

Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information				
Building number, street name Baross	sa 1		Lot:	
S38-	1		Lot/con.	
Municipality Bradford	Postal code	Plan number/ other description		
B. Individual who reviews and takes responsibility for design	gn activities			
Name David DaCosta		Firm	gtaDesigns Inc.	
Street address 2985 Drew Roa	d, Suite 202			Lot/con.
Municipality Mississauga	Postal code L4T 0A4	Province Ontario	E-mail hvac@gtadesi	gns.ca
Telephone number	Fax number		Cell number	
(905) 671-9800 C. Design activities undertaken by individual identified in S	ection B. [Bu	ilding Code Table 3	B.5.2.1 of Division C]	
☐ House ☑ HVAC – H	louse		☐ Building Structural	
☐ Small Buildings ☐ Building Se	ervices		☐ Plumbing – House	
☐ Large Buildings ☐ Detection,	Lighting and Pov	wer	☐ Plumbing – All Buildings	
☐ Complex Buildings ☐ Fire Protect	tion		☐ On-site Sewage System	s
Description of designer's work Mod	del Certification	1	Project #:	PJ-00041
			Layout #:	JB-07350
Heating and Cooling Load Calculations Main Air System Design Alternate	X	Builder Project	Bayview Wellingto Green Valley East	
Residential mechanical ventilation Design Summary Area Sq ft:	2228		Barossa 1	
Residential System Design per CAN/CSA-F280-12		Model	S38-1	
Residential New Construction - Forced Air		SB-12	Package A1	
D. Declaration of Designer				
David DaCosta	declare that (c	choose one as appro	priate):	
(print name)				
☐ I review and take responsibility for the Aprillation Co.				
3.2.4 Division C of the Building Cocclasses/categories.	de. i am qualified	i, and the firm is registe	ered, in the appropriate	
Individual BCIN:				
Firm BCIN:			•	
			1	
Individual BCIN:	3296	64		
Basis for exemp	tion from registra	ation: D	Division C 3.2.4.1. (4)	
☐ The design work is exempt from the	e registration and	d qualification requirem	ents of the Building Code.	
Basis for exemp	tion from registra	ation and qualification:		
I certify that:				
The information contained in this schedule is true to the best of n	ny knowledge.			
I have submitted this application with the knowledge and consent	of the firm.			
July 21, 2021		Mane Sto		
Date		Signature of Des	signer	

NOTE:

1. For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d), of Division C, Article 3.2.5.1. of Division C and all other persons who are exempt from qualifications under Subsections 3.2.4. and 3.2.5.of Division C.

Schedule 1 does not require to be completed a holder of a license, temporay license, or a certificate of authorization, issed by the
Ontario Associstion of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited licence to
practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

Page 2

These documents issued for the use of and may not be used by any other persons without authorization. Documents Building I Address (Model): \$38-1 Model: Barossa 1	·
Address (Model): S38-1	·
Address (Model): S38-1	_ocation
Address (Model): S38-1	
Model: Barossa 1	Site: Green Valley East
	Lot:
City and Province: Bradford	Postal code:
Calculations	s based on
Dimensional information based on:	VA3 Design13/May/2021
Attachment: Detached	Front facing: East/West Assumed? Yes
No. of Levels: 3 Ventilated? Included	Air tightness: 1961-Present (ACH=3.57) Assumed? Yes
Weather location: Bradford	Wind exposure: Sheltered
HRV? VanEE V150H75NS	Internal shading: Light-translucent Occupants: 5
Sensible Eff. at -25C 60% Apparent Effect. at -0C 83%	Units: Imperial Area Sq ft: 2228
Sensible Eff. at -0C 75%	
Heating design conditions	Cooling design conditions
Outdoor temp -9.4 Indoor temp: 72 Mean soil temp: 48	Outdoor temp 86 Indoor temp: 75 Latitude: 44
Above grade walls	Below grade walls
Style A: As per OBC SB12 Package A1 R 22	Style A: As per OBC SB12 Package A1 R 20ci
Style B:	Style B:
Style C:	Style C:
Style D:	Style D:
Floors on soil	Ceilings
Style A: As per Selected OBC SB12 Package A1	Style A: As per Selected OBC SB12 Package A1 R 60
Style B:	Style B: As per Selected OBC SB12 Package A1 R 31
Exposed floors	Style C:
Style A: As per Selected OBC SB12 Package A1 R 3	Doors
Style B:	Style A: As per Selected OBC SB12 Package A1 R 4.00
Windows	Style B:
Style A: As per Selected OBC SB12 Package A1 R 3.5	Style C:
Style B:	Skylights
Style C:	Style A: As per Selected OBC SB12 Package A1 R 2.03
Style D:	Style B:
Attached documents: As per Shedule 1 Heat Loss/	Gain Caculations based on CSA-F280-12 Effective R-Values
Notes: Residential New 0	Construction - Forced Air
Calculations p	performed by
Name: David DaCosta	Postal code: L4T 0A4
Company: gtaDesigns Inc.	Telephone: (905) 671-9800
Address: 2985 Drew Road, Suite 202	Fax:
City: Mississauga	E-mail hvac@gtadesigns.ca

0.07

11.0

30

0.06

6.0

14

0.07

6.0

14

0.07

7.5

14

0.24

0.24

0.24

0.24

0.24

0.24

w

U

т

s

Q

0.06

7.0

FLC

Adjusted Pressure

Duct Size Round

Inlet Size

Inlet Size

Trunk

Air System Design

SB-12 Package A1 2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

G

July 21, 2021

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under Division C subsection 3.2.5. of the

Project #

Bayview Wellington Builder: Date: Page 3 Barossa 1 PJ-00041 **Building Code.** System 1 Mane Alex **Green Valley East** S38-1 Individual BCIN: 32964 David DaCosta Lavout # JB-07350 Project: Model: BOILER/WATER HEATER DATA: DESIGN LOAD SPECIFICATIONS AIR DISTRIBUTION & PRESSURE FURNACE/AIR HANDLER DATA: A/C UNIT DATA: Level 1 Net Load 16,793 btu/h **Equipment External Static Pressure** 0.5 "w.c. Make Make 2.5 Ton Amana Туре Amana AMEC960603ANA Level 2 Net Load 17,898 btu/h **Additional Equipment Pressure Drop** 0.225 "w.c. Model Model Cond.-2.5 Level 3 Net Load 16.532 btu/h **Available Design Pressure** 0.275 "w.c. Input Btu/h 60000 Input Btu/h Coil -2.5 Return Branch Longest Effective Length 57600 Level 4 Net Load 0 btu/h 300 ft Output Btu/h Output Btu/h " W C ΔWH 51.224 btu/h 0.138 "w.c. 0.50 Min.Output Btu/h Total Heat Loss R/A Plenum Pressure E.s.p. Blower DATA: **Total Heat Gain** 26,332 btu/h S/A Plenum Pressure 0.14 "w.c. deg. F. W2 Heating Air Flow Proportioning Factor AFUE Blower Speed Selected: ECM 0.0181 cfm/btuh 96% **Blower Type** 28511 ft³ **Building Volume Vb** Cooling Air Flow Proportioning Factor 0.0353 cfm/btuh Aux. Heat (Brushless DC OBC 12.3.1.5.(2)) Ventilation Load 1.188 Btuh. SB-12 Package Package A1 Heating Check 929 cfm 929 cfm R/A Temp 70 dea. F. Cooling Check Ventilation PVC 79.5 cfm S/A Temp 127 deg. F. Supply Branch and Grill Sizing Diffuser loss 57 deg. F. 929 cfm **Cooling Air Flow Rate** 929 cfm 0.01 "w.c. Temp. Rise>>> Selected cfm> Level 1 Level 2 S/A Outlet No 2 5 10 11 Room Use BASE BASE BASE KIT KIT MUD FOY **PWD** GRT GRT Btu/Outlet 4198 4198 4198 4198 2777 2777 831 2899 1100 3758 3758 **Heating Airflow Rate CFM** 76 76 76 76 50 50 15 53 20 68 68 13 13 13 13 101 101 41 23 103 103 Cooling Airflow Rate CFM **Duct Design Pressure** 0.13 **Actual Duct Length** 34 30 19 15 33 43 19 20 13 39 Equivalent Length 120 100 110 70 70 70 70 70 70 70 70 70 70 70 100 110 140 100 90 100 90 70 70 70 70 70 70 70 Total Effective Length 154 130 129 85 70 70 70 70 70 70 70 70 70 133 153 159 120 103 105 129 70 70 70 70 70 70 70 70 **Adjusted Pressure** 0.08 0.10 0.10 0.15 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.10 0.08 0.08 0.11 0.13 0.12 0.10 0.19 0.19 0.19 0.19 0.19 0.19 0.19 **Duct Size Round** 3 5 **Outlet Size** 4x10 4x10 4x10 4x10 3x10 3x10 3x10 4x10 Trunk В D С Level 3 Level 4 S/A Outlet No. 12 13 15 18 14 16 17 Room Use MAST LAUND RFD 2 BFD 3 RATH RFD 4 FNS Btu/Outlet 3389 886 4173 3769 976 1180 2159 **Heating Airflow Rate CFM** 61 16 76 68 18 21 39 93 20 48 Cooling Airflow Rate CFM 84 34 86 36 **Duct Design Pressure** 0.13 47 **Actual Duct Length** 56 38 22 31 **Equivalent Length** 160 130 110 120 100 150 150 70 207 70 186 154 158 122 181 196 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 Total Effective Length 70 70 Adjusted Pressure 0.06 0.07 0.08 0.08 0.11 0.07 0.07 0.19 **Duct Size Round** 6 5 Outlet Size 3x10 4x10 3x10 4x10 4x10 3x10 3x10 4x10 Trunk R D D D C R Return Branch And Grill Sizing **Grill Pressure Loss** 0.02 "w.c **Return Trunk Duct Sizing** Supply Trunk Duct Sizing R/A Inlet No 1R 2R 3R 4R 5R 6R 7R 8R 9R 10R 11R Trunk CFM Press. Round Rect. Size Trunk CFM Press. Round Rect. Size Inlet Air Volume CFM 152 417 105 105 150 **Duct Design Pressure** 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 929 24x10 534 0.06 12.5 18x8 14x10 Drop 0.06 15.0 35 719 277 5 53 33 R 0.06 9.5 10v8 **Actual Duct Length** 14 Z 0.06 14 0 22x8 18x10 127 **Equivalent Length** 185 165 150 145 140 50 50 50 50 50 50 Υ C 395 0.07 10.5 12x8 10x10 **Total Effective Length** 190 179 203 180 173 50 50 50 50 50 50 х 213 0.07 8.5 8x8 107

Total Heat Loss

Total Heat Gain

51,224 btu/h

26,332 btu/h

Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800

David DaCosta

Package A1

e-mail hvac@gtadesigns.ca

		Builder:	Bayview W	llington		Date:		Jul	y 21, 202	21					Wea	ather Data	В	radford	44	-9.4	86 22	48.2					Pa
012 OBC		Project:	Green Val	y East		Model:			arossa 1 S38-1			_	Syste	m 1	He	at Loss ^T	81.4 deg. l	=	Ht gain ^T	11	deg. F	GTA:	2228		Projec Layou		PJ-0 JB-0
Run E	Level 1 Ift. exposed wall A Ift. exposed wall B Ceilling height Floor area Exposed Ceilings A			BA 150 A B 6.0 AG 894 Area A	SE	A B 6.0 AG Are A		6.0	Area A		A B 6.0 AG Area A		A B 6.0 AG Area A		A B 6.0 AG Area A		A B 6.0 AG Area A		A B 6.0 AG Area A		A B 6.0 AG Are A		6.0	Area A		A B 6.0 AG Area A	
E	Exposed Ceilings B Exposed Floors			B Fir		B Fir			B Fir		B Flr		B Flr		B Flr		B Flr		B Flr		B Fir			B Flr		B Flr	
	Gross Exp Wall A			900		• • • •			• • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			• • •		• • •	
	Gross Exp Wall B																										
	Components North Shaded	3.55	oss Gain 22.93 11.6	Loss	Gain 69 35	Los	s Gair	<u> </u>	Loss (Gain	Loss	Gain	Loss	Gain	Loss	Gain	Loss	Gain	Loss	Gain	Lo:	ss Gain		Loss	Gain	Loss	
	East/West	3.55	22.93 29.5	14 3	21 414																						
	South	3.55	22.93 22.5		69 68																						
	WOB Windows Skylight	3.55 2.03	22.93 27.8 40.10 88.2																								
	Doors	4.00	20.35 2.7		27 58																						
	et exposed walls A	21.12	3.85 0.5		447																						
	et exposed walls B Exposed Ceilings A	17.03 59.22	4.78 0.6 1.37 0.6																								
	Exposed Ceilings B	27.65	2.94 1.3																								
	Exposed Floors	29.80	2.73 0.1																								
Indation Cond	luctive Heatloss			72 80																							
Conductive	Heat Loss Heat Gain			80	1021																						
Leakage	Heat Loss/Gain		1.0395 0.041	84																							
	Case 1		0.07 0.0																								
ntilation	Case 2 Case 3	x	14.95 11.8 0.04 0.0		96 71																						
	Heat Gain People	^	23		71																						
	Appliances Loads	1 =.25 pe	ercent 364																								
	Duct and Pipe loss		109																								
cvel HL Total vel HG Total		Tot		167	1475		IUD	20 /	FOY		PWC		GF 72 A	т	A		A		A		A			A		A	
E E E	Level 2 If. exposed wall A If. exposed wall B Celling height Floor area Exposed Ceilings B Exposed Floors	Tot	10° tal HL for per roor	167 KI 43 A B 11.0 291 Area 58 A B Fir	1475	13.0 23 Are A B		12.0 47 /			10 A B 11.0 35 Area A B Fir		72 A B 11.0 493 Area 4 A B Fir		A B 11.0 Area A B Fir		A B 11.0 Area A B Fir		A B 11.0 Area A B Fir		A B 11.0 Are A B Fir		11.0	A B Area A B B	1	A B 1.0 Area A B Fir	
El HL Total el HG Total Run Run E	Level 2 In ft. exposed wall A of the exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Ceilings B Exposed Floors Gross Exp Wall A	Tot	10° tal HL for per roor	167 KI 43 A B 11.0 291 Area 58 A B	1475	N 4 A B 13.0 23 Are A B		12.0 47 <i>i</i>	A B Area A B		10 A B 11.0 35 Area A B		72 A B 11.0 493 Area 4 A B		B 11.0 Area A B		B 11.0 Area A B		B 11.0 Area A B		B 11.0 Are A B		11.0	B Area A B	1	B 1.0 Area A B	
E HL Total el HG Total Run Run E	Level 2 If. exposed wall A If. exposed wall B Celling height Floor area Exposed Ceilings B Exposed Floors	Total I	al HL for per roor	167 KI 43 A B 11.0 291 Area 58 A B Fir	1475	13.0 23 Are A B	a	12.0 47 / 1 1 240	A B Area A B B		10 A B 11.0 35 Area A B Fir	Gain	72 A B 11.0 493 Area 4 A B Fir		B 11.0 Area A B	Gain	B 11.0 Area A B	Gain	B 11.0 Area A B	Gain	B 11.0 Are A B		11.0	B Area A B Fir	1 Gain	B 1.0 Area A B	
El HL Total el HG Total Run Run E E:	Level 2 In ft. exposed wall A In ft. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded	Total I Total I	tal HL for per room x 1. HG per room x 1. OSS Gain 22.93 11.6	167 KI 43 A B 11.0 291 Area 58 A B FIr 473	T Gain	N A A B 13.0 23 Are A B Fir 52	a	12.0 47 / 47 / 240	A B Area A B Fir	Gain	10 A B 11.0 35 Area A B Fir 110	Gain	72 A B 11.0 493 Area 4 A B Fir 792 Loss	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
El HL Total el HG Total Run Run E E:	Level 2 Ift. exposed wall A Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West	Total I Total I R-Values L 3.55 3.55	10: tal HL for per room tal HL for per room x 1. One per room x 1.	KI 43 A B 11.0 291 Area 58 A Fir 473 Loss	T Gain	N A A B 13.0 23 Are A B Fir 52	a	12.0 47 / 1 1 240	A B Area A B B		10 A B 11.0 35 Area A B Fir	Gain	72 A B 11.0 493 Area 4 A B Fir 792 Loss	Gain 6 769	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
El HL Total al HG Total Run Run E E	Level 2 In ft. exposed wall A In ft. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Ceilings A Exposed Floors Gross Exp Wall B Components North Shaded	Total I Total I	tal HL for per room x 1. HG per room x 1. OSS Gain 22.93 11.6	KI 43 A B 11.0 291 Area 58 A B Fir 473 Loss	T Gain	N A A B 13.0 23 Are A B Fir 52	a	12.0 47 / 47 / 240	A B Area A B Fir	Gain	10 A B 11.0 35 Area A B Fir 110	Gain	72 A B 11.0 493 Area 4 A B Fir 792 Loss	Gain 6 769	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
El HL Total al HG Total Run Run E E	Level 2 Ift. exposed wall A Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight	R-Values L 3.55 3.55 3.55 1.99 2.03	oss Gain 22.93 11.6 22.93 22.5 40.90 23.6 40.10 88.2	167 Ki 43 A B 11.0 291 Area 58 A B Fir 473 Loss 19	T Gain	4 A B 13.0 23 Are A B Fir 52	a s Gair	12.0 47 / 240	A B Area A B B Fir Loss (459	Gain 591	10 A B 11.0 35 Area A B Fir 110	Gain	72 A B 11.0 493 Area 4 A B Fir 792 Loss	Gain 6 769	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
El HL Total Il HG Total Run Run E	Level 2 Ift. exposed wall A If. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Ceilings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors	R-Values L 3.55 3.55 1.99 2.03	oss Gain 22.93 11.6 22.93 22.5 40.90 23.6 40.10 88.2 20.35 2.7 20.35 2.7	11.0 Ki 43 A B 11.0 291 Area 58 A B Fir 473 Loss	Gain 2453	13.0 23 Are A B Fir 52 Los	a S Gain	12.0 47 / 240 220 58 32	A B Area A B B Fir Loss (459)	Sain 591 88	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 552 11!	Gain 6 769 2 1170	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
Run Run E	Level 2 Ift. exposed wall A Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight	R-Values L 3.55 3.55 3.55 1.99 2.03	oss Gain 22.93 11.6 22.93 22.5 40.90 23.6 40.10 88.2	KI 43 A B 11.0 291 Ara 58 A B Fir 473 Loss 19	Gain 2453	13.0 23 Are A B Fir 52 Los	a S Gain	12.0 47 / 240	A B Area A B B Fir Loss (459	Gain 591	10 A B 11.0 35 Area A B Fir 110	Gain 384	72 A B 11.0 493 Area 4 A B Fir 792 Loss	Gain 6 769 2 1170	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
Run	Level 2 Ift. exposed wall A If. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B et exposed walls B Exposed Veilings A	R-Values L 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22	oss Gain 22.93 11.6 22.93 25.5 40.90 23.6 40.10 88.2 20.35 2.7 4.78 0.6 9.58 1.2	11.0 K. 43 A B 11.0 291 Area 58 A B Fir 473 Loss 83 19 18 58	Gain 2453	13.0 23 Are A B Fir 52 Los	a S Gain	12.0 47 / 240 220 58 32	A B Area A B B Fir Loss (459)	Sain 591 88	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 552 11!	Gain 6 769 2 1170	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
El HL Total al HG Total Run Run El Bi Ne Ne Re	Level 2 If. exposed wall A If. exposed wall A If. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed deilings B Exposed Ceilings B Exposed Ceilings B Exposed Ceilings B	R-Values L 3.55 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65	oss Gain 22.93 11.6 22.93 22.5 40.90 23.6 40.10 88.2 20.35 2.7 4.78 0.6 9.58 1.2 1.37 0.6 2.94 1.3	KI 43 A B 11.0 291 Ara 58 A B Fir 473 Loss 19	Gain 2453 64 252	13.0 23 Are A B Fir 52 Los	a S Gain	12.0 47 / 240 220 58 32	A B Area A B B Fir Loss (459)	Sain 591 88	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 552 11!	Gain 6 769 2 1170	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
E E E	Level 2 Ift. exposed wall A If. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B et exposed walls B Exposed Veilings A	R-Values L 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22	oss Gain 22.93 11.6 22.93 25.5 40.90 23.6 40.10 88.2 20.35 2.7 4.78 0.6 9.58 1.2	KI 43 A B 11.0 291 Ara 58 A B Fir 473 Loss 19	Gain 2453 64 252	13.0 23 Are A B Fir 52 Los	a S Gain	12.0 47 / 240 220 58 32	A B Area A B B Fir Loss (459)	Sain 591 88	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 552 11!	Gain 6 769 2 1170	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
Run	Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B et exposed walls B Exposed Floors Gross Exp Wall B Exposed Floors Gross Exp Wall B Exposed Floors Gross Exp Wall B Exposed Floors et exposed walls B Exposed Floors luctive Heatloss Heat Loss	R-Values L 3.55 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65	oss Gain 22.93 11.6 22.93 22.5 22.93 22.5 24.90 23.6 40.10 88.2 20.35 2.7 4.78 0.6 2.94 1.37 0.6 2.94 1.37 0.6	KI 43 A B 11.0 291 Ara 58 A B Fir 473 Loss 19	Gain 03 2453 664 252 880 37	13.0 23 Are A B B Fir 52 Los	a S Gain	12.0 47 / 240 20 20 58 32 20 188	A B Area A B B Fir Loss (459)	591 88 121	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 552 11!	Gain 6 769 2 1170 3 461 5 3	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
Run	Level 2 Ift. exposed wall A Ift. exposed wall B Celling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A et exposed walls A et exposed walls B Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Floors University of the Expose	R-Values L 3.55 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65	oss Gain 10°	11.0 Ki 43 A 11.0 Z91 Area 58 A B Fir 473 Loss 19 390 18	Gain Gain 2453 64 252 80 37 47 2742	13.0 23 Are A B Fir 52 Los	a Gair 427 148	12.0 47 / 240 20 20 58 32 20 188	A B Area A B Fir Loss (459	Sain 591 88 121	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384 63 63	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 552 111 714 34	Gain 6 769 2 1170 3 461 5 3	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
Run	Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B et exposed walls B Exposed Floors Gross Exp Wall B Exposed Floors Gross Exp Wall B Exposed Floors Gross Exp Wall B Exposed Floors et exposed walls B Exposed Floors luctive Heatloss Heat Loss	R-Values L 3.55 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65	oss Gain 22.93 11.6 22.93 22.5 22.93 22.5 24.90 23.6 40.10 88.2 20.35 2.7 4.78 0.6 2.94 1.37 0.6 2.94 1.37 0.6	167 K. 43 A B 11.0 291 Area 58 A B Fir 473 Loss 83 19 390 18 58	Gain Gain 2453 64 252 80 37 47 2742	13.0 23 Are A B Fir 52 Los	a S Gain	12.0 47 / 240 20 20 58 32 20 188	A B Area A B Fir Loss (459 651 899	591 88 121	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384 63 63	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 52 11: 714 4	Gain 6 769 2 1170 3 461 5 3	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
Run	Level 2 Ift. exposed wall A Ift. exposed wall B Celling height Floor area Exposed Cellings B Exposed Cellings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A Exposed Cellings B Exposed Cellings B Exposed Gellings B Exposed Floors te exposed walls B Exposed Cellings A type Septiment Components West Exposed Cellings B Exposed Floors Unctive Heat Coss Heat Loss/Gain Heat Loss/Gain Heat Loss/Gain Losse 2	R-Values L 3.55 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65	oss Gain 22.93 11.6 22.93 29.5 22.93 29.5 40.90 23.6 40.10 88.2 21.37 0.6 2.94 1.3 2.73 0.1 2.73 0.1 2.73 0.1 3.7 0.6 3.8 0.6 3.9 0.041 0.03 0.041 0.03 0.041	11.0 Ki 43 A B 11.0 Z91 Area 58 A B Fir 473 Loss 19 390 18 58	Gain Gain 2453 2453 64 252 80 37 47 2742 65 113	13.0 23 Are A B Fir 52 Los	a s Gain 427 148 556	12.0 47 / 240 20 20 58 32 20 188	A B B Area A B B Fire A S B B Fire A S B B B B B B B B B B B B B B B B B B	Sain 591 88 121 801 33	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384 63 447 18	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 552 111 714 34 4	Gain 6 769 2 1170 3 461 5 3 7 2402 8 99	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
Leakage entilation	Level 2 16. exposed wall A 16. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B Exposed Ceilings B Exposed Floors Stylight Exposed Floors Light Windows Light Walls B Exposed Floors Light Walls	R-Values L 3.55 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65	oss Gain 22.93 11.6 22.93 29.5 22.93 29.5 40.90 23.6 40.10 82.2 29.35 2.7 4.78 0.6 2.94 1.3 2.73 0.1 x 0.4069 0.041 0.03 0.0 14.95 11.8	167 K. 43 A B 11.0 291 Area 58 A B Fir 473 Loss 83 19 390 18 58 38 15 15	Gain Gain 2453 2453 64 252 80 37 47 2742 65 113	13.0 23 Are A B Fir 52 Los	a Gair 427 148	12.0 47 / 240 20 20 58 32 20 188	A B Area A B Fir Loss (459	Sain 591 88 121	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384 63 447 18	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 552 111 714 34	Gain 6 769 2 1170 3 461 5 3 7 2402 8 99	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
Run	Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B Exposed Walls B Exposed Floors Exposed Walls B Exposed Walls B Exposed Walls B Exposed Walls B Exposed Hoors Heat Gain Heat Loss/Gain Case 1 Case 2 Case 3 Heat Gain People	R-Values L 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65 29.80	oss Gain 22.93 11.6 22.93 22.5 22.93 22.5 24.90 23.6 24.76 0.6 2.73 0.1 2.73 0.1 2.73 0.1 2.73 0.1 2.74 0.6 2.95 1.2 2.75 0.1 2.77 0.1 2.77 0.1 2.78 0.6 2.98 1.2 2.79 1.37 0.6 2.99 1.37 0.6 2.99 1.38 1.2 2.79 1.37 0.6 2.90 1.38 1.2 2.79 1.37 0.6 2.90 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39	11.0 KI 43 A 11.0 Z91 Area 58 A B Fir 473 Loss 19 390 18 58 38 15	Gain Gain 2453 2453 64 252 880 37 47 2742 113 41 192	13.0 23 Are A B Fir 52 Los	a s Gain 427 148 556	12.0 47 / 240 20 20 58 32 20 188	A B B Area A B B Fire A S B B Fire A S B B B B B B B B B B B B B B B B B B	Sain 591 88 121 801 33	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384 63 447 18	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 55 52 111 714 34 4	Gain 6 769 2 1170 3 461 5 3 7 2402 8 99 1 1 168	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
Run	Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B Exposed Floors Gross Exp Wall B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B Exposed Floors textive Heatloss Heat Gain Heat Loss Heat Gain Case 1 Case 2 Case 3 Heat Gain People Appliances Loads Duct and Pipe loss	R-Values L 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65 29.80	oss Gain 22.93 11.6 22.93 22.5 22.93 22.5 22.93 22.5 22.93 22.5 22.93 22.5 22.93 22.5 2.7 40.90 23.6 9.58 1.2 1.37 0.6 2.94 1.3 2.73 0.1 x 0.4069 0.041 0.03 0.0 14.95 11.8 0.04 23 23 24 creent 364	KI 43 A B 11.0 291 Area 58 A B Fir 473 Loss 19 390 18 58 38 15	Gain 03 2453 64 252 80 37 47 2742 65 113 41 192	13.0 23 Are A B Fir 52 Los	a s Gain 427 148 576 234	12.0 47 / 240 20 20 58 32 20 188	A B B Area A B B Fir 459	Sain 591 88 121 801 33	10 A B 11.0 35 Area A B Fir 110 Loss 13 298 310 298 310 288 310 288 310 288 310 310 310 310 310 310 310 310 310 310	Gain 384 63 447 18	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 52 11: 714 34: 4 52(21: 2.0	Gain 6 769 2 1170 3 461 5 3 7 2402 8 99 1 168 1823	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	
Run Run Run Lei HG Total	Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A Exposed Ceilings B Exposed Floors ductive Heatloss Heat Loss Heat Loss Heat Gain Heat Loss/Gain Case 1 Case 2 Case 3 Heat Gain People Appliances Loads	R-Values L 3.55 3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 27.65 29.80	oss Gain 22.93 11.6 22.93 29.5 22.93 29.5 40.90 23.6 40.10 88.2 20.35 2.7 4.78 0.6 2.94 1.3 2.73 0.1 x 0.4069 0.041 0.03 0.04 14.95 11.8 14.95 11.8 10.04 0.00 23.6 290 23.6	11.0 KI 43 A 11.0 Z91 Area 58 A B Fir 473 Loss 19 390 18 58 38 15 11 1.5	Gain 03 2453 64 252 80 37 47 2742 65 113 41 192	13.0 23 Are A B B Fir 52 Los	S Gain S Gain 427 148 576 234 21	12.0 47 / 240 20 20 58 32 20 188	A B B Area A B B Fire A S B B Fire A S B B B B B B B B B B B B B B B B B B	Sain 591 88 121 801 33	10 A B 11.0 35 Area A B Fir 110 Loss 13 298	Gain 384 63 447 18	72 A B 11.0 493 Area 4 A B Fir 792 Loss 26 55 52 111 714 34 4	Gain 6 769 2 1170 3 461 5 3 7 2402 8 99 1 168 1823	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Area A B Fir	Gain	B 11.0 Are A B Fir		11.0	B Area A B Fir		B 1.0 Area A B Fir	

32964

Division C subsection 3.2.5. of the Building Code. Individual BCIN:

Level HL Total

51,224

26,332

otu/h

htu/h

Level HG Total

Total Heat Loss

Total Heat Gain

Total HL for per room Total HG per room x 1.3

Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800

e-mail hvac@gtadesigns.ca **Bayview Wellington** July 21, 2021 Weather Data Bradford 44 -9.4 86 22 48.2 Page 5 Barossa 1 Project # P.I-00041 System 1 2012 OBC Heat Loss ^T 81.4 deg. F Project: **Green Valley East** Model: S38-1 Ht gain ^T 11 deg. F GTA: 2228 Layout # JB-07350 Level 3 MAST LAUND BED 2 BED 3 BATH BED 4 Run ft. exposed wall A 32 A 7 A 32 A 26 A 10 A 10 A 22 A Run ft. exposed wall B В R В R В В В В В В Ceiling height 11.0 9.0 12.0 9.0 9.0 9.0 9.0 277 Area 233 Area 169 Area 84 Area 127 Area 120 Area Floor area 78 Area Area Area Area Area **Exposed Ceilings A** 277 A 78 A 233 A 169 A 84 A 127 A 120 A Α Α Α Α Exposed Ceilings B В В В Exposed Floors Flr 15 Flr 176 Flr 64 Flr 5 Flr Flr Flr Flr Flr Flr Flr Gross Exp Wall A 352 312 90 90 198 Gross Exp Wall B Components R-Values Loss Gain Gain Loss Loss Gain Loss Loss Loss Gain Loss Loss Gain Loss Loss Loss Loss North Shaded 3.55 22.93 11.62 206 105 206 105 28 30 688 887 39 1153 10 229 16 367 473 East/West 3.55 22.93 29.56 South 3.55 22.93 22.50 16 367 360 13 298 293 **Existing Windows** 1.99 40.90 23.66 Skylight 2.03 40.10 88.23 Doors 4.00 20.35 2.75 Net exposed walls A 17.03 4.78 0.65 324 1549 209 54 258 35 249 1190 161 273 1305 176 80 382 52 74 354 48 169 808 109 Net exposed walls B 8.50 9.58 1.29 **Exposed Ceilings A** 59.22 1.37 0.64 277 381 178 78 107 50 233 320 150 169 232 108 84 115 54 127 175 120 165 Exposed Ceilings B 27.65 2.94 1.37 Exposed Floors 2.73 0.17 176 481 64 175 11 29.80 Foundation Conductive Heatloss Heat Loss 257 613 2885 2606 741 895 1638 **Total Conductive** Heat Gain 1215 192 1331 1448 402 952 Air Leakage Heat Loss/Gain 0.2814 0.0413 724 50 172 812 55 734 60 208 252 20 461 Case 1 0.02 0.07 Ventilation Case 2 14.95 11.88 Case 3 0.04 0.07 85 22 13 106 93 95 101 27 33 **Heat Gain People** 239 478 239 239 239 Appliances Loads 3646 0.5 456 370 79 65 157 334 169 **Duct and Pipe loss** 10% 3389 2159 Level HL Total 16,532 Total HL for per room 886 4173 3769 976 1180 Level HG Total 11,363 Total HG per room x 1.3 2376 954 2438 2622 581 1018 1375 Level 4 Run ft. exposed wall A Run ft. exposed wall B Ceiling height Area Area Area Floor area Area Area Area **Area** Area Area Area Area **Exposed Ceilings A** Exposed Ceilings B В В В В В В В В В Exposed Floors Flr Gross Exp Wall A Gross Exp Wall B Components R-Values Loss Gain Loss Gain Gain Loss Gain Gain Gain Loss Gain Loss Loss Loss Loss Loss Loss North Shaded 3.55 22.93 11.62 East/West 3.55 22.93 29.56 South 3.55 22.93 22.50 **Existing Windows** 1.99 40.90 23.66 2.03 40.10 88.23 Skylight Doors 4 00 20 35 2 75 Net exposed walls A 17.03 4.78 0.65 Net exposed walls B 8.50 9.58 1.29 **Exposed Ceilings A** 59.22 1.37 0.64 Exposed Ceilings B 27.65 2.94 1.37 Exposed Floors 29.80 2.73 0.17 Foundation Conductive Heatloss Heat Loss **Total Conductive** Heat Gain Air Leakage 0.0000 0.0413 Heat Loss/Gain Case 1 0.00 0.07 Ventilation 14.95 11.88 Case 3 0.04 0.07 Heat Gain People 239 **Appliances Loads** 3646 10% **Duct and Pipe loss**

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under

Division C subsection 3.2.5. of the Building Code. Individual BCIN:

Mane Maler

David DaCosta

SB-12 Package Package A1

Page 6 PJ-00041

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Project # e-mail hvac@gtadesigns.ca Layout # JB-07350 I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under Division C subsection 3.2.5. of the Building Code. Individual BCIN: 32964 Dane ALEX-C David DaCosta Package: Package A1 Project: **Bradford** Model: S38-1 RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY For systems serving one dwelling unit & conforming to the Ontario Building Code, O.reg 332/12 **Total Ventilation Capacity 9.32.3.3(1)** Location of Installation Lot # Plan # Bsmt & Master Bdrm 2 @ 21.2 cfm 42.4 cfm Other Bedrooms @ 10.6 cfm 31.8 cfm Township Bradford Roll# Permit # Address

Builder	
Bayview Wellington	
Fax	

	Installing Contractor						
Name							
Address							
City							
Tel	Fax						

	Combustion Appliances 9.32.3.1(1)						
a)	Х	Direct vent (sealed combustion) only					
b)		Positive venting induced draft (except fireplaces)					
c)		Natural draft, B-vent or induced draft fireplaces					
d)		Solid fuel (including fireplaces)					
e)		No combustion Appliances					
		''					

Heating System						
х	Forced air Non forced air Electric space heat (if over 10% of heat load)					

	House Type 9.32.3.1(2)						
I	Х	Type a) or b) appliances only, no solid fuel					
II		Type I except with solid fuel (including fireplace)					
Ш		Any type c) appliance					
IV		Type I or II either electric space heat					
Other		Type I, II or IV no forced air					

	System Design Option						
1		Exhaust only / forced air system					
2		HRV WITH DUCTING / forced air system					
3	Х	HRV simplified connection to forced air system					
4		HRV full ducting/not coupled to forced air system					
		Part 6 design					

Bathrooms & Kitchen Other rooms	4	@	10.6 10.6	cfm	42.4 31.8	cfm				
Other rooms	3	w	Total	CIIII	148.4	CIIII				
Principal Ventilation Capacity 9.32.3.4(1)										
Master bedroom	1	•	31.8		31.8	cfm				

Other bedrooms	3 @ 15.9 c Total	cfm 47.7 cfm 79.5							
		·							
Principal Exhaust Fan Capacity									
Make	Model	Location							

r fincipal Extraust I all Capacity								
Make	Model	Location						
VanEE	V150H75NS	Base						
140 cfm		Sones	or Equiv.					

	Heat Recovery Ventilator	
Make	VanEE	
Model	V150H75NS	
	140 cfm high	80 cfm low
Sensible effic	ciency @ -25 deg C	60%
Sensible effic	ciency @ 0 deg C	<u>75%</u>

Note: Installer to balance HRV/ERV to within 10 percent of PVC

Supplemental Ventilation Capa	acity
Total ventilation capacity Less principal exhaust capacity REQUIRED supplemental vent. Capacity	148.4 79.5 68.9 cfm

Sup	plemental	Fans 9.32.3.5.	
Location	cfm	Model	Sones
Ens	50	XB50	0.3
Bath	50	XB50	0.3
all fans HVI listed	Make	Broan	or Equiv.

	Designer (Certification	
, ,	hat this ventilatio vith the Ontario B	n system has been uilding Code.	designed
Name	David D	aCosta	
Signature	Hans	166	:
HRAI#	5190	BCIN#	32964
Date	July 21	, 2021	

♦GTA\DESIGNS

Energy Efficiency Design Summary: Prescriptive Method

(Building Code Part 9, Residential)

Page 7

Project # PJ-00041 Layout # JB-07350

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

This form is used by a designer to demonstrate that the energy efficiency design of a house complies with the building code using the prescriptive method described in Subsection 3.1.1. of SB-12. This form is applicable where the ratio of gross area of windows/sidelights/skylights/glazing in doors and sliding glass doors to the gross area of peripheral walls is not more than 22%.

			For us	e by Princip	oal Authori	ty				
Application No:					Model/Cer	tification Nu	mber			
A. Project Information										
Building number, street name			Baross				Unit numb	er	Lot/Con	
			S38-							
Municipality Bradford			Postal co	ode	Reg. Plan	number / oth	her descript	tion		
B. Prescriptive Compliance [indica	te the bu	ilding code	e complia	ance packa	ge being e	mployed in	the house	design]		
SB-12 Prescriptive (input design pa	ckage):			Pack	age A1			Table:	3.1.1.2.	<u>A</u>
C. Project Design Conditions										·
Climatic Zone (SB-1):		Heat. E	quip. E	fficiency			Spac	e Heating F	uel Sour	ce
Zone 1 (< 5000 degree days)		✓ ≥ 92	% AFUE		~	Gas		Propane		Solid Fuel
☐ Zone 2 (≥ 5000 degree days)		_ ≥8	4% < 92	% AFUE		Oil		Electric		Earth Energy
Ratio of Windows, Skylights & Glas	s (W, S	& G) to \	Nall Are	a			Other E	Building Cha	aracteris	tics
Area of Walls = <u>367.88</u> m ² or <u>3959.9</u>	ft²				_	ost&Beam		ICF Above (Grade	☐ ICF Basement
7.150 G. 174.115 <u>222.12</u> G. <u>222.12</u>		W,S &	G % =	9.7%		on-ground	1.1	Walkout Ba	sement	
					☑ Air C	onditioning	11	Combo Unit	t	
Area of W, S & G = <u>35.674</u> m ² or <u>384.0</u>	ft²	Utilize V		☐ Yes		ourced Hea		-		
		Avera		☑ No		nd Source I		(GSHP)		
D. Building Specifications [provide	values a	nd ratings	of the e	nergy effici	ency comp	onents prop	posed]			
Energy Efficiency Substitutions										
ICF (3.1.1.2.(5) & (6) / 3.1.1.3.(5))			(0.4	4.0(7).4.0	(=))					
Combined space heating and domestic								Dameitta d C	N. da a 414. 441 a 4	
Airtightness substitution(s)		Table 3.1	.1.4.B	Required:				Permitted S		
Airtightness test required		Table 3.1	.1.4.C	Required:				Permitted S		
(Refer to Design Guide Attached)	B.41 1		1/D 1/-1-	Required:				Permitted S	Substitution	1.
Building Component		mum RS ⁄laximum				Buile	ding Con	nponent		Efficiency Ratings
Thermal Insulation	Non	ninal	Effe	ective	Windov	/s & Doo	rs Provide	e U-Value ⁽¹⁾ o	r ER rating)
Ceiling with Attic Space	6	0	59	9.22	Windows	s/Sliding G	lass Dooi	rs		1.6
Ceiling without Attic Space	3	1	27	7.65	Skylights	i				2.8
Exposed Floor	3	1	29	9.80	Mechar	icals				
Walls Above Grade	22		17	7.03	Heating	Equip.(AFL	JE)			96%
Basement Walls		20.0ci	2′	1.12	HRV Effi	ciency (SR	RE% at 0°C	C)		75%
Slab (all >600mm below grade)	2	X		Χ	DHW He	ater (EF)				0.80
Slab (edge only ≤600mm below grade)	1	0		1.13	DWHR (CSA B55.1	(min. 42%	efficiency))		#Showers 2
Slab (all ≤600mm below grade, or heated)		0		1.13	Combine	d Heating	System			
(1) U value to be provided in either W/(m²·K) or Bt	. ,									
E. Designer(s) [name(s) & BCIN(s), if	applicable	e, of perso	n(s) prov		mation her			t design meet	ts building	code]
Name				BCIN		Signature		11	11/	7 /
David DaCosta				329	964			Mane.	14C=	**

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

Page 8 Project # PJ-00041 Layout # JB-07350

Package: System: System 1 Package A1

Packag Projec		∕stem: ∕lodel:	System 1 S38-1	
	Air Leakage Ca	alculations		
	Building Air Leakage Heat Loss		Building Air Leakage Heat G	Sain
	B LRairh Vb HL^T HLleak	В	LRairh Vb HG^1	
	0.018	0.018		559
			Levels	
	Air Leakage Heat Loss/Gain Multiplier Table (Section 11)		1 2 3	4
	Level Level Building Level Conductive Air Leakage He		(LF) (LF) (LF)	(LF)
	Factor (LF) Air Heat Loss Multiplie Level 1 0.5 8089 1.0395		1.0 0.6 0.5	0.4
	Level 2 0.3 12399 0.4069		0.4 0.3	0.3
	Level 3 0.2 16816 1293 0.2814		0.2	0.2
	Level 4 0 0 0.0000			0.1
	Air Leakage He	at Gain	Levels this Dwelli	ng
	HG LEAK 559 BUILDING CONDUCTIVE HEAT GAIN 13521 0.0413		3	
	Ventilation Ca	lculations		
	Ventilation Heat Loss		Ventilation Heat Gain	
in it	Ventilation Heat Loss		Ventilation Heat Gain	Vent
Vent	C PVC HL^T (1-E) HRV HLbvent	C PVC	HG^T HGbvent	-
	1.08 79.5 81.4 0.17 1188	1.1 79.5	11 944	
	Case 1		Case 1	
	Ventilation Heat Loss (Exhaust only Systems)	Vent	ilation Heat Gain (Exhaust Only Sys	tems)
_	Case 1 - Exhaust Only	Case 1 - Ex	haust Only Multiplier	F
Case	Level LF HLbvent LVL Cond. HL Multiplier	HGbvent	944 0.07	Case
Sa	Level 1 0.5 8089 0.07 Level 2 0.3 12399 0.03	Building	13521) a
	Level 2 0.3 1188 12399 0.03 Level 3 0.2 11949 0.02			
	Level 4 0 0 0.00			
	Case 2		Case 2	
2	Ventilation Heat Loss (Direct Ducted Systems)	Venti	lation Heat Gain (Direct Ducted Sys	stems)
(D)	Mulainline		Multiplier	<u></u>
Cas	C HL^T (1-E) HRV 14.05	С	HG^T Multiplier	Case
C	1.08 81.4 0.17	1.08	11.88	
	Case 3		Case 3	
3	Ventilation Heat Loss (Forced Air Systems)	Ver	ntilation Heat Gain (Forced Air Syste	ems)
	HLbvent Multiplier		Vent Heat Gain	
Case	Total Ventilation Load 1188 0.04	HGbvent	HG*1.3 944	Multiplier 0.07
	Total Ventulation Load 1100 0.04	944	1 344	
Foun	dation Conductive Heatloss Level 1 Level 1	2111	Watts 7203	Btu/h
		=		
roun	dation Conductive Heatloss Level 2 Level 2		Watts	Btu/h
Slab	on Grade Foundation Conductive Heatloss		Watts	Btu/h
Walk	Out Basement Foundation Conductive Heatloss		Watts	Btu/h
Leonion	and take reapposibility for the design work and am qualified in the appropriate set		signor" under	

Envelope Air Leakage Calculator

Supplemental tool for CAN/CSA-F280

Weather Stati	on Description
Province:	Ontario V
Region:	Bradford ▼
Weather Station Location:	Open flat terrain, grass
Anemometer height (m):	10
Local S	hielding
Building Site:	Suburban, forest ▼
Walls:	Heavy ▼
Flue:	Heavy ▼
Highest Ceiling Height (m):	8.84
Building Co	onfiguration
Type:	Detached
Number of Stories:	Two
Foundation:	Shallow
House Volume (m ³):	807.43
Air Leakage	/Ventilation
Air Tightness Type:	Present (1961-) (ACH=3.57)
0 / 0070 /	ELA @ 10 Pa. 322,44 cm ²
Custom BDT Data:	3.57 ACH @ 50 Pa
Mechanical Ventilation (L/s):	Total Supply: Total Exhaust:
	39.75
Flue #:	#1 #2 #3 #4
Diameter (mm):	0 0 0 0
Heating Air Leakage Rate (ACH/H)	0.403
Cooling Air Leakage Rate (ACH/H)	: 0.099

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Weat	her Sta	tion Description
Province:		Ontario
Region:		Bradford ▼
	Site D	escription
Soil Conductivity:		High conductivity: moist soil ▼
Water Table:		Normal (7-10 m, 23-33 Ft)
Fou	ındatio	n Dimensions
Floor Length (m):	18.33	
Floor Width (m):	4.53	
Exposed Perimeter (m):	45.72	
Wall Height (m):	3.05	
Depth Below Grade (m):	1.22	Insulation Configuration
Window Area (m²):	1.86	
Door Area (m²):	1.95	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ation Loads
Heating Load (Watts):		2111

DUCT CONNECTION TO JOIST LINING

LOW/HIGH WALL/KICK SUPPLY DIFFUSER

HRV EXHAUST GRILLE

a|-∽

FLEX DUCT

RETURN AIR GRILLE (SIZE INDICATED ON DRAWING)

占

SUPPLY AIR

RETURN AIR

THERMOSTAT

PRINCIPAL EXHAUST FAN SWITCH

R.A

QUALIFICATION INFORMATION

Required unless design is exempt under Division C 3.2.5.I of the ONTARIO BUILDING CODE

SIGNATURE OF DESIGNER

B.C.I.N. 32964

SECOND FLOOR PLAN 'A'

HEAT-LOSS

OBC 2012

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY) INSULATE DUCTS IN UNCONDITIONED SPACES RIZ UNDERCUT ALL DOORS I" MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS.
ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE RESPONSIBILITY OF GTA DESIGNS.

GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

2985 DREW ROAD SUITE 202,

MISSISSAUGA, ONT. L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA WEB: WWW.GTADESIGNS.CA

HEAT-LUSS	BTU/HR.
51,224	
UNIT MAKE	OR EQUAL.
AMANA	
UNIT MODEL	OR EQUAL.
AMEC960603AN	-
UNIT HEATING INPUT	BTU/HR.
60,000	
UNIT HEATING OUTPUT	BTU/HR.
57,600	
A/C COOLING CAPACITY	TONS.
2.5	
FAN SPEED	CFM
929	

# OF RUNS	S/A	R/A	FANS
3RD FLOOR			
2ND FLOOR	7	3	2
IST FLOOR	7	I	2
BASEMENT	4	- 1	
FLOOR PLAN: SECOND	FLO	OR	

DD

JB-07350

2228

M3

DATE:	JULY	21, 2	021
CLIENT:			
BAYV	IEW	WELL	INGTON
MODEL:		S38-I	
	RΔF	ROSSA	1
	ירם	.0007	<u>'</u>
PROJECT:			

GREEN VALLEY EAST BRADFORD, ONT. 3/16" = 1'-0"

FLEX DUCT RIGID ROUND DUCT SUPPLY DIFFUSER

LOW/HIGH WALL/KICK SUPPLY DIFFUSER HRV EXHAUST GRILLE **aj**↔ 0 SUPPLY AIR PIPE RISER VOLUME DAMPER

DUCT CONNECTION TO JOIST LINING RETURN AIR PIPE RISER RETURN ROUND DUCT

4

RETURN AIR GRILLE (SIZE INDICATED ON DRAWING) RETURN AIR RISER UP TO FLOOR ABOVE RETURN AIR FROM BASEMENT SECOND FLOOR

R.A. 1

SUPPLY AIR RETURN AIR THERMOSTAT PRINCIPAL EXHAUST FAN SWITCH

PARTIAL GROUND FLOOR PLAN 'A' - 9R OR MORE W.O.D. CONDITION ELEV. 'B' & 'C' SIMILAR

PARTIAL BASEMENT PLAN 'A' - 9R OR MORE W.O.D. CONDITION ELEV. 'B' & 'C' SIMILAR

THE UNDERSIGNED HAS REVIEWED AND TAKES RESPONSIBILITY FOR THIS DESIGN ON BEHALF OF GTA DESIGNS INC. AND HAS THE QUALIFICATIONS AND MEETS THE REQUIREMENTS SET OUT IN THE BUILDING CODE TO BE A DESIGNER

QUALIFICATION INFORMATION

REQUIRED UNLESS DESIGN IS EXEMPT UNDER DIVISION C 3.2.5.1 OF THE ONTARIO BUILDING CODE

B.C.I.N. 32964

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

OBC 2012

JULY 21, 2021

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO

BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY) INSULATE DUCTS IN UNCONDITIONED SPACES RIZ UNDERCUT ALL DOORS I" MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS.
ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE RESPONSIBILITY OF GTA DESIGNS.

GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

2985 DREW ROAD SUITE 202, MISSISSAUGA, ONT.

L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA WEB: WWW.GTADESIGNS.CA

51,224 UNIT MAKE OR EQUA	<u> </u>
UNIT MAKE OR EQUA	VI.
	~L.
AMANA	
UNIT MODEL OR EQUA	۱L.
AMEC960603ANA	
UNIT HEATING INPUT BTU/H	R.
60,000	
UNIT HEATING OUTPUT BTU/H	R.
57,600	
A/C COOLING CAPACITY TONS	3.
2.5	
FAN SPEED CFN	1
929	

-					
# OF RUNS	S/A	R/A	FANS		
3RD FLOOR				L	
2ND FLOOR	7	3	2		
IST FLOOR	7	I	2	1	
BASEMENT	4	-		ı	
				ı,	
FLOOR PLAN:					
PARTIAL PLAN(S)					
DRAWN BY: CHECKED: SOFT					

DD

JB-07350

				CLIENT:		
	7	3	2	BAYVIEW WELLINGTON		
	7	-	2	MODEL: S38-I		
	4	- 1		BAROSSA I		
PLAN(S) SQFT 2228			28	GREEN VALLEY EAST BRADFORD,ONT.		
DRAWING NO. M6		16	SCALE: 3/16" = 1'-0"			