

Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information					
Building number, street name			Į.	Jnit no.	Lot/con.
Municipality	Postal code	Plan number/ other desc	cription		
INNISFIL					
B. Individual who reviews and takes re	esponsibility for	design activities			
Name MICHAEL O'ROURKE		Firm HVAC DESIGNS LTD.	-		
Street address		HVAC DESIGNS LTD.	Unit no.		Lot/con.
375 FINLEY AVE			202		N/A
Municipality	Postal code	Province	E-mail		
AJAX	L1S 2E2	ONTARIO	info@hvacdesig	ıns.ca	
Telephone number (905) 619-2300	Fax number (905) 619-2375		Cell number		
C. Design activities undertaken by inc	lividual identifie	d in Section B. [Build	ing Code Table	3.5.2.1 OF Divis	ion C]
☐ House	⊠ HVAC	– House	□в	uilding Structur	al
☐ Small Buildings		g Services		lumbing – Hous	
☐ Large Buildings☐ Complex Buildings	☐ Detection	on, Lighting and Pov otection		lumbing – All Bo n-site Sewage	
Description of designer's work		Model:	30-1		
HEAT LOSS / GAIN CALCULATIONS					
DUCT SIZING	I DECICAL CLIMANA	NDV			
RESIDENTIAL MECHANICAL VENTILATION RESIDENTIAL SYSTEM DESIGN per CSA-F		Project:	ALCONA		
D. Declaration of Designer					
MICHAEL O'ROURKE			declare that	(choose one as ap	propriate):
(pri	nt name)				
I review and take responsibility for Division C, of the Building Code. I classes/categories.	the design work o am qualified, and t	n behalf of a firm register the firm is registered, in th	ed under subsecti ne	on 3.2.4.of appropriate	
Individual BCIN: _ Firm BCIN: _					
I review and take responsibility for designer" under subsection 3.2	the design and an 5.of Di visio	n qualified in the appropri n C, of the Building Code	ate category as ar	n "other	
Individual BCIN:	19669				
Basis for exemption from		qualification:	O.B.C SENTE	NCE 3.2.4.1	<u>(4)</u>
☐ The design work is exempt Basis for exemption from registrat	from the registration	on and qualification requin	rements of the Bui	lding Code.	
I certify that:					
The information contained I have submitted this applicat		lle is true to the best of m dge and consent of the fi			
June 21, 2017			Makal	Woule	
Date				Signature of Des	igner

1. For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

2. Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the

Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

INDIVIDUAL BCIN: 19669

TOTAL COMBINED HEAT LOSS BTU/H: 50686

STRUCTURAL HEAT LOSS: 47563

CSA-F280-12 SB-12 PACKAGE A1 284 5 0 0 69 0.81 4287 0.60 202000 186 324 .0SS 36 36 9 2 83 0 0 0 0 84 0 0 HEAT LOSS AT °F. HEAT GAIN AT °F. 00028000 WINTER NATURAL AIR CHANGE RATE 0.332 SUMMER NATURAL AIR CHANGE RATE 0.087 22 000023 # 000 200 -OSS ¥€50 40 40 00000 0.28 407 88 0 0 0 0 0 0 879 0000 00 12 00 0 40 00 00 280 ę. 389 o 87 0 0 0 0 0 0 0 0 0 514 000 ĸ 000 BATH 72 -088 0 0 163 190 OSS 0.29 180 0.28 2503 0 807 호 후 후 0 554 0.20 0.30 0 360 DATE: Jun-17 LO# 74571 99 000000 0.28 131 589 0.30 979 114 0 240 591 33 ŧ 20 6 126 .088 288 .05\$ 0.29 648 P 4 P 0 0 0 2252 2900 218 0 0 0 0 0 0 0.29 306 137 1507 0 237 0.20 0.20 GFA: 2016 1586 8 240 8 8 MC-2 13 10 0.29 2822 130 .088 0 1993 573 257 0.28 243 9.29 9.3 020000 ~ 000,0 0 116 0 0 0 0 0 0 173 0 0 0 0 19 .0.5S 300 0.29 ₩ 30 4 373 0.28 3389 481 0 553 1177 751 0.20 0.30 0022082 669 972 2733 0 0 276 0 189 198 OSS 0 FAM 47 15 15 705 0 0 0 0.28 22 e 0 0 390 1747 0 0 0 6421 0.20 o 48 59 193 3197 2688 SAIN 8 900 32 10 0.29 320 OSS 0 0 0 0 0 2076 2673 0.28 969 BUILDER: BAYVIEW WELLINGTON 0.20 0.30 246 o 22 LOSS GAIN 15.8 41.4 24.7 41.4 101.3 15.8 41.4 24.7 41.4 GRS.WALL AREA LOSS GAIN 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 FACTORS **FACTORS** SITE NAME: ALCONA 23.3 23.3 23.3 23.3 40.8 27.6 23.3 240 23.3 23.3 23.3 40.8 240 2.5 2.6 3.0 2.8 2.8 2.5 2.5 2.8 2.8 2.8 2.8 GLAZING NORTH EAST SOUTH ROOM USE EXP. WALL NORTH EAST SOUTH WEST DOORS ROOM USE EXP. WALL WEST DOORS GRS.WALL AREA SKYLT. HEAT GAIN PEOPLE SKYLT. CLG. HT. NET EXPOSED WALL TOTAL HT LOSS BTUIN TOTAL HT GAIN x 1.3 BTUIN GLAZING EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR CLG. HT. NET EXPOSED WALL HEAT GAIN PEOPLE NET EXPOSED BSMT WALL ABOVE GR SEMENTICRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HTLOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER
AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCTLOSS DUCTGAIN HEAT GAIN APPLIANCE SILIGHTS NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENTICRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HTGAIN FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS CHANGE HEAT GAIN DUCTLOSS **DUCT GAIN** HEAT GAIN APPLIANCES/LIGHTS TOTAL HT LOSS BTUIN TOTAL HT GAIN x 1.3 BTUIH AR LEVEL A

Town of innisfii Certified Mod 05/03/2018 2:36:45 PM kg

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2 Tel: 905.619.2300 Fax: 905.619.2375 Web: www.hvacdesigns.ca E-mait: info@hvacdesigns.ca

TOTAL HEAT GAIN BTU/H:

LOSS DUE TO VENTILATION LOAD BITUIH: 3122

HV//DESIGNSum

1966	
BCIN	
MDUAL	
S	
į	

MICHAEL O'ROURKE

	own of	innisfii	Certified	Mod	ō
--	--------	----------	-----------	-----	---

	05/0	3/2018 2	.36.	45 PI	A kae	vais
		-	T	-		

ı						Г						+			05	5/03	3/20	18 2	2:36	45	PM	kg	erva	ais.				+				
				'n	•	24	BAS	3.13	250	20	0.17	6	140	54.0	2.5	477	147	× ×	١													
	96 % 66,000 64,000	995	6 " E.S.P.	09	3	23	BAS	3.13	0.56	2	0.17	77	25	4 5	1	477	147	3X10	<													
	AFUE = 96 % INPUT (BTU/H) = 66,000 DUTPUT (BTU/H) = 64,000	DESIGN CFM = 995	CFIX @	TEMPERATURE RISE		22	BAS	3.13	0.56	20	0.17	32	8	67 2		746	229	3X10	c													
	INPUT	DES		MPERAT		21	BAS	3.13	0.56	20	0.17	43	110	2 5		477	147	3X10 ₽	c													
4571				μ.	:	20	MS S	1.84	90,	37	0.17	20	120	25	. 4	436	424	3X10	2													
LO# 74571	^LENNOX	0	995	20	•	19	70₹	2.50	0.77	22	0.17	27	100	0 14	. 4	297	287	3X10	>													
116	AL H070XE36B FAN SPEED LOW	MEDLOW	W DIG)	18	W/R	0.59 1.59	0.36	13	0.17	-	160	= =	. 4	138	149	3X10														
GFA: 2016	EL296UH070XE36B FAN SPEED	MEC	ME			17	AUN	ارد. ارد	1.17	4	0.17	37	150	200	5.4	367	470	3X10	اد													
	EL29			-														3X10 A														
																		3X10 3 A														
-17			.17	0.15	!													4X10 A														
DATE: Jun-17							_											3X10 D						٠								
DA.			r/a pressure	adjusted pressure r/a		-	}`	«	2.5	Ó	ö	7	€	- c		48	86	× L	1													
			مراء صائا	adjusted			۷,	_	-		~							0														
							-											0.XE														
- 1	e 0.6 e 0.2 e 0.35			a 0.16			_											3X30														
YPE: 30-1	rnace pressure fumace filter (c coil pressure lable pressure for s/a & r/a		plenum pressure s/a	min adjusted pressure s/a		တ	ED;	 6. %	86.	29	0.17	36	150	600	က	220	433	e c														
	furnace fur a/c col available fo	!		usted pre		8	BED-2	 14. ℃	3 2	63	0.17	98	140 176	2 -		220	463	2X.20	3													*
		,	nolenu c/s xcm	min adi		7	BATH	127	0.39	14	0.17	28	120	0 12	4	195	161	2 XX	1													
	995 28.636 34.75	Bas	2			2	BED-3	 6. 05.	1.68	29	0.17	33	6 5	600	ည	220	433	01X8	>													
GTON	COOLING CFM AL HEAT GAIN OW RATE CFM	1st	8	١.,		4	BED-2	4. - 6.	3 8.	63	0.17	34	130	2 2	ູນ	220	463	2 2 2 2 2 2 3 3 3	2													
SITE NAME: ALCONA BUILDER: BAYVIEW WELLINGTON	COOLING CFM TOTAL HEAT GAIN AIR FLOW RATE CFM	2nd	ę,	on layou	out.	က	28	10.48	0.12	4	0.17	8	160	600	4	115	46	3X10 B)													
CONA	AIR	3rd	0	therwise	e on layo	7	ENS	37	0.97	34	0.17	46	120	3 5	4	424	390	9X10 B	1													
AME: AI DER: B/	995 47,563 20.92	4th	00	noted of	otherwis	~	MBR	ر ب پ پ	9.	56	1.17	32	150	60	ر ر		411	_		25	3.4.0 4.3.0	65.5	.56	20	.17	5 5	139	0.12	ιΩ	477	3X10	0
SITE N. BUIL	- 10	H	+	All S/A diffusers 4"x10" unless noted otherwise on layout	4ll S/A runs 5"Ø unless noted otherwise on layout		111	· L.																								
	HEATING CFM TOTAL HEAT LOSS AIR FLOW RATE CFM	TNO	₹.4	3rs 4"x1("Ø unles	Œ	ROOM NAME	CEM PER RIIN HEAT	RM GAIN MBH	RUN COC	ADJUSTED PRESSURE	ACTUAL DUCT LGH	EQUIVALENT LENGTH	ADJUSTED PRESSURE	ROUND DUCT SIZE	OCITY (f)	LOCITY (I	OUTLET GRILL SIZE TRUNK		R	KOOM NAME	CFM PER RUN HEAT	RM GAIN MBH	RUN COO	ADJUSTED PRESSURE	ACTUAL DUCT LGH.	TWELEN	ADJUSTED PRESSURE	ROUND DUCT SIZE	COCITY (II	OUTLET GRILL SIZE	片
	TOT/ AIR FLO	RUN COUNT	S/A	'A diffuse	'A runs 5			CFMP		CFM PER RUN COOLING	ADJUSTE	ACTU	EQUIVALENI LENGIH TOTAL EFFECTIVE LENGTH	ADJUSTE	ROUI	HEATING VELOCITY (fl/min)	COOLING VELOCITY (Ithmin)					CFM P	-	CFM PER RUN COOLING	ADJUSTE	EO LINA	TOTAL FFFECTIVF LENGTH	ADJUSTE	ROUI	HEATING VELOCITY (#min)	OUTLE	
				All S/	All S/					J			TOT	2		HEA	8							<u>ی</u>			TOT			HEA	3	

																RETURN AIR TRUNK SIZE	TRUNK S	31ZE	1				
TRUNK ST.	4	STATIC ROL	ROUND RE	RECT		E.	PLOCITY	=	TRUNK	STATIC	ROUND	RECT		>	FLOCITY				ROUND	RECT		N.	LOCITY
	Ψļ			DUCT		€.	/min)		CFM	PRESS.	DUCT	DUCT			(ft/min)				DUCT	DUCT		~	T/min)
	ä			9	×	8				0.00	0	0	×	æ	0	FRUNK O	0		0	0	×	- ∞	0
541 (\vec{a}	0.09 10	10.8	14	×	8	н 969	TRUNK H	0	0.00	0	0	×	ဆ	0	TRUNK P		0.08	0	0	×	8	0
	ì					•			•		•	•					,						

TRUNK A 0-7M PRESS. DUCI DOCI TRUNK A 0 0.00 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0	Characteristic Char			00000					;															-
THUNK A 400 0.10 8.4 10	THUNK A 400 0.10 9.4 10		ž	FKESS	2000	ממכו			(thum)		Ö	_		UCT		(fruis	-	r.	_	 _	<u>.</u>		(#/mi)	-
THUNK B 541 0.09 10.8 14 x 8 996 THUNK H 0 0.00 0 0 x 8 9 0 THUNK C 212 0.09 7.6 18 x 8 9.0 THUNK C 212 0.09 7.6 18 x 8 9.0 THUNK C 212 0.09 7.6 18 x 8 9.0 THUNK C 212 0.09 7.6 18 x 8 9.0 THUNK C 212 0.09 10.1 12 x 8 9 0 THUNK K 0 0.00 0 0 0 x 8 9 0 THUNK C 0 0.00 0 0 0 x 8 9 0 THUNK C 10 0.00 0 0 0 x 8 9 0 THUNK C 10 0.00 0 0 0 x 8 9 0 THUNK C 10 0.00 0 0 0 x 8 9 0 THUNK C 10 0.00 0 0 0 x 8 9 0 THUNK C 10 0.00 0 0 0 x 8 9 0 THUNK C 10 0.00 0 0 0 x 8 9 0 THUNK C 10 0.00 0 0 0 x 8 9 0 THUNK C 10 0.00 0 0 0 0 x 8 9 0 THUNK C 10 0.00 0 0 0 0 x 8 9 0 THUNK C 10 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Thunke 541 0.09 10.8 14	TRUNK A	•	0.10	9.4	10	×	ထ	720	TRU							_				×	80	0	
TRUNK C 212 0.09 7.6 8	TRUNK C 212 0.09 7.6 8	TRUNK B		0.0	10.8	14	×	œ	969	TRU												∞	0	
TRUNK D 452 0.09 10.1 12	TRUNK F 10 10 11 12 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 14	TRUNK C		0.09	7.6	ထ	×	œ	477	TR												œ	0	
TRUNK F 0 0.00	TRUNK F 0 0.00 0 0 0 x 8 0 0 TRUNK K 0 0.00 0 0 x 8 0 0 TRUNK C 0 0.00 0 0 0 x 8 0 0 TRUNK C 0 0.00 0 0 0 0 0 0 TRUNK C 0 0.00 0 0 0 0 0 0 TRUNK C 0 0.00 0 0 0 0 0 TRUNK C 0 0.00 0 0 0 0 0 0 0 TRUNK C 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TRUNK D	Ť	0.09	10.1	12	×	ထ	678	TRU							-					. σ	0	
TRUNK F 0 0,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TRUNK F 0 0.00 0 0 0 0 0 0 0	TRUNK E		0.00	0	0	×	ထ	0	TRU							_					∞	0	
TRUNK	1 2 3 4 5 5 6 6 6 6 6 6 6 6	TRUNK F		0.00	0	0	×	80	0	TRU												æ	0	
TRUNKY 0 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3 4 5 5 6 6 6 6 6 6 6 6																E E					80	0	
1 2 3 4 5 FINDING W 0 0.08 TRUNKW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																TRU					ω	0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AIR#		7	က	4	'n									BR	Ė					∞	0	
120 120 120 360 120 0 0 0 0 0 0 0 0 0 0 0 155 ITRUNKY 480 0.08 10.7 14 x 8 1	120 120 120 360 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 155 TRUNKY 480 0.08 10.7 14		0	0	0	0	0	0	0							_	TE					8	89	_
RE 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	RE 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	JME	120	120	120	360	120	0	0													80	61	_
H. 40 41 43 21 52 1 1 1 1 1 1 1 1 1 1 1 1 1 4 DROP 995 0.08 14 24 × 10 GRH 150 145 150 145 0 0 0 0 0 0 0 0 0 0 135 UP 995 0.08 14 24 × 10 GRH 150 145 17 197 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H. 40 41 43 21 52 1 1 1 1 1 1 1 1 1 1 1 1 4 DROP 995 0.08 14 24 OFTH 150 150 145 150 145 0 0 0 0 0 0 0 0 0 0 0 0 135 OFTH 150 145 150 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRESSURE	0.15	0.15	0.15	0.15	0.15	0.15	0.15 0													8	0	
GTH 150 150 145 150 145 0 0 0 0 0 0 0 0 0 135 ELH 190 191 188 171 197 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GTH 150 150 145 150 145 0 0 0 0 0 0 0 0 0 135 SURE 0.08 0.08 0.09 0.08 14.80 14.80 14.80 14.80 14.80 14.80 14.80 14.80 14.80 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DUCT LGH.	4	41	43	7	52		·													9	59	_
ELH 190 191 188 171 197 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NURE 0.08 0.08 0.08 0.09 0.08 171 197 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ENT LENGTH	150	120	145	150	145	0	0															
SURE 0.08 0.08 0.08 0.09 0.08 14.80	UNE 0.08 0.08 0.08 0.09 0.08 14.80 1	FFECTIVE LH	190	191	188	171	197	, · 	-								_							
E 6.3 6.3 6.3 9.3 6.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E 6.3 6.3 6.3 9.3 6.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D PRESSURE	0.08	0.08	0.08	60.0	0.08	•	_	_	_		_	_	_		_							
8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UCT SIZE	6.3	6.3	6.3	9.3	6.3																	
X X X X X X X X X X X X X X X X X X X	14 14 14 30 14 0 0 0 0 0 0 0 0 0 0 0 0 0	ILL SIZE	&	œ	œ	œ	80	0																
14 14 14 30 14 0 0 0 0 0 0 0 0 0 0	14 14 14 30 14 0 0 0 0 0 0 0 0 0 0 0		×	×	×	×	×	×																
		ILL SIZE	14	14	14	30	14	0																

05/03/2018 2:36:45 PM kgervais

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2 Tel: 905.619.2300 Fax: 905.619.2375 Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

TYPE: SITE NAME:

30-1 ALCONA

74571 LO#

RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL VENTILATION C	APACITY	9.32.3.5.
a)		Total Ventilation Capacity	169.6	_ cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Ventil. Capacity	139	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Supplemental Capacity	30.6	cfm
d) Solid Fuel (including fireplaces)	ľ	PRINCIPAL EXHAUST FAN CAPAC	177V	
e) No Combustion Appliances		Model: VANEE		BSMT
HEATING SYSTEM			<u> </u>	
nea ling 5151em	1. 1	139.0 cfm	3.0 sones	→ HVI Approved
Forced Air Non Forced Air		PRINCIPAL EXHAUST HEAT LOSS	CALCULATION T *F FACTOR	% LOSS
Floatric Space Host			83 F X 1.08	X 0.25
Electric Space Heat	.	SUPPLEMENTAL FANS	NUTONE	
1010-50-			fodel cfm	HVI Sones
HOUSE TYPE	9.32.1(2)		EN050C 50 EN050C 50	✓ 0.3 ✓ 0.3
✓ I Type a) or b) appliance only, no solid fuel			E14030C 30	✓ 0.3
II Type I except with solid fuel (including fireplaces)		W/R QTX	EN050C 50	✓ 0.3
III Any Type c) appliance		HEAT RECOVERY VENTILATOR Model: VANE	E 60H-V+	9.32.3.11.
			n high50	cfm low
IV Type I, or II with electric space heat		75 % Sensit	le Efficiency	✓ HVI Approved
Other: Type I, II or IV no forced air			F (0 deg C)	
		LOCATION OF INSTALLATION		
SYSTEM DESIGN OPTIONS	O.N.H.W.P.	1 - 1		
1 Exhaust only/Forced Air System		Lot:	Concession	
2 HRV with Ducting/Forced Air System		Township	Plan:	
		Address		
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐		Roll #	Building Perm	it#
4 HRV with Ducting/non forced air system		BUILDER: BAYVIE	V WELLINGTON	
Part 6 Design		Name:		
TOTAL VENTILATION CAPACITY	0.000.041			
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:		
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	cfm	City:		
Other Bedrooms 2 @ 10.6 cfm 21.2	cfm	Telephone #:	Fax #:	
Kitchen & Bathrooms <u>4</u> @ 10.6 cfm <u>42.4</u>	cfm	INSTALLING CONTRACTOR		
Other Rooms <u>6</u> @ 10.6 cfm <u>63.6</u>	cfm	Name:		
Table 9.32.3.A. TOTAL <u>169.6</u>	cfm	Address:		
PRINCIPAL VENTILATION CAPACITY REQUIRED	0.00 = 4 :::	City:		
	9.32.3.4.(1)	Telephone #:	Fax #:	
1 Bedroom 31.8	cfm	DESIGNER CERTIFICATION		
2 Bedroom 47.7	cfm	I hereby certify that this ventilation sy		
3 Bedroom 63.6	cfm	in accordance with the Ontario Buildin Name: HVAC D	g Code. esigns Ltd.	·
4 Bedroom 79.5	cfm	Signature:	Mahad Okon Le	Photo:
5 Bedroom · 95.4	cfm	HRAI#	001820	N. #C
TOTAL 63.6 cfm		Date:	June-17	
I REVIEW AND TAKE RESPONSILITY FOR THE DESIGN WORK AND AM COLOR	IFIED IN THE APP	Lage. ROPRIATE CATEGORY AS AN "OTHER DESIGNER	UNDER DIVISION C, 3.2.5 OF THE BUIL	DING CODE.

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2 Tel: 905.619.2300 Fax: 905.619.2375

Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL: 30-1 SFQT: 2016	LO# 74571	BUILDER: BAYVIEW WELLINGTO SITE: ALCONA	N
DESIGN ASSUMPTIONS			
HEATING OUTDOOR DESIGN TEMP. INDOOR DESIGN TEMP.	°F -11 72	COOLING OUTDOOR DESIGN TEMP. INDOOR DESIGN TEMP. (MAX 75°F)	°F 84 72
ATTACHMENT:	DETACHED	# OF STORIES (+BASEMENT):	3
FRONT FACES:	EAST	ASSUMED (Y/N):	Y
AIR CHANGES PER HOUR:	3.57	ASSUMED (Y/N):	Υ
AIR TIGHTNESS CATEGORY:	AVERAGE	ASSUMED (Y/N):	Υ
WIND EXPOSURE:	SHELTERED	ASSUMED (Y/N):	Υ
HOUSE VOLUME (ft ³):	28354.0	ASSUMED (Y/N):	Υ
INTERNAL SHADING:	BLINDS/CURTAINS	ASSUMED OCCUPANTS:	4
INTERIOR LIGHTING LOAD (Btu/	/h/ft²): 1.75	DC BRUSHLESS MOTOR (Y/N):	Υ
FOUNDATION CONFIGURATION	BCIN_1	DEPTH BELOW GRADE:	6.0 ft
LENGTH: 57.0 ft	WIDTH: 24.0 ft	EXPOSED PERIMETER:	162.0 ft

2012 OBC - COMPLIANCE PACKAGE		
	Compliance	Package
Component	Δ.	1
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65
Exposed Floor Minimum RSI (R)-Value	31	29.8
Walls Above Grade Minimum RSI (R)-Value	22	17.03
Basement Walls Minimum RSI (R)-Value	20 ci	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	_
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	0.28	<u>-</u>
Skylights Maximum U-Value	0.49	-
Space Heating Equipment Minimum AFUE	0.96	-
HRV Minimum Efficiency	75%	<u>-</u> "
Domestic Hot Water Heater Minimum EF	0.8	

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

25

HVAC Designs Ltd. 375 Finley Ave, Suite 202 Ajax ON, L1S 2E2 905-619-2300

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Statio	n Des	cript	ion		
Province:	Ontai	io			
Region:	Barrie	<u>;</u>			
Weather Station Location:	Open	flat te	rrain, g	grass	
Anemometer height (m):	10				
Local Sh	ieldin	g			
Building Site:	Subu	ban, fo	orest		
Walls:	Heav	/			
Flue:	Heavy	/			
Highest Ceiling Height (m):	6.71				
Building Cor	figura	ation			
Type:	Detac	hed			
Number of Stories:	Two				,
Foundation:	Full				
House Volume (m³):	802.9				
Air Leakage/	Ventil	atior)		
Air Tightness Type:	Prese	nt (196	51-) (3.	57 AC	- 1)
Custom BDT Data:	ELA @	10 Pa	1.		1070.3 cm ²
	3.57				ACH @ 50 Pa
Mechanical Ventilation (L/s):	To	tal Sup	ply		Total Exhaust
		65.6			65.6
Flue S	Size				
Flue #:	#1	#2	#3	#4	
Diameter (mm):	0	0	0	0	
Natural Infiltr	ation	Rate	S		
Heating Air Leakage Rate (ACH/H):		0	.33	2	
Cooling Air Leakage Rate (ACH/H):		0	.08	7	

TYPE: 30-1 **LO#** 74571

HVAC Designs Ltd. 375 Finley Ave, Suite 202 Ajax ON, L1S 2E2 905-619-2300

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

We	eather Stat	tion Description
Province:	Ontario	-
Region:	Barrie	
	Site Do	escription
Soil Conductivity:	Normal c	onductivity: dry dand, loam, clay
Water Table:	Normal (7-10 m, 23-33 ft)
	Foundatio (n Dimensions
Floor Length (m):	17.4	
Floor Width (m):	7.3	
Exposed Perimeter (m):	0.0	
Wall Height (m):	2.7	
Depth Below Grade (m):	1.83	Insulation Configuration
Window Area (m²):	2.7	
Door Area (m²):	1.9	
	Radia	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Design	Months
Heating Month	1	
	Founda	tion Loads
Heating Load (Watts):		1639

TYPE: 30-1 **LO#** 74571

BAYVIEW WELLINGTON

Project Name

ALCONA INNISFIL, ONTARIO HVA DESIGNS LTD.

375 Finley Ave - Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper.

Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

HEAT L	OSS 50686	BTU/H	# OF RUNS	S/A	R/A	FANS	She
UNIT DATA			3RD FLOOR				
LENNOX			2ND FLOOR	10	3	3	
MODEL EL296UH070XE36B			1ST FLOOR	8	2	2	
INPUT	66	мвти/н	BASEMENT	5	1	0	Date
OUTPUT	64	мвти/н	ALL S/A DIFFUSERS 4 "x10"				Sca
COOLING	2.5	TONS	UNLESS NOTED OTHERWISE ON LAYOUT. ALL S/A RUNS 5"Ø UNLESS NOTED OTHERWISE				
FAN SPEE		cfm @ 0.5" w.c.	ON LAYOUT. UNDERCUT				L

BASEMENT						
HEATING						
	LAYOUT					
Date	JUNE/2017					
Scale	3/16" = 1'-0"					
	BCIN# 19669					
	Date	HEATING LAYOUT Date JUNE/2017 Scale 3/16" = 1'-0"				

LO# 74571

30-1 2016 sqft

BAYVIEW WELLINGTON

2016 sqft

30-1

ALCONA INNISFIL, ONTARIO DESIGNS LTD.

375 Finley Ave - Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper.

Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR **HEATING** LAYOUT

JUNE/2017 3/16" = 1'-0"

BCIN# 19669

74571 LO#

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF PIVAC DESIGNS LIDIOS AND MINIT NOT BE REPRODUCED, INCIDIOS IN DETAILS AND SPECIFICATION AN

BAYVIEW WELLINGTON

Project Name **ALCONA** INNISFIL, ONTARIO

375 Finley Ave - Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR **HEATING LAYOUT**

JUNE/2017 3/16" = 1'-0"

BCIN# 19669

74571 LO#

30-1 2016 sqft