

	Products						
PlotID	Length	Product	Plies	Net Qty			
J1	16-00-00	9 1/2" NI-40x	1	11			
J1 DJ	16-00-00	9 1/2" NI-40x	2	2			
J2	14-00-00	9 1/2" NI-40x	1	34			
J2 DJ	14-00-00	9 1/2" NI-40x	2	4			
J3	12-00-00	9 1/2" NI-40x	1	2			
J4	8-00-00	9 1/2" NI-40x	1	3			
J5	6-00-00	9 1/2" NI-40x	1	3			
J6	4-00-00	9 1/2" NI-40x	1	1			
B4	16-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B5	16-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B6	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B3	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B1	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			
B2	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			

Connector Summary							
Qty Manuf Product							
6	H1	IUS2.56/9.5					
2	H1	IUS2.56/9.5					
2	H1	IUS2.56/9.5					
4	H3	HUS1.81/10					

Town of Innisfil Certified Model 04/01/2018 10:17:00 AM kgervais

FROM PLAN DATED: NOV. 2015

BUILDER:

BAYVIEW WELLINGTON

SITE: ALCONA

MODEL: \$32-1-10

ELEVATION: A,B

LOT:

CITY: INNISFIL, ON

SALESMAN: MARIO DESIGNER: CZ REVISION: -

NOTES:

CERAMIC TILE APPLICATION

AS PER O.B.C. 9.30.6. SQUASH BLOCKS

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING

WALLS.

MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

CANTILEVERED JOISTS

REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE

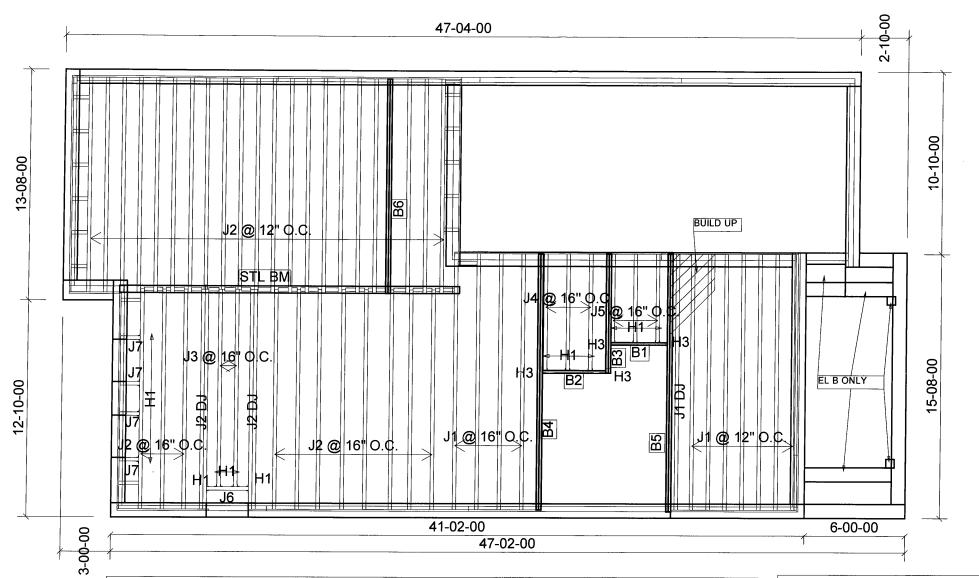
AT ENDS.

REFER TO THE NORDIC

INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION.

LOADING:

DESIGN LOADS: L/480.000


LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 12/09/2017

1st FLOOR

WOD. CON

	Products						
PlotID	Length	Product	Plies	Net Qty			
J1	16-00-00	9 1/2" NI-40x	1	11			
J1 DJ	16-00-00	9 1/2" NI-40x	2	2			
J2	14-00-00	9 1/2" NI-40x	1	32			
J2 DJ	14-00-00	9 1/2" NI-40x	2	4			
J3	12-00-00	9 1/2" NI-40x	1	2			
J4	8-00-00	9 1/2" NI-40x	1	3			
J5	6-00-00	9 1/2" NI-40x	1	3			
J6	4-00-00	9 1/2" NI-40x	1	1			
J7	2-00-00	9 1/2" NI-40x	1	4			
B4	16-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B5	16-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B6	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B3	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B1	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			
B2	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			

Connector Summary						
Qty Manuf Product						
6	H1	IUS2.56/9.5				
2	H1	IUS2.56/9.5				
6	H1	IUS2.56/9.5				
4	H3	HUS1.81/10				

Town of Innisfil Certified Model
04/01/2018 10:17:03 AM kgervais

FROM PLAN DATED: NOV. 2015

BUILDER:

BAYVIEW WELLINGTON

SITE: ALCONA

MODEL: S32-1-10

ELEVATION: A,B

LOT:

CITY: INNISFIL, ON

SALESMAN: MARIO DESIGNER: CZ REVISION: -

NOTES:

CERAMIC TILE APPLICATION

AS PER O.B.C. 9.30.6. SQUASH BLOCKS

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING

WALLS.

MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

CANTILEVERED JOISTS

REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE

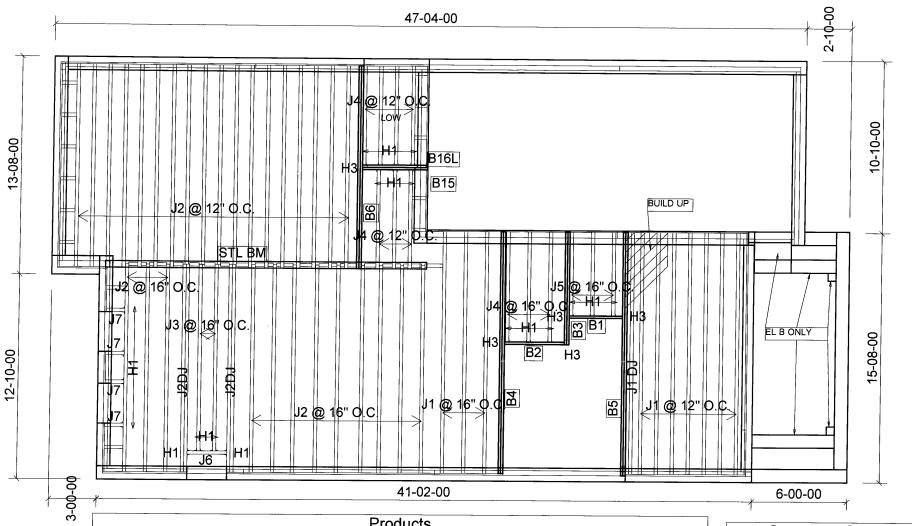
AT ENDS.

REFER TO THE NORDIC

INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION.

LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 fb/ft


TILED AREAS: 20 fb/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 12/09/2017

1st FLOOR


STANDARD

		Products		
PlotID	Length	Product	Plies	Net Qty
J1	16-00-00	9 1/2" NI-40x	1	10
J1 DJ	16-00-00	9 1/2" NI-40x	2	2
J2	14-00-00	9 1/2" NI-40x	1	30
J2DJ	14-00-00	9 1/2" NI-40x	2	4
J3	12-00-00	9 1/2" NI-40x	1	2
J4	8-00-00	9 1/2" NI-40x	1	10
J5	6-00-00	9 1/2" NI-40x	1	3
J6	4-00-00	9 1/2" NI-40x	1	1
J7	2-00-00	9 1/2" NI-40x	1	4
B4	16-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B5	16-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B6	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B3	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B15	6-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B16L	6-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B1	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B2	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1

Connector Summary					
Qty	Manuf	Product			
13	H1	IUS2.56/9.5			
2	H1	IUS2.56/9.5			
6	H1	IUS2.56/9.5			
5	НЗ	HUS1.81/10			

Town of Innisfil Certified Model 04/01/2018 10:17:05 AM kgervais

FROM PLAN DATED: NOV. 2015

BUILDER:

BAYVIEW WELLINGTON

SITE: ALCONA

MODEL: S32-1-10G

ELEVATION: A,B

LOT:

CITY: INNISFIL, ON

SALESMAN: MARIO DESIGNER: CZ REVISION: -

NOTES:

CERAMIC TILE APPLICATION

AS PER O.B.C. 9.30.6. SQUASH BLOCKS

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING

WALLS.

MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

CANTILEVERED JOISTS

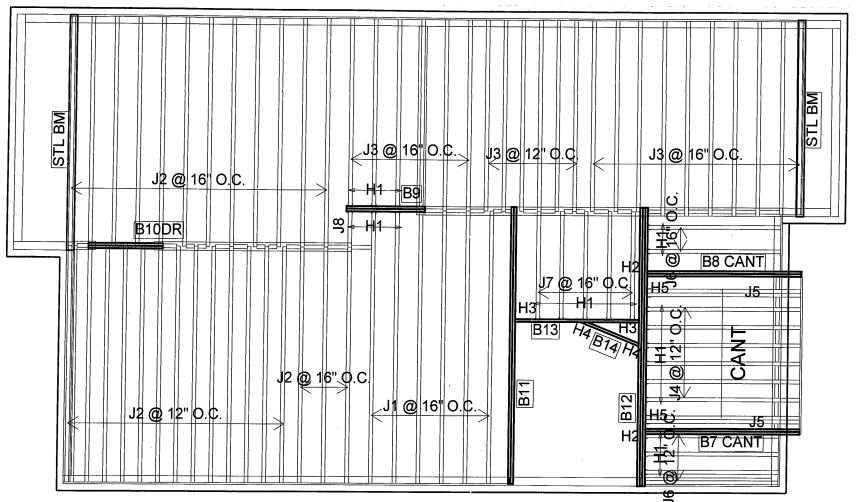
REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE

AT ENDS.

REFER TO THE NORDIC

INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION.

LOADING:


DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 fb/ft TILED AREAS: 20 fb/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 12/09/2017

1st FLOOR

SUNKEN

		Products		
PlotID	Length	Product	Plies	Net Qty
J1	16-00-00	9 1/2" NI-40x	1	6
J2	14-00-00	9 1/2" NI-40x	1	29
J3	12-00-00	9 1/2" NI-40x	1	22
J4	10-00-00	9 1/2" NI-40x	1	6
J5	10-00-00	9 1/2" NI-40x	2	4
J6	8-00-00	9 1/2" NI-40x	1	6
J7	6-00-00	9 1/2" NI-40x	1	5
J8	2-00-00	9 1/2" NI-40x	1	1
B11	16-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B12	16-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	3	3
B7 CANT	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B8 CANT	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B13	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1
B10DR	6-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B9	6-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2
B14	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1

Connector Summary						
Qty	Manuf	Product				
5	H1	IUS2.56/9.5				
6	H1	IUS2.56/9.5				
11	H1	IUS2.56/9.5				
2	H2	HGUS410				
1	H3	HUS1.81/10				
1	H3	HUS1.81/10				
1	H4	LS 90				
1	H4	LS 90				
2	H5	HU310-2				

Town of Innisfil Certified Model
04/01/2018 10:17:06 AM kgervais

FROM PLAN DATED: NOV. 2015

BUILDER:

BAYVIEW WELLINGTON

SITE: ALCONA

MODEL: S32-1-10

ELEVATION: A

LOT:

CITY: INNISFIL, ON

SALESMAN: MARIO DESIGNER: CZ REVISION: -

NOTES:

CERAMIC TILE APPLICATION

AS PER O.B.C. 9.30.6. SQUASH BLOCKS

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING

WALLS.

MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

CANTILEVERED JOISTS

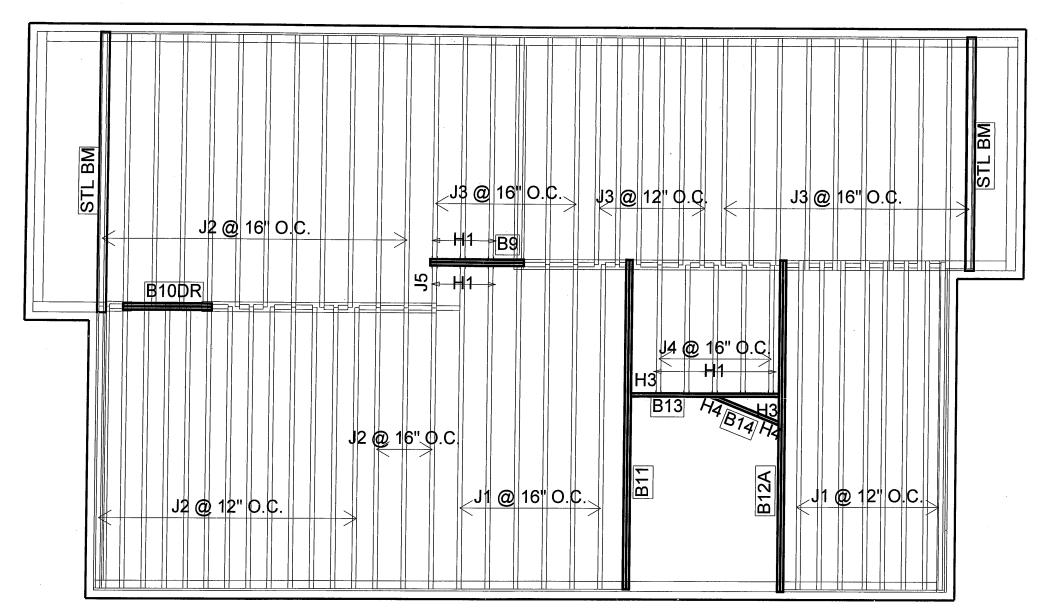
REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE

AT ENDS.

REFER TO THE NORDIC

INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION.

LOADING:


DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft²

DEAD LOAD: 15.0 b/ft TILED AREAS: 20 b/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 05/09/2017

2nd FLOOR

	Products						
PlotID	Length	Product	Plies	Net Qty			
J1	16-00-00	9 1/2" NI-40x	1	14			
J2	14-00-00	9 1/2" NI-40x	1	29			
J3	12-00-00	9 1/2" NI-40x	1	22			
J4	6-00-00	9 1/2" NI-40x	1	5			
J5	2-00-00	9 1/2" NI-40x	1	1			
B11	16-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B12A	16-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B13	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			
B10DR	6-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B9	6-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B14	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			

Connector Summary							
Qty Manuf Product							
5	H1	IUS2.56/9.5					
6	H1	IUS2.56/9.5					
2	H3	HUS1.81/10					
1	H4	LS 90					
1	H4	LS 90					

Town of Innisfil Certified Model
04/01/2018 10:17:08 AM kgervais

FROM PLAN DATED: NOV. 2015

BUILDER:

BAYVIEW WELLINGTON

SITE: ALCONA

MODEL: S32-1-10

ELEVATION: B

LOT:

CITY: INNISFIL, ON

SALESMAN: MARIO DESIGNER: CZ REVISION: -

NOTES:

CERAMIC TILE APPLICATION

AS PER O.B.C. 9.30.6. SQUASH BLOCKS

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING

WALLS.

MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

CANTILEVERED JOISTS

REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS.

REFER TO THE NORDIC

INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION.

LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 fb/ft TILED AREAS: 20 fb/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 05/09/2017

2nd FLOOR

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B1(i1849)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

Build 5033

Job Name: Address:

City, Province, Postal Code:,

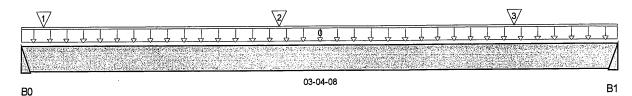
Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B1(i1849)


Specifier:

Designer: Company:

Misc:

Town of Innisfil Certified Model

04/01/2018 10:23:54 AM kgervais

Total Horizontal Product Length = 03-04-08

Reaction Summary (Down / Uplift) (Ibs)									
Be aring	Live	De ad	Snow	Wind .					
B0	586/0	301/0							
B1	564/0	290/0							

10	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Ref	f. Start	En d	1.00	0.65	1.00	1.15	
0	UserLoad	Unf. Lin. (lb/ft)	L	00-00-00	03-04-08	240	120			n/a
1	J5(i1860)	Conc. Pt. (lbs)	L	00-01-08	00-01-08	84	42			n/a
2	J5(i1845)	Conc. Pt. (lbs)	L	01-05-08	01-05-08	140	70			n/a
3	J5(i1857)	Conc. Pt. (lbs)	L	02-09-08	02-09-08	116	58			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	917 ft-lbs	12,704 ft-lbs	7.2%	1	01-06-04
End Shear	597 lbs	5,785 lbs	10.3%	1	02-05-00
Total Load Defl.	L/999 (0.005")	n/a	n/a	4	01-08-06
Live Load Defl.	L/999 (0.003")	n/a	n/a	5	01-08-06
Max Defl.	0.005"	n/a	n/a	4	01-08-06
Span / Depth	4	n/a	n/a		00-00-00

Beari	ng Supports	Dim.(LxW)	De man d	Resistance Support	Resistance Member	Material
B0	Hanger	2" x 1-3/4"	1,256 lbs	n/a	29.4%	HUS1.81/10
B1	Hanger	2" x 1-3/4"	1,208 lbs	n/a	28.3%	HUS1.81/10

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

CONFORMS TO OBC 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIMPLUS®, VERSA-RIM®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWO NO. TAM 45426-17 STRUCTURAL COMPONENT ONLY

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B2(i1846)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

Build 5033

Job Name: Address:

City, Province, Postal Code:,

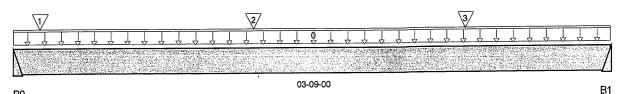
Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B2(i1846)


Specifier:

Designer: Company:

Misc:

Town of Innisfil Certified Model

04/01/2018 10:23:58 AM kgervais

B0

Total Horizontal Product Length = 03-09-00

Reaction Summary (Down / Uplift) (lbs)								
Be aring	Live	De ad	Snow	Wind				
B0	713/0	365/0						
R1	656/0	337/0						

1.0	ad Summary			En d	Live 1.00	De ad 0.65	Snow	w Wind	Trib.	
	g Description	Load Type	Ref. Start				1.00	1.15		
0	Us er Load	Unf. Lin. (lb/ft)	L	00-00-00	03-09-00	240	120			n/a
1	J4(i1864)	Conc. Pt. (lbs)	L	00-02-00	00-02-00	114	57			n/a
2	J4(i1847)	Conc. Pt. (lbs)	L	01-06-00	01-06-00	185	92			n/a
3	J4(i1859)	Conc. Pt. (lbs)	L	02-10-00	02-10-00	170	85			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	1,242 ft-lbs	12,704 ft-lbs	9.8%	1	01-08-15
End Shear	891 lbs	5,785 lbs	15. 4 %	1	02-09-08
Total Load Defl.	L/999 (0.008")	n/a	n/a	4	01-10-06
Live Load Defl.	L/999 (0.005")	n/a	n/a	5	01-10-06
Max Defl.	0.008"	n/a	n/a	4	01-10-06
Span / Depth	4.5	n/a	n/a		00-00-00

Bearing Supports		Dim . (L x W)	De man d	De man d/ Resistance Support	De mand/ Resistance Member	Material	
B0	Hanger	2" x 1-3/4"	1,526 lbs	n/a	35.7%	HUS1.81/10	
B1	Hanger	2" x 1-3/4"	1,405 lbs	n/a	32.9%	HUS1.81/10	

Notes

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO OBC 2012

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWO NO . TAM45429 - 17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B3(i1862)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

BC CALC® Design Report

Build 5033 Job Name: Address:

City, Province, Postal Code:,

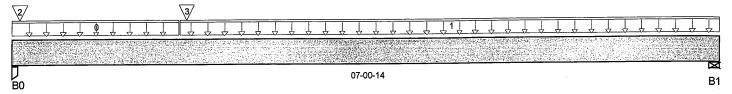
Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B3(i1862)


Specifier:

Designer: Company:

Misc:

Town of Innisfil Certified Model

04/01/2018 10:23:59 AM kgervais

Total Horizontal Product Length = 07-00-14

Reaction Summary (Down / Uplift) (Ibs)								
Bearing	Live	De ad	Snow	Wind				
B0, 3-1/2"	1,195/0	646/0						
B1 4-3/8"	231/0	152/0						

٠ ا	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Rei	f. Start	En d	1.00	0.65	1.00	1.15	
0	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	01-08-00	24	12			n/a
1	FC1 Floor Material	Unf. Lin. (lb/ft)	L	01-08-00	07-00-14	27	13			n/a
2	B2(i1846)	Conc. Pt. (lbs)	L	00-00-14	00-00-14	652	335			n/a
3	B1 (i1849)	Conc. Pt. (lbs)	L	01-08-14	01-08-14	589	302			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	1,721 ft-lbs	25,408 ft-lbs	6.8%	1	01-08-14
End Shear	1,134 lbs	11,571 lbs	9.8%	1	01-01-00
Total Load Defl.	L/999 (0.016")	n/a	n/a	4	03-02-02
Live Load Defl.	L/999 (0.01")	n/a	n/a	5	03-02-02
Max Defl.	0.016" [`]	n/a	n/a	4	03-02-02
Span / Depth	8.3	n/a	n/a		00-00-00

Bearing Supports		Dim.(L x W)	De man d	De mand/ Re sistance Support	Resistance Member	Material	
B0	Post	3-1/2" x 3-1/2"	2,599 lbs	26.1%	17.4%	Unspecified	
B1	Wall/Plate	4-3/8" x 3-1/2"	536 lbs	6.5%	2.9%	Unspecified	

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

CONFORMS TO OBC 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

DWO NO . TAM45430-17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B3(i1862)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

BC CALC® Design Report

Build 5033

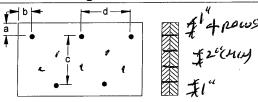
Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R


File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B3(i186:

Specifier: Designer:

Company: Misc:

Connection Diagram

a minimum = 1" b minimum = 3"

Calculated Side Load = 197.5 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are:

3½" ARDOX SPIRAL

Di sclosure

Completeness and accuracy of input must

be verified by anyone who would rely on Town of Innist output as evidence of suitability for 04/01/2018 10:24 particular application. Output here based

on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER® , AJS $^{\text{TM}}$, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

POLITICE OF ON THE

DWO NO . TAM45430-17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B4(i1866)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

Build 5033

Job Name: Address:

City, Province, Postal Code:,

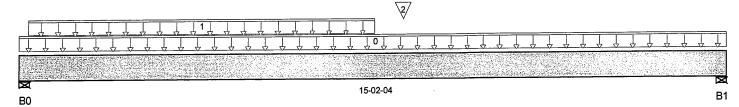
Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B4(i1866)


Specifier:

Designer: Company.

Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:02 AM kgervais

Total Horizontal Product Length = 15-02-04

Reaction Summary (Down / Uplift) (lbs)									
Be aring	Live	De ad	Snow	Wind					
B0, 2-3/8"	523/0	668/0							
B1, 4-3/8"	595/0	489/0							

١.	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
0	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	15-02-04	26	13			n/a
1	Us er Load	Unf. Lin. (lb/ft)	L	00-02-06	07-07-02		60			n/a
2	B2(i1846)	Conc. Pt. (lbs)	L	08-02-04	08-02-04	717	367			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	8,396 ft-lbs	25,408 ft-lbs	33%	1	08-02-04
End Shear	1,494 lbs	11,571 lbs	12.9%	1	00-11-14
Total Load Defl.	L/424 (0.417")	0.737"	56.6%	4	07-07-02
Live Load Defl.	L/805 (0.22")	0.492"	44.7%	5	07-08-11
Max Defl.	0.417"	n/a	n/a	4	07-07-02
Span / Depth	18.6	n/a	n/a		00-00-00

				Demand/ Resistance	Demand/ Resistance	
Beari	ng Supports	Dim.(LxW)	Demand	Support	Member	Material
B0	Wall/Plate	2-3/8" x 3-1/2"	1,621 lbs	36.5%	16%	Unspecified
B1	Wall/Plate	4-3/8" x 3-1/2"	1,504 lbs	18.4%	8.1%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA O86.

CONFORMS TO OBC 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

DWO NO .TAM 4543/-17 Structural Component only

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B4(i1866)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

BC CALC® Design Report

*

Build 5033

Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

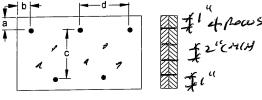
Description: Designs\Flush Beams\Basment\Flush Beams\B4(i186)

Specifier: Designer:

> Company: Misc:

anned an Diagram

Disclosure


Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for

Town of Innisfil Certified Model suitability for 04/01/2018 10:24 par the life application. Output here based

on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BC®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Connection Diagram

a minimum = 1" c = 1/2" b minimum = 3" d = 4"

Calculated Side Load = 101.0 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: Nails

3½ ARDOX SPIRAL

OWO NO.TAM 45431-17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B5(i1853)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

BC CALC® Design Report

Build 5033 Job Name: Address:

City, Province, Postal Code:,

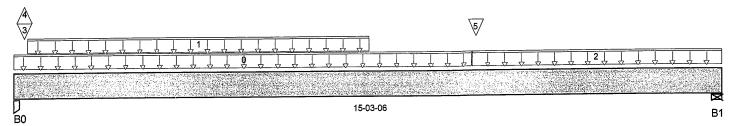
Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B5(i1853)


Specifier:

Designer: Company.

Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:04 AM kgervais

Total Horizontal Product Length = 15-03-06

Reaction Summary (Down / Bearing	Uplift) (lbs) Live	De ad	Snow	Wind	
B0, 7" B1, 4-3/8"	1,074 / 34 479 / 0	1,243 / 0 423 / 0	0/72		

	ad Summon					Live	Dead	Snow	Wind	Trib.
	oad Summary g Description	Load Type	Ref. Start		En d	1.00	0.65	1.00	1.15	
0	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	09-10-08	12	6			n/a
1	Us er Load	Unf. Lin. (lb/ft)	L	00-03-08	07-07-11		60			n/a
2	FC1 Floor Material	Unf. Lin. (lb/ft)	L	09-10-08	15-03-06	17	9			n/a
3	E11(i2010)	Conc. Pt. (lbs)	L	00-02-12	00-02-12	784	685	-72		n/a
4	E11(i2010)	Conc. Pt. (lbs)	L	00-02-12	00-02-12	-34				n/a
	B1 (i1849)	Conc. Pt. (lbs)	L	09-11-06	09-11-06	561	289			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary Demand		Resistance	Resistance	Case	
Pos. Moment	5,579 ft-lbs	25,408 ft-lbs	22%	1	09-11-06
End Shear	1,219 lbs	11,571 lbs	10.5%	1	14-01-08
Total Load Defl.	L/625 (0.277")	0.723"	38.4%	56	08-00-12
Live Load Defl.	L/1,300 (0.133")	0.482"	27.7%	83	08-02-06
Max Defl.	0.277"	n/a	n/a	56	08-00-12
Span / Depth	18.3	n/a	n/a		00-00-00

Bearing Supports				Demand/ Resistance	Demand/ Resistance	
		Dim.(L x W)	Demand	Support	Member	Material
B0	Post	7" x 3-1/2"	3,166 lbs	24.2%	10.6%	Unspecified
B1	Wall/Plate	4-3/8" x 3-1/2"	1,247 lbs	15.2%	6.7%	Unspecified

Notes

BWO NO .TAM 45432-17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B5(i1853)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

BC CALC® Design Report

Build 5033 Job Name: Address:

City, Province, Postal Code:,

Customer:

verification.

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B5(i185

Specifier:

Designer:

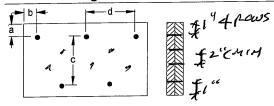
Company.

Misc:

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.


BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA/2018 10:24particular application. Output here based

CONFORMS TO OBC 2012 Unbalanced snow loads determined from building geometry were used in selected products

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Connection Diagram

a minimum = ₽" b minimum = 3"

Calculated Side Load = 78.7 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are:

· Nails ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on Town of Innisfil Gertified Medels uitability for

on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER® , AJS $^{\text{TM}}$, ALLJOIST®, BC RIM BOARD $^{\text{TM}}$, BCI $^{\text{R}}$. BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWO NO. TAM 4543217 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B6(i2130)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

BC CALC® Design Report

Build 5033 Job Name:

Address: City, Province, Postal Code:,

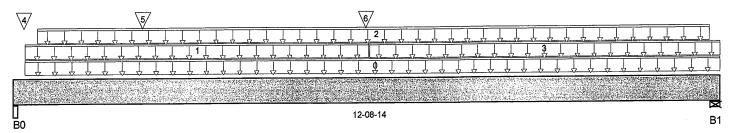
Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B6(i2130)


Specifier:

Designer: Company:

Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:07 AM kgervais

Total Horizontal Product Length = 12-08-14

Reaction Summary	(Down / Uplift) (lbs)				
Be aring	Live	De ad	Snow	Wind	
B0, 5"	1,254 / 0	1,165 / 0			
B1. 2-3/8"	411/0	651/0			

1.0	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
0	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-02-08	12-08-14	16	8			n/a
1	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-02-08	06-04-08	23	12			n/a
2	Us er Load	Unf. Lin. (lb/ft)	L	00-05-02	12-06-10		60			n/a
3	FC1 Floor Material	Unf. Lin. (lb/ft)	L	06-04-08	12-08-14	6	3			n/a
4	5(i839)	Conc. Pt. (lbs)	L	00-02-04	00-02-04	105	76			n/a
5	PBO3(i868)	Conc. Pt. (lbs)	L	02-03-12	02-03-12	993	598			n/a
6	B15(i1843)	Conc. Pt. (lbs)	L	06-03-10	06-03-10	185	101			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	6,432 ft-lbs	25,408 ft-lbs	25.3%	1	05-03-10
End Shear	2,986 lbs	11,571 lbs	25.8%	1	01-02-08
Total Load Defl.	L/581 (0.253")	0.612"	41.3%	4	06-02-02
Live Load Defl.	L/999 (0.117")	n/a	n/a	5	06-00-10
Max Defl.	0.253"	n/a	n/a	4	06-02-02
Span / Depth	15.5	n/a	n/a		00-00-00

Rearii	ng Supports	Dim . (L x W)	Demand	De mand/ Re sistance Support	Demand/ Resistance Member	Material
B0	Beam	5" x 3-1/2"	3,337 lbs	35.7%	15.6%	Un spe dified
B1	Wall/Plate	2-3/8" x 3-1/2"	1,431 lbs	32.2%	14.1%	Un spe dified

Notes

DWO NO . TAM 4543317 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B6(i2130)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

BC CALC® Design Report

*

Build 5033

Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B6(i213)

Specifier:
Designer:
Company:

Misc:

CONFORMS TO OBC 2012

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

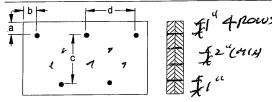
Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.


Importance Factor: Normal Part code: Part 9

Di sclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Connection Diagram

a minimum = **1**" c = **7**-1/2" *u*₁ b minimum = 3" d = **3**

Calculated Side Load = 31.7 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 3½ ARDOX SPIRAL

3 S. KATSOULAKOS 5

DWO NO . TAM 45433-17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B7 CANT(i2144)

Dry | 2 spans | Right cantilever | 0/12 slope (deg)

September 5, 2017 09:20:48

BC CALC® Design Report

Build 5033

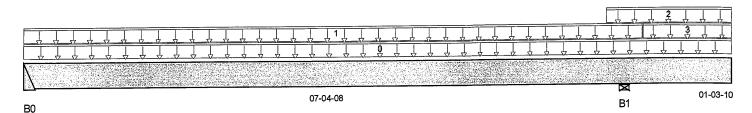
Job Name: Address:

City, Province, Postal Code:, Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\B7 CANT(i:

Specifier:

Designer: Company: Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:09 AM kgervais

Total Horizontal Product Length = 08-08-02

Reaction Summary (Down / Uplift) (lbs)									
Be aring `	Live	De ad	Snow	Wind					
B0	67 / 6	53 / 0	0 / 13						
B1 5-1/2"	146/0	308/0	183/0						

۱.	ad Cumman,					Live	Dead	Snow	Wind	Trib.
Load Summary Tag Description		Load Type	Ref. Start		En d	1.00	0.65	1.00	1.15	
0	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	08-08-02	13	6			n/a
1	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	07-07-04	5	2			n/a
2	User Load	Unf. Lin. (lb/ft)	L	07-01-12	08-08-02	33	130	111		n/a
3	FC2 Floor Material	Unf. Lin. (lb/ft)	L	07-07-04	08-08-02	6	3			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	259 ft-lbs	25,408 ft-lbs	1%	44	03-03-13
Neg. Moment	-321 ft-lbs	-25,408 ft-lbs	1.3%	49	07-04-08
End Shear	118 lbs	11,571 lbs	1%	44	00-11-08
Cont. Shear	168 lbs	11,571 lbs	1.4%	16	06-04-04
Total Load Defl.	L/999 (0.003")	n/a	n/a	10	7 03-06-14
Live Load Defl.	L/999 (0.002")	n/a	n/a	15	9 03-08-14
Total Neg. Defl.	2xL/1,998 (-0.00	01") n/a	n/a	10	7 08-08-02
Max Defl.	0.003"	n/a	n/a	10	7 03-06-14
Span / Depth	9.2	n/a	n/a		00-00-00

Bearing Supports		Dim . (L × W)	Demand	Demand/ Resistance Support	Demand/ Resistance Member	Material	
Be arir	Hanger	2" x 3-1/2"	166 lbs	n/a	1.9%	HGUS410	
B1	Wall/Plate	5-1/2" x 3-1/2"	732 lbs	7.1%	3.1%	Unspecified	

Notes

STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B7 CANT(i2144)

BC CALC® Design Report

Dry | 2 spans | Right cantilever | 0/12 slope (deg)

September 5, 2017 09:20:48

Build 5033

Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B7 CAN

Specifier:

Designer: Company:

Misc:

Design meets Code minimum (L/240) Total load deflection criteria.

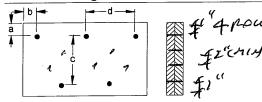
Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA


Unbalanced snow loads determined from building geometry were used in selected product 2012 verification.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Cantilevers require sheathed bottom flanges, blocking at cantilever support and closure at

Connection Diagram

a minimum = 1" b minimum = 3"

Member has no side loads.

Connectors are: 16d

3½ Nails ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWO NO . TAM 457434 17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B8 CANT(i2158)

Dry | 2 spans | Right cantilever | 0/12 slope (deg)

September 5, 2017 09:20:48

BC CALC® Design Report

Build 5033

Job Name: Address:

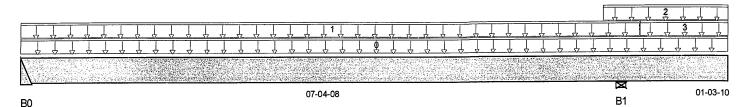
City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\B8 CANT(i;

Specifier: Designer: Company:

Misc:

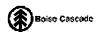
Town of Innisfil Certified Model

04/01/2018 10:24:13 AM kgervais

Total Horizontal Product Length = 08-08-02

Reaction Summary (Down / Uplift) (lbs)									
Bearing	Live	De ad	Snow	Wind					
B0	172/7	104/0	0 / 13						
B1, 5-1/2"	264/0	367/0	183/0						

10	ad Summary					Live	Dead	Snow	Wind	Trib.
Tag Description		Load Type	Ref. Start		En d	1.00	0.65	1.00	1.15	
0	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	08-08-02	21	11			n/a
1	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	07-07-04	25	12			n/a
2	Us er Load	Unf. Lin. (lb/ft)	L	07-01-12	08-08-02	33	130	111		n/a
3	FC2 Floor Material	Unflin (lb/ff)	L	07-07-04	08-08-02	6				n/a


Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	647 ft-lbs	25,408 ft-lbs	2.5%	44	03-06-14
Neg. Moment	-329 ft-Ibs	-25,408 ft-lbs	1.3%	49	07-04-08
End Shear	283 lbs	11,571 lbs	2.4%	44	00-11-08
Cont. Shear	325 lbs	11,571 lbs	2.8%	16	06-04-04
Total Load Defl.	L/999 (0.008")	n/a	n/a	107	03-07-14
Live Load Defl.	L/999 (0.006")	n/a	n/a	159	03-08-14
Total Neg. Defl.	2xL/1,998 (-0.0	04") n/a	n/a	107	08-08-02
Max Defl.	0.008"	n/a	n/a	107	03-07-14
Span / Depth	9.2	n/a	n/a		00-00-00

Beari	ng Supports	Dim . (L x W)	De man d	Resistance Support	Resistance Member	Material
B0	Hanger	2" x 3-1/2"	388 lbs	n/a	4.5%	HGUS410
B1	Wall/Plate	5-1/2" x 3-1/2"	946 lbs	9.2%	4%	Unspecified

Notes

BWO NO. TAM 45-435-17 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B8 CANT(i2158)

Dry | 2 spans | Right cantilever | 0/12 slope (deg)

September 5, 2017 09:20:48

BC CALC® Design Report

Build 5033 Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

verification.

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B8 CAN-

Specifier: Designer: Company:

Misc:

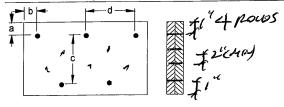
Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA


O86. CONFORMS TO OBC 2012 Unbalanced snow loads determined from building geometry were used in selected product's

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Cantilevers require sheathed bottom flanges, blocking at cantilever support and closure at

Connection Diagram

a minimum = **#**" b minimum = 3" d = 🐠

Member has no side loads

Connectors are: 16d

ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWO NO. TAM45435 = 19 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B9(i1998)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:48

Build 5033

Job Name: Address:

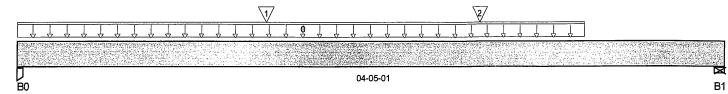
City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\89(i1998)

Specifier:

Designer: Company: Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:16 AM kgervais

Total Horizontal Product Length = 04-05-01

Reaction Summary (Down / Uplift) (lbs)									
Be aring	Live	Dead	Snow	Wind					
B0, 3-1/2"	974/0	508/0							
B1.5-1/2"	705/0	374/0							

	ad Summary g Description	Load Type	Re	f. Start	En d	Live 1.00	De ad 0.65	Snow 1.00	Wind 1.15	Trib.
0	Smoothed Load	Unf. Lin. (lb/ft)	L	00-00-00	03-06-09	248	124			n/a
1	J1(i1997)	Conc. Pt. (lbs)	L	01-06-09	01-06-09	400	200			n/a
2	J1 (i2005)	Conc. Pt. (lbs)	L	02-10-09	02-10-09	400	200			n/a

	Factored	Factored	Demand /	Load	Location	
Controls Summary	Dem and	Resistance	Resistance	Case		
Pos. Moment	1,823 ft-lbs	25,408 ft-lbs	7.2%	1	01-06-09	
End Shear	1,510 lbs	11,571 lbs	13%	1	03-02-01	
Total Load Defl.	L/999 (0.007")	n/a	n/a	4	02-01-09	
Live Load Defl.	L/999 (0.004")	n/a	n/a	5	02-01-09	
Max Defl.	0.007"	n/a	n/a	4	02-01-09	
Span / Depth	4.8	n/a	n/a		00-00-00	

Bearing Supports				Demand/ Resistance	Demand/ Resistance	
		Dim.(LxW)	Demand	Support	Member	Material
B0	Post	3-1/2" x 3-1/2"	2,097 lbs	21.1%	14%	Unspecified
B1	Wall/Plate	5-1/2" x 3-1/2"	1,525 lbs	14.8%	6.5%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

CONFORMS TO OBC 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

DWG NO , TAM 4543617 STRUGTURAL COMPONENT ONLY

Page 1 of 2

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B9(i1998)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:48

BC CALC® Design Report

4

CCMC 12472-R

Build 5033

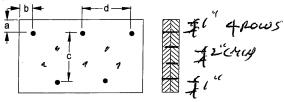
Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

File Name: S32-1-10-ELA-SUNKEN.mmdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\B9(i1998)

Specifier: Designer:

Company: Misc:

Connection Diagram

Connection Diagram

Calculated Side Load = 411.9 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: 16d Nails

3½ ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWO NO. TAM 4543517 STRUGTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B10 DR(i2003)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:49

BC CALC® Design Report

Build 5033 Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Dropped Beams\1st Floor\Dropped Beams\B10

Specifier:

Designer: Company:

Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:19 AM kgervais

1 04-02-08 В1 B0

Total Horizontal Product Length = 04-02-08

Reaction Summary (Down / Uplift) (lbs)									
Be aring	Live	De ad	Snow	Wind					
B0, 4-3/4"	1,235 / 0	637/0							
B1. 5-3/4"	1,316/0	677/0							

10	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
0	Smoothed Load	Unf. Lin. (lb/ft)	L	00-09-04	04-02-08	585	292			n/a
1		Conc. Pt. (lbs)	L	00-01-04	00-01-04	540	270			n/a

	Factored	Factored	Demand /	Load	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	1,626 ft-lbs	25,408 ft-lbs	6.4%	1	02-01-04
End Shear	1,448 lbs	11,571 lbs	12.5%	1	02-11-04
Total Load Defl.	L/999 (0.005")	n/a	n/a	4	02-00-12
Live Load Defl.	L/999 (0.003")	n/a	n/a	5	02-00-12
Max Defl.	0.005"	n/a	n/a	4	02-00-12
Span / Depth	4.4	n/a	n/a		00-00-00

Bearir	ng Supports	Dim . (L x W)	Demand	Resistance Support	Resistance Member	Material
B0	Wall/Plate	4-3/4" x 3-1/2"	2,650 lbs	19.6%	13.1%	Unspecified
B1	Wall/Plate	5-3/4" x 3-1/2"	2,820 lbs	17.3%	11.5%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume unbraced length of Top: 00-02-12, Bottom: 00-02-12.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Demand/

CONFORMS TO OBC 2012

Demand/

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B10 DR(i2003)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:49

BC CALC® Design Report

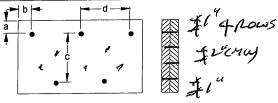
Build 5033 Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

File Name: S32-1-10-ELA-SUNKEN.mmdl


Description: Designs\Dropped Beams\1st Floor\Dropped Beams\B1

Specifier: Designer:

Company: Misc:

CCMC 12472-R

Connection Diagram

a minimum =#" b minimum = 3"

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record. Member has no side loads.

Connectors are: 16d / Nails 3½ ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER® , AJS $^{\text{TM}}$, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B11(i2004)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:48

BC CALC® Design Report

CCMC 12472-R

Build 5033 Job Name:

Address:

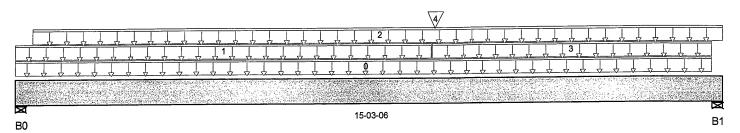
City, Province, Postal Code:,

Customer:

Code reports:

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B11(i2004)


Specifier:

Designer: Company:

Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:21 AM kgervais

Total Horizontal Product Length = 15-03-06

Reaction Summary (Down / Uplift) (Ibs)										
Be aring	Live	De ad	Snow	Wind						
B0, 4-3/8"	662/0	846/0								
B1 5-1/2"	939/0	1.017 / 0								

Load Summary Tag Description						Live	Dead	Snow	Wind	Trib.
		Load Type	Ref. Start		En d	1.00	0.65	1.00	1.15	
0	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	15-00-10	25	12			n/a
1	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	08-11-06	6	3			n/a
2	Us er Load	Unf. Lin. (lb/ft)	L	00-04-06	15-03-06		60			n/a
3	FC2 Floor Material	Unf. Lin. (lb/ft)	L	08-11-06	15-00-10	29	14			n/a
4	B13(i2037)	Conc. Pt. (lbs)	L	09-00-04	09-00-04	1,003	522			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	11,954 ft-lbs	25,408 ft-lbs	47.1%	1	09-00-04
End Shear	2,454 lbs	11,571 lbs	21.2%	1	14-00-06
Total Load Defl.	L/301 (0.582")	0.729"	79.9%	4	07-11-11
Live Load Defl.	L/601 (0.291")	0.486"	59.9%	5	07-11-11
Max Defl.	0.582"	n/a	n/a	4	07-11-11
Span / Depth	18.4	n/a	n/a		00-00-00

				Resistance	Resistance		
Bear	ing Supports	Dim.(LxW)	Demand	Support	Member.	Material	
B0	Wall/Plate	4-3/8" x 3-1/2"	2,051 lbs	25.1%	11%	Unspecified	
B1	Wall/Plate	5-1/2" x 3-1/2"	2,679 lbs	26.1%	11. 4 %	Unspecified	

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

CONFORMS TO OBC 2012

Design based on Dry Service Condition. Importance Factor: Normal Part code: Part 9

DWO NO . TAM 454382 17 STRUCTURAL COMPONENT ONLY

TO INCE OF ONTER

Page 1 of 2

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B11(i2004)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:48

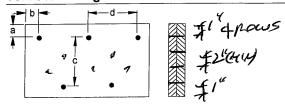
BC CALC® Design Report

Build 5033 Job Name:

Address: City, Province, Postal Code:,

Customer: Code reports:

CCMC 12472-R


File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B11(i200

Specifier: Designer: Company:

Msc:

Connection Diagram

a minimum = 🛊 " b minimum = 3"

Calculated Side Load = 141.2 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are:

ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWB NO . TAM 45436-17 STRUCTURAL COMPONENT ONLY

Triple 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B12(i2007)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:49

BC CALC® Design Report

Build 5033 Job Name:

Address: City, Province, Postal Code:,

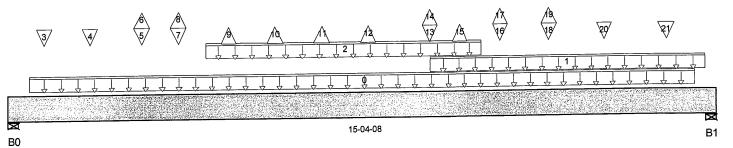
Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B12(i2007)


Specifier:

Designer: Company:

Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:23 AM kgervais

Total Horizontal Product Length = 15-04-08

Reaction Summary (Down	/ Uplift) (lbs) Live	De ad	Snow	Wind
B0, 5-1/2"	1,469 / 65	1,246/0	0 / 138	
· B1, 5-1/2"	1,616 / 57	1,330/0	0 / 120	

				Live	Dead	Snow	Wind	Trib.
Load Summary Tag Description	Load Type	Ref. Start	En d	1.00	0.65	1.00	1.15	
0 User Load	Unf. Lin. (lb/ft)	L 00-05-08	14-11-00		60			n/a
1 FC2 Floor Material	Unf. Lin. (lb/ft)	L 09-01-06	15-01-12	12	6			n/a
2 Smoothed Load	Unf. Lin. (lb/ft)	L 04-03-04	10-03-04	176	85			n/a
3 J6(i2152)	Conc. Pt. (lbs)	L 00-09-04	00-09-04	127	64			n/a
4 J6(i2161)	Conc. Pt. (lbs)	L 01-09-04	01-09-04	162	81			n/a
5 -	Conc. Pt. (lbs)	L 02-10-08	02-10-08	175	104	-15		n/a
6 -	Conc. Pt. (lbs)	L 02-10-08	02-10-08	-6				n/a
7 J5(i2159)	Conc. Pt. (lbs)	L 03-08-00	03-08-00	144		-114		n/a
8 J5(i2159)	Conc. Pt. (lbs)	L 03-08-00	03-08-00	-39				n/a
9 J4(i2145)	Conc. Pt. (lbs)	L 04-09-04	04-09-04	-6				n/a
10 J4(i2166)	Conc. Pt. (lbs)	L 05-09-04	05-09-04	-5				n/a
11 J4(i2165)	Conc. Pt. (lbs)	L 06-09-04	06-09-04	-5				n/a
12 J4(i2164)	Conc. Pt. (lbs)	L 07-09-04	07-09-04					n/a
13 -	Conc. Pt. (lbs)	L 09-01-06	09-01-06	676	359			n/a
14 -	Conc. Pt. (lbs)	L 09-01-06	09-01-06	-5				n/a
15 J4(i2137)	Conc. Pt. (lbs)	L 09-09-04	09-09-04	-5				n/a
16 J5(i2155)	Conc. Pt. (lbs)	L 10-08-00	10-08-00	153	25	-114		n/a
17 J5(i2155)	Conc. Pt. (lbs)	L 10-08-00	10-08-00	-39				n/a
18 B8 CANT(i2158)	Conc. Pt. (lbs)	L 11-08-12	11-08-12	179	106	-15	observa-	n/a
19 B8 CANT(i2158)	Conc. Pt. (lbs)	L 11-08-12	11-08-12	-7		PROFES	SION	n/a
20 J6(i2156)	Conc. Pt. (lbs)	L 12-11-08	12-11-08	196	98 🔏	6 LA	A JAMES	n/a
21 J6(i2147)	Conc. Pt. (lbs)	L 14-03-08	14-03-08	198	99 / 3	7 P 9	1/1/20 1/20	n/a
21 30(12147)	30,10,1 11 (12 -)				98 99 105/1/2		ULAKOS S	
					1	S. KATSO	ulakos ģ	Property of the state of the st
								ľ
						O. Comment	E ONTRAIN	
					,	MILEO	- Old Jacoby	2.11

Triple 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B12(i2007)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:49

BC CALC® Design Report

Build 5033 Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B12(i200

Specifier: Designer: Company:

Misc:

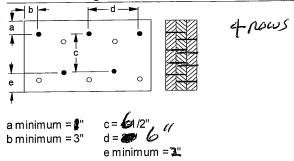
Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location	
Pos. Moment	16,489 ft-lbs	39,636 ft-lbs	41.6%	21	08-09-04	
End Shear	3,890 lbs	17,356 lbs	22.4%	21	14-01-08	
Total Load Defl.	L/301 (0.58")	0.729"	79.6%	56	07-09-08	
Live Load Defl.	L/541 (0.324")	0.486"	66.6%	83	07-09-08	
Max Defl.	0.58"	n/a	n/a	56	07-09-08	
Span / Depth	18.4	n/a	n/a		00-00-00	

Reari	ng Supports	Dim . (L x W)	De man d	De mand/ Re sistance Su pport	De mand/ Re sistance Me mbe r	Material
B0	Wall/Plate	5-1/2" x 5-1/4"	3,762 lbs	24.4%	10.7%	Unspecified
B1	Wall/Plate	5-1/2" x 5-1/4"	4,086 lbs	26.5%	11.6%	Unspecified

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA 086.


BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA CONFORMS TO OBC 2012 O86.

Unbalanced snow loads determined from building geometry were used in selected product's verification.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Connection Diagram

Calculated Side Load = 279.0 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Nailing schedule applies to both sides of the member.

both s Connectors are: 16d ARDOX SPIRAL Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER® , AJS $^{\text{TM}}$, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWO NO. TAN 4543217 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B12A (i1913)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

July 20, 2016 09:50:45

BC CALC® Design Report Build 4340

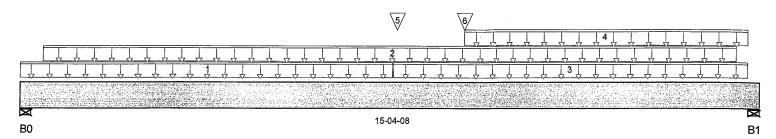
Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R


File Name: S32-1-10.mmdl-ELB.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B12A (i19

Specifier: Designer: Company: Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:26 AM kgervais

Total Horizontal Product Length = 15-04-08

Reaction Summary (Down / Uplift) (lbs)										
Bearing	. Live`	De ad	Snow	Wind						
B0, 5-1/2"	449/0	751/0			_					
B1, 5-1/2"	613/0	841/0								

Lo	oad Summary					Live	De ad	Snow	Wind	Trib.
	g Description	Load Type Ref.		f. Start End ′		1.00	0.65	1.00	1.15	
1	FC2 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	07-08-10	20	10			n/a
2	Us er Load	Unf. Lin. (lb/ft)	L	00-05-08	14-11-00		60			n/a
3	FC2 Floor Material	Unf. Lin. (lb/ft)	L	07-08-10	15-01-12	17	9			n/a
4	FC2 Floor Material	Unf. Lin. (lb/ft)	L	09-02-04	15-01-12	10	5			n/a
5	B14(i2117)	Conc. Pt. (lbs)	L	07-09-08	07-09-08	27	21			n/a
6	B13(i2029)	Conc. Pt. (lbs)	L	09-02-04	09-02-04	680	378			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	8,907 ft-lbs	25,408 ft-lbs	35.1%	1	09-02-04
End Shear	1,836 lbs	11,571 lbs	15.9%	1	14-01-08
Total Load Defl.	L/392 (0.446")	0.729"	61.2%	4	07-11-04
Live Load Defl.	L/890 (0.197")	0.486"	40.4%	5	08-01-00
Max Defl.	0.446"	n/a	n/a	4	07-11-04
Span / Depth	18.4	n/a	n/a		00-00-00

Bear	ing Supports	Dim . (L × W)	De m an d	De mand/ Re sistance Support	Demand/ Resistance Member	Material
B0	Wall/Plate	5-1/2" x 3-1/2"	1,052 lbs	15.7%	6.9%	Unspecified
B1	Wall/Plate	5-1/2" x 3-1/2"	1,971 lbs	19.2%	8.4%	Unspecified

Notes

DWO NO.TAM 4544017 STRUCTURAL COMPONENT ONLY BC CALC® Design Report

Build 4340

Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10.mmdl-ELB.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B12A (i-

Specifier:

Designer: Company:

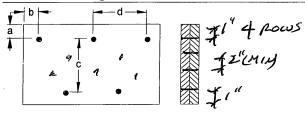
Misc:

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume Member is Fully Braced.

Resistance Factor phi has been applied to all presented results per CSA 086.


BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA O86. CONFORMS TO OBC 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Deflections less than 1/8" were ignored in the results.

Connection Diagram

a minimum = 🎾 c = 3-1/2" b m inim um = 3"

Calculated Side Load = 105.3 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: Nails 3½" ARDDX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

046 AO . TAM 45440-17 **STRUCTURAL** COMPONENT ONLY

Boise Cascade Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B13(i2037)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:48

Build 5033

Job Name: Address:

City, Province, Postal Code:,

Customer:

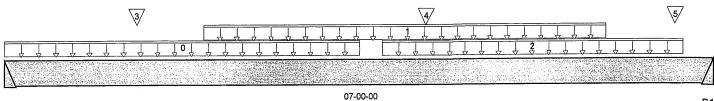
Code reports:

B0

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B13(i2037)


Specifier:

Designer: Company:

Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:28 AM kgervais

07-00

В1

Total Horizontal Product Length = 07-00-00

Reaction Summary (Down / Uplift) (lbs)										
Bearing	Live	De ad	Snow	Wind						
B0	1,005 / 0	523/0								
B1	669/0	355/0								

1.0	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type		Ref. Start End		1.00	0.65	1.00	1.15	
0	Us er Load	Unf. Lin. (lb/ft)	L	00-00-00	03-06-00	240	120			n/a
1	Smoothed Load	Unf. Lin. (lb/ft)	L	01-11-08	05-11-08	120	60		•	n/a
2	FC2 Floor Material	Unf. Lin. (lb/ft)	L	03-08-09	06-08-08	2	1			n/a
3	J7 (i2040)	Conc. Pt. (lbs)	L	01-03-08	01-03-08	169	85			n/a
4	B14(i2149)	Conc. Pt. (lbs)	L	04-01-11	04-01-11	20	19			n/a
5	J7(i2047)	Conc. Pt. (lbs)	L	06-07-08	06-07-08	115	57			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	3,204 ft-lbs	12,704 ft-lbs	25.2%	1	02-10-02
End Shear	1,667 lbs	5,785 lbs	28.8%	1	00-11-08
Total Load Defl.	L/999 (0.073")	n/a	n/a	4	03-04-11
Live Load Defl.	L/999 (0.048")	n/a	n/a	5	03-04-11
Max Defl.	0.073"	n/a	n/a	4	03-04-11
Span / Depth	8.6	n/a	n/a		00-00-00

				De mand/	Demand/	
				Resistance Resi		
Beari	ng Supports	Dim . (L x W)	Demand	Support	Member	Material
B0	Hanger	2" x 1-3/4"	2,162 lbs	n/a	50.6%	HUS1.81/10
B1	Hanger	2" x 1-3/4"	1,448 lbs	n/a	33.9%	HUS1.81/10

Notes

P6/4

DWO NO. TAM45441-17 STRUCTURAL COMPONENT ONLY

Boise Cascade Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B13(i2037)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:48

BC CALC® Design Report

Build 5033

Job Name:

Address: City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B13(i20:

Specifier: Designer:

CONFORMS TO OBC 2012

Company. Misc:

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER® , AJS $^{\text{TM}}$, $\mathsf{ALLJOIST} {\tt B} \,,\, \mathsf{BC} \, \mathsf{RIM} \, \mathsf{BOARD}^{\mathsf{TM}},\, \mathsf{BC} \mathsf{I} \! \mathsf{B} \,,$ BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

Boise Cascade Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B14(i2149)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:48

B1

Build 5033

Job Name: Address:

City, Province, Postal Code:,

В0

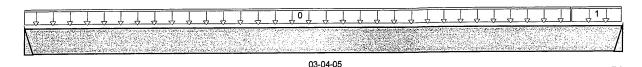
Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B14(i2149)


Specifier:

Designer: Company.

Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:30 AM kgervais

Total Horizontal Product Length = 03-04-05

Reaction Summary (Down / Uplift) (Ibs)									
Be aring	Live	De ad	Snow	Wind					
B0	16 / 0	16 / 0							
R1	29 / 0	22 / 0							

۱.	Load Summary				Live	Dead	Snow Wind	Trib.
	g Description	Load Type	Ref. Start	En d	1.00	0.65	1.00 1.15	
0	FC2 Floor Material	Unf. Lin. (lb/ft)	L 00-00-00	03-00-14	2	1		n/a
1	FC2 Floor Material	Unf. Lin. (lb/ft)	L 03-00-14	03-04-05	28	14		n/a

CONFORMS TO DBC 2012

	Factored Factored		Demand/	Load	Location	
Controls Summary	Demand	Resistance	Resistance	Case		
Pos. Moment	44 ft-lbs	12,704 ft-lbs	0.3%	1	01-10-05	
End Shear	60 lbs	5,785 lbs	1%	1	02-04-13	
Total Load Defl.	L/999 (0")	n/a	n/a	4	01-08-11	
Live Load Defl.	L/999 (O'')	n/a	n/a	5	01-08-11	
Max Defl.	0" ` ´	n/a	n/a	4	01-08-11	
Span / Depth	4	n/a	n/a		00-00-00	

Beari	ing Supports	Dim . (L x W)	De man d	De mand/ Re sistance Support	Demand/ Resistance Member	Material
B0	Hanger	2" x 1-3/4"	44 lbs	n/a	1%	LS 90
B1	Hanger	2" x 1-3/4"	71 lbs	n/a	1.7%	LS 90

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume unbraced length of Top: 00-02-09, Bottom: 00-02-09.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWO NO. FAM 45442-17 STRUCTURAL COMPONENT ONLY

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B15(i1843)

BC CALC® Design Report

CCMC 12472-R

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

Build 5033

Job Name:

Address: City, Province, Postal Code:,

Customer:

B0

Code reports:

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B15(i1843

Specifier:

Designer: Company. Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:32 AM kgervais

\0/ \1/ 04-01-08 В1

CONFORMS TO OBG 2012

Total Horizontal Product Length = 04-01-08

Reaction Summary (Down / Uplift) (lbs)									
Be aring	Live	De ad	Snow	Wind					
B0	189/0	103/0							
B1. 5-1/2"	224/0	135/0							

Load Summary				Live	Dead	Snow Wind		Trib.	
Tag Description	Load Type	Load Type Ref. S		. Start End 1.0		0.65	1.00	1.15	
0 J4(i1874)	Conc. Pt. (lbs)	L	. 01-00-04	01-00-04	139	69			n/a
1 J4(i1926)	Conc. Pt. (lbs)	L	. 02-00-10	02-00-10	128	64			n/a
2 J4(i1933)	Conc. Pt. (lbs)	L	. 03-00-10	03-00-10	138	69			n/a
3 9(i2082)	Conc. Pt. (lbs)	L	. 03-10-12	03-10-12	8	16			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	486 ft-lbs	12,704 ft-lbs	3.8%	1	02-00-10
End Shear	407 lbs	5,785 lbs	7%	1	00-11-08
Total Load Defl.	L/999 (0.003")	n/a	n/a	4	01-11-01
Live Load Defl.	L/999 (0.002")	n/a	n/a	5	01-11-01
Max Defl.	0.003"	n/a	n/a	4	01-11-01
Span / Depth	4.6	n/a	n/a		00-00-00

				De mand/ Resistance	Demand/ Resistance	
Beari	ng Supports	Dim.(LxW)	De man d	Support	Member	Material
B0	Hanger	2" x 1-3/4"	412 lbs	n/a	9.7%	HUS1.81/10
B1	Wall/Plate	5-1/2" x 1-3/4"	505 lbs	9.8%	4.3%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA

O86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWOND, TAM 4544317 STRUCTURAL COMPONENT ONLY

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\...\B16L(i1957)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

September 5, 2017 09:20:47

BC CALC® Design Report

Build 5033

Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: S32-1-10-ELA-SUNKEN.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B16L(i195

Specifier:

Designer: Company:

Misc:

Town of Innisfil Certified Model

04/01/2018 10:24:33 AM kgervais

\1/ 2/ 3/ **⊘** 04-00-06 B0 B1

Total Horizontal Product Length = 04-00-06

Reaction Summary	Reaction Summary (Down / Uplift) (lbs)									
Bearing	Live	De ad	Snow	Wind						
B0, 3-1/2"	254/0	136/0								
B1. 4-3/8"	213/0	117/0								

Load Summary			Liv	re Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	En d 1.0	0 0.65	1.00 1.15	
0 J4(i1958)	Conc. Pt. (lbs)	L 00-01-04	00-01-04 71	35		n/a
1 J4 (i2074)	Conc. Pt. (lbs)	L 01-01-04	01-01-04 13	5 67		n/a
2 J4(i2075)	Conc. Pt. (lbs)	L 02-01-04	02-01-04 13	2 66		n/a
3 J4(i1960)	Conc. Pt. (lbs)	L 03-02-00	03-02-00 12	9 65		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	453 ft-lbs	12,704 ft-lbs	3.6%	1	02-01-04
End Shear	395 lbs	5,785 lbs	6.8%	1	01-01-00
Total Load Defl.	L/999 (0.003")	n/a	n/a	4	01-11-12
Live Load Defl.	L/999 (0.002")	n/a	n/a	5	01-11-12
Max Defl.	0.003"	n/a	n/a	4	01-11-12
Span / Depth	4.4	n/a	n/a		00-00-00

Beari	ng Supports	Dim. (L x W)	De man d	De mand/ Re sistance Support	Demand/ Resistance Member	Material
B0	Post	3-1/2" x 1-3/4"	551 lbs	11.1%	7.4%	Unspecified
B1	Wall/Plate	4-3/8" x 1-3/4"	465 lbs	11.4%	5%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume member is fully braced.

Resistance Factor phi has been applied to all presented results per CSA O86.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC 2010 and CSA CONFORMS TO OBC 2012 O86.

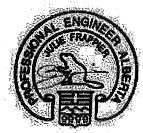
Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of Boise Cascade engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood



DWB NO. TAM 4544417 STRUCTURAL COMPONENT ONLY

Page 1 of 1

Live Load = 40 psf, Dead Load = 15 psf Simple Spans, L/480 Deflection Limit 5/8" OSB G&N Sheathing

•				Bare			1/2" Gypsum Ceiling				
Depth	Series		On Cen	tre Spacing			On Centre Spacing				
		12"	16"	19.2"	24"	12"	16"	19.2"	24"		
	NI-20	15'-1"	14'-2"	13'-9"	N/A	15'-7"	14'-8"	14'-2"	N/A		
	NI-40x	16'-1"	15'-2"	14'-8"	N/A	16'-7"	15'-7"	15'-1"	N/A		
9-1/2"	NI-60	16'-3"	15'-4"	14'-10"	N/A	16'-8"	15'-9"	15'-3"	N/A		
	NI-70	17'-1"	16'-1"	15'-6"	N/A	17'-5"	16'-5"	15'-10"	N/A		
	NI-80	17'-3"	16'-3"	15'-8"	N/A	17'-8"	16'-7"	16'-0"	N/A		
	NI-20	16'-11"	16'-0"	15'-5"	N/A	17'-6"	16'-6"	16'-0"	N/A		
	NI-40x	18'-1"	17'-0"	16'-5"	N/A	18'-9"	17'-6"	16'-11"	N/A		
11-7/8"	NI-60	18'-4"	17'-3"	16'-7"	N/A	19'-0"	17'-8"	17'-1"	N/A		
11-1/0	NI-70	19'-6"	18'-0"	17'-4"	N/A	20'-1"	18'-7"	17'-9"	N/A		
	NI-80	19'-9"	18' - 3"	17'-6"	N/A	20'-4"	18'-10"	17'-11"	N/A		
	NI-90x	20'-4"	18'-9"	17'-11"	N/A	20'-10"	19'-3"	18'-5"	N/A		
	NI-40x	20'-1"	18'-7"	17'-10"	N/A	20'-10"	19'-4"	18'-6"	N/A		
•	NI-60	20'-5"	18'-11"	18'-1"	N/A	21'-2"	19'-7"	18'-9"	N/A		
14"	NI-70	21'-7"	20'-0"	19'-1"	N/A	22'-3"	20'-7"	19'-8"	N/A		
	NI-80	21'-11"	20'-3"	19'-4"	N/A	22'-7"	20'-11"	20'-0"	N/A		
	NI-90x	22'-7"	20'-11"	19'-11"	N/A	23'-3"	21'-6"	20'-6"	N/A		
	NI-60	22'-3"	20'-8"	19 '- 9"	N/A	23'-1"	21'-5"	20'-6"	N/A		
16"	NI-70	23'-6"	21'-9"	20'-9"	N/A	24'-3"	22'-5"	21'-5"	N/A		
10	NI-80	23'-11"	22'-1"	21'-1"	N/A	24'-8"	22'-10"	21'-9"	N/A		
	NI-90x	24'-8"	22 '- 9"	21'-9"	N/A	25'-4"	23'-5"	22'-4"	N/A		

			Mid-Spa	n Blocking	· Mid-S	Mid-Span Blocking and 1/2" Gypsum Ceiling					
Depth	Series		On Cent	re Spacing			On Centre Spacing				
		12"	16"	19.2"	24"	12"	16"	19.2"	24"		
	NI-20	16'-8"	15'-3"	14'-5"	N/A	16'-8"	15'-3"	14'-5"	N/A		
	NI-40x	17'-11"	16'-11"	16'-1"	N/A	18'-5"	17'-1"	16'-1"	N/A		
9-1/2"	NI-60	18' - 2"	17'-1"	16'-4"	N/A	18'-7"	17'-4"	16'-4"	N/A		
	NI-70	19'-2"	17'-10"	17'-2"	N/A	19'-7"	18'-3"	17'-7"	N/A		
	NI-80	19'-5"	18'-0"	17'-4"	N/A	19'-10"	18'-5"	17'-8"	N/A		
	NI-20	19'-6"	18'-1"	17'-3"	N/A	19'-11"	18'-3"	17'-3"	N/A		
	NI-40x	21'-0"	19'-6"	18'-8"	N/A	21'-7"	20'-2"	19'-2"	N/A		
11-7/8"	NI-60	21'-4"	19'-9"	18'-11"	N/A	21'-11"	20'-4"	19'-6"	N/A		
11-7/0	NI-70	22'-6"	20'-10"	19'-11"	N/A	23'-0"	21'-5"	20'-5"	N/A		
	NI-80	22'-9"	21'-1"	20'-1"	N/A	23'-3"	21'-7"	20'-8"	N/A		
	NI-90x	23'-4"	21'-8"	20'-8"	N/A	23'-10"	22'-2"	21'-2"	N/A		
	NI-40x	23'-7"	21'-11"	20'-11"	N/A	24'-3"	22'-7"	21'-7"	N/A		
	NI-60	24'-0"	22'-3"	21'-3"	N/A	24'-8"	22'-11"	21'-11"	N/A		
14"	NI-70	25'-3"	23'-4"	22'-3"	N/A	25'-10"	24'-0"	22'-11"	N/A		
	NI-80	25 '- 7"	23'-8"	22'-7"	N/A	26'-2"	24'-4"	23'-2"	N/A		
	NI-90x	26'-4"	24'-4"	23'-3"	N/A	26'-10"	24'-11"	23'-9"	N/A		
	NI-60	26'-5"	24'-6"	23'-4"	N/A	27'-2"	25'-3"	24'-2"	N/A		
16"	NI-70	27'-9"	25'-8"	24'-6"	N/A	28'-5"	26'-5"	25'-2"	N/A		
10	NI-80	28'-2"	26'-1"	24'-10"	N/A	28'-10"	26' - 9"	25'-6"	N/A		
	NI-90x	29'-0"	26'-10"	25'-7"	N/A	29'-7"	27'-5"	26'-2"	N/A		

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

3. Minimum bearing length shall be 1-3/4 inches for the end bearings.


^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Live Load = 40 psf; Dead Load = 15 psf Simple Spans, L/480 Deflection Limit 3/4" OSB G&N Sheathing

			E	Bare			1/2" Gyr	osum Ceiling	
Depth	Series		On Cent	re Spacing			On Cen	tre Spacing	
		12"	16"	19.2"	24"	12"	16"	/ 19.2"	24"
	NI-20	15'-10"	15'-0"	14'-5"	13'-5"	16'-4"	15'-5"	14'-6"	13'-5"
į.	NI-40x	17'-0"	16'-0"	15'-5"	14'-9"	17'-5"	16'-5"	15'-10"	15'-2"
9-1/2"	NI-60	17'-2"	16'-2"	15'-7"	14'-11"	17'-6"	16'-7"	15'-11"	15'-3"
	NI-70	18'-0"	16'-11"	16'-3"	15'-7"	18'-5"	17'-3"	16'-7"	15'-11"
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'-5"	16'-9"	16'-1"
	NI-20	17'-10"	16'-10"	16'-2"	15'-6"	18'-6"	17'-4"	16'-9"	16'-1"
	NI-40x	19'-4"	17'-11"	17'-3"	16'-6"	19'-11"	18'-6"	17'-9"	17'-0"
11 7/01	NI-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18 '- 9"	17'-11"	17'-2"
11-7/8"	NI-70	20'-9"	19'-2"	18'-3"	17'-5"	21'-4"	19'-9"	18'-10"	17'-10"
	NI-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"
	NI-90x	21'-8"	20'-0"	19'-1"	18'-0"	22'-2"	20'-6"	19'-6"	18'-6"
	NI-40x	21'-5"	19'-10"	18'-11"	17'-11"	22'-1"	20'-6"	19'-7"	18'-7"
	NI-60	21'-10"	20'-2"	19'-3"	18'-2"	22'-5"	20'-10"	19'-11"	18'-10"
14"	NI-70	23'-0"	21'-3"	20'-3"	19' - 2"	23'-8"	21'-11"	20'-10"	19'-9"
	NI-80	23'-5"	21'-7"	20'-7"	19'-5"	24'-0"	22'-3"	21'-2"	20'-0"
	NI-90x	24'-1"	22'-3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"
	NI-60	23'-9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"
4.011	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25'-9"	23'-10"	22'-9"	21'-6"
16"	NI-80	25'-6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23'-1"	21'-10"
	NI-90x	26'-4"	24'-3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22 '- 5"

			Mid-Spa	ın Blocking	Mid-Span Blocking and 1/2" Gypsum Ceiling				
Depth	Series		On Cent	re Spacing		1	On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	16'-10"	15' - 5"	14'-6"	13'-5"	16'-10"	15'-5"	14'-6"	13'-5"
	NI-40x	18'-8"	17'-2"	16'-3"	15'-2"	18'-10"	17'-2"	16'-3"	15'-2"
9-1/2"	· NI-60	18'-11"	17'-6"	16'-6"	15'-5"	19'-2"	17'-6"	16'-6"	15'-5 "
	NI-70	20'-0"	18'-7"	17'-9"	16'-7"	20'-5"	18'-11"	17'-10"	16'-7"
	NI-80	20'-3"	18'-10"	17'-11"	16'-10"	20'-8"	19'-3"	18'-2"	16'-10"
	NI-20	20'-1"	18'-5"	17'-5"	16'-2"	20'-1"	18'-5"	17'-5"	16'-2"
	NI-40x	21'-10"	20'-4"	19'-4"	17'-8"	22'-5"	20'-6"	19'-4"	17'-8"
44 7/01	NI-60	22'-1"	20'-7"	19'-7"	18'-4"	22'-8"	20'-10"	19'-8"	18'-4"
11-7/8"	NI-70	23'-4"	21'-8"	20'-8"	19'-7"	23'-10"	22'-3"	21'-2"	19'-9"
	NI-80	23'-7"	21'-11"	20'-11"	19'-9"	24'-1"	22' - 6"	21'-5"	20'-0"
	NI-90x	24'-3"	22' - 6"	21'-6"	20'-4"	24'-8"	23'-0"	22'-0"	20'-9"
	NI-40x	24'-5"	22'-9"	21'-8"	19'-5"	25'-1"	23'-2"	21'-9"	19'-5"
	NI-60	24'-10"	23'-1"	22'-0"	20'-10"	25'-6"	23'-8"	22' - 4"	20'-10"
14"	NI-70	26'-1"	24'-3"	23' - 2"	21'-10"	26'-8"	24'-11"	23'-9"	22' - 4"
	NI-80	26'-6"	24'-7"	23'-5"	22'-2"	27'-1"	25'-3"	24'-1"	22'-9"
	NI-90x	27' - 3"	25'-4"	24'-1"	22'-9"	27'-9"	25'-11"	24'-8"	23'-4"
	NI-60	27'-3"	25'-5"	24'-2"	22'-10"	28'-0"	26'-2"	24'-9"	23'-1"
CII	NI-70	28' - 8"	26'-8"	25'-4"	23'-11"	29'-3"	27'-4"	26'-1"	24'-8"
L6"	NI-80 .	29'-1"	27'-0"	25'-9"	24'-4"	29'-8"	27'-9"	26 '- 5"	25'-0"
	NI-90x	29'-11"	27'-10"	26'-6"	25'-0"	30'-6"	28'-5"	27'-2"	25'-8"

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Live Load = 40 psf, Dead Load = 30 psf Simple Spans, L/480 Deflection Limit 5/8" OSB G&N Sheathing

	1			Bare			1/2" Gyp	sum Ceiling	
Depth	Series		On Cen	tre Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-1"	14'-1"	13'-3"	N/A	15'-7"	14'-1"	13'-3"	N/A
	NI-40x	16'-1"	15'-2"	14'-8"	N/A	16'-7"	15'-7"	15'-1"	N/A
9-1/2"	NI-60	16'-3"	15'-4"	14'-10"	N/A	16'-8"	15'-9"	15'-3"	N/A
	NI-70	17'-1"	16'-1"	15'-6"	N/A	17'-5"	16'-5"	15'-10"	N/A
	NI-80	17'-3"	16'-3"	15'-8"	N/A	17'-8"	16'-7"	16'-0"	N/A
	NI-20	16'-11"	16'-0"	15'-5"	N/A	17'-6"	16'-6"	16'-0"	N/A
	NI-40x	18'-1"	17'-0"	16'-5"	N/A	18'-9"	17'-6"	16'-11"	N/A
11-7/8"	NI-60	18'-4"	17'-3"	16'-7"	N/A	19'-0"	17'-8"	17'-1"	N/A
11-7/0	NI-70	19'-6"	18'-0"	17'-4"	N/A	20'-1"	18'-7"	17'-9"	N/A
	NI-80	19'-9"	18'-3"	17'-6"	N/A	20'-4"	18'-10"	17'-11"	N/A
	NI-90x	20'-4"	18'-9"	17'-11"	N/A	20'-10"	19'-3"	18'-5"	N/A
	NI-40x	20'-1"	18'-7"	17'-10"	N/A	20'-10"	19'-4"	18'-6"	N/A
	NI-60	20'-5"	18'-11"	18'-1"	N/A	21'-2"	19'-7"	18'-9"	N/A
14"	NI-70	21'-7"	20'-0"	19'-1"	N/A	22'-3"	20'-7"	19'-8"	N/A
	NI-80	21'-11"	20'-3"	19'-4"	N/A	22'-7"	20'-11"	20'-0"	N/A
	NI-90x	22'-7"	20'-11"	19'-11"	N/A	23'-3"	21'-6"	20'-6"	N/A
	NI-60	22'-3"	20'-8"	19'-9"	N/A	23'-1"	21'-5"	20'-6"	N/A
16"	NI-70	23'-6"	21'-9"	20'-9"	N/A	24'-3"	22'-5"	21'-5"	N/A
10	NI-80	23'-11"	22'-1"	21'-1"	N/A	24'-8"	22'-10"	21'-9"	N/A
	NI-90x	24'-8"	22'-9"	21'-9"	N/A	25'-4"	23'-5"	22'-4"	N/A

			Mid-Spa	n Blocking	Mid-9	Span Blocking ar	nd 1/2" Gypsum	Ceiling	
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-1"	13'-3"	N/A	15'-7"	14'-1"	13'-3"	N/A
	NI-40x	17'- 9"	16'-1"	15'-1"	N/A	17'-9"	16'-1"	15'-1"	N/A
9-1/2"	NI-60	18'-1"	16'-4"	15'-4"	N/A	18'-1"	16'-4"	15'-4"	N/A
	NI-70	19'-2"	17'-10"	16'-9"	N/A	19'-7"	17'-10"	16'-9"	N/A
	NI-80	19 '- 5"	18'-0"	17'-1"	N/A	19'-10"	18'-3"	17'-1"	N/A
	NI-20	18'-9"	17'-0"	16'-0"	N/A	18'-9"	17'-0"	16'-0"	N/A
	NI-40x	21'-0"	19'-3"	17'-9"	N/A	21'-3"	19'-3"	17'-9"	N/A
11-7/8"	NI-60	21'-4"	19'-8"	18'-5"	N/A	21'-8"	19'-8"	18'-5"	N/A
11-7/0	NI-70	22'-6"	20'-10"	19'-11"	N/A	23'-0"	21'-4"	20'-0"	N/A
	NI-80	22' - 9"	21'-1"	20'-1"	N/A	23'-3"	21'-7"	20'-5"	N/A
	NI-90x	23'-4"	21'-8"	20'-8"	N/A	23'-10"	22'-2"	21'-2"	N/A
	NI-40x	23'-7"	21'-5"	19'-6"	N/A	24'-1"	21'-5"	19'-6"	N/A
	NI-60	24'-0"	22'-3"	21'-0"	N/A	24'-8"	22' - 5"	21'-0"	N/A
14"	NI-70	25' - 3"	23'-4"	22'-3"	N/A	25'-10"	24'-0"	22 '- 9"	N/A
	NI-80	25'-7"	23'-8"	22'-7"	N/A	26'-2"	24'-4"	23 '- 2"	N/A
	NI-90x	26'-4"	24'-4"	23'-3"	N/A	26'-10"	24'-11"	23'-9"	N/A
	NI-60	26'-5"	24'-6"	23'-4"	N/A	27'-2"	24'-10"	23'-4"	N/A
16"	NI-70	27'-9"	25'-8"	24'-6"	N/A	28'-5"	26' - 5"	25'-2"	N/A
10	NI-80	28'-2"	26'-1"	24'-10"	N/A	28'-10"	26'-9"	25'-6"	N/A
	NI-90x	29'-0"	26 '- 10"	25'-7"	N/A	29'-7"	27'-5"	26' - 2"	N/A

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 30 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

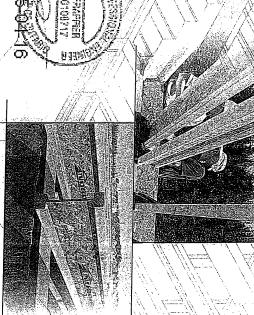
Live Load = 40 psf, Dead Load = 30 psf Simple Spans, L/480 Deflection Limit 3/4" OSB G&N Sheathing

		1_1	E	Bare		1	1/2" Gyp	sum Ceiling	
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	
	·	12"	16"	19.2"	24" .	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-2"	13'-4"	12'-4"	15'-7"	14'-2"	13'-4"	12'-4"
9-1/2"	NI-40x	17'-0"	16'-0"	15'-1"	13'-11"	17'-5"	16'-1"	15'-1"	13'-11"
	NI-60	17'-2"	16'-2"	15'-5"	14'-3"	17'-6"	16'-5"	15'-5"	14'-3"
	NI-70	18'-0"	16'-11"	16'-3"	15'-6"	18'-5"	17'-3"	16'-7"	15'-6"
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'- 5"	16'-9"	15'-10"
	NI-20	17'-10"	16'-10"	16'-0"	14'-10"	18'-6"	17'-1"	16'-0"	14'-10"
	NI-40x	19'-4"	17'-11"	17'-3"	15'-10"	19'-11"	18'-6"	17'-9"	15'-10"
11-7/8"	NI-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18'-9"	17'-11"	17'-1"
11-7/8	NI-70	20'-9"	19' - 2"	18'-3"	17'-5"	21'-4"	19'-9"	18'-10"	17'-10"
	NI-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"
	NI-90x	21'-8"	20'-0"	19'-1"	18'-0"	22'-2"	20'-6"	19'-6"	18'-6"
	NI-40x	21'-5"	19'-10"	18'-11"	17'-5"	22'-1"	20'-6"	19'-6"	17'-5"
	NI-60	21'-10"	20'-2"	19 '- 3"	18' - 2"	22'-5"	20'-10"	19'-11"	18'-10"
14"	NI-70	23'-0"	21'-3"	20'-3"	19'-2"	23'-8"	21'-11"	20'-10"	19'- 9"
	NI-80	23' - 5"	21' - 7"	20'-7"	19'-5"	24'-0"	22'-3"	21'-2"	20'-0"
	NI-90x	24'-1"	22 '- 3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"
	NI-60	23'-9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"
16"	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25' - 9"	23'-10"	22'-9"	21'-6"
10	NI-80	25'-6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23'-1"	21'-10"
	NI-90x	26'-4"	24'-3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22'-5"

			Mid-Spa	n Blocking		Mid-S	pan Blocking ar	nd 1/2" Gypsum	Ceiling
Depth	Series		On Cent	re Spacing			On Cent	re Spacing	77
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-2"	13'-4"	12'-4"	15'-7"	14'-2"	13'-4"	12'-4"
9-1/2"	NI-40x	17'-9"	16'-1"	15'-1"	13'-11"	17'-9"	16'-1"	15'-1"	13'-11"
	NI-60	18'-1"	16'-5"	15'-5"	14'-3"	18'-1"	16'-5"	15'-5"	14'-3"
	NI-70	19'-10"	17'-11"	16'-9"	15'-6"	19'-10"	17'-11"	16'-9"	15'-6"
	NI-80	20'-2"	18'-3"	17'-1"	15'-10"	20'-2"	18'-3"	17'-1"	15'-10"
11-7/8"	NI-20	18'-10"	17'-1"	16'-0"	14'-10"	18'-10"	17'-1"	16'-0"	14'-10"
	NI-40x	21'-3"	19'-3"	17'-9"	15'-10"	21'-3"	19'-3"	17'-9"	15'-10"
	NI-60	21'-9"	19'-8"	18'-5"	17'-1"	21'-9"	19'-8"	18'-5"	17'-1"
	NI-70	23'-4"	21'-5"	20'-1"	18'-6"	23'-8"	21'-5"	20'-1"	18'-6"
	NI-80	23'-7"	21'-10"	20'-5"	18'-11"	24'-1"	21'-10"	20'-5"	18'-11"
	NI-90x	24'-3"	22'-6"	21'-3"	19'-7"	24'-8"	22'-7"	21'-3"	19'-7"
	NI-40x	24'-2"	21'-5"	19'-6"	17'-5"	24'-2"	21'-5"	19'-6"	17'-5"
	NI-60	24'-9"	22' - 5"	21'-0"	19'-6"	24'-9"	22'-5"	21'-0"	19'-6"
14"	NI-70	26'-1"	24'-3"	22 '- 9"	21'-0"	26'-8"	24'-3"	22' - 9"	21'-0"
	NI-80	26' - 6"	24'-7"	23'-3"	21'-6"	27'-1"	24'-10"	23' - 3"	21'-6"
	NI-90x	27' - 3"	25'-4"	24'-1"	22'-4"	27'-9"	25'-10"	24'-3"	22'-4"
	NI-60	27'-3"	24'-11"	23 '- 5"	21'-7"	27'-6"	24'-11"	23'-5"	21'-7"
101	NI-70	28' - 8"	26'-8"	25'-3"	23'-4"	29'-3"	26'-11"	25 '- 3"	23'-4"
16"	NI-80	29'-1"	27'-0"	25'-9"	23'-10"	29'-8"	27'-6"	25'-10"	23'-10"
	NI-90x	29'-11"	27'-10"	26'-6"	24'-10"	30'-6"	28'-5"	26'-11"	24'-10"

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 30 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.


^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

FOR RESIDENTIAL FLOORS

SAFETY AND CONSTRUCTION PRECAUTIONS

Do not walk on I-joists until fully fastened and braced, or serious injuries can result.

over-stress I-joist with concentrated loads from materials over unsheathed I-joists.
Once sheathed, do not building materials.

Never stack building

- closure panels, rim board, or cross-bridging.
- 4. Install and fully nail permanent sheathing to each I-joist before placing loads on the floor system. Then, stack building materials over beams or walls only.

Improper storage or installation, failure to follow applicable building codes, failure to follow span ratings for Nordic Hoists, failure to follow allowable hole sizes and locations, or failure to use web stiffeners when required can result in serious accidents. Follow these installation guidelines carefully

N-C301 / November 2014

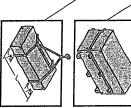
WARNING

I-joists are not stable until completely installed, and will not carry any load until fully braced and sheathed.

Avoid Accidents by Following these Important Guidelines:

- Brace and nail each I-joist as it is installed, using hangers, blocking panels, rim board, and/or cross-bridging at joist ends. When I-joists are applied continuous over interior supports and a load-bearing wall is planned at that location, blocking will be required at the interior support.
- When the building is completed, the floor sheathing will provide lateral support for the top flanges of the I-joists. Until this sheathing is applied, temporary bracing, often called struts, or temporary sheathing must be applied to prevent l-joist rollover or buckling
- Temporary bracing or struts must be 1x4 inch minimum, at least 8 feet long and spaced no more than 8 feet on centre, and must be secured with a minimum of two 2-1/2" nails fastened to the top surface of each I-joist. Nail the bracing to a lateral restraint at the end of each bay. Lap ends of adjoining bracing over at least two 1-joists.
- Or, sheathing (temporary or permanent) can be nailed to the top flange of the first 4 feet of I-joists at the end of the bay.
- For cantilevered I-joists, brace top and bottom flanges, and brace ends with
- Never install a damaged I-joist.

STORAGE AND HANDLING GUIDELINES


- 1. Bundle wrap can be slippery when wet. Avoid walking on wrapped
- Store, stack, and handle I-joists vertically and level only.
- 3. Always stack and handle I-joists in the upright position only.
- Do not store I-joists in direct contact with the ground and/or flatwise
- Bundled units should be kept intact until time of installation. Protect I-joists from weather, and use spacers to separate bundles.

Ġ

- When handling I-joists with a crane on the job site, take a few simple precautions to prevent damage to the Lioists and injury to your work crew.
- Pick I-joists in bundles as shipped by the supplier

Distributed by:

- Orient the bundles so that the webs of the I-joists are vertical.
- **a** Pick the bundles at the 5th points, using a spreader bar if necessary.
- Do not handle I-joists in a horizontal orientation.
- 9. NEVER USE OR TRY TO REPAIR A DAMAGED I-JOIST

MAXIMUM FLOOR SPANS

- 1. Maximum **clear** spans applicable to simple-span or multiple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration and a live load deflection limit of L/480. For multiple-span applications, the end spans shall be 40% or more of the adjacent span.
- 2. Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less, or 3/4 inch for joist spacing of 24 inches. Adhesive shall meet the requirements given in CGBS-71.26 Standard. No concrete topping or bridging element was assumed. Increased spans may be achieved with the used of gypsum and/or a row of blocking at mid-span.
- 3. Minimum bearing length shall be 1-3/4 inches for the end bearings, and 3-1/2 inches for the intermediate bearings.
- Bearing stiffeners are not required when L-joists are used with the spans and spacings given in this table, except as required for hangers.
- 5. This span chart is based on uniform loads. For applications with other than uniform loads, an engineering analysis may be required based on the use of the design properties.
- Tables are based on Limit States Design per CAN/CSA O86-09 Standard, and NBC 2010.
- 7. SI units conversion: 1 inch = 25.4 mm
 1 foot = 0.305 m

MAXIMUM FLOOR SPANS FOR NORDIC I-JOISTS SIMPLE AND MULTIPLE SPANS

I-JOIST HANGERS

Hangers shown illustrate the three

most commonly used metal hangers

8				Joist Depth
N1500 N150 N150 N150 N150 N150 N150 N150	22 72 7 10 6 8 8 10 6 8 8 8 10 6 8 8 8 10 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22 <u>22</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Joist Series
22-3 23-8 23-11 24-5 24-5	2015 2015 2017	200 S	10.1 10.1 17.1 17.1	12"
20'48" 21'49" 22'41" 22'-6" 22'-9"	1847 18411 2040 20-3 20-8	0 0 0 0 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.21 15.42 16.14	Simple On centre 16"
1919; 2019; 2111; 2115; 2119;	18-11 19-11 19-4: 19-4:	1645 1647 1744 1710 1710	13:8 14:10 15:4 15:4	spans spacing 19.2
119,110° 20-110° 21-2" 21-6" 21-10°	17.514 18.25 19.25 19.10 20.05	15,6 16-6 17-5 17-11	1305! 1419! 1411]!	24"
24.77 26.0 26.45 26.45 27.3	22:7 23:10 23:10 24:9 25:0	18.41 20-0 20-0 21-6 21-9 22-3 22-5	10-51 17-51 17-51 18-71 18-71	12°
22-9 24-0 24-5 24-10 25-2	20-6 20-10 22-11 22-5 53-10	17:31 18:51 19:11: 20:7: 20:7:	15.4° 16.5° 16.7° 17.4°	Multipl On centro 16"
21,29 22-11 23,31 23,91	19-8* 20-0* 21-1* 21-10	18-70 18-70 10-81 10-81 10-81 18-70	144.10* 154.10* 164.0* 164.9*	spans spacing
21,-10 23-0 23-4 23-4	20-1 20-1 21-2 21-6 21-30	18.5 19.4 19.1 19.1 19.1	1417! 1555! 16410! 16410!	24

4. Web stiffeners are required when the sides of the hangers do not laterally

brace the top flange of the I-joist.

Hangers should be selected based

on the joist depth, flange width and load capacity based on the

maximum spans.

2. All nailing must meet the hanger

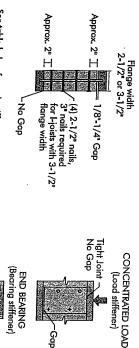
manufacturer's recommendations.

to support 1-joists.

CCMG EVALUATION REPORT 1303D-R

Top Moun

Face Mount

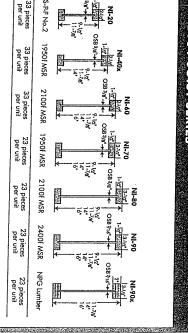

WEB STIFFENERS

RECOMMENDATIONS:

- A bearing stiffener is required in all engineered applications with factored reactions greater than shown in the Lipist properties table found of the Lipist Construction Guide (C101). The gap between the stiffener and the flange is at the top.
- A bearing stiffener is required when the I-joist is supported in a hanger and the sides of the hanger do not extend up to, and support, the top flange. The gap between the stiffener and flange is at the top.
- ■A load stiffener is required at locations where a factored concentrated load greater than 2,370 lbs is applied to the top flange between supports, or in the case of a cantilever, anywhere between the cantilever than the support. These values are for standard term load duration, and may be adjusted for other load durations as permitted by the code. The gap between the stiffener and the flange is at the bottom.
- SI units conversion: I inch = 25.4 mm

FIGURE 2

WEB STIFFENER INSTALLATION DETAILS


See table below for web stiffener size requirements

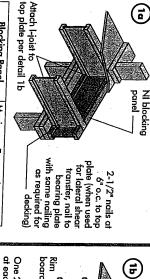
STIFFENER SIZE REQUIREMENTS

	3-1/2"	2-1/2	0.7 (2)	Flange Width
1-1/2 X 2-3/10" minimum width	7 1/01 0 5/1/2	1" x 2-5/16" minimum width	ביים: ביים במרוי טומס טו אופט	Web Stiffener Size Fach Side of Wet

Tight Joint No Gap

NORDIC I-JOIST SERIES

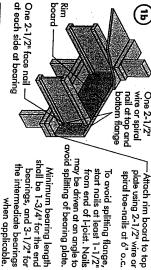
Chantiers Chibougamau Ltd. harvests its own trees, which enables Nordic products to adhere to strict quality control procedures throughout the manufacturing process. Every phase of the operation, from forest to the finished product, reflects our commitment to quality.


Nordic Engineered Wood Lipists use only finger-jointed black spruces in their flanges, ensuring consistent quality, superior strength, supportional tonger span carrying capacity.

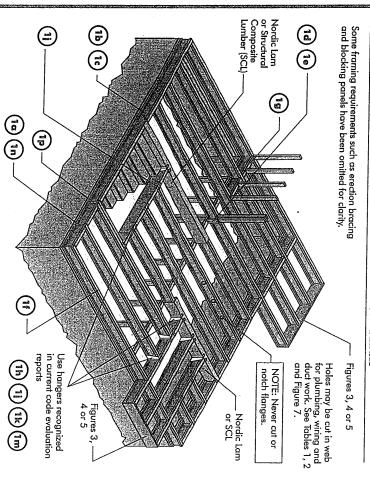
813

2019-04-16

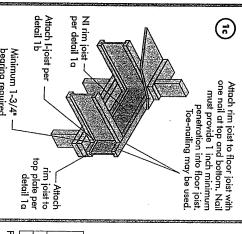
INSTALLING NORDIC I-JOISTS

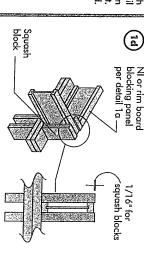

- l. Before laying out floor system components, verify that Hoist flange widths match hanger widths. If not, مرابطة المعالمة المعا
- 2. Except for cutting to length, I-joist flanges should never be cut, drilled, or notched.
- 3. Install I-joists so that top and bottom flanges are within 1/2 inch of true vertical alignment
- 4. I-joists must be anchored securely to supports before floor sheathing is attached, and supports for multi-
- 5. Minimum bearing lengths: 1-3/4 inches for end bearings and 3-1/2 inches for intermediate bearings 045-04-16
- 6. When using hangers, seat I-joists firmly in hanger bottoms to minimize settlement.
- 7. Leave a 1/16-inch gap between the I-joist end and a header
- 8. Concentrated loads greater than those that can normally be expected in residential construction should only be applied to the top surface of the top flange. Normal concentrated loads include track lighting fixtures, audio equipment and security cameras. Never suspend unusual or heavy loads from the Ljoist's bottom flange. Whenever possible, suspend all concentrated loads from the top of the I-joist. Or, attach the load to blocking that has been securely fastened to the
- 9. Never install Ljoists where they will be permanently exposed to weather, or where they will remain in direct contact with concrete or masonry.
- 10. Restrain ends of floor joists to prevent rollover. Use rim board, rim joists or Ljoist blocking panels.
- 11. For I-joists installed over and beneath bearing walls, use full depth blocking panels, rim board, or squash blocks (cripple members) to transfer gravity loads through the floor system to the wall or foundation below.
- 12. Due to shrinkage, common framing lumber set on edge may never be used as blocking or rim boards. Hoist blocking -joist-compatible depth selected panels or other engineered wood products – such as rim board – must be cut to fit between the Lipists, and an
- 13. Provide permanent lateral support of the bottom flange of all I-joists at interior supports of multiple-span joists. Similarly, support the bottom flange of all cantilevered I-joists at the end support next to the cantilever extension. In the completed structure, the gypsum wallboard ceiling provides this lateral support. Until the final finished ceiling is applied, temporary
- 14. If square-edge panels are used, edges must be supported between Lipists with 2x4 blocking. Glue panels to blocking to minimize squeaks. Blocking is not required under structural finish flooring, such as wood strip flooring, or if a separate underlayment layer is installed
- 15. Nail spacing: Space nails installed to the flange's top face in accordance with the applicable building code requirements or

3,300 (pii)	NI Joists
Me	or Rim Joist

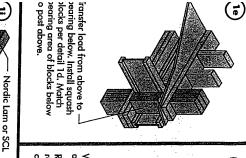

Blocking Panel or Rim Joist

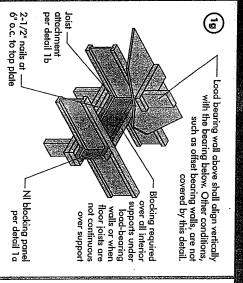
such as joist, header, or rafter. For concentrated vertical It shall not be used in the design of a bending member, inches or less and is based on standard term load duration. ne uniform vertical load is limited to a joist depth of 16

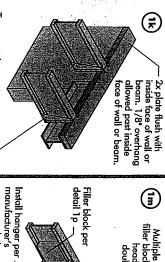



a load lidhster, see detail 1d.	401
rafter. For concentrated vertical local transfer as loist, header, or	rafter. For concentrated vertical load transfer is a lost, head
used in the design of a handing mambal the design of a handing	used in the design of a handing
or less and is based on standard to a rim board depth of 16 inches	or less and is based on the land
	*The inform material in the
8.090	1-1/0 Kim Board Plus
Part Pour	1 /OH D:
Vertical Load* /ala	ISIOF WIN TO
Maximum Factored Uniform	Processing Folia
	Nocking Pane

typical nordic i-joist floor framing and construction details


All nails shown in the above details are assumed to be common wire nails unless otherwise noted. 3" (0.122" dia.) common spiral nails may be substituted for 2-1/2" (0.128" dia.) common wire nails. Framing lumber assumed to be Spruce-Pine-Fir No. 2 or better. Individual components not shown to scale for clarity.


-	2x Lumber 5,500 8.50	3-1/2" wide 5-1/2"	Pair of Squash Blocks (lbs)	~
4 400	8.500	5-1/2" wide	ocks (lbs)	Vertical per

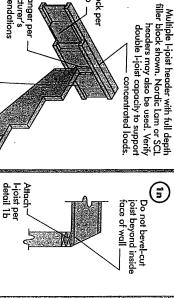

Provide lateral bracing per detail 1a, 1b, or 7

as required Wall sheathing, \bigcirc Use single I-joist for loads up to 3,300 plf, double l-joists for loads up to 6,600 plf (filler block not required). Attach I-joist to sheathing is used. untess nailable siding attachment Provide backer for top plate using 2-1/2" nails at 6" o.c.

carried to the foundation. Rim board may be used in lieu of Lioists. Backer is not required when rim board is used. Bracing per code shall be

detail 1p

Filler block per


concentrated loads,

(1)

Top-mount hanger installed per. manufacturer's recommendations

recommendations

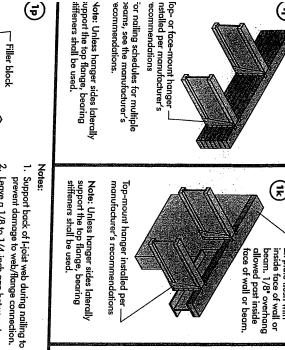
support the top flange, bearing stiffeners shall be used. Note: Unless hanger sides laterally

at bearing for lateral Note: Blocking required support, not shown

for clarity.

 \bigcirc hanger per detail 1p Filler block Top- or face-mount Double I-joist header Backer block (use if hanger load exceeds 360 lbs) Use twelve 3" nails, clinched when possible. Maximum factored backer block will fit. Clinch. Install backer tight to top flange. additional 3" nails through the webs and filler block where the Before installing a backer block to a double I-joist, drive three resistance for hanger for this detail = 1,620 (bs. flanger hearing stiffens laterally, surport the too Note: Unless hanger sides Backer block required 2019-04-2

For hanger capacity see hanger manufacturer's recommendations. Verify double I-joist capacity to support concentrated loads.


(both sides for face-mount

nangers)

BACKER BLOCKS (Blocks must be long enough to permit required nailing without splitting)

Flange Width	Material Thickness Required*	Minimum Depth**
2-1/2"	-1	5-1/2"
3-1/2"	1-1/2"	7-1/4"

- better for solid sawn lumber and wood structural panels conforming to CAN/CSA-O325 or CAN/CSA-O437 Standard. Minimum grade for backer block material shall be S-P-F No. 2 or
- For face-mount hangers use net joist depth minus 3-1/4" for joists with 1-1/2" thick flanges. For 2" thick flanges use net depth

—Offset nails from opposite face by 6"

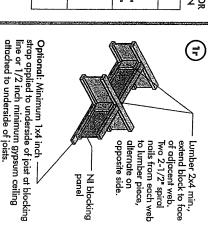
ω

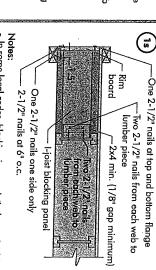
—1/8" to 1/4" gap between top flange and filler block

using this detail is 860 lbf/ft. Verify double

applied to one side of the double joist

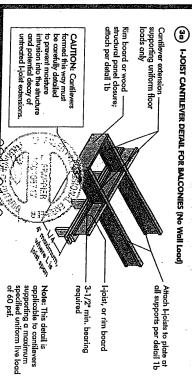
FILLER BLOCK REQUIREMENTS FOR DOUBLE 1-JOIST CONSTRUCTION

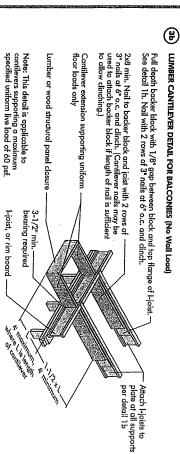

Maximum support capacity = 1,620 lbs

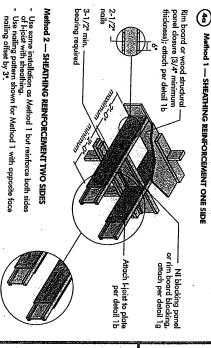

clinch when possible.

detail 1h. Nail with twelve 3" nails, Backer block attached per —

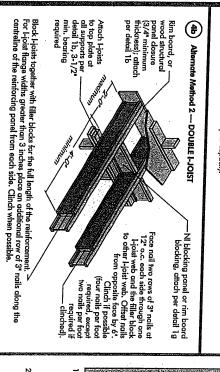
prevent damage to web/flange connection

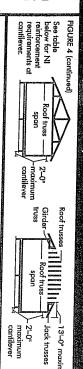

•			•	
are required. The maximum factored load that may be applied to one side of the double is:	nails at 12 inches o.c. (clinched when possible) on each side of the double i-joist. Total of four nails per foot required. If nails can be clinched, only two nails per foot	Filler block is required between joists for full length of span. Nail joists together with two rows of 2*	Leave a 1/8 to 1/4-inch gap between top of filler block and bottom of top I-joist flange.	prevent damage to web/flange connection.
3-1/2" x 2"	3-1/2" × 1-1/2"	2-1/2"× 1-1/2"	Flange Size	00000
11-7/8" 14" 16"	9-1/2" 11-7/8" 14" 16"	11-7/8" 14" 16"	Joist Depth	-Joint CO
3" × 7" 3" × 9"	3" × 6" 3" × 10" 3" × 12"	2-1/8" x 8" 2-1/8" x 10" 2-1/8" x 12"	Filler Block Size	POORE I-JUISI CONSTRUCTION




- the first joist space (or first and second joist space) next to the starter joist. Where required, see local code requirements In some local codes, blocking is prescriptively required in tor spacing of the blocking
- All nails are common spiral in this detail.

CANTILEVER DETAILS FOR BALCONIES (NO WALL LOAD)





CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD)

Note: Canadian softwood plywood sheathing or equivalent (minimum thickness 3/4") required on sides of joist. Depth shall match the full height of the joist. Nail with 2-1/2" nails at 6" o.c., top and bottom flange. Install with face grain horizontal. Attach I-joist to plate at all supports per detail 1b. Verify reinforced I-joist capacity.

maximum	2'-0"		Jack trusses		13'-0" maximum	
26 ft. shall be permitted to	requirements for a span of	the I-joist reinforcement	the cantilevered floor joists	trusses running parallel to	For hip roofs with the jack	

be used.

CANTILEVER REINFORCEMENT METHODS ALLOWED

Z II Zo re	0	T.	11177/8	91729	JOIST DEPTH (in.)
inforcement re	30 32 34 38 38 40	32 33 33 33 33 33 33 33 33 33 33 33 33 3	2004 2004 2008	NG G G G N N 00 C N O 00	ROOF TRUSS SPAN (f)
equired.	ZZZZZZZ	7777772	222222	ZZZZZZ	<u>.</u> ⊒1
·	2272277 2272222 2727222	Z			10 psf, DL = 1; ST SPACING (ii
- Immor on an		ZZTTEZZZ	Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	××××2	5 psf n.)
191 200		X			ROOF!LOAD LL = 40 JOIST
Alfabrille School and Alfabrille			2 = 12 Z Z Z		ONG (UNFA) psi, di = 1 Spaging
10 10 10 10 10 10 10 10 10 10 10 10 10 1)(X) = 1 = 1 = 2 = 2	ZNNN	XXX2222	××××	TOKED)) psf n.)
Z		ZZZZZZZZ	ZZZZZZ	zz	SIO(9 = TI
December 1	ZZZZZZZ 3zzz		2Z Z 	× × × × × × × × × × × × × × × × × × ×	DESPONDE
X	NNN2====	ברממממאצ	×××××2.	×××××	(La)

- 1 = NI reinforced with 3/4 wood structural panel on one side only.
 2 = NI reinforced with 3/4 wood structural panel on both sides, or double I-joist.
 X = Iry a deeper joist or closer spacing.
 Advantum design load shall be: 15 per roof dead load, 55 per floor total load, and 80 plf wall load. Wall load is based on 3.0*
- For larger openings, or multiple 3-0" width openings spaced less than 6-0" o.c., additional joists beneath the opening's cripple studs may be required.

 3. Table applies to joists 12" to 24" o.c. that meet the floor span requirements for a design live load of 40 per and defection limit of 1.480, Use and a five load deflection limit of 1.480, Use
 - 4. For conventional roof construction using a ridge beam, the Roof Truss Span column above is equivalent to the distance between the supporting wall and the ridge beam. When the roof is framed using a ridge board, and the Roof Truss Span is equivalent to the distance between the supporting walls as if a truss is used.
- Cantilevered joists supporting girder trusses or roof beams may require additional reinforcing.

RULES FOR CUTTING HOLES AND DUCT CHASE OPENINGS:

- The distance between the inside edge of the support and the centreline of any Table 1 or 2, respectively hole or duct chase opening shall be in compliance with the requirements of
- 2 I-joist top and bottom flanges must NEVER be cut, notched, or otherwise modified
- 4 ω Whenever possible, field-cut holes should be centred on the middle of the web.
- The maximum size hole or the maximum depth of a duct chase opening that can the I-joist minus 1/4 inch. A minimum of 1/8 inch should always be maintained between the top or bottom of the hole or opening and the adjacent I-joist flange. be cut into an 1-joist web shall equal the clear distance between the flanges of
- Ċ The sides of square holes or longest sides of rectangular holes should not exceed 3/4 of the diameter of the maximum round hole permitted at that location.
- ٥. Where more than one hole is necessary, the distance between adjacent hole longest rectangular hole or duct chase opening) and each hole and duct chase edges shall exceed twice the diameter of the largest round hole or twice the opening shall be sized and located in compliance with the requirements of size of the largest square hole (or twice the length of the longest side of the fables 1 and 2, respectively
- A knockout is **not** considered a hole, may be utilized anywhere it occurs, and may be ignored for purposes of calculating minimum distances between holes and/or duct chase openings.
- œ Holes measuring 1-1/2 inches or smaller shall be permitted anywhere in a cantilevered section of a joist. Holes of greater size may be permitted subject to
- % A 1-1/2 inch hole or smaller can be placed anywhere in the web provided that it meets the requirements of rule number 6 above.
- 10. All holes and duct chase openings shall be cut in a workman-like manner in accordance with the restrictions listed above and as illustrated in Figure 7.
- 11. Limit three maximum size holes per span, of which one may be a duct chase
- 12. A group of round holes at approximately the same location shall be permitted if they meet the requirements for a single round hole circumscribed around them.

Simple or Multiple Span for Dead Loads up to 15 psf and Live Loads up to 40 psf LOCATION OF CIRCULAR HOLES IN JOIST WEBS

Above table	16		1170	0 10 10	Joist Depth
may be used	N190 N190 N190		2222 338388 388388	N.40 N.40 N.40 N.40 N.40 N.40 N.40 N.40	Joist Series
for I-ioist spac				4.5	
ing of 24 inch					
os on centro o	2-10 4-10 5-3 3-3 3-6	2:4 4:3 5:10 5:5 6:5 4:0 3:9	3.8 41.0 5.9 7.0 4.10	8 6 6 8 8 6 6 8	once froi
- loo		100	4.0 5.0 4.4 5.5 6.0 73 7.2 8.4 7.5 8.6		
- 8			8.40 8.4 8.10 10.0 10.0 11.0 10.3 11.4 10.2 10.2		
				100	
0.11	9-8" 12-0" 12-3	10:2: 13:5: 13:5: 12:1:	111111	11111	e of hole
0-2	10-2: 12-2: 12-4: 14-0: 12-9: 14-5: 1-9: 13-9:				
			Bitliti.		3
1 - 1 O	0010	995	1777866 17778666	151.58 151.58	

- nuver ususe may se used for Floid spacing of 24 inches on centre or less.
 Hole location distance is measured from inside face of supports to centre of hole.
 Distances in this chart are based on uniformly loaded joists.

OPTIONAL:

The above table is based on the I-joists used at their maximum span. If the I-joists are placed at less than their full maximum span (see Maximum free) States of the minimum distance from the centreline of the hole to the face of any support (D) as given above may be reduced as follows:

Dreduced = SAF X D

- Where: Preduced II
- D ₹ Tactua!
- Distance from the inside face of any support to centre of hole, reduced for less-than-maximum span applications (fit. The instruction distance shall not be less than 6 inches from the face of the support to edge of the hole.

 The actual measured span distance between the inside faces of supports (fit). Span Adjustment Factor given in this table.
- The minimum distance from the inside face of any support to centre of hole from this table If actual is greater than 1, use 1 in the above calculation for bactual.

 SAF

150A1

ਗ

TABLE 2

DUCT CHASE OPENING SIZES AND LOCATIONS — Simple Span Only

·				and the first
199	100000000000000000000000000000000000000			
		1	9	
			1 -	Joist Depth
			1 1 12	
	建设施工会			
	400			
7777	フラフラフ	177474575		
		a (rainh mhuainis e	C I Store In	Joist Serie
oooo	000000	486888	86666	
				7
50.664年65年	建筑器和产业	S STATE OF S		
'ನನನನ	0.00000	333736 360 3 466	ល្អបាលប្រាជា	
	がらんるー	/J0 N → ω@	-04-40	
				MARKET
		2023		
-000	000000	27777 7480	410101014	
10000	o@@@\	CAB 4 KE	ງຫນູວ ຜບ	
	30 (7 (7	7.87.888 2000 242		
&& &&	00		Horna	
		3.50		
الدديد	ودودد	800000 19606	100000	
	20010	400006	Late of L	
1040C	10-10-4	P		
	医多种性结核		100	
			1989	
		0.0000000.	100 400	
		998898 4210 4210	- V8	
0-				新提供 。
150				建
ಪನನನ		000000	シバアルフ	
55166K	6-6-5	446-6-4 66666	ω_{-} ω_{-}	OFF
			3.5	
ມເລເດເຊັນ				
×-60	00000		BROBR!	
			00000	0
واعلاست	ひるしのび		SCESE!	SA SERVICE SER
ישהייאי		יייםיט		
海流性	建筑等			
بإحجد	2222		88887	
4444	じじいのか	10-000 10-48-	0.000	
성당하다	그러워인함	* 0.04 m = 1	178	
经验的	建 多层层	457.475348-1044	· 学研究的	经过程的

- 1 NISO 130 130 142 1430 1430 1534 1530 1350 1350 1432 1430
- Above table may be used for Hoist spacing of 24 inches on centre or less.
 Duck chase opening location distance is measured from inside tace of supports to centre of opening.
 The above table is based on simple-span joists only. For other applications, contact your local distributor.
 Distances are based on uniformly loaded floor joists that meet the span requirements for a design live load.
- Distances are based on uniformly loaded floor joists that meet the span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of L/480. For other applications, contact your local distributor.

and may be ignored for purposes of calculating minimum distances between holes. A knockout is **NOT** considered a hole, may be utilized wherever it occurs

Knockouts

rule 12

Maintain minimum 1/8" space between top and bottom flange — all duct chase openings and holes

> field-cut holes. **Never** drill, cut or notch the flange, or Holes in webs over-cut the web.

bearing -

distance from for minimum

2x diameter of larger hole

diameter, whichever is length or hole 2x duct chase

from bearing)

Duct chase opening minimum distance (see Table 2 for

for the contractor's convenience to install electrical or small plumbing lines. They are 1-1/2 inches in diameter, and are

Knockouts are prescored holes provided

spaced 15 inches on centre along the length of the Lioist. Where possible, it is preferable to use knockouts instead of

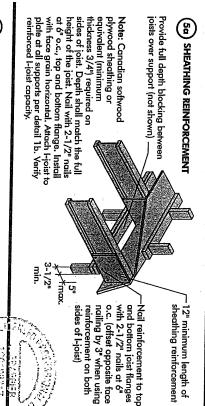
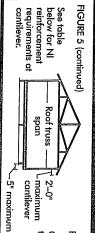

FIELD-CUT HOLE LOCATOR

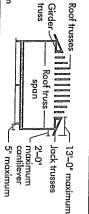
FIGURE 7

sharp saw. should be cut with a

For redangular holes, avoid over-cutting the corners, as this can cause unnecessary stress concentrations. Slightly rounding the corners is recommended. Starting the rectangular hole by drilling a 1-inch and then making the cuts between the holes is another good method to diameter hole in each of the four corners

BRICK CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD)


EP


SET-BACK DETAIL

structural panel closure (3/4" minimum thickness), attach per detail 1b.

Rim board or wood -

Bearing walls

For hip roofs with the jack trusses running parallel to the cantilevered floor joist, the L-joist reinforcement requirements for a span of 26 ft. shall be permitted to be used.

BRICK CANTILEVER REINFORCEMENT METHODS ALLOWED

niga ngahani nggang amanan malah sa pang ping sakit na m ^{iga} pangagai	er laga turkering filosofieren pergunakkon politik komunika ez er ele		English Rich	/
163	14. 14.	211.778	91/2	JOIST DEPTH (in.)
44086 42086 2086	4 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3	2000 4 2 0 8 6 6 4 2 0 8 6	3222 3222 3420 340 340	ROOF TRUSS SPAN (H)
	-2-2222	ZZZ	1 1 2 2	61 ET=
NONN 2-2-1	×0000==	×××2022	××××	30 psf,) ST SP,
ggggxxxxx T				DL = 15 ps (GING (in) 19:2
			×××××	7 RO
				91 (27) 1 (0) = 11 1 (0) = 10
××××××××		**************************************	××××	NG (UNEA 3) D = 1 PAGING (I
		×××××	XXXX	(GIORED) 5 psf ln.)
אטט	ביבמממני	××222	2 X X	or = 11
<pre><duxxxxxx< pre=""></duxxxxxx<></pre>	(××××××	××××××	X	= 50 ps/, bi = 50 ps/, bi
	•×××××			DL = 15 ps GNG (n.)
*****	××××××	*****	(XXXX)	

- Hanger may be

used in lieu of

1. N = No reinforceme
solid sawn blocks

1 = NI reinforced wi

through joist web and web of girder using 2-1/2" nails.

Vertical solid sawn blocks ______(2x6 S-P-F No. 2 or better) nailed

(F)

SET-BACK CONNECTION

Nail joist end using 3" nails, toe-nail at top and bottom flanges.

Attach joists to girder joist per detail 5c.

supports per detail 1b. 3-1/2" minimum 1-joist

Attach I-joist to plate at all

Provide full depth blocking between joists over support (not shown for clarity)

ςū

Alternate for opposite side.

Verify girder joist capacity if the back span exceeds the joist spacing.

Attach double Ljoist per detail 1p, if required

- 1. N = No reinforcement required.
 1 = NI reinforced with 3/4" wood structural
- panel on one side only.

 2 = NI reinforced with 3/4" wood structural
 panel on both sides, or double I-joist.
- X = Inv a deeper joist or closer spacing.

 2. Maximum design load shall be: 13 psf roof dead load, 55 psf floor total load, and 80 plf wall load. Wall load is based on 3'-0" maximum width window or door openings.
 - For larger openings, or multiple 3'-0" width openings spaced less than 6'-0" o.c., additional joists beneath the opening's cripple
- studs may be required.

 3. Table applies to joists 12" to 24" o.c. that meet the floor span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of L/480. Use 12" o.c. requirements for lesser spacing.
 - For conventional roof construction using a ridge beam, the Roof Truss Span column above is equivalent to the distance between the supporting wall and the ridge beam. When the roof is framed using a ridge board, the Roof Truss Span is equivalent to the distance between the supporting walls as if a truss is used.
- Cantilevered joists supporting girder trusses or roof beams may require additional reinforcing.

INSTALLING THE GLUED FLOOR SYSTEM

- 1. Wipe any mud, dirt, water, or ice from Ljoist flanges before gluing.
- 2. Snap a chalk line across the I-joists four feet in from the wall for panel edge alignment and as a boundary for spreading glue.
- 3. Spread only enough glue to lay one or two panels at a time, or follow specific recommendations from
- 4. Lay the first panel with tongue side to the wall, and nail in place. This protects the tongue of the next panel from damage when tapped into place with a block and sledgehammer
- 5. Apply a continuous line of glue (about 1/4-inch diameter) to the top flange of a single I-joist. Apply glue in a winding pattern on wide areas, such as with double I-joists.
- 6. Apply two lines of glue on Lioists where panel ends butt to assure proper gluing of each end.
- 7. After the first row of panels is in place, spread glue in the groove of one or two panels at a time a thinner line (1/8 inch) than used on I-joist flanges. before laying the next row. Glue line may be continuous or spaced, but avoid squeeze-out by applying

2-1/2" toe-nails at 6" o.c. (typical) —

(F

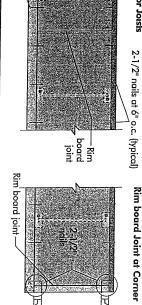
- 8. Tap the second row of panels into place, using a block to protect groove edges
- Stagger end joints in each succeeding row of panels. A 1/8-inch space between all end joints and 1/8-inch at all edges, including T&G edges, is recommended. (Use a spacer tool or an 2-1/2" common nail to assure accurate and consistent spacing.)
- 5 Complete all nailing of each panel before glue sets. Check the manufacturer's recommendations finished deck can be walked on right away and will carry construction loads without damage to the for cure time. (Warm weather accelerates glue setting.) Use 2" ring- or screw-shank nails for panels 3/4-inch thick or less, and 2-1/2" ring- or screw-shank nails for thicker panels. Space nails per the table below. Closer nail spacing may be required by some codes, or for diaphragm construction. The

FASTENERS FOR SHEATHING AND SUBFLOORING(1)

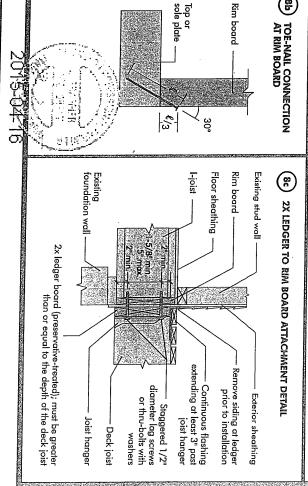
24 3/4	20 5/8	7164	Maximum Minimum Loist Panel Spacing Thickness (in.) (in.)
2	. 2	22	Common Wire or Spiral Nails
1-3/4"	1-3/4"	1-3/4	all Size and Ty Ring Thread Nails or Screws
2"	2"	2"	pe Staples
6"	6	6"	Maximum of Fas Edges
12"	12"	12"	Spacing leners Interm Supports

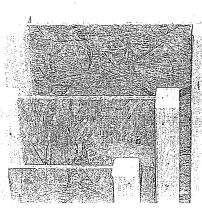
- Fasteners of sheathing and subflooring shall conform to the above table.
- 2. Staples shall not be less than 1/16-inch in diameter or thickness, with not less than a 3/8-inch crown driven with the crown parallel to framing.
- 3. Flooring screws shall not be less than 1/8-inch in diameter.
- 4. Special conditions may impose heavy traffic and concentrated loads that require construction in excess
- 5. Use only adhesives conforming to CAN/CGSB-71.26 Standard, Adhesives for Field-Gluing Plywood to Lumber Framing for Floor System, applied in accordance with the manufacturer's recommendations. If OSB panels with sealed surfaces and edges are to be used, use only solvent-based glues; check with

Ref.: NRC-CNRC, National Building Code of Canada 2010, Table 9.23.3.5

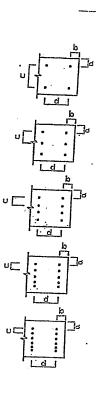

IMPORTANT NOTE:
Floor sheathing must be field glued to the I-joist flanges in order to achieve the maximum spans shown in this document. If sheathing is nailed only, I-joist spans must be verified with

RIM BOARD INSTALLATION DETAILS


(8a) ATTACHMENT DETAILS WHERE RIM BOARDS ABUT


_1-1/2"

_1-1/2"


· MICRO CITY

Engineering services inc.

TEL: (519) 287 - 2242

R.R. #1, P.O. BOX 61, GLENCOE, ONTARIO, NOL 1M0

	TIVI HEADED AND CONTRIBUTION					
	LVL HEADER AND CONVENTIONAL LUMBER NAILING DETAILS					
	DETAIL NUMBER	NUMBER	SPACING (INCHES o/c) "d"			
	. A	2	12			
	В	2	8			
	С	2	6			
	D	2	4			
THE PERSON	1A] 3	12			
Ž.	1B	3	8			
	1C	3	. 6			
	1D	3:	4			
	2A	4	. 12			
	2B	4	8 .			
	2C	4	6			
	2D	4	4			
	. 3A	5	12			
	3B ·	5	8			
L	3C	5	6			
L	3D	. 5	4			
	4A	6	12			
Ŀ	4B	6	8			
L	4C	6	6			
Ŀ	4D	6	4			

NOTES:

- (1) MINIMUM LUMBER EDGE DISTANCE "a" = 1"
- (2) MINIMUM LUMBER END DISTANCE "b" = 2"
- (3) MINIMUM NAIL ROW SPACING "c" = 2"
- (4) STAGGER NAILS "d/2" BETWEEN PLIES FOR MULTI-PLY MEMBERS (3 PLY OR MORE)
- (5) ALL NAILS ARE 3-1/2" ARDOX SPIRAL NAILS
- (6) DO NOT USE AIR-DRIVEN NAILS

DNO NO TANNICOI. 14

STRUCTURAL

COMPONENT ONLY

TO BE USED ONLY

WITH BEAM CALCS

PERFINE THE

STAMP BELOWS

PROVICE NATIONS
DETAIL # > SEE
ONG #TANNIOO1-14