6	0.00 (1)
L-E	-16 / 6	-112.4 -112.4					0.00 (.,
A-I	-12/0	-18.5 -18.5	0.05 (1)	6.25			
I- H	-10 / 1	-18.5 -18.5	0.06 (4)	6.25			
H- G	-23 / 0	-18.5 -18.5	0.06 (4)	6.25			
G-F	-23 / 0		0.06 (4)				
F-K	-10 / 1		0.06 (4)				
K-E	-12 / 0		0.05 (1)	6.25			

SPEC	SPECIFIED LOADS:								
TOP	CH.	LL	=	32.5	PSF				
		DL	=	6.0	PSF				
BOT	CH.	LL	=	0.0	PSF				
1		DL	=	7.4	PSF				
I TOTA	L LO	AD	=	45.9	PSF				

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 38 lb

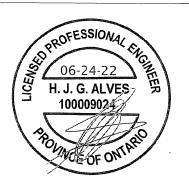
THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.26/1.00 (B-J:1) , BC=0.06/1.00 (G-H:4) , WB=0.08/1.00 (C-G:1) , SSI=0.19/1.00 (B-C:1)

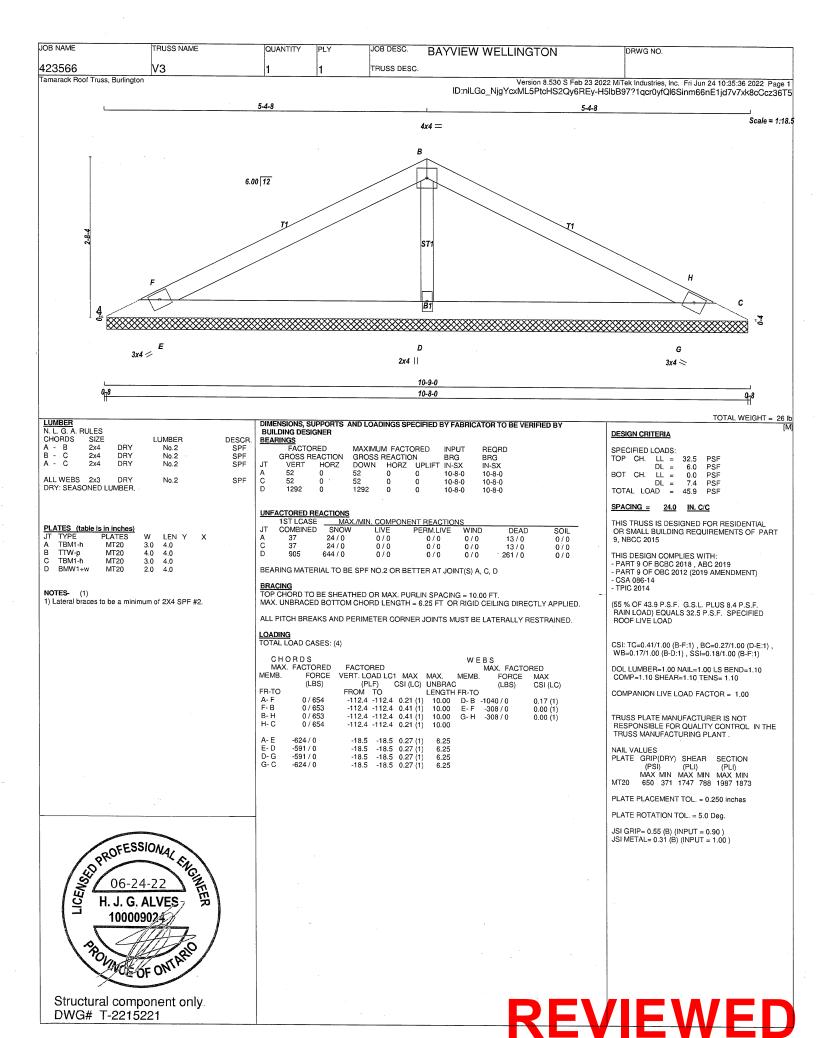
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.28 (D) (INPUT = 0.90) JSI METAL= 0.20 (D) (INPUT = 1.00)

Structural component only DWG# T-2215220

REVIEW

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423569 V30 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 11:18:10 2022 Page 1 ID:Hno6n9pbKkKbPe?OcaGR33y683q-VR36DS22ZYOTQSvHMVHdlMuflmnk1G92E4plraz35rB 4-5-15 4x6 || Scale = 1:24.9 С 10.00 12 2x4 || J1 D L Ε 4.

,					
LUMBER					
N. L. G. A.	RULES				
CHORDS	SIZE		LUMBER	DESCR.	
A - C	2x4	DRY	No.2	SPF	Ι.
C - E	2x4	DRY	No.2	SPF	
A - E	2x4	DRY	No.2	SPF	١.
					١.
ALL WEBS		DRY	No.2	SPF	
DRY: SEA	SONED L	UMBER.			

PL/	PLATES (table is in inches)									
JΤ	TYPE	PLATES	W	LEN	Υ	Х				
Α	TBM1-h	MT20	3.0	4.0						
В	TMW+w	MT20	2.0	4.0						
С	TTW+p	MT20	4.0	6.0	Edge					
D	TMW+w	MT20	2.0	4.0	-					
Ε	TBM1-h	MT20	3.0	4.0						
	3, H									
F	BMW1+w	MT20	2.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Г	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
ı	BUILDING DESIGNER

2x4 ||

8-11-14 8-11-4 2x4 ||

<u>BEA</u>	<u>BEARINGS</u>								
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD			
	GROSS R	EACTION	GROSS	GROSS REACTION			BRG		
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX		
Α	123	0	123	0	0	8-11-4	8-11-4		
Ε	123	0	123	0	0	8-11-4	8-11-4		
G	213	0	213	0	0	8-11-4	8-11-4		
Н	356	0	356	0	0	8-11-4	8-11-4		
F	356	0	356	0	0	8-11-4	8-11-4		

2x4 ||

UNF	UNFACTORED REACTIONS								
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS				
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
Α	86	63 / 0	0/0	0/0	0/0	23 / 0	0/0		
Е	86	63 / 0	0/0	0/0	0/0	23 / 0	0/0		
G	151	98 / 0	0/0	0/0	0/0	52 / 0	0/0		
Н	` 249	178 / 0	0/0	0/0	0/0	71 / 0	0/0		
F	249	178 / 0	0/0	0/0	0/0	71 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, E, G, H, F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

3x4 //

LOADING TOTAL LOAD CASES: (4)

	RDS					WE		
	FACTORED	FACTORE					MAX. FACTO	ORED
MEMB.	FORCE	VERT. LOAD			MAX.			MAX
	(LBS)			CSI (LC)			(LBS)	CSI (LC)
FR-TO		FROM TO			LENGTH			
A- J	-13 / 2	-112.4 -11				G-C	-203 / 0	0.04(1)
J- B	0 / 27	-112.4 -11	2.4	0.09(1)	10.00	H- B	-274 / 0	0.04 (1)
B- C	0/8	-112.4 -11	2.4	0.08(1)	10.00	F- D	-274 / 0	0.04 (1)
C- D	0/8	-112.4 -11	2.4	0.08(1)	10.00	I- J	-66 / 2	0.00 (1)
D- L	0 / 27	-112.4 -11	2.4	0.09(1)	10.00	K-L	-66 / 2	0.00 (1)
L-E	-13 / 2	-112.4 -11	2.4	0.02 (1)	6.25			(-)
A- I	-11/0	-18.5 -1	2.5	0.05 (1)	6.25			
i- H	-6/0			0.05 (1)				
H- G	-15/0	-18.5 -1			6.25			
G-F	-15/0	-18.5 -1						
F-K	-6/0	-18.5 -1						
K- È	-11/0			0.05 (1)	6.25			
1	-11/0	-10.5 -1	0.5	0.05(1)	6.25			

DESIGN CRITERIA

к

3x4 <>

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LŁ	=	0.0	PSF
		DL		7.4	PSF
TOTA	AL LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 27 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.09/1.00 (D-L:1) , BC=0.05/1.00 (E-K:1) , WB=0.04/1.00 (C-G:1) , SSI=0.09/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.20 (B) (INPUT = 0.90) JSI METAL= 0.15 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423569 V31 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 11:18:11 2022 Page 1 ID:Hno6n9pbKkKbPe?OcaGR33y683q-zddURo2gKsWK2cUUwCosrZQpCA6qmhpCTkYJN0z35rA Tamarack Roof Truss, Burlington 3-3-8 4x6 || Scale = 1:19. В 10.00 12 Н 0,4 <u>.4</u> D 3x4 // 2x4 || 3x4 📎 6-7-1

LUMBER	LUMBER								
N. L. G. A. R	N. L. G. A. RULES								
CHORDS	SIZE		LUMBER	DESCR.					
A - B	2x4	DRY	No.2	SPF					
B - C	2x4	DRY	No.2	SPF					
A - C	2x4	DRY	No.2	SPF					
ALL WEBS DRY: SEASO	2x3 ONED L	DRY UMBER.	No.2	SPF					

PL/	ATES (table	is in inches)				
JΤ	TYPE	PLATES	W	LEN	Υ	Х
Α	TBM1-h	MT20	3.0	4.0		
В	TTW+p	MT20	4.0	6.0	Edge	
С	TBM1-h	MT20	3.0	4.0		
D	BMW1+w	MT20	2.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DEADINGS	

BEAL	<u>rings</u>						
	FACTOR	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	EACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Α	91	0	91	0	0	6-6-7	6-6-7
С	91	0	91	0	0	6-6-7	6-6-7
D	674	0	674	0	0	6-6-7	6-6-7

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Α	63	46 / 0	0/0	0/0	0/0	17/0	0/0
C	63	46 / 0	0/0	0/0	0/0	17/0	0/0
D	473	332 / 0	0/0	0/0	0/0	141 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, C, D

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 10.00 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 6.25 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

<u>LOADING</u> TOTAL LOAD CASES: (4)

CHC	RDS			WEBS			
MAX.	FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC	I MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO	, -/	(/
A-F	0 / 175	-112.4 -112.4	0.06 (1)	10.00	D-B	-497 / 0	0.08(1)
F-B	0 / 169	-112.4 -112.4	0.14 (1)	10.00	E-F	-198 / 0	0.00 (1)
B- H	0 / 169	-112.4 -112.4	0.14(1)	10.00	G- H	-198 / 0	0.00(1)
H- C	0 / 175	-112.4 -112.4	0.06 (1)	10.00			()
A- E	-166 / 0		0.12 (1)	6.25			
E- D	-135 / 0	-18.5 -18.5	0.12 (1)	6.25			
D- G	-135 / 0	-18.5 -18.5	0.12 (1)	6.25			
G-C	-166 / 0	-18.5 -18.5	0.12 (1)	6.25			

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	u lo	ΔD	_	45.9	PSE

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 18 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

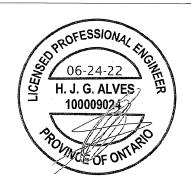
- CSA 086-14 - TPIC 2014

0/0

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.14/1.00 (B-H:1) , BC=0.12/1.00 (D-G:1) , WB=0.08/1.00 (B-D:1) , SSI=0.11/1.00 (C-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10


COMPANION LIVE LOAD FACTOR = 1.00

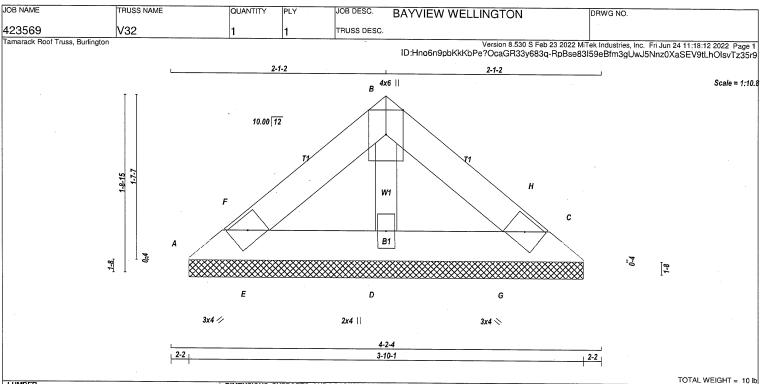

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.25 (D) (INPUT = 0.90) JSI METAL= 0.10 (D) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - C	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEAS(ONED L	UMBER.		

PL	ATES (table					
JΤ	TYPE	PLATES	W	LEN	Υ	Х
Α	TBM1-h	MT20	3.0	4.0		
В	TTW+p	MT20	4.0	6.0	Edge	
С	TBM1-h	MT20	3.0	4.0		
D	RMW1+w	MT20	2.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DEADIMOS	

<u>BEA</u>	<u>RINGS</u>						
	FACTO	RED	MAXIMUI	MAXIMUM FACTORED			REORD
	GROSS R	GROSS REACTION			BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Α	86	0	86	0	0	3-10-1	3-10-1
С	86	0	86	0	0	3-10-1	3-10-1
D	330	0	330	0	0	3-10-1	3-10-1

UNFACTORED REA	CTIONS
1ST LCASE	MAX

	131 LUMSE	IVIAA./IV	IIIN. COIVIPOI	VENT REACTION	V 5		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Α	60	44 / 0	0/0	0/0	0/0	17/0	0/0
С	60	44 / 0	0/0	0/0	0/0	17 / 0	0/0
D	232	162 / 0	0/0	0/0	0/0	70 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, C, D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS		WEBS						
MAX.	FACTORED	FACTORED					MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD I	.C1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	С	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM TO			LENGTH	FR-TO	,	(,	
A-F	0 / 36	-112.4 -112	.4	0.02(1)	10.00	D-B	-197 / 0	0.03(1)	
F-B	0 / 43	-112.4 -112	.4	0.04(1)	10.00	E-F	-96 / 0	0.00 (1)	
B- H	0 / 43	-112.4 -112	.4	0.04(1)	10.00	G-H	-96 / 0	0.00 (1)	
H- C	0 / 36	-112.4 -112	.4	0.02(1)	10.00			,	
A- E	-44 / 0	-18.5 -18	.5	0.05(1)	6.25				
E- D	-32 / 0	-18.5 -18	.5	0.05(1)	6.25				
D- G	-32 / 0	-18.5 -18	.5	0.05(1)	6.25				
G-C	-44 / 0	-18.5 -18	.5	0.05(1)	6.25				

DESIGN CRITERIA

SPECIFIED LOADS:										
TOP	CH.	LL	=	32.5	PSF					
		DL	=	6.0	PSF					
BOT	CH.	LL	=	0.0	PSF					
		DL	=	7.4	PSF					
TOTA	TOTAL LOAD 450 DOS									

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.04/1.00 (B-H:1) , BC=0.05/1.00 (D-E:1) , WB=0.03/1.00 (B-D:1) , SSI=0.05/1.00 (D-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

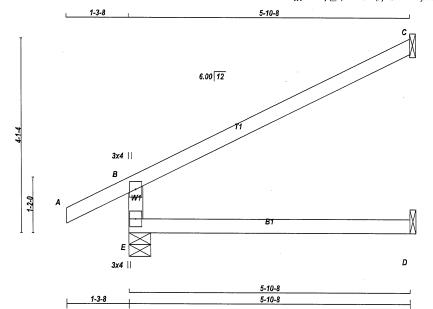
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.10 (D) (INPUT = 0.90) JSI METAL= 0.04 (D) (INPUT = 1.00)



Structural component only DWG# T-2215231

REVIEW

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC 423564 J1 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:25 2022 Page 1

ID:c3jyj23uDijq_8pvRKbkZpy75XW-v4ylYITOoXB1PH1Xzu3Uyanuu7021z80EV9yL2z36bi

TOTAL WEIGHT = 9 X 17 = 151 lb

Scale = 1:23.3

LUMBER	DESCR
No.2	SPF
No.2	SPF
No.2	SPF
	No.2 No.2

DRY: SEASONED LUMBER.

PLATES (table is in inches) JT TYPE PLATES B TMV+p MT20 E BMV1+p MT20 W LEN Y 3.0 40

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

DEA	<u>rings</u>						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS F	GROSS REACTION			BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Ε	629	0	629	0	0	5-8	5-8
0	248	0	248	0	0	1-8	1-8
0	45	0	50	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS

ļ		1ST LCASE	MAX./	<u>MIN. COMPO</u>	VENT REACTION	4S		
	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
	E	438	327 / 0	0/0	0/0	0/0	111 / 0	0/0
	С	170	143 / 0	0/0	0/0	0/0	26 / 0	0/0
	D	36	0/0	0/0	0/0	0/0	36 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	R D S FACTORED	FACTORED			W E	B S MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD L	.C1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM TO	. ,	LENGTH	FR-TO	. ,	, ,	
E-B	-565 / 0	0.0	.0 0.13 (4)	7.81				
A-B	0/34	-112.4 -112	.4 0.15 (1)	10.00				
B- C	-37 / 0	-112.4 -112	.4 0.66 (1)	6.25				
E-D	0/0	-18.5 -18	.5 0.13 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = PSF PSF 32.5 LL = DL = 6.0 BOT CH 0.0 7.4 PSF = 7.4 = 45.9 TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.03")

CSI: TC=0.66/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.29/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

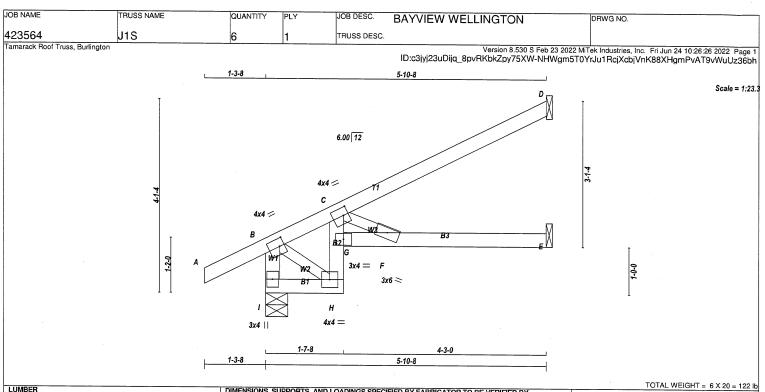

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.23 (E) (INPUT = 0.90) JSI METAL= 0.16 (B) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
I - B	2x4	DRY	No.2	SPF
A - D	2x4	DRY	No.2	SPF
I - H	2x4	DRY	No.2	SPF
H - C	2x4	DRY	No.2	SPF
G - E	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED L	UMBER.		

PL/	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Х						
В	TMVW-t	MT20	4.0	4.0	2.00	1.25						
С	TMVW-t	MT20	4.0	4.0	2.00	1.25						
F	BMW+w	MT20	3.0	6.0								
G	BVM-I	MT20	3.0	4.0								
Н	BMVW-t	MT20	4.0	4.0								
1	RMV/1+n	MTON	3 0	40								

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

.~	TIII GS						
	FACTO GROSS R	RED EACTION	MAXIMU GROSS		INPUT BRG	REQRD BRG	
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	555	0	555	0	0	5-8	5-8
	248	0	248	0	0	1-8	1-8
	119	0	119	0	0 .	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) D , E

ı	0111	ACTURED RE								
ı		1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS						
ı	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
ı	1	386	289 / 0	0/0	0/0	0/0	97 / 0	0/0		
ı	D	171	138 / 0	0/0	0/0	0/0	33 / 0	0/0		
ı	E	86	42/0	0/0	0/0	0/0	44 / 0	0/0		
BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I										

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

JT I D E

	RDS					W E	BS		
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
ИЕМВ.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(Pl	_F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
R-TO		FROM		` '	LENGTH	FR-TO	\/	()	
I- B	-541 / 0	0.0	0.0	0.05(1)	7.81	B- H	0 / 248	0.06(1)	
A- B	0/34	-112.4	-112.4	0.15(1)	10.00	C-F	-657 / 0	0.10(1)	
B- C	-273 / 0	-112.4	-112.4	0.14(1)	6.25			(-/	
C- D	0/4	-112.4	-112.4	0.37 (1)	10.00				
I- H	0/0	-18.5	-185	0.01 (4)	10.00				
	-111/0	0.0		0.29 (1)	7.81				
G- C	0 / 173	0.0		0.32 (1)	10.00				
Ğ- F	0 / 574			0.49 (1)					
F-E	0/0	-18.5		0.40 (1)					

DESIGN CRITERIA

SPECIFIED LOADS:									
TOP	CH.	LL	=	32.5	PSF				
				6.0	PSF				
BOT	CH.				PSF				
					PSF				
TOTA	L LO	AD	==	45.9	PSF				
	TOP BOT	TOP CH.	TOP CH. LL DL BOT CH. LL DL	TOP CH. LL = DL = BOT CH. LL = DL =	TOP CH. LL = 32.5 DL = 6.0 BOT CH. LL = 0.0 DL = 7.4				

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

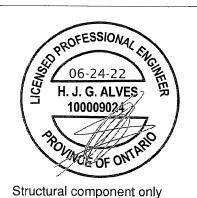
(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALCULATED VERT. DEFL.(LL) = L/ 853 (0.08") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL) = L/ 451 (0.16")

CSI: TC=0.37/1.00 (C-D:1) , BC=0.49/1.00 (F-G:1) , WB=0.10/1.00 (C-F:1) , SSI=0.28/1.00 (C-G:1)

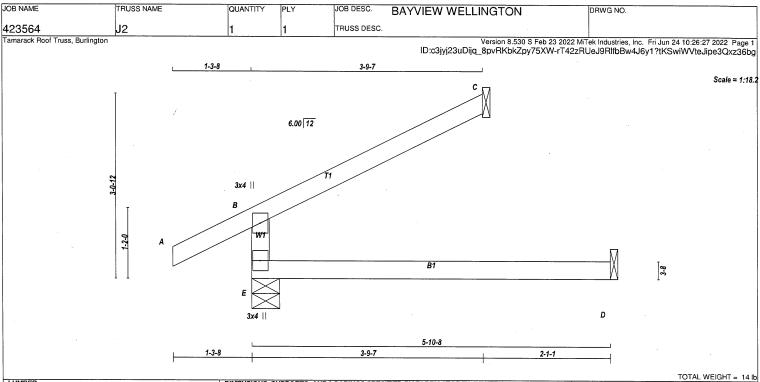
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.50 (C) (INPUT = 0.90) JSI METAL= 0.21 (G) (INPUT = 1.00)

DWG# T-2215174

REVIEWED

N. L. G. A. RULES DESCR SPF SPF CHORDS E - B LUMBER No.2 No.2 No.2 No.2 E - B A - C E - D DRY DRY 2x4 DRY SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 W LEN Y 3.0 4.0 BMV1+p 3.0 4.0

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DÉSIGNER

BEA	RINGS						
	FACTORED		MAXIMU	MAXIMUM FACTORED			REQRD
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	482	0	482	0	0	5-8	5-8
С	160	0	160	0	0	1-8	1-8
D	45	0	50	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS SNOW /MIN. COMPONENT REACTIONS LIVE 0/0 PERM.LIVE 0/0 COMBINED WIND DEAD SOIL ECD 0/0 96 / 0 17 / 0 0/0 109 92/0 0/0 0/0 0/0 0/0 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBR
FROM TO LENG
0.0 0.0 0.13 (4) 7.8
-112.4 -112.4 0.15 (1) 10.0 MAX. FACTORED MAX. FACTORED MEMB. FORCE MEMB. FORCE MAX (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) FR-TO LENGTH FR-TO E-B A-B B-C 0/34 10.00 -24 / 0 -112.4 -112.4 0.27 (1) E- D 0/0 -18.5 -18.5 0.13 (4) 10.00

DESIGN CRITERIA

SPECIFIED LOADS: 32.5 6.0 0.0 LL = DL = TOP CH. PSF BOT CH. LL PSF DI TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATEO VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03")

CSI: TC=0.27/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.19/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL I) (PL I) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

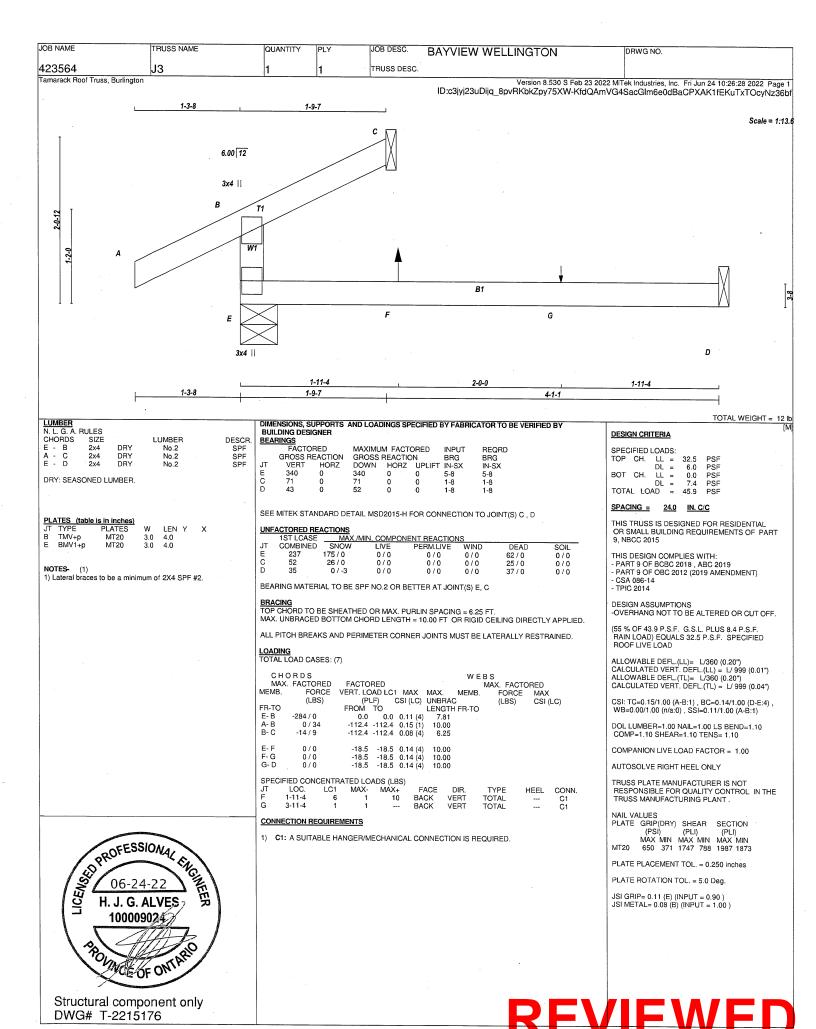
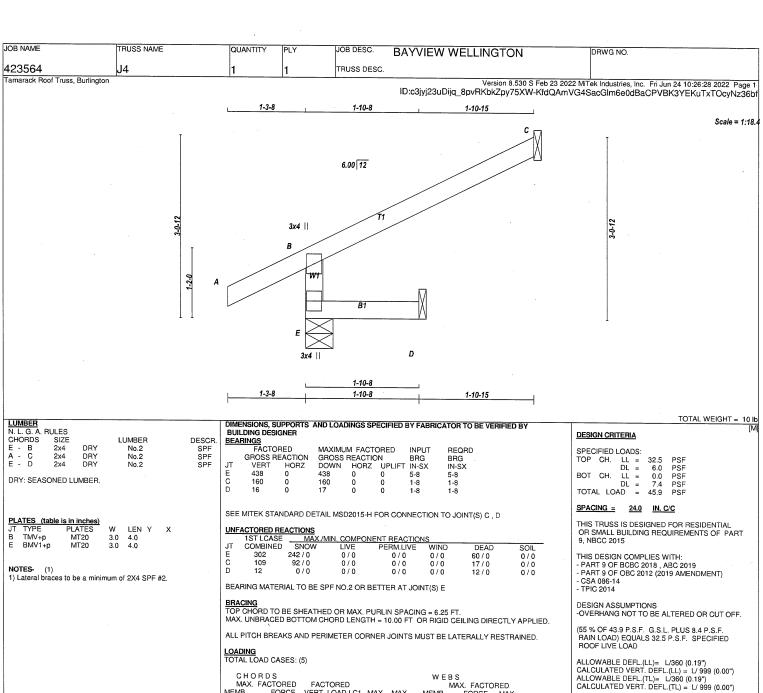

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg


JSI GRIP= 0.17 (E) (INPUT = 0.90) JSI METAL= 0.12 (B) (INPUT = 1.00)

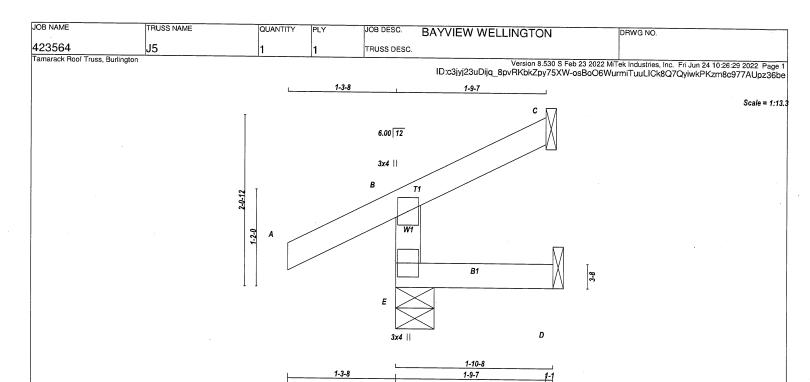
DWG# T-2215176

	R D S FACTORED	FACTO	RED			W E	B S MAX. FACTO	BED	
MEMB.	FORCE (LBS)	VERT. LO			MAX. UNBRAC	MEMB.	FORCE (LBS)	MAX CSI (LC)	
FR-TO E- B	-418 / 0	FROM	ΤΌ		LENGTH 7.81		(EBO)	031 (10)	
A- B B- C	0 / 34 -24 / 0	-112.4	-112.4	0.15 (1) 0.27 (1)	10.00				
E- D	0/0	-18.5	-18.5	0.02 (4)	10.00				

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2215177

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10
COMPANION LIVE LOAD FACTOR = 1.00
AUTOSOLVE RIGHT HEEL ONLY
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT


CSI: TC=0.27/1.00 (B-C:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.19/1.00 (B-C:1)

(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.17 (E) (INPUT = 0.90) JSI METAL= 0.12 (B) (INPUT = 1.00)

LUMBER N. L. G. A. F CHORDS	SIZE		LUMBER	DESCR.
E - B A - C E - D	2x4 2x4 2x4	DRY DRY DRY	No.2 No.2 No.2	SPF SPF SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches) ۱۸/ LEN Y TMV+p BMV1+p 3.0 4.0 MT20

1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER**

REA	RINGS						
	FACTO		MAXIMU	M FACTO	INPUT	REORD	
		REACTION	GROSS	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	328	0	328	0	0	5-8	5-8
С	54	0	54	0	-30	1-8	1-8
D	6	0	17	0	-5	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT D FOR 150 LBS FACTORED UPLIFT

MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMILIVE V DEAD 47 / 0 7 / 0 COMBINED LIVE 0/0 PERM.LIVE 0/0 WIND SOIL 0/0 0/0 0/0 179 / 0 31 / -23 0 / -10 0/0 Ĉ 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	RDS FACTORED FORCE	FACTORED VERT. LOAD LC1 MA		EBS MAX. FACTOR B. FORCE	
					MAX
	(LBS)	(PLF) CSI (LC) UNBRAC	(LBS)	CSI (LC)
FR-TO		FROM TO	LENGTH FR-TO	າ ' ′	(,
E-B	-299 / 0	0.0 0.0 0.05			
A- B	0 / 34	-112.4 -112.4 0.15	5 (1) 10.00		
B- C	-21 / 0	-112.4 -112.4 0.1			
E- D	0/0	-18.5 -18.5 0.04	1 (5) 10.00		

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = 32.5 6.0 0.0 7.4 TOP CH. PSF PSF DL TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT ≈ 7 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

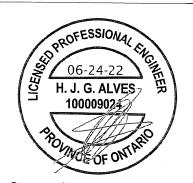
ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.04/1.00 (D-E:5) , WB=0.00/1.00 (n/a:0) , SSI=0.11/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.12 (E) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423564 J6 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:30 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-G2lBbSWWc4qJW2wVmRfffdVsg8lciDOmOntj1Gz36bd 1-3-8 Scale = 1:12.4 С 6.00 12 3x4 || T1 1-10-12 W1 В1 Ε D

LUMBER N I G A RULES DESCR SPF SPF SPF LUMBER BCD DRY No.2 No.2 No.2 2x4 DRY

PLATES (table is in inches)

DRY: SEASONED LUMBER.

LEN Y W TYPE TMV+p 3.0 MT20 40 BMV1+p

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

3x4 ||

1-5-8

	FACTO GROSS F	RED		M FACTO	INPUT BRG	REQRD BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	319	0	319	0	0	5-8	5-8
С	27	0	27	0	-42	1-8	1-8
D	-2	0	12	0	-11	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED PROVIDE ANCHORAGE AT BEARING JOINT D FOR 150 LBS FACTORED

UNFACTORED REACTIONS _____MAX SNOW 176 / 0 ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE
0 / 0 0 / 0
0 / 0 0 / 0 1ST LCASE COMBINED WIND DEAD 0/0 0/0 0/0 43/0 3/0 8/0 0/0 С 15 / -29 0 / -12

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACINGTOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS WEBS MAX. FACTORED
MEMB. FORCE FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED MEMB. FORCE MAX (PLF) CSI (LC) FROM TO 0.0 0.04 (5) -112.4 -112.4 0.11 (1) (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) FR-TO LENGTH FR-TO -290 / 0 A-B 0/34 10.00 B- C -25 / 0 E- D 0/0 -18.5 -18.5 0.04 (5) 10.00

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

TOTAL WEIGHT = 3 X 6 = 18 lb **DESIGN CRITERIA**

32.5 PSF TOP CH. LL = 6.0 0.0 7.4 PSF DL TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014 DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.04/1.00 (D-E:5) , WB=0.00/1.00 (n/a:0) , SSI=0.11/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

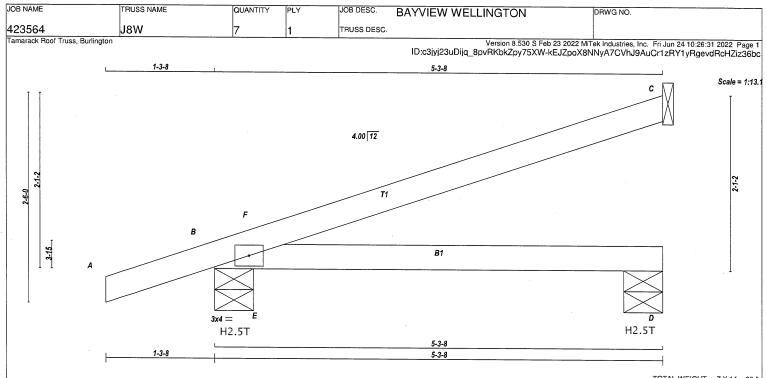

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.12 (E) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 1.00)

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER No.2 No.2 SIZE 2x4 DESCR SPF SPF A - C B - D DRY DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES ۱۸/

LEN Y TMB1-I MT20 3.0 4.0

NOTES-

1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER**

REA	HINGS						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS F	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
С	257	0	257	0	-108	1-8	1-8
В	497	0	497	104	-188	5-8	5-8
D	89	0	89	0	-74	5-8	5-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIF PROVIDE ANCHORAGE AT BEARING JOINT B FOR 188 LBS FACTORED UPLIF PROVIDE ANCHORAGE AT BEARING JOINT D FOR 150 LBS FACTORED UPLIF

PROVIDE FOR 104 LBS FACTORED HORIZONTAL REACTION AT JOINT B

ı	UNFACTORED REACT	TIONS
ı	1ST LCASE	MAN

OIN	ON ACTORED REACTIONS									
	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	NS					
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
С	177	144/0	0/0	0/0	0 / -98	33 / 0	0/0			
В	346	259 / 0	0/0	0/0	0 / -190	87 / 0	0/0			
D	66	27 / 0	0/0	0/0	0 / -77	38 / 0	0/0			
HOP B	HORIZONTAL REACTIONS									

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (12)

CHO	RDS		WEBS					
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	OAD LC1	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	LF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A- B	0 / 22	-112.4	-112.4	0.14 (1)	10.00	E-F	-361 / 86	0.00(1)
B- F	-75 / 17	-112.4	-112.4	0.06 (12	6.25			
F- C	-42 / 2	-112.4	-112.4	0.40 (1)	6.25			
B- E	0/0	-185	-185	0.29 (1)	10.00			
E- D	0/0			0.29 (1)	10.00			

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF { 7.5} PSF AT {15-0-0} FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM).INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 6.0 PSF AND 7.4 PSF RESPECTIVELY.

TOTAL WEIGHT = 7 X 14 = 98 lb **DESIGN CRITERIA**

SEEC	ILIED	LOAL	JO:				
TOP	CH.	LL	=	32.5	PSF		
		DL	=	6.0	PSF		
BOT	CH.	LL	=	0.0	PSF		
			=	7.4	PSF		
TOTAL LOAD = 45.9 PSF							

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

- THIS DESIGN COMPLIES WITH:
 PART 9 OF BCBC 2018 , ABC 2019
 PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATEO VERT. DEFL.(LL)= L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/564 (0.11")

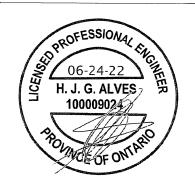
CSI: TC=0.40/1.00 (C-F:1) , BC=0.29/1.00 (B-E:1) , WB=0.00/1.00 (E-F:1) , SSI=0.28/1.00 (B-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

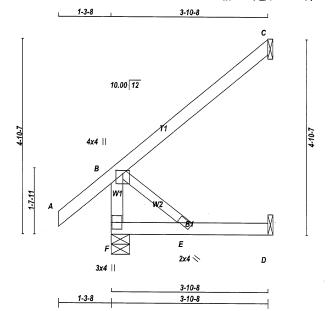

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.33 (B) (INPUT = 0.90) JSI METAL = 0.09 (B) (INPUT = 1.00)



JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423564 **J**10 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:32 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-CRtx08Yn8h41IM4ttsh7k2aAzxQSA7t2r5Mq58z36bb

TOTAL WEIGHT = 2 X 15 = 31 lb

Scale = 1:27.5

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
F - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
ALL WEBS DRY: SEAS	2x3 ONED LI	DRY UMBER.	No.2	SPF

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 LEN Y Y X 1.00 2.00 4.0 4.0 4.0 RMW+W

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DÉSIGNER

BEA	RINGS						
	FACTO GROSS R	MAXIMU GROSS		INPUT BRG	REQRD BRG		
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	409	0	409	0	0	5-8	5-8
С	218	0	218	0	0	1-8	1-8
D	36	0	40	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNF	ACTORED RE						
	1ST LCASE	MAX./	MIN. COMPON	NENT REACTION	1S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	284	216/0	0/0	0/0	0/0	69 / 0	0/0
С	149	126 / 0	0/0	0/0	0/0	23 / 0	0/0
D	29	0/0	0/0	0/0	0/0	29 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHO	RDS	WEBS					
	FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		. ,
F-B	-374 / 0	0.0 0.0	0.04(1)	7.81	B-E	0/0	0.00(1)
A-B	0 / 50	-112.4 -112.4	0.16 (5)	10.00			
B- C	0/0	-112.4 -112.4	0.29 (1)	10.00			
F-E	0/0	-18.5 -18.5					
E- D	0/0	-18.5 -18.5	0.08 (4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA

OADS.
LL =
DL =
LL = 0.
TL = 7.4
= 45.9 SPECIFIED LOADS: TOP CH. PSF PSF BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F., G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

CSI: TC=0.29/1.00 (B-C:1) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.13/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.28 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. BAYVIEW WELLINGTON DRWG NO 423564 J11 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 10:26:32 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-CRtx08Yn8h41IM4ttsh7k2aCsxQSA7t2r5Mq58z36bb 1-3-8 1-9-7 Scale = 1:18.8 10.00 12 4x4 || В W1 1-7-11 Ε G 2x4 \ D 3x4 || 1-11-4 1-11-4 1-3-8 1-9-7 2-1-1 TOTAL WEIGHT = 12 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES BUILDING DESIGNER DESIGN CRITERIA DESCR. SPF SPF CHORDS SIZE LUMBER BEARINGS FACTORED DRY DRY DRY No.2 No.2 MAXIMUM FACTORED REQRD SPECIFIED LOADS: **GROSS REACTION** BRG IN-SX LL = DL = LL = PSF PSF GROSS REACTION BRG TOP CH. 32.5 No.2 SPF VERT HORZ DOWN HORZ UPLIFT IN-SX 6.0 5-8 BOT CH. 0.0 PSF ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF No.2 С 40 -51 1-8 1-8 40 0 SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D SPACING = <u>24.0</u> IN. C/C PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED THIS TRUSS IS DESIGNED FOR RESIDENTIAL PLATES (table is in inches)
JT TYPE PLATES OR SMALL BUILDING REQUIREMENTS OF PART LEN Y Y X 1.00 2.00 UNFACTORED REACTIONS
1ST LCASE MA TMVW+p MT20 4.0 4.0 4.0 ____MAX SNOW BMW+w DEAD THIS DESIGN COMPLIES WITH: PERM.LIVE BMV1+p 62 / 0 4 / 0 29 / 0 0/0 0/0 0/0 245 183/0 0/0 0/0 0/0 - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) C 23 / -35 0 / 0 0/0 0/0 0/0 CSA 086-14 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. TPIC 2014 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01") LOADING TOTAL LOAD CASES: (5) CHORDS WEBS MAX. FACTORED MAX. FACTORED FACTORED CSI: TC=0.17/1.00 (A-B:5) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (A-B:5) MEMB. VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBF
FROM TO LENG
0.0 0.0 0.03 (1) 7.8 FORCE MEMB CSI (LC) UNBRAC LENGTH FR-TO F-B -317/0 7.81 B-E 0/0 0.00(1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 -112.4 -112.4 0.17 (5) -112.4 -112.4 0.16 (5) A-B 0 / 50 COMPANION LIVE LOAD FACTOR = 1.00 F- F -18.5 0.07 (4) -18.5 0.08 (4) -18.5 0.08 (4) 10.00 10.00 0/0 -185 E-G G-D AUTOSOLVE RIGHT HEEL ONLY 0/0 -18.510.00 TRUSS PLATE MANUFACTURER IS NOT SPECIFIED CONCENTRATED LOADS (LBS) JT LOC. LC1 MAX- MAX+ RESPONSIBLE FOR QUALITY CONTROL IN THE MAX-FACE TYPE TRUSS MANUFACTURING PLANT . HEEL CONN. FRONT TOTAL

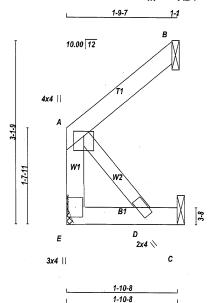
Structural component only DWG# T-2215182

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

CONNECTION REQUIREMENTS

JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)


REVIEWED

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. BAYVIEW WELLINGTON DRWG NO.

423564 J1 1 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 10:26:33 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-gdRJEUZPv?CuNWe3RaDMHG7PFLnfva7C4I5Neaz36ba

| LUMBER | N. L. G. A. RULES | CHORDS | SIZE | LUMBER | DESCR. | E - A | 2x4 | DRY | No.2 | SPF. | A - B | 2x4 | DRY | No.2 | SPF. | E - C | 2x4 | DRY | No.2 | SPF. | SPF. | C | SPF. |

 PLATES (table is in inches)

 JT TYPE
 PLATES
 W
 LEN Y
 X

 A TMVW+p
 MT20
 4.0
 4.0
 1.00
 2.00

 D BMW+w
 MT20
 2.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTO	MAXIMUM FACTORED			INPUT	REQRD	
	GROSS R	EACTION	GROSS	GROSS REACTION			BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	118	0	118	0	0	MECHANIC	CAL
В	100	0	100	0	0	1-8	1-8
С	17	0	19	0	0	1-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) B , C

UNF	UNFACTORED REACTIONS								
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS				
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
Е	83	58 / 0	0/0	0/0	0/0	25 / 0	0/0		
В	69	58 / 0	0/0	0/0	0/0	11/0	0/0		
С	14	0/0	0/0	0/0	0/0	14/0	0/0		

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	RDS					W E		
	FACTORED	FACTO					MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	LF) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		. ,
E- A	-100 / 0	0.0	0.0	0.01(1)	7.81	A- D	0/0	0.00(1)
A- B	0/0	-112.4	-112.4	0.06 (1)	10.00			(-)
E- D	0/0	-18.5	-18.5	0.02 (4)	10.00			
D- C	0/0	-18.5	-18.5	0.02 (4)	10.00			

TOTAL WEIGHT = 8 lb

Scale = 1:18.

DESIGN CRITERIA

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9 NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

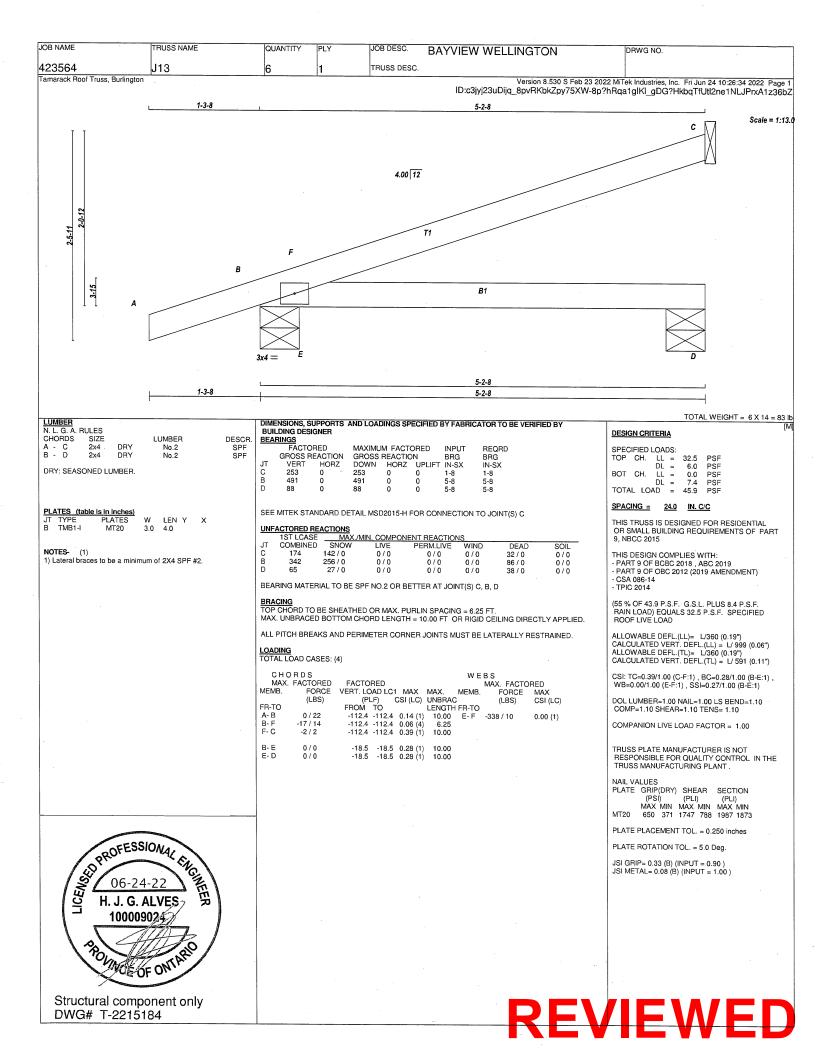
CSI: TC=0.06/1.00 (A-B:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (A-D:1) , SSI=0.06/1.00 (A-B:1)

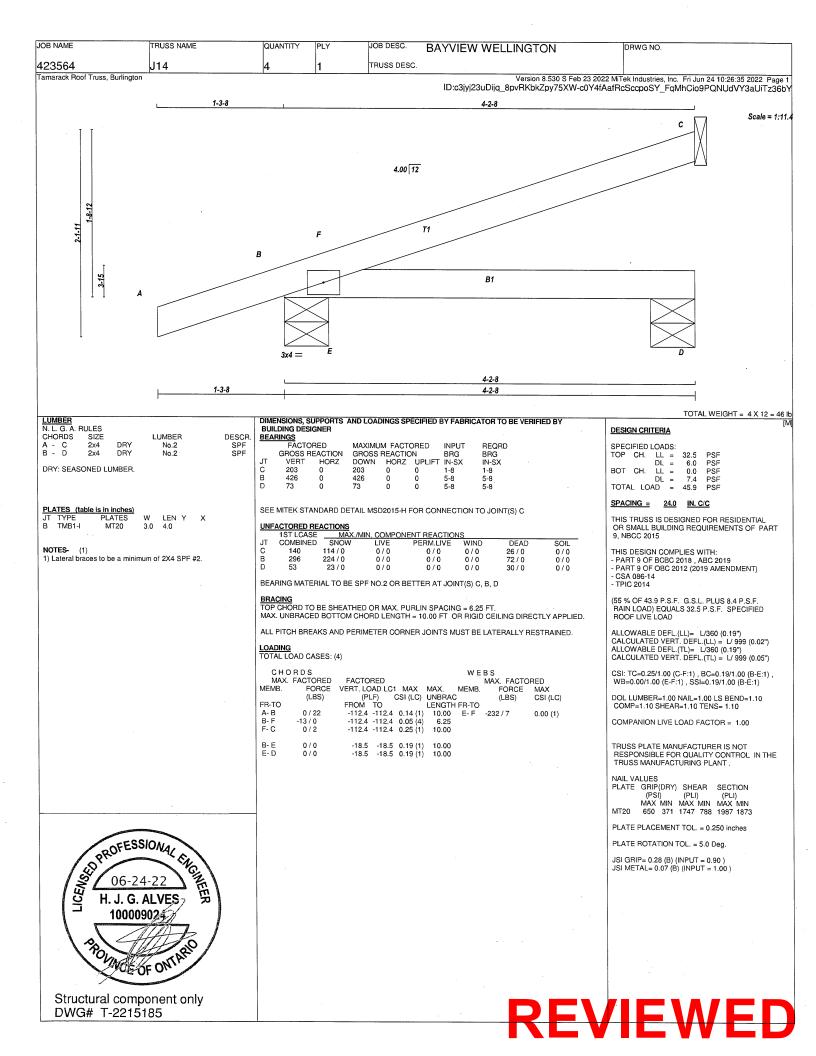
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

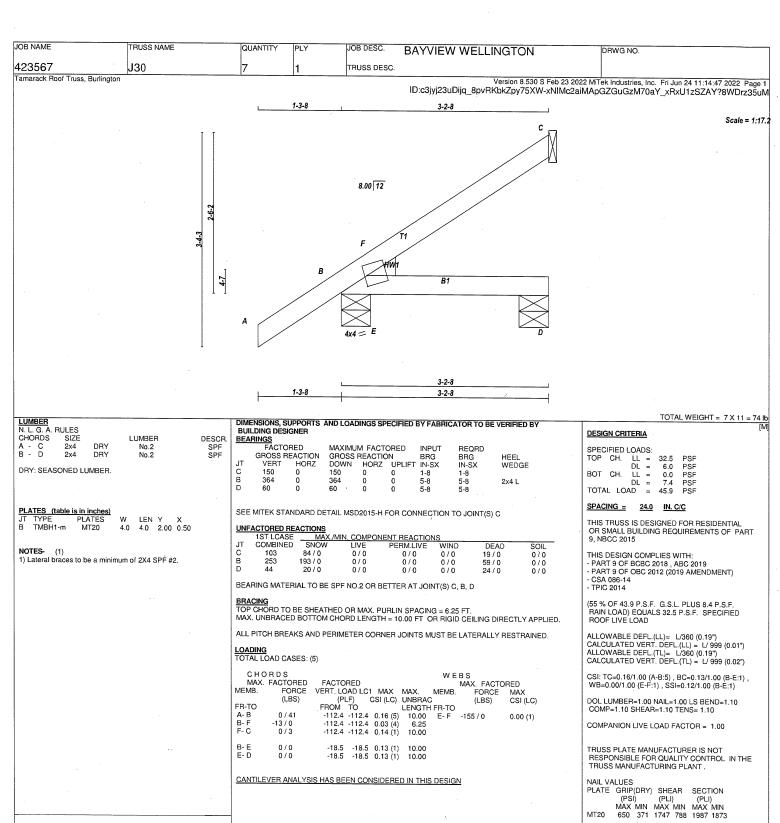
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.07 (A) (INPUT = 0.90) JSI METAL= 0.02 (A) (INPUT = 1.00)



Structural component only DWG# T-2215183

REVIEWED

Structural component only DWG# T-2215222

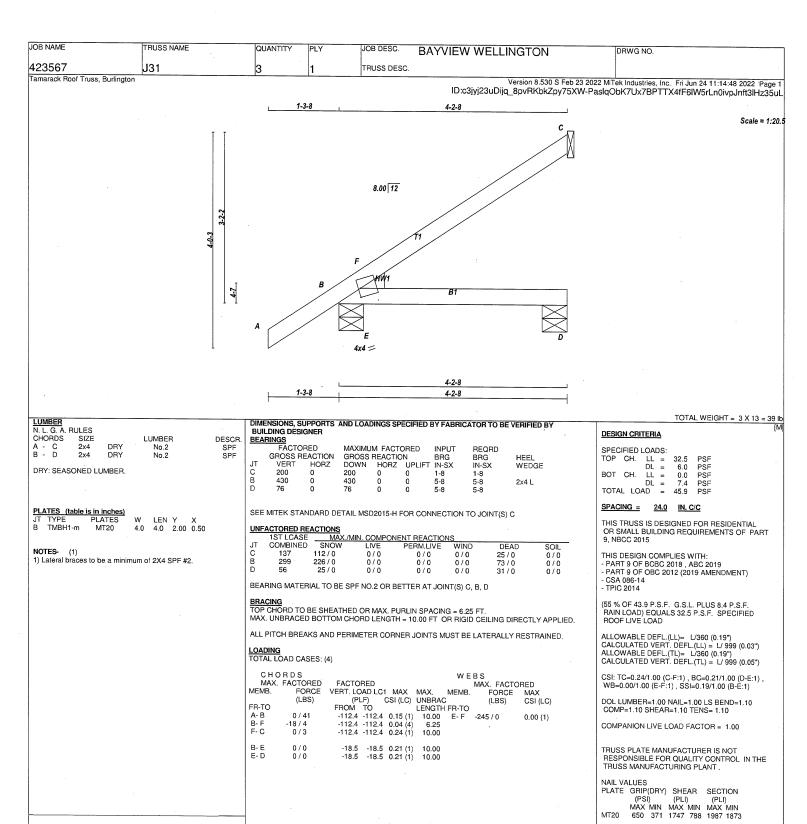

REVIEWED

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.24 (B) (INPUT = 0.90)

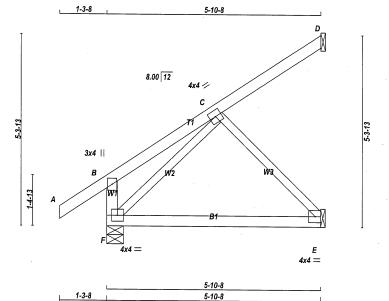
JSI METAL= 0.06 (B) (INPUT = 1.00)

Structural component only DWG# T-2215223

REVIEWED

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.29 (B) (INPUT = 0.90)

JSI METAL= 0.07 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423570 **J6**0 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 12:47.06 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-G?UL70c7w1gLaUqqy9?xZcuWWkwwGYSTFGO76lz34Xp

TOTAL WEIGHT = 2 X 24 = 48 lb

Scale = 1:30.6

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
F - B	2x4	DRY	No.2	SPF
A - D	2x4	DRY	No.2	SPF
F - E	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	DNED L	UMBER.		

PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 LEN Y Х 3.0 4.0 4.0 4.0 4.0 TMWW-t MT20 Edge BMVW1-t MT20 4.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
READINGS	

BEAF	RINGS						
	FACTO		MAXIMUN		INPUT	REQRD	
	GROSS RI	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	536	0	536	0	0	5-8	5-8
D	124	0	124	0	0	1-8	1-8
E	263	0	263	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) D , E

<u>U</u>	UNFACTORED REACTIONS								
	1ST LCASE	MAX./	MAX./MIN. COMPONENT REACTIONS						
J	T COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
F	373	278 / 0	0/0	0/0	0/0	94 / 0	0/0		
D		71 / 0	0/0	0/0	0/0	13 / 0	0/0		
E	186	121 / 0	0/0	0/0	0/0	65 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS MAX. FACTORED FACTORED				WEBS				
			MAX. FACTORED					
MEMB.	FORCE	VERT. LOAD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF) C	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM TO	. ,	LENGTH	FR-TO	\/	00. (00)	
F-B	-282 / 0	0.0 0.0	0.03(1)	7.81	C-E	-285 / 0	0.09(1)	
A-B	0 / 43	-112.4 -112.4	0.15 (1)	10.00	F- C	-278 / 0	0.08 (1)	
B- C	0 / 22	-112.4 -112.4	0.16 (1)	10.00			(.)	
C-D	-22 / 0	-112.4 -112.4	0.16 (1)	6.25				
F-E	0 / 194	-18.5 -18.5	0.19 (4)	10.00				

SPECIFIED LOADS:						
TOP	CH.	LL	=	32.5	PS	
		DL	=	6.0	PS	
BOT	CH.	LL	=	0.0	PS	
		DL	=	7.4	PS	

DESIGN CRITERIA

= 45.9 TOTAL LOAD PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.05")

CSI: TC=0.16/1.00 (B-C:1) , BC=0.19/1.00 (E-F:4) , WB=0.09/1.00 (C-E:1) , SSI=0.13/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

NAIL VALUES

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

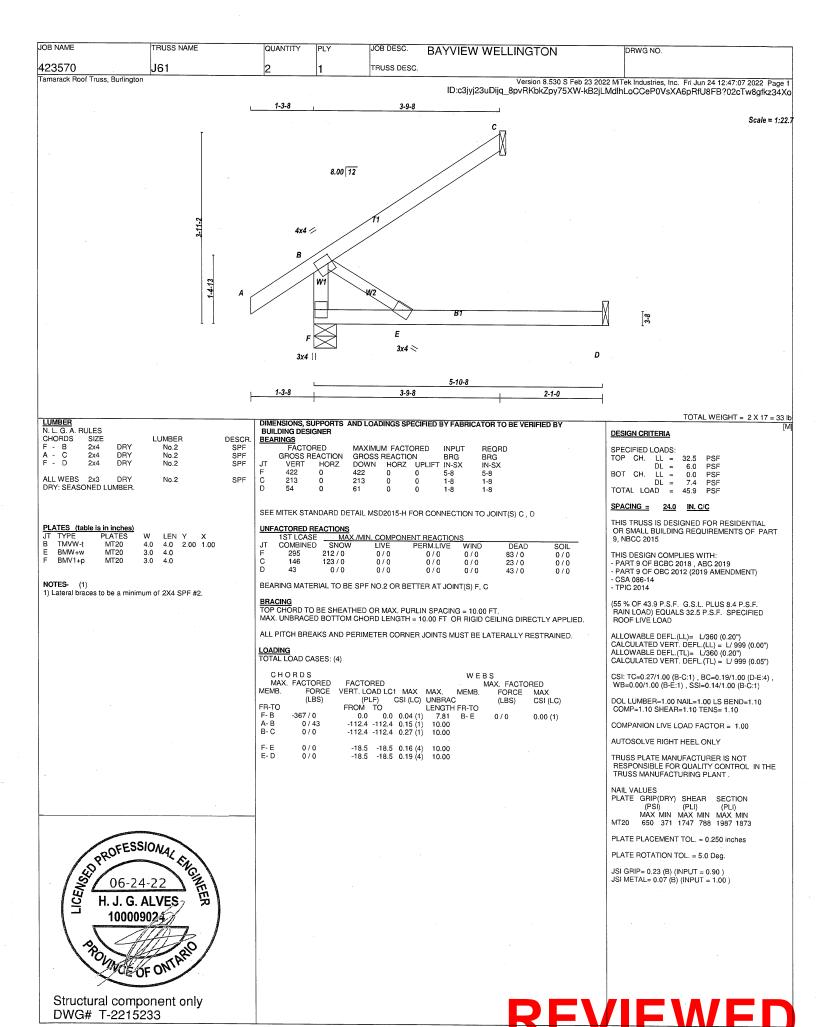

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.22 (F) (INPUT = 0.90) JSI METAL= 0.10 (B) (INPUT = 1.00)

JOB NAME QUANTITY **IPLY** TRUSS NAME JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423570 J62 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 12:47:07 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-kB2jLMdlhLoCCeP0VsXA6pRhQ8FB?02cTw8gfkz34Xo Tamarack Roof Truss, Burlington 1-9-7 Scale: 3/4"=1 8.00 12 B1 3-8 G Н D 1-11-4 1-3-8 1-9-7 4-1-1

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
F - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED L	UMBER.		

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Χ
В	TMVW-t	MT20	4.0	4.0	2.00	1.00
Ε	BMW+w	MT20	2.0	4.0		
_	DM/\/1 . n	MTOO	2.0	4.0		

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

	LDING DEGIC						
BEA	RINGS						
	FACTOR	RED	MAXIMUI	M FACTO	DRED	INPUT	REQRD
	GROSS RE	EACTION	GROSS I	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	368	0	368	0	0	5-8	5-8
С	41	0	41	0	0	1-8	1-8
D	54	0	61	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

	UNF	ACTORED RE	<u>ACTIONS</u>					
		1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS		
	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
١	.F	258	181 / 0	0/0	0/0	0/0	77 / 0	0/0
	С	28	24 / 0	0/0	0/0	0/0	4/0	0/0
١	D	43	0/0	0/0	0/0	0/0	43 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS							W E	BS			
MAX	. FACTOR	ED	FACTO	RED					MAX. FA	CTOF	₹ED	
MEMB.	FOR	CE V	ERT. LC	AD LC1	MAX	MAX	(.	MEMB.	FOR	OE .	MAX	
	(LBS			_F) ((LBS		CSI (L	C)
FR-TO	·		FROM		(FR-TO		,	JO. (L	.0,
F-B	-314/0			0.0	0.03 (B-E			0.00 (1)
A-B	0 / 43						.00				0.00 (•,
B- C			-112.4									
						., -						
F-E	0/0		-18.5	-18.5	0.12 (4) 10	.00					
E- G	0/0			-18.5								
G-H	0/0											
H- D	0/0			-18.5								
					00	.,	.00					
SPECIF	IED CONCI	=NTRA	TEDIO	ADS (LE	35)							
JT		LC1	MAX-	MAX		FACE	г	DIR.	TYPE	н	EEL	CONN.
	1-11-4	1	1			ACK			TOTAL			C1
	3-11-4	i	i	_		ACK		RT	TOTAL			C1
	· · · ·	•	,		_	1010	٧.	-111	IOIAL			U

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PS
			=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL.		7.4	PS
TOTA	L LO	AD	=	45.9	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

TOTAL WEIGHT = 2 X 13 = 27 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.19/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.19 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

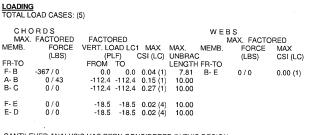
JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423570 J63 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:08 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-CNc5YieNSfw3qo_C3a2Pe1zqFYd2kTlmiatDBAz34Xn 1-3-8 1-10-8 Scale = 1:22.9 8.00 12 4x4 / R W1 Ε 2x4 📏 1-10-8 1-10-8 1-10-15 TOTAL WEIGHT = 2 X 12 = 23 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE F - R 2v4 **BUILDING DESIGNER** DESIGN CRITERIA LUMBER No.2 No.2 DESCR. SPF SPF FACTORED MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ L BRG IN-SX BRG IN-SX 2x4 DRY TOP CH. 32.5 PSF LL = DL = - D DRY No.2 SPF 6.0 PSF 384 384 5-8 5-8 BOT CH. 0.0 7.4 PSF ALL WEBS 2x3 No.2 SPF 213 213 1-8 1-8 DRY: SEASONED LUMBER D TOTAL LOAD 45.9 SPACING = 24.0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D THIS TRUSS IS DESIGNED FOR RESIDENTIAL

PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 W LEN Y 4.0 2.0 4.0 2.00 1.00 BMW+w BMV1+p

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	٧S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	265	212 / 0	0./0	0/0	0/0	53 / 0	0/0
С	146	123 / 0	0/0	0/0	0/0	23 / 0	0/0
D	14	0/0	0/0	0/0	0/0	14/0	0/0


BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACINGTOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

CHC	RDS				WE	BS	
MAX.	FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO	, ,	. ,
F-B	-367 / 0	0.0 0.0	0.04(1)	7.81	B-E	0/0	0.00(1)
A- B	0 / 43	-112.4 -112.4	0.15(1)	10.00			` '
B- C	0/0	-112.4 -112.4	0.27 (1)	10.00			
F-E	0/0	-18.5 -18.5					
E- D	0/0	-18.5 -18.5	0.02 (4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.00")

CSI: TC=0.27/1.00 (B-C:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.14/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

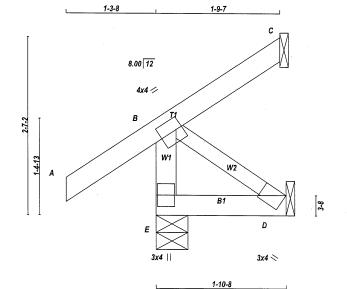
MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)



JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423570 J64 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 12:47:08 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-CNc5YieNSfw3qo_C3a2Pe1zsAYd6kTlmiatDBAz34Xr

TOTAL WEIGHT = 2 X 9 = 18 lb

PSF

DESIGN CRITERIA SPECIFIED LOADS:

TOP CH.

TOTAL LOAD

9. NBCC 2015

TPIC 2014

LL = DL = LL =

DL

SPACING = 24.0 IN. C/C

32.5 PSF

6.0 0.0 7.4 PSF PSF

45.9

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

Scale: 3/4"=1

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
E - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
E - D	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	MEDII	IMBER		

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW-t
 MT20

 D
 BMW1+w
 MT20
 LEN Y X 4.0 2.00 1.00 4.0 3.75 Edge W 4.0 3.0 BMV1+p MT20

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS

1-9-7

1-1

	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRE	
	GROSS F	REACTION	GROSS	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	330	0	330	0	0	5-8	5-8
С	41	0	41	0	-50	1-8	1-8
D	16	0	18	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNF	ACTORED RE	<u>ACTIONS</u>					
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	1S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
E	227	181 / 0	0/0	0/0	0/0	46 / 0	0/0
С	28	24 / -34	0/0	0/0	0/0	4/0	0/0
D	13	0/0	0/0	0/0	0/0	13 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

<u>LOADING</u> TOTAL LOAD CASES: (5)

CHC	DRDS					W E	BS	
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	_F) '	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	ΤΌ	. ,	LENGTH	FR-TO	· -/	
E-B	-314 / 0	0.0	0.0	0.03(1)	7.81	B- D	0/0	0.00(1)
A-B	0 / 43	-112.4	-112.4	0.15 (1)	10.00			,
B- C	-33 / 0	-112.4	-112.4	0.14 (1)	6.25			
E- D	0/0	-18.5	-18.5	0.02 (4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (B-D:1) , SSI=0.10/1.00 (B-C:1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

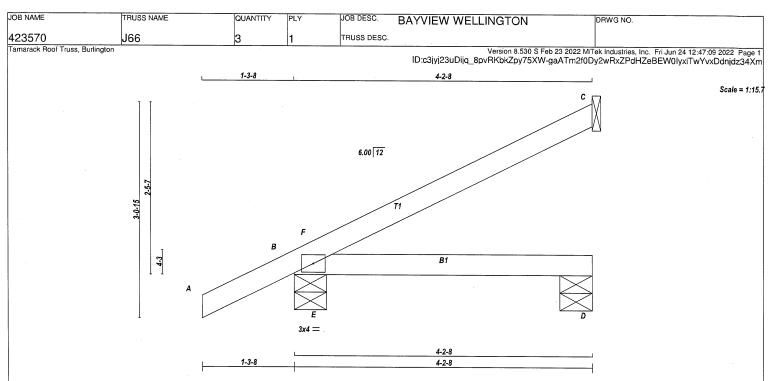

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.19 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

LUMBER N. L. C. * N. L. G. A. RULES CHORDS SIZE DESCR. SPF SPF LUMBER A - C B - D No.2 No.2 2x4 DRY DRY DRY: SEASONED LUMBER.

PLATES (table is in inches) LEN Y JT TYPE B TMB1-I MT20 3.0 4.0

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
	GROSS R	EACTION	GROSS	REACTIC	BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
С	205	0	205	0	0	1-8	1-8
В	428	0	428	0	0	5-8	5-8
D	71	0	71	0	0	5-8	5-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C

 UNFACTORED REACTIONS

 1ST LCASE
 MAX/MIN. COMPONENT REACTIONS

 JT
 COMBINED
 SNOW
 LIVE
 PERM.LIVE
 WIND
 DEAD SOIL 0/0 141 115 / 0 225 / 0 0/0 0/0 0/0 26 / 0 73 / 0 B 0/0 22 / 0 0/0 0/0 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) C, B, D

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	RDS				WE	BS		
MAX.	FACTORED	FACTORED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO	. ,	. ,	
A-B	0 / 33	-112.4 -112.4	0.15(1)	10.00	E-F	-330 / 6	0.00(1)	
B-F	-19 / 43	-112.4 -112.4						
F- C	-4 / 2	-112.4 -112.4						
B-E	0/0	-18.5 -18.5	0.18 (1)	10.00				
E- D	0/0	-18.5 -18.5						

TOTAL WEIGHT = 3 X 12 = 36 lb **DESIGN CRITERIA**

SPECIFIED LOADS:

LL = DL = LL = DL = AD = 32.5 6.0 0.0 7.4 TOP CH. TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.02") ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.05")

CSI: TC=0.25/1.00 (C-F:1) , BC=0.18/1.00 (D-E:1) , WB=0.00/1.00 (E-F:1) , SSI=0.26/1.00 (B-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.35 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 423570 J67 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:10 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-8mkrzOge_GAn358bB?4tjS3BcMJsCNo2AtMKF3z34XI 1-3-8 Scale = 1:21.: c 8.00 12 4x4 // W1

 PLATES (table is in inches)

 JT
 TYPE
 PLATES
 W
 LEN
 Y
 X

 B
 TMVW+t
 MT20
 4.0
 4.0
 2.00
 1.00

 B
 BMW+w
 MT20
 3.0
 4.0
 TOME

 F
 BMV1+p
 MT20
 3.0
 4.0
 TOME

DRY: SEASONED LUMBER.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS

E 3x4 <>

3-4-8

D

BEA	RINGS						
	FACTOR GROSS RI	EACTION	MAXIMUI GROSS I		INPUT BRG	REQRD BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
-	375	0	375	0	0	5-8	5-8
2	190	0	190	0	0	1-8	1-8
)	31	0	35	0	0	1-8	1-8

3x4 ||

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS MIN. COMPONENT REACTIONS
LIVE PERM.LIVE 1ST L CASE MA) SNOW COMBINED LIVE 0/0 WIND DEAD SOIL 199 / 0 62 / 0 20 / 0 25 / 0 0/0 0/0 0/0 CD 130 110 / 0 0/0 0/0 0/0 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS WEBS FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED MAX. FACTORED FORCE (LBS) FORCE MEMB. MAX CSI (LC) (PLF) FROM TO 0.0 (LBS) CSI (LC) UNBRAC FR-TO LENGTH FR-TO -344 / 0 0.0 0.04 (1) 7.81 B-E 0/0 0.0 0.0 0.04 (1) -112.4 -112.4 0.16 (5) -112.4 -112.4 0.22 (1) A-B 0 / 43 B-C 0/0 10.00 0/0 -18.5 -18.5 0.06 (4) -18.5 -18.5 0.06 (4) 10.00 10.00 E-D

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

TOTAL WEIGHT = 2 X 13 = 26 lb

DESIGN CRITERIA

SPECIFIED LOADS:

TOP CH. LL = 32.5 PSF DL = 6.0 PSF BOT CH. LL = 0.0 PSF DL = 7.4 PSF TOTAL LOAD = 45.9 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF DBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.22/1.00 (B-C:1) , BC=0.06/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.12/1.00 (B-C:1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

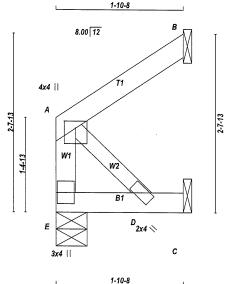
AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)


Structural component only DWG# T-2215239

REVIEWED

JOB NAME QUANTITY TRUSS NAME PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423570 J68 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 12:47:11 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-cylEBkgGlalehFjnkib6GfbOilflxq2COX6uoVz34Xk

1-10-8

N. L. G. A. RULES CHORDS SIZE DESCR. SPF SPF SPF SIZE LUMBER DRY DRY DRY 2x4 2x4 No.2 No.2 No.2 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF No.2

PLATES (table is in inches)
JT TYPE PLATES
A TMVW+p MT20 LEN Y Y X 1.25 2.00 4.0 4.0 4.0 BMW+w MT20

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER**

BEA	RINGS						
	FACTO GROSS R		MAXIMU GROSS		INPUT BRG	REQRD BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	123	0	123	0	0	5-8	5-8
В	105	0	105	0	0	1-8	1-8
С	17	0	19	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) B , C

UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND LIVE 0/0 COMBINED 0/0 0/0 25 / 0 61/0 0/0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
SOUTH SHOULD FINGTH = 10.00 FT. OR RIGID CEIL MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

<u>LOADING</u> TOTAL LOAD CASES: (4)

	ORDS				WEBS				
	FACTORED	FACTORED					MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD I	LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	(CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM TO			LENGTH	FR-TO	. ,		
E-A	-105/0	0.0	0.0	0.01(1)	7.81	A- D	0/0	0.00(1)	
A-B	0/0	-112.4 -112	2.4	0.07 (1)	10.00				
E- D	0/0	-18.5 -18	3.5	0.02 (4)	10.00				
D- C	0/0	-18.5 -18	3.5	0.02 (4)	10.00				

TOTAL WEIGHT = 2 X 7 = 14 lb

Scale = 1:16.3

DESIGN CRITERIA

SOIL

0/0

OADS
LL =
DL =
LL = 0
7L = 7.4
= 45.9 SPECIFIED LOADS: TOP CH. PSF PSF BOT CH. PSF PSF TOTAL LOAD

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00") ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.00")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (A-D:1) , SSI=0.07/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

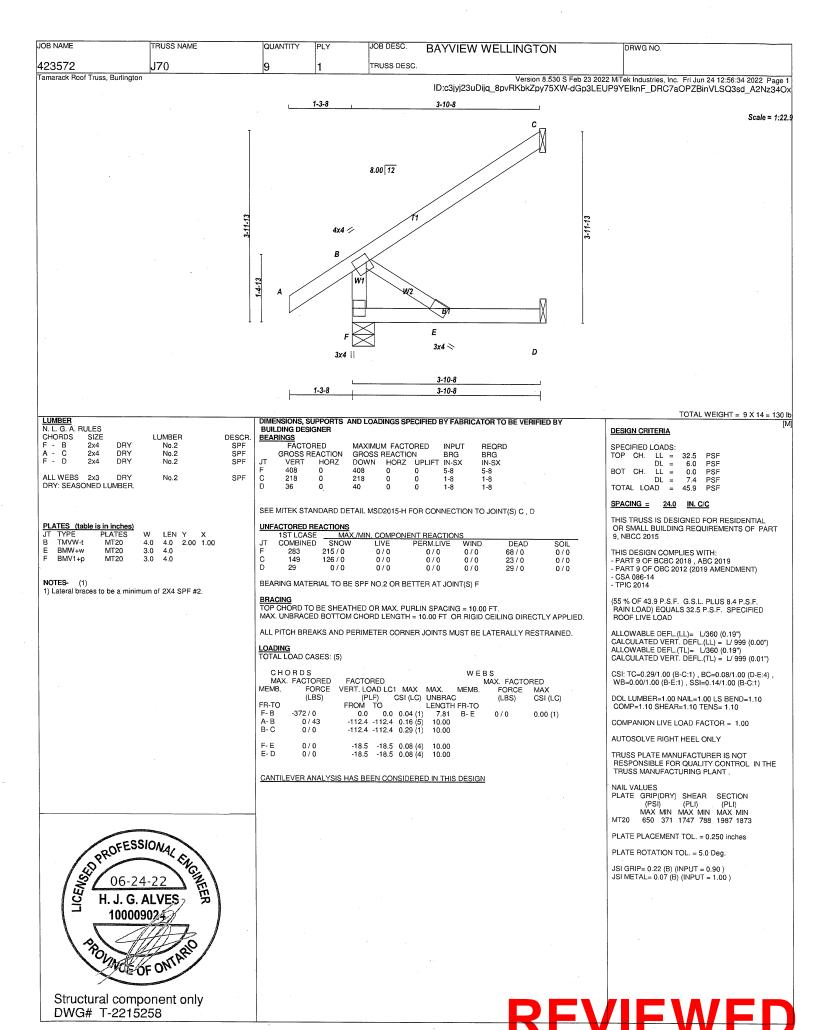

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.07 (A) (INPUT = 0.90) JSI METAL= 0.02 (A) (INPUT = 1.00)

DWG# T-2215240

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components

2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.

3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.

4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.

5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.

- 2- Lumber is to be the sizes and grade specified on the truss drawing.
- 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6-The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)
- 7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals.
 - 8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols, numbering tem and General Safety notes.

T-1800218 Feb 09, 2018

STANDARD DETAIL MSD2015-H

Issued: **SEPTEMBER 22, 2020**

Expiry:

APRIL 30, 2022

TOE-NAIL CAPACITY DETAILS

LATERAL AND WITHDRAWAL RESISTANCE OF BEARING ANCHORAGE BY TOE-NAILS

ilian i			SPF	D. FIR	SPF	D. FIR
COMMON	3.00	0.144	122	139	30	42
WIRE	3.25	0.144	127	144	32	45
	3.50	0.160	152	173	38	52
COMMON	3.00	0.122	96	108	26	36
SPIRAL	3.25	0.122	97	108	28	40
	3.50	0.152	142	161	36	50
3.25" Gun nail	3.25	0.120	94	105	28	39

Note: If using truss with D. Fir lumber and SPF bearing plate, use tabulated SPF values in table.

Nail type:		Common wire	Common spiral	Common wire	Common spiral	Gun Nail
Diameter	(in.)	0.160	0.152	0.144	0.122	0.120
Length	(in.)	3.50	3.50	3.00	3.00	3.25
	1				enarana	
2x4 SPF		2	2	3	3	3
2x6 SPF		4	4	4	5	5
2x4 D. FI	R	2	2	2	2	2
2x6 D. FI	R	3	3	3	4	4

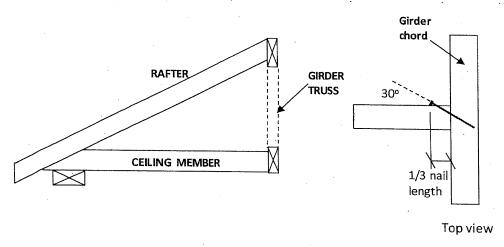
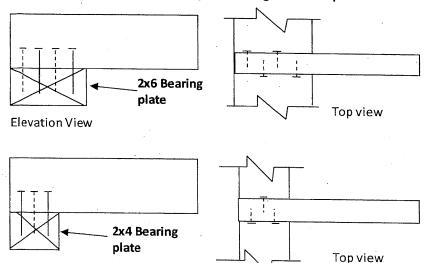
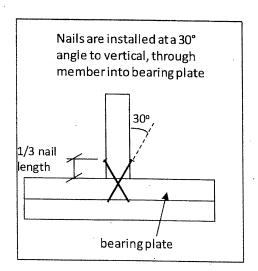


Figure 1: Toe-Nailing Rafter / Ceiling Member to Girder Truss

December 21, 2020

Page **1** of **2** ©2020 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, www.mitek.ca


STANDARD DETAIL MSD2015-H


Issued: SEPTEMBER 22, 2020

Expiry: **APRIL 30, 2022**

TOE-NAIL CAPACITY DETAILS

Figure 2: Toe-Nail Anchorage to Bearing Plate for Uplift

NOTES:

Elevation View

- Rafter and ceiling members may be connected to top and bottom chords of girder truss by toe-nailing the members into the girder chords (see fig. 1), provided the factored vertical reactions of the supported members do not exceed the lateral resistance of the toe-nails. Mechanical connectors (hangers) are required if factored vertical reactions exceed the toe-nail capacity, or if the connection must resist horizontal loads (loads perpendicular to the face of girder or rafter).
- 2. Trusses, rafters or ceiling members may be anchored to the bearing plate with toe-nails (see fig. 2), provided that the factored uplift reactions due to wind or earthquake loads do not exceed the withdrawal resistance of the toe-nails. Mechanical anchors (tie-downs) are required for reactions that exceed the toe-nail withdrawal capacity. Toe-nail anchorage to bearing plates is NOT permitted if uplift reactions are generated from gravity loads (snow, floor live, dead).
- 3. Tabulated toe-nail resistances on page 1 are for one toe-nail. Multiply unit values by the number of nails used in the connection. Maximum number of nails in a connection shall not exceed the tabulated limits shown on page 1 for a given lumber size /species.
- Nail values are based on specific gravity of G = 0.42 (SPF) and G = 0.49 (D. Fir).
- 5. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member.
- 6. For wind / earthquake loads, tabulated lateral resistances may be multiplied by 1.15 (K_D factor). No increases are permitted for tabulated withdrawal resistances.
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- Nail values in this table comply with CSA 086-19, Clause 12.9.

December 21, 2020

Page 2 of 2

©2020 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 ! (800) 268-3434, www.mitek.ca

SIMPSON Strong-Tie

LUL/LUS/LJS/HUS/HHUS/HGUS

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

Standard and Double-Shear Joist Hangers

Most hangers in this series have double-shear nailing — an innovation that distributes the load through two points on each joist nail for greater strength. This allows for fewer nails, faster installation, and the use of all common nails for the same connection. (Do not bend or remove tabs)

Double-shear hangers range from the light capacity LUS hangers to the highest capacity HGUS hangers. For medium load truss applications, the HUS offers a lower cost alternative and easier installation than the HGUS hangers, while providing greater load capacity and bearing than the LUS.

Material: See table on pp. 217-218.

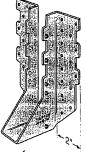
Finish: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, pp. 18-20.

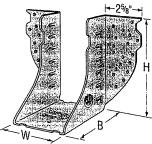
Installation:

Plated Truss Connectors

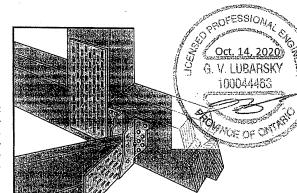
- Use all specified fasteners; see General Notes.
- Nails must be driven at an angle through the joist or truss into the header to achieve the tabulated resistances (except LUL).
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated factored resistance.
- Not designed for welded or nailer applications.
- With single ply 2x carrying members, use 10d x 1 ½" nails into the header and 10d commons into the joist, and reduce the resistance to 0.64 of the table value where 16d nails are specified and 0.77 where 10d nails are specified.

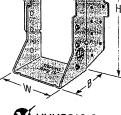
Options:


- · LUS, LJS, LUL and HUS hangers cannot be modified.
- Other sizes available; consult your Simpson Strong-Tie representative.
- See Hanger Options information on pp. 105–107.

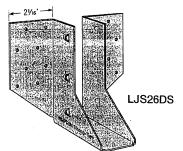


M HGUS28-2


Double-Shear Nailing



Double-Shear Nailing Side View; Do not bend tab



Dome Double-Shear Nailing Side View (available on some models)

MHUS210-2

Typical HUS26 Installation with Reduced Heel Height (Truss Designer to provide fastener quantity for connecting multiple members together)

216

LUS - Double Shear Joist Hangers

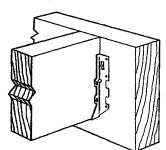
SIMPSON Strong-Tie

LUS28

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

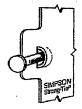
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 31/2" long common wire, 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

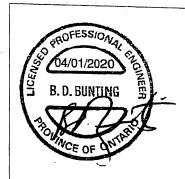
Options:


These hangers cannot be modified

Typical LUS

									, ш	stanauon	J	
			Dimens	ions (in	.)	Fast	eners	Factored Resistance (lb.)				
Model Ga.		 	T	· ·	, T		T		ir-L	S-P-F		
No.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W	н	В	d _a ¹	Face	Joist	Uplift	Normal	Uplift	Normal	
111004	-					1 400	JUISE	(K ₀ =1.15)	(K ₀ =1.00)	(K ₀ =1.15)	(K ₀ =1.00)	
LUS24	18	1%	31/6	13/4	1 15/16	(4) 10d	(2) 10d	710	1630	645	1155	
LUS24-2	18	31/6	31/8	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435	
LUS26	18	1%	43/4	13/4	35%	(4) 10d	(4) 10d	1420	2170	1290		
LUS26-2	18	31/4	47/8	2	4	(4) 16d	(4) 16d	1720	2595		1630	
LUS26-3	18	4%	43/16	2	31/4	(4) 16d	(4) 16d			1545	1920	
LUS28	18	19/16	6%	13/4	-			1720	2595	1545	2340	
LUS28-2					3¾	(6) 10d	(6) 10d	1420	2520	1290	1790	
	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575	
LUS28-3	18	4%	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545		
LUS210	18	1%	7 13/16	13/4	37/8	(8) 10d	(4) 10d	1420			2375	
Ш\$210-2	18	31/6	9	2	6				2785	1290	2210	
LUS210-3	-					(8) 16d	(6) 16d	2580	4500	2320	3195	
110210-3	18	4%	83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2275	

 $^{1.\,}d_{\rm e}$ is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022: Contact SImpson Strong-Tie for current information and limited warranty or see strongtle.com.

© 2020 Simpson Strong-Tie Company inc.

T-SPECLUS20 3/20 exp. 6/22

TECHNICAL BULLETIN

HUS/LJS - Double Shear Joist Hangers

SIMPSON Strong-Tie

HUS210

(HUS26, HUS28, similar)

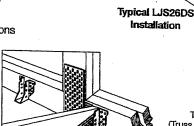
Typical HUS

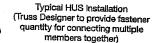
Installation

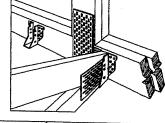
All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

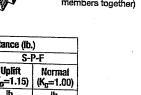
Material: See table Finish: G90 galvanized

Design:

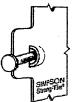

- Factored resistances are in accordance with CSA O86 -14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.


Installation:


- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications


Options:

See current catalogue for options

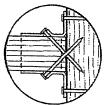


LJS26DS

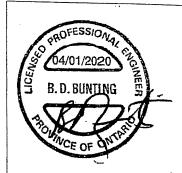
0 0

		Di	Dimensions (in.)				Fasteners		Factored Resistance (lb.)				
Model	Ga.							D.F	ir-L	S-P-F			
No.	ua.	W	Н	В	d _e ¹	Face	Joist	Uplift (K₀=1.15)	Normal (K _p =1.00)	Uplift (K _D =1.15)	Normal (K _n =1.00)		
1 recept								lb.	lb.	lb.	lb.		
LJS26DS	18	19/16	5	3½	45/B	(16) 16d	(6) 16d	2055	4265	1460	4115		
HUS26	. 16	1%	53/8	3	315/16	(14) 16d	(6) 16d	2705	4940	2065	3875		
HUS28	16	1%	73/32	3	63/32	(22) 16d	(8) 16d	3605	5365				
HUS210	16	15/8	93/32	3		(30) 16d				2675	4345		
		-				· /	(10) 16d	4505	5795	4010	4740		
HUS1.81/10	16	113/16	9	3	8	(30) 16d	(10) 16d	4505	6450	4010	5200		

1. de is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

This technical builletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHUS20 3/20 exp. 6/22

TECHNICAL BULLETIN

HGUS - Double Shear Joist Hangers

SIMPSON Strong-Tie

All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- · Use all specified fasteners
- Nails: 16d = 0.162" dia x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads

HGUS28-2

HGUS28-3

HGUS28-4

HGUS210

HGUS210-2

HGUS210-3

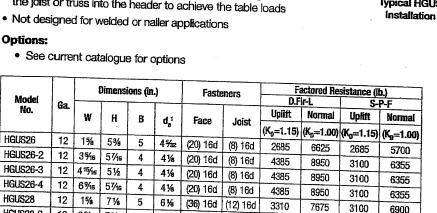
HGUS210-4

HGUS212-4

12 35/16 7346

12 6%e

12 1%


12 3%6

12 415/16

12 6%s 93/16

12

12 415/16

(36) 16d

(36) 16d

(36) 16d (12) 16d

(46) 16d (16) 16d

(46) 16d (16) 16d

(46) 16d (16) 16d

(46) 16d (16) 16d

(12) 16d

(12) 16d

6070

6070

6070

3535

6840

6840

6840

7640

10130

12980

12980

12980

11070

14015

14645

14645

14995

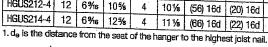
16400

4310

4310

4310

2510


4855

4855

4855

5425

7195

4 61/6

4

4 61/6

4

4

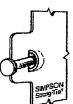
6%

7%

81%

8%

81/8

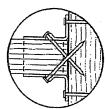

71/4

73/16

91/8 5

93/16

91/4 4



Dome Double Shear Nailing prevents tabs breaking off lavailable on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailina Top View.

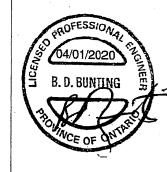
6900

9215

9215

9215

8090

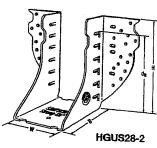

10270

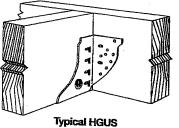
10400

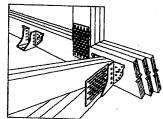
10400

10645

11645




(800) 999-5099 strongtie.com


This technical bulletin is effective until June 30; 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHGUS20 3/20 exp. 6/22

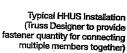
Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

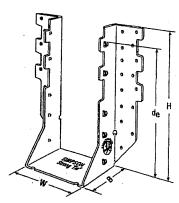
EVIEWE

HHUS – Double Shear Joist Hangers

SIMPSON Strong-Tie

All HHUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

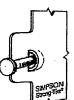

Material: 14 gauge Finish: G90 galvanized


Design:

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.


Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

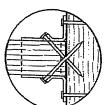


Options:

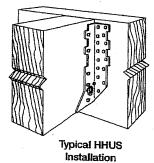
	•	See	current	catalogue	for	options
--	---	-----	---------	-----------	-----	---------

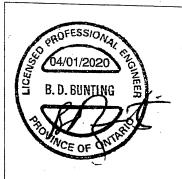
		D	imensio	ns (in.)	î	Fasteners		Factored Resistance (lb.)				
Model	Ga.		т	· · ·		,		D.F	ir-L	S-P-F		
No.	-	W	н	В	d _e ¹	Face	Joist	Uplift	Normal	Uplift	Normal	
100000	<u> </u>				"e	1 400	Oust	(K ₀ =1.15)	(K ₀ =1.00)	(K ₀ =1.15)	(K ₀ =1.00)	
HHUS26-2	14	35/16	513/16	3	315/16	(14) 16d	(6) 16d	2850	7335	2065	5205	
HHUS28-2	14	35/16	77/32	3	65/32	(22) 16d	(8) 16d	3765	8940	2675	6345	
HHUS210-2	14	35/16	93/32	3	8	(30) 16d	(10) 16d	4670	9660			
HHUS210-3	14	411/16	9	3	715/16	(30) 16d	(10) 16d	4670	9670	4235	7000	
HHUS210-4	14	61/8	829/32	3	727/32	(30) 16d	(10) 16d	4670		4235	6865	
HHUS46	14	3%	513/32	3	315/16	(14) 16d	· · · · · · · · · · · · · · · · · · ·		10155	4235	7210	
HHUS48	14	35/8				· · ·	(6) 16d	2540	7335	2065	5205	
			71/8	3	61/a	(22) 16d	(8) 16d	3765	8940	2675	6345	
HHUS410	14	3%	9	3	8	(30) 16d	(10) 16d	4670	9855	4235	7000	
HHUS5.50/10	14	51/2	9	3	8	(30) 16d	(10) 16d	4670	10155			
HHUS7.25/10	14	71/4	9	35/16	7 29/32	(30) 16d	(10) 16d			4235	7210	
1. de is the dista	noo fo						(10) 100	4670	10155	3370	7210	

distance from the seat of the hanger to the highest joist nail.



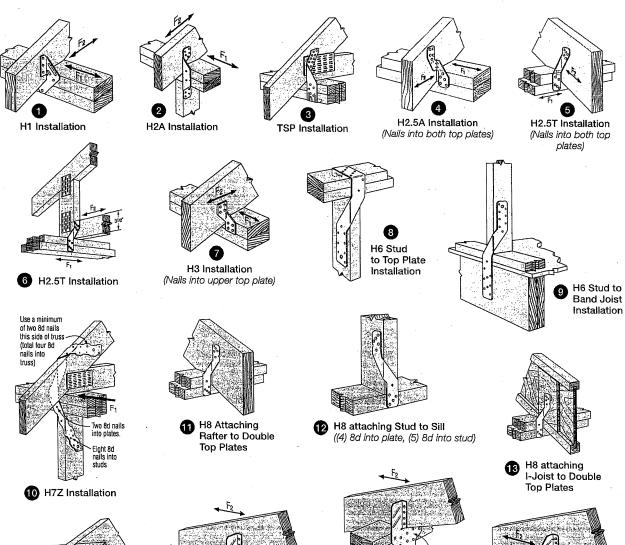
Dome Double Shear Nailing prevents tabs breaking off (available on some models).

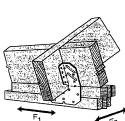

U.S. Patent 5,603,580



Double Shear Nailing Side View. Do not bend tab back,

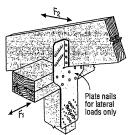
Double Shear Nailing Top View.

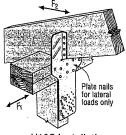

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.


© 2020 Simpson Strong-Tie Company Inc.

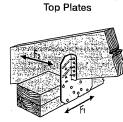
T-SPECHHUS20 3/20 exp. 6/22

H/TSP

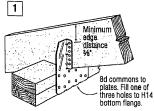

Seismic and Hurricane Ties (cont.)



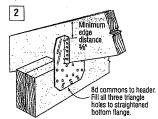
C-C-CAN2018 @2017 SIMPSON STRONG-TIE COMPANY INC.


H10A Field-Bent Installation

15 H10S Installation

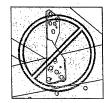


H10S Installation with Stud Offset



H10A Installation

H10A optional positive angle nailing connects shear blocking to rafter. Use 8d common nails. Slot allows maximum field-bending up to a pitch of 6/12, use 75% of the table uplift value; bend one time only.



H14 Installation to Double Top Plates

H14 Installation to Double 2x Header

Avoid a Misinstallation

Do not make new holes or overdrive nails.

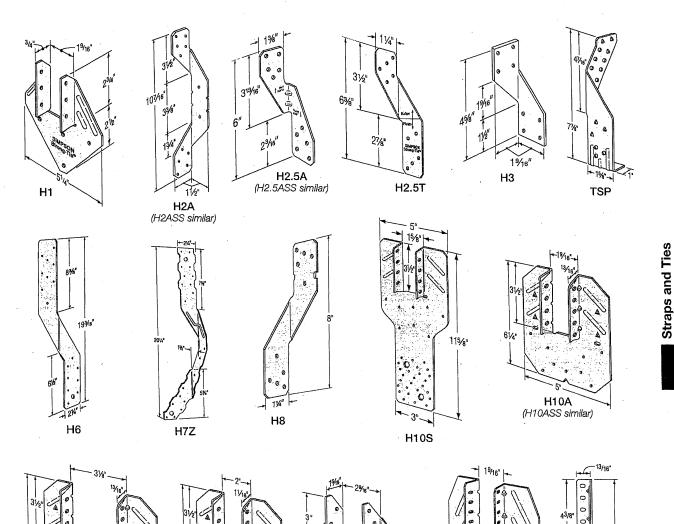
H/TSP

Seismic and Hurricane Ties

Simpson Strong-Tie® hurricane ties provide a positive connection between truss/rafter and the wall of the structure to resist wind and seismic forces. New additions to the line provide even more options.

- H10AR The heavy-duty design of the H10A available with a 2" wide throat to accommodate rough lumber
- H10A-2 The H10A design with a 3" throat for double 2x members
- H2ASS, H2.5ASS and H10ASS Popular ties now available in stainless steel

Material: See table


H10A-2

H₁₀AR

Finish: Galvanized. H7Z and H11Z — ZMAX® coating. Some models available in stainless steel or ZMAX; see Corrosion Information, pp. 20–24 or visit strongtie.com.

Installation:

- · Use all specified fasteners; see General Notes.
- H1 can be installed with flanges facing inward (reverse of H1 installation drawing; number 1).
- H2.5T, H3 and H6 ties are shipped in equal quantities of right and left versions (right versions shown).
- · Hurricane ties do not replace solid blocking.
- When installing ties on plated trusses (on the side opposite the truss plate) do not fasten through the truss plate from behind. This can force the truss plate off of the truss and compromise truss performance.
- H10A optional nailing to connect shear blocking, use 8d nails.
 Slots allow maximum field bending up to a pitch of 6:12, use H10A sloped loads for field bent installation.

H11Z

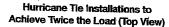
H14 Profile

- 3/4° -

H - Seismic and Hurricane Ties

SIMPSON Strong-Tie

The H connector series provides wind and seismic ties for trusses and rafters. Material: 18 gauge Finish: G90 galvanized

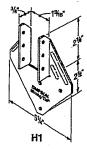

Design: • Factored resistances are in accordance with CSA 086-14

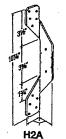
 Factored resistances have been increased 15%. No further increase is permitted.

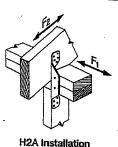
Installation: • Use all specified fasteners

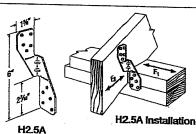
- Nails: 8d = 0.131" dia. x 2½" long common wire, 8d x 1½" = 0.131" x 1½ long, 10d x 1½" = 0.146" x 1½" long
- H1 can be installed with flanges facing outwards
- Hurricane ties do not replace solid blocking

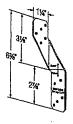
Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows: Factored Shear/Resisting Shear + Factored Tension/Resisting Tension ≤ 1.0 .

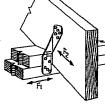


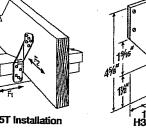

install diagonally across from each other for minimum 2x truss.

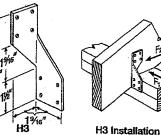

Nailing into both sides of a single ply 2x truss may cause the wood to split.

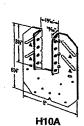


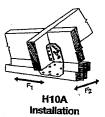



H1 Installation









H2.5T **H2.5T Installation** (Nails into both top plates)

					•					
		İ	Fasteners			Fa	ctored Re	sistance ((b.)	
odei	۱ ـ	<u> </u>	r			D.Fir-L			S-P-F	
lo.	Ga,				Uplift	Nor	mai	ti-ro	Nor	mai
		To Rafter	To Plates	To Studs	Ohute	F ₁	F ₂	Uplift	F ₁	F ₂
						$(K_0=1.15)$)		(K _p =1.15)	
	18	(6) 8d x 11/2"	(4) 8d	_	740	685	300	680	485	215
A	18	(5) 8d x 11/2"	(2) 8d x 1½"	(5) 8d x 11/2"	830	220	75	590	155	
.5A	18	(5) 8d	(5) 8d	.,						55
-	10	(0) 04	(J) ou	_	805	160	160	755	160	160

835

740

1735

175

180

795

18 (9) 10d x 1½" (9) 10d x 1½' 1. Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.

(5) 8d

(4) 8d

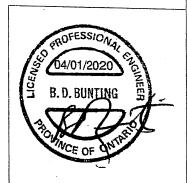
(5) 8d

(4) 8d

- 2. Factored resistances are for one anchor. A minimum rafter thickness of 21/2" must be used when framing anchors are installed on each side of the joist and on the same side of the plate.
- When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.

240

265


410

740

615

1505

4. Hurricane tles are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable. For a Continuous Load Path, connections must be on same side of the wall.

H1 H2/ H2

H2.5T

НЗ

18

18

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECH20 3/20 exp. 6/22

160

125

565

160

210

190

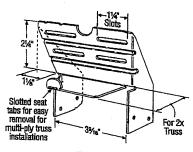
290

TC - Truss Connectors

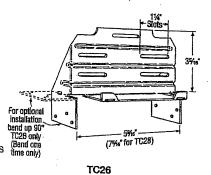
SIMPSON Strong-Tie

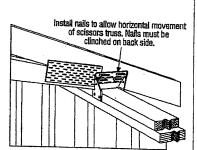
The TC truss connector is an ideal connector for scissor trusses and can allow horizontal movement up to 11/4". The TC also attaches plated trusses to top plates or sill plates to resist uplift forces. Typically used on one or both ends of truss as determined by the building designer.

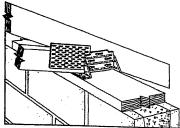
Material: 16 gauge Finish: G90 galvanized

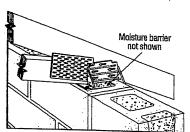

Design: Factored resistances are in accordance with CSA 086-14

Installation:


- Use all specified fasteners.
- Nails: 10d = 0.148" dia. x 3" long common wire, $10d \times 1\% = 0.148$ " dia. $\times 1\%$ " long.
- Drive 10d nails into the truss at the inside end of the slotted holes (inside end is towards the centre of the truss) and clinch on the back side. Do not seat these nails into the truss-allow room under the nail head for movement of the truss with respect to the wall.

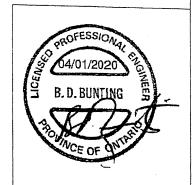

 Bend one flange up 90°. Drive specified nails (Bend one time only) into the top and face of the top plates or install Titen screws into the top and face of masonry wall. See optional load tables and installation details.


TC24 U.S. Patent 4,932,173


(TC28 Similiar)

Typical TC24 Installation

Optional TC26 Installation for Grouted Concrete Block using a Wood Nailer (8", 10", 12" Wall Installation Similar)


Optional TC26 Installation for Grouted Concrete Block using Titen Screws

	Fast	eners	Resistance		
Model			D.Fir-L	S-P-F	
No.	Truss	Wall Plates	Uplift (K _D =1.15)	Uplift (K ₀ =1.15)	
			fb.	lb.	
TC24	(4) 10d	(4) 10d	605	430	
TC26	(5) 10d	(6) 10d	1015	720	
TC28	(5) 10d	(6) 10d	1015	720	

Optional TC Installation Table

- Puona	i O mistana	mon rapie			
	Fas	steners	Factored Resistance		
Model			D.Fir-L	S-P-F	
No.	Truss	Wall Plates	Uplift (K _b =1.15)	Uplift (K ₀ =1.15)	
			ib.	lb.	
TC26	(5) 10d	(6) 10d x 11/2"	810	660	
	(5) 10d	(6) 10d	930	660	

- Factored resistances have been increased 15% for earthquake or wind loading; no further increase allowed; reduce where other loads govern.
- 2. Grout strength is 15 MPa minimum.
- 3. Optional TC26 installation with 10d nails requires minimum 3* top plate thickness.
- 4. TC26 fastened to grouted concrete block with (6) - 1/16" x 21/4" Titen screws has a factored uplift resistance of 275 lb.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see stronglie.com

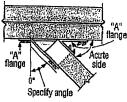
© 2020 Simpson Strong-Tie Company Inc.

T-SPECTC20 3/20 exp. 6/22

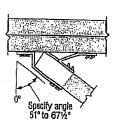
Face-Mount Truss Hanger (cont.)

These products are approved for installation with the Strong-Drive® SD Connector screw. See pp. 32-34 for more information.

Alternate Installation for (2) 2x4 and (2) 2x6 Headers


]	Fasteners		Factored Resistance				
	Min.	Minimum			D.F	ir-L	S-P-F		
Model No.	Heel Height	Header	Header	Joist	Uplift	Normal	Uplift (Kp = 1.15) lb.	Normal (Kp = 1.00)	
	(In.)	Size			(Kp = 1.15)	(K _D = 1.00)			
					ib.				
					kN	kN	kN	kN	
HTU26 (Min.)	37/8	(2) 2x4	(10) 16d	(14) 10d x 11/2"	1740	3340	1235	2370	
				1.4.00212	7.74	14,86	5.49	10.54	
HTU26 (Max.)	51/2	(2) 2x4	(10) 16d	(20) 10d x 11/2"	2470	4015	1755	2850	
				(25) 100 % 172	10.99	17,86	7.81	12.68	
HTU28 (Max.)	3%	(2) 2x6	(20) 16d	(26) 10d x 11/2"	4150	6395	2945	4540	
			(20) 16d	(32) 10d x 1½"	18.46	28.45	13.10	20.19	
HTU210 (Max.)	71/4	4 (2) 2x6			4150	6395	2945	4540	
e tuble footboto				(02) 100 X 172	18.46	28.45	13.10	20.19	

See table footnotes on p. 260.


Hanger Options

See Hanger Options Information on pp. 125–127. Skewed Seat

- Skewable up to 671/2°
- Available in single and 2-ply size
- · No bevel cut required

Top View HTU Hanger Skewed Right < 51°

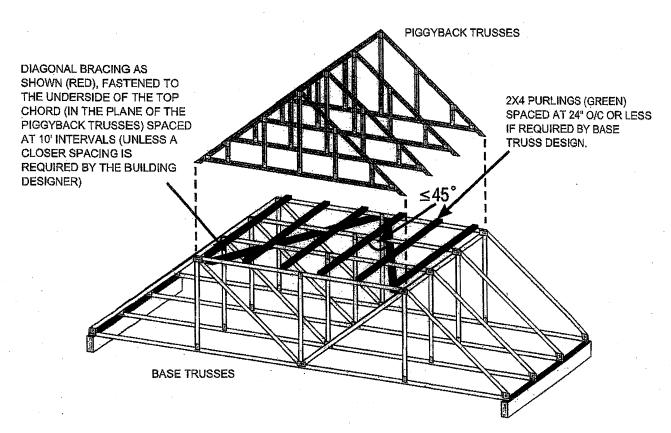
Top View HTU Hanger Skewed Right ≥ 51°

Factored Resistances for Skewed HTU Hangers

		Fasteners Factored Resistance					
	Clean			D.1	ir-L	S-P-F	
Model	Skew Angle]	Uplift	Normal	Uplift	Normal
No.	(Degrees)	Header	Joist	(KD=1.15)	(KD=1.00)	(KD=1,15)	(KD=1.00)
		İ		lbs	ibs	lbs	lbs
				kN	kN	kN	kN
	< 51	(20) 16d	(14) 10d x 1½"	1835	4110	1300	2905
HTU26		(20) 100	(1-1) 100 x 172	8.16	18.28	5.78	12.92
	51-671/2	(20) 16d	(12) 10d x 11/2"	1350	3820	955	2560
		(20) 100	(12) 100 X 172	6.01	18.10,	4.25	11.39
HTU26 HTU28 HTU210 HTU26-2	< 51	(26) 16d	(20) 10d x 11/2"	2810	4270	1985	3030
		(==) 100		12.50	18.99	8.83	13.48
	51-871/2	(26) 16d	(17) 10d x 11/2"	2075	3930	1465	2780
			(117 100 X 172	9.23	17.48	6.52	12.37
	< 51	(32) 16d	(26) 10d x 1 ½"	3785	4430	2675	3135
HTU210				16.84	19.71	11.90	13.95
	51-671/2	(32) 16d	(22) 10d x 11/2"	2795	4240	1980	3000
				12.43	18.86	8.81	13.35
	< 51	(20) 16d	(14) 10d	2140	3715	1515	2625
HTU26-2		1-7,100		9.52	16.53	6.74	11,68
	51~671/2	(20) 16d	(12) 10d	1610	3920	1140	2785
				7.16	17.44	5.07	12.39
	<51	(26) 16d	(20) 10d	3960	5425	2815	3855
HTU28-2				17.62	24.13	12.52	17.15
	51-671/2	671/2 (28) 16d	(17) 10d	2385	5425	1695	3855
		,=-,	(117 100	10.61	24.13	7.54	17.15
	< 51	(32) 16d) 16d (26) 10d	5025	6890	3570	4890
HTU210-2	-	,, 100		22.35	30.65	15.88	21.75
	51-671/2	(36) 16d	(22) 10d	3145	6680	2225	4745
		125, 100	, (22) IUU	13.99	29.72	9,90	21.10

 Factored uplift resistances have been increased 15% for wind or earthquake loading; no further increase is allowed.

2. Reduced heel heights are not permitted for skewed HTU's.


3. Nails: 16d = 0.162" dia. x 3½" long, 10d x 1½" = 0.148" dia. x 1½" long, 10d = 0.148" dia. x 3" long. See pp. 27–28 for other nail sizes and information.

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

Disclalmer:

OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technole are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to the information provided but has developed this tech-note to offer guidance where it is not currently readily available.

REVIEWED

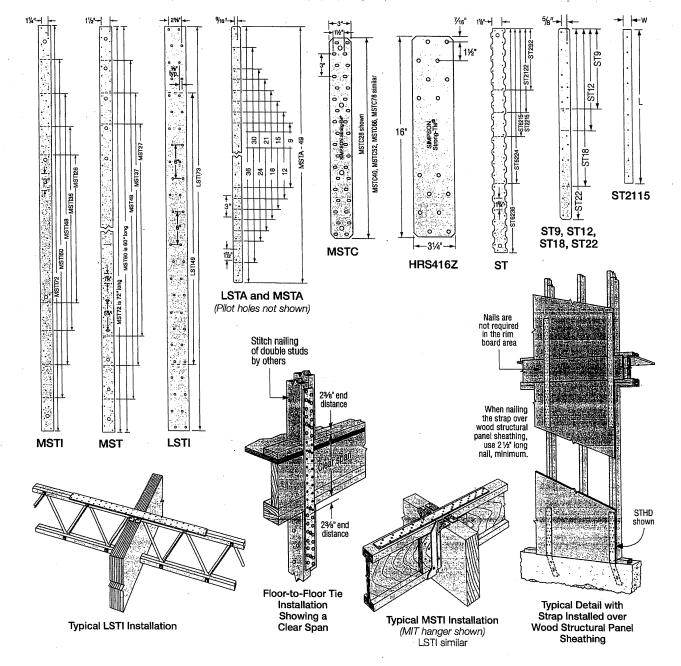
Strap Ties

Straps are designed to transfer tension loads in a wide variety of applications.

HRS — Heavy strap designed for installation on the edge of 2x members. The HRS416Z installs with Strong-Drive® SDS Heavy-Duty Connector screws.

LSTA and MSTA — Designed for use on the edge of 2x members, with a nailing pattern that reduces the potential for splitting.

LSTI and MSTI — Light and medium straps that are suitable where pneumatic-nailing is necessary through diaphragm decking and wood chord open-web trusses.


MST — High-capacity strap that can be installed with either nails or bolts. Suitable for double 2x member connections or greater.

MSTC — High-capacity strap that utilizes a staggered nail pattern to help minimize wood splitting. Nail slots have been countersunk to provide a lower nail head profile.

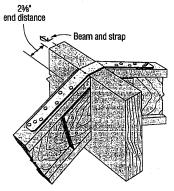
Finish: Galvanized. Some products are available in stainless steel, ZMAX® coating or black powder coat (add PC to sku); contact Simpson Strong-Tie. See Corrosion Information, pp. 18–20.

Installation: Use all specified fasteners; see General Notes

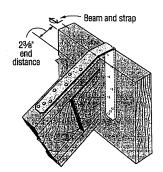
Options: Special sizes can be made to order; contact Simpson Strong-Tie for longer lengths

C-C-CAN2020 @2020 SIMPSON STRONG-TIE COMPANY INC

C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.


HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI

Strap Ties (cont.)


These products are available with additional corrosion protection. For more information, see p. 20.

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 366–370 for more information.

Γ		T	Dimensions		1	Factored Tensile Resistance			
				1.)	F		ir–L	S-I	P-F
	Model No.	Ga.			Fasteners (Total)	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$
	140.	1	W	L	(10tas)	lb.	lb.	lb.	lb.
L				· .		kN	kN	kN	kN
	LSTA9	.	11/4	. 9	(6) 10d	600	690	555	635
H		-			(-,	2.67	3.07	2.47	2.82
	LSTA12		11/4	12	(8) 10d	800 3.56	920 4.09	735 3.27	845 3.76
F		-				1000	1150	920	1060
	LSTA15	i	11/4	15	(10) 10d	4.45	5.12	4.09	4.72
r	LOTAGO	-	414	40	40.40.1	1200	1380	1105	1270
Ì	LSTA18		11/4	18	(12) 10d	5.34	6.14	4.92	5.65
Γ	LSTA21	Ī	11/4	21	(14) 10d	1400	1610	1290	1485
L	LUIAZI	20	1 /4	174 21	(14) 100	6.23	7.16	5.74	6.61
	LSTA24		11/4	24 (16) 10d	1600	1840	1475	1695	
ŀ		ļ			(1.7)	7.12	8.19	6.56	7.54
1	ST292		21/s	95/16	(8) 8d	585 2.60	675 3.00	535 2.38	615 2.74
H						940	1085	865	995
ł	ST2122		21/1s	12 ¹³ /16	(12) 8d	4.18	4.83	3.85	4.43
t	DT0115	İ		4054	(0) 0.4	670	770	615	710
	ST2115		3/4	16%	(8) 8d	2.98	3.43	2.74	3.16
	ST2215		21/16	165/16	(16) 8d	1335	1540	1235	1420
	312213		2716	10716	(10) 60	5.94	6.85	5.49	6.32
1	LSTA30		11/4	30	(20) 10d	2235	2465	2075	2385
1			.,,		(20) 100	9.94	10.97	9.23	10.61
١	LSTA36		11/4	36	(24) 10d	2465	2465	2465	2465
ŀ					-	10.97 3115	10.97 3580	10.97 2852	10.97 3280
-	LSTI49	1	3¾	49	(32) 10d x 11/2"	13.86	15.93	12.69	14.59
ŀ						4670	5370	4280	4920
	LSTI73		3¾	73	(48) 10d x 11/2"	20.77	23.89	19.04	21.89
	MOTAD		11/4	9	(6) 104	670	770	625	715
	MSTA9	19	1 74	9	(6) 10d	2.98	3.43	2.78	3.18
•	MSTA12	18	11/4	12	(8) 10d	895	1030	830	955
		-			(0) 100	3.98	4.58	3.69	4.25
,	MSTA15		11/4	15	(10) 10d	1120	1285	1040	1195
ł		1	<u> </u>			4.98 1340	5.72	4.63	5.32
•	MSTA18	ŀ	11/4	18	(12) 10d	5.96	1545 6.87	1245 5.54	1430 6.36
		1				1565	1800	1455	1670
	MSTA21		11/4	21	(14) 10d	6.96	8.01	6.47	7.43
	MOTAGA	1	11/	24	/16/ 104	1790	2060	1660	1910
•	MSTA24	1	11/4	24	(16) 10d	7.96	9.16	7.38	8,50
	MSTA30		11/4	30	(20) 10d	2470	2840	2260	2595
		┨ .			(23) 100	10.99	12.63	10.05	11.54
•	MSTA36		11/4	36	(24) 10d	2965	3070	2710	3070
		4			1	13.19	13.66	12.06	13.66
	MSTA49		11/4	49	. (28) 8d	2725 12.12	2725 12.12	2545 11.32	2725 12.12
		1	 		1	1405	1615	1300	1500
	ST6215		21/16	165/16	(16) 8d	6.25	7.18	5.78	6.67
	OTOGGA	1	011	005/	(0.4) 6.1	2305	2650	2155	2475
	ST6224	16	21/16	235/16	(24) 8d	10.25	11.79	9.59	11.01
	ST9		11/4	9	(6) 8d	525	605	490	560
	013		11/4	J 3	(0) 00	2.34	2.69	2.18	2.49
	ST12		11/4	11%	(8) 8d	700	805	650	750
			ļ	ļ		3.11	3.58	2.89	3.34
	ST18		11/4	173/4	(12) 8d	1050	1210	975	1125
					4	4.67	5.38	4.34	5.00
		-				1580	1790	1465	1685

Typical LSTA Installation (hanger not shown) Bend strap one time only

Typical LSTA Installation (hanger not shown) Bend strap one time only

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- Use half of the nails in each member being connected to achieve the listed resistances.
- 3. Nails: 10d = 0.148" dia. x 3" long, 10d x 1½" = 0.148" dia. x 1½" long, 8d = 0.131" dia. x 2½" long. See pp. 22–23 for other nail sizes and information.

277

Straps and Ties

Strap Ties (cont.)

These products are available with additional corrosion protection. For more information, see p. 20.

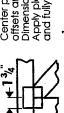
Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 366–370 for more Information.

		Dimensions			Factored Tensile Resistance				
		(in.)		-	D.Fir-L S-			-F	
Model	Ga.	T		Fasteners	(K _D = 1.00)	(K _D = 1.15)	$(K_D = 1.00)$	$(K_D = 1.15)$	
No.		w	L	(Total)	lb.	lb.	lb.	lb.	
			Ì		kN	kN	kN	kN	
	-				3955	4545	3615	4155	
MSTC28		3	281/4	(32) 10d	17.59	20.22	16.08	18.48	
	ŀ				5930	6820	5420	6235	
MSTC40	16	3	401/4	(48) 10d	26.38	30.34	24.11	27.74	
					6670	6940	6100	6940	
MSTC52		3	521/4	(54) 10d	29.67	30.87	27.14	30.87	
					8515	8565	7455	8565	
MSTC66		3	65¾	(66) 10d	37.88	38.10	33.16	38.10	
		_		(0.0) +0.1	8515	8565	7455	8565	
MSTC78	14	3	77%	(66) 10d	37.88	38.10	33.16	38.10	
	1 1				3735	4295	3270	3760	
ST6236		21/16	3313/16	(36) 8d	16.61	19.11	14.55	16.73	
				(22) 10d x 1½"	2825	3250	2475	2850	
MSTI26		21/16	26		12.57	14.46	11.01	12.68	
					4110	4725	3600	4140	
MSTI36		21/1в	36	(32) 10d x 11/2"	18,28	21.02	16.01	18.42	
	1	21/16	48	(44) 10d x 1½"	5650	6500	4955	5695	
MSTI48					25.13	28.91	22.04	25.33	
	1			(50) 40 1 41(1)	7195	7360	6305	7250	
MSTI60		21/16	60	(56) 10d x 1½"	32.01	32.74	28.05	32.25	
	1				7360	7360	7240	7360	
MSTI72	12	21/16	72	(68) 10d x 11/2"	32.74	32.74	32.21	32.74	
	1			(00) 0.1	2685	3090	2355	2710	
MST27		21/18	27	(26) 8d	11.94	13.75	10.48	12.06	
		1		2744	(00) 04	3930	4515	3440	3960
MST37		2 1/16 3	371/2	(38) 8d	17.48	20.08	15.30	17.62	
	1		- 40	(FO) 04	5170	5945	4530	5210	
MST48		21/16	48	(50) 8d	23.00	26.45	20.15	23.18	
1100115=	7	31⁄4	40	(40) 1(11 11/11 000	2400	2760	2120	2440	
HRS416Z			16	(16) ¼" x 1½" SDS	10.68	12.28	9.43	10.85	
			1	(OA) Od	6620	7610	5800	6670	
MST60	1.5	21/16	60	(64) 8d	29.45	33.85	25.80	29.67	
	10			(70) 04	8065	9135	7065	8125	
MST72		21/16	72	. (78) 8d	35.88	40.64	31.43	36.14	

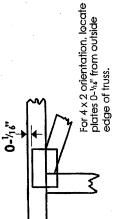
1. Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.

2. Use half of the nails in each member being connected to achieve the listed resistances.

3. Nails: 10d = 0.148" dia. x 3" long, $10d \times 1\frac{1}{2}$ " = 0.148" dia. x $1\frac{1}{2}$ " long, 8d = 0.131" dia. x 21/2" long. See pp. 22-23 for other nail sizes and information.


Jan. 5, 2° 23/s" end distance MONOF OF ONCE Typical MSTL MOE OF On Installation Installation (MIT hanger shown) LSTI similar

Straps and Ties


C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated, Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss and fully embed teeth.

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

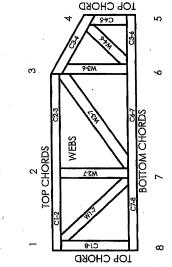
4 4 ×

width measured perpendicular to slots. Second dimension is The first dimension is the plate the length parallel to slots.

LATERAL BRACING LOCATION

output. Use T, I or Eliminator bracing by text in the bracing section of the Indicated by symbol shown and/or if indicated

BEARING


ndicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

Truss Design Procedures and Specifications for Light Metal Plate Connected Wood Trusses Industry Standards: <u>ن</u>

Design Standard for Bracing.
Building Component Safety Information,
Guide to Good Practice for Handling.
Installing & Bracing of Metal Plate
Connected Wood Trusses. DSB-89: BCSI:

Numbering System

dimensions shown in fl-in-sixteenths or mm (Drawings not to scale) 6-4-8

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVAIS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MITek® All Rights Reserved

MITek Engineering Reference Sheet: MII-7473C rev. 10-'08 POWER TO PERFORM."

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative T, I, or Eliminator bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses. mi
- Provide copies of this truss design to the building designer, erection supervisor, properly owner and all other interested parties.
- Cut members to bear fightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by TPIC.
- Design assumes trusses will be suitably protected from the environment in accord with TPIC.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. œί
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- responsibility of truss fabricator. General practice is to camber for dead load deflection. 10. Camber is a non-structural consideration and is the
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed ar purlins provided at spacing indicated on design.
- 14, Bottom chords require lateral bracing at 10 ft. spacing, or less, if no celling is installed, unless otherwise noted.
 - 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pase unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all partions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with TPIC Quality Criteria. ä