

Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A.	Project Information					
Buildi	ng number, street name	Baross	a 17		Lot:	
		S38-1	17		Lot/con.	
	sipality	Bradford	Postal code	Plan number/ other description		
	ndividual who reviews and ta	kes responsibility for desig	n activities			
Name		David DaCosta		Firm	gtaDesigns Inc.	
	address	2985 Drew Roa			Unit no.	Lot/con.
Munic	sipality	Mississauga	Postal code L4T 0A4	Province Ontario	E-mail dave@gtades	igns.ca
Telep	hone number		Fax number	D 404 0040	Cell number	
C.	(905) 671-9 Design activities undertaken		•	<u>') 494-9643</u> ilding Code Table :	(416) 268-6 3.5.2.1 of Division C]	820
	☐ House	⊠ HVAC – H	01100		☐ Building Structural	
	☐ Small Buildings	☐ Building Se			☐ Plumbing – House	
	☐ Large Buildings	_	Lighting and Pov	wer	☐ Plumbing – All Buildings	3
	☐ Complex Buildings	☐ Fire Protect			☐ On-site Sewage System	
Desc	ription of designer's work	Mod	del Certification	1	Project #:	PJ-00204
			.,		Layout #:	JB-04488
	ng and Cooling Load Calculatior /stem Design	ns Main Alternate	Х	Builder Project	Bayview Wellingto Green Valley Eas	
	lential mechanical ventilation De		2511		Barossa 17	
	lential System Design per CAN/C	•		Model	S38-17	
Resid	lential New Construction - Force	d Air		SB-12	Package A1	
D.	Declaration of Designer					
	1	David DaCosta	declare that (c	choose one as appro	priate):	
		(print name)				
	3.2	eview and take responsibility for t 2.4 Division C of the Building Coo sses/categories. Individual BCIN:	le. I am qualified			
		Firm BCIN:			-	
		review and take responsibility for ther designer" under subsection				
		Individual BCIN:	3296	64		
		Basis for exemp	tion from registra	ation: [Division C 3.2.4.1. (4)	
	☐ Th	e design work is exempt from the	e registration and	d qualification requiren	nents of the Building Code.	
		Basis for exemp	tion from registra	ation and qualification:		
I certi	fy that:					
1.	The information contained in this	schedule is true to the best of m	ny knowledge.			
2.	I have submitted this application	with the knowledge and consent	of the firm.			
	March 12	2, 2018		Mare 16.	6	,
	Dat	e		Signature of De	signer	

NOTE:

1. For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d), of Division C, Article 3.2.5.1. of Division C and all other persons who are exempt from qualifications under Subsections 3.2.4. and 3.2.5.of Division C.

2. Schedule 1 does not require to be completed a holder of a license, temporay license, or a certificate of authorization, issed by the Ontario Associstion of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited licence to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

Page 2

Heat loss and gain calcul	ation summary sheet CSA-F280-M12 Standard Form No. 1
These documents issued for the use of	ayview Wellington Layout No.
and may not be used by any other persons without authorization. Document	s for permit and/or construction are signed in red. JB-04488
Building	Location
Address (Model): \$38-17	Site: Green Valley East
Model: Barossa 17	Lot:
City and Province: Bradford	Postal code:
Calculation	s based on
Dimensional information based on:	VA3 Design Jan/2018
Attachment: Detached	Front facing: East/West Assumed? Yes
No. of Levels: 3 Ventilated? Included	Air tightness: 1961-Present (ACH=3.57) Assumed? Yes
Weather location: Bradford	Wind exposure: Sheltered
HRV? LifeBreath RNC155	Internal shading: Light-translucent Occupants: 5
Sensible Eff. at -25C 71% Apparent Effect. at -0C 84%	Units: Imperial Area Sq ft: 2511
Sensible Eff. at -0C 75%	
Heating design conditions	Cooling design conditions
Outdoor temp -9.4 Indoor temp: 72 Mean soil tem; 48	Outdoor temp 86 Indoor temp: 75 Latitude: 44
Above grade walls	Below grade walls
Style A: As per OBC SB12 Package A1 R 22	Style A: As per OBC SB12 Package A1 R 20ci
Style B: Existing Walls (When Applicable) R 12	Style B:
Style C:	Style C:
Style D:	Style D:
Floors on soil	Ceilings
Style A: As per Selected OBC SB12 Package A1	Style A: As per Selected OBC SB12 Package A1 R 60
Style B:	Style B: As per Selected OBC SB12 Package A1 R 31
Exposed floors	Style C:
Style A: As per Selected OBC SB12 Package A1 R 31	Doors
Style B:	Style A: As per Selected OBC SB12 Package A1 R 4.00
Windows	Style B:
Style A: As per Selected OBC SB12 Package A1 R 3.55	Style C:
Style B: Existing Windows (When Applicable) R 1.99	Skylights
Style C:	Style A: As per Selected OBC SB12 Package A1 R 2.03
Style D:	Style B:
Attached documents: As per Shedule 1 Heat Loss/Ga	ain Caculations based on CSA-F280-12 Effective R-Values
Notes: Residential New C	Construction - Forced Air
Calculations _I	performed by
Name: David DaCosta	Postal code: L4T 0A4
Company: gtaDesigns Inc.	Telephone: (905) 671-9800
Address: 2985 Drew Road, Suite 202	Fax: (416) 268-6820
City: Mississauga	E-mail dave@gtadesigns.ca

Builder:

Trunk

Bayview Wellington

Date:

Z

Air System Design

SB-12 Package A1 March 12, 2018

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

I review and take responsibility for the design work and am qualified in the

appropriate category as an "other designer" under Division C subsection 3.2.5.

Κ

of the Building Code.

Page 3 Project # PJ-00204

Barossa 17 System 1 Mane Alex **Green Valley East** S38-17 David DaCosta JB-04488 Project: Model: Individual BCIN: Layout # A/C UNIT DATA: DESIGN LOAD SPECIFICATIONS AIR DISTRIBUTION & PRESSURE FURNACE/AIR HANDLER DATA: BOILER/WATER HEATER DATA: Level 1 Net Load 14,146 btu/h **Equipment External Static Pressure** 0.5 "w.c. 2.5 Ton Make Amana Make Туре Amana AMEC960603BNA Level 2 Net Load 16,313 btu/h **Additional Equipment Pressure Drop** 0.225 "w.c. Model Model Cond.--2.5 Level 3 Net Load 15.646 btu/h Available Design Pressure 0.275 "w.c. Input Btu/h 60000 Input Btu/h Coil 2.5 57600 Level 4 Net Load 0 btu/h Return Branch Longest Effective Length 300 ft Output Btu/h Output Btu/h R/A Plenum Pressure 0.50 " W C Min.Output Btu/h ΔWH 46.105 btu/h 0 138 "w c Total Heat Loss E.s.p. Blower DATA: Total Heat Gain 24,568 btu/h S/A Plenum Pressure 0.14 "w.c. Water Temp deg. F. W2 50,716 Btuh. Heating Air Flow Proportioning Factor 0.0254 cfm/btuh AFUE Blower Speed Selected: ECM Combo System HL + 10% 96% **Blower Type** (Brushless DC OBC 12.3.1.5.(2)) **Building Volume Vb** 28974 ft³ Cooling Air Flow Proportioning Factor 0.0392 cfm/btuh Aux. Heat Ventilation Load 1.118 Btuh. R/A Temp SB-12 Package Heating Check 1170 cfm 70 dea. F. Package A1 Cooling Check 963 cfm Ventilation PVC 79.5 cfm S/A Temp 116 deg. F. Supply Branch and Grill Sizing Diffuser loss 1170 cfm Cooling Air Flow Rate 963 cfm 0.01 "w.c. Temp. Rise>>> 46 deg. F. Selected cfm> Level 1 Level 2 S/A Outlet No. 2 5 6 10 11 12 KIT Room Use BASE BASE BASE BASE KIT DIN MUD FOY PWD GRT GRT Btu/Outlet 3536 3536 3536 3536 2021 2021 2616 1955 3166 910 1812 1812 **Heating Airflow Rate CFM** 90 90 90 90 51 51 66 50 80 23 46 46 Cooling Airflow Rate CFM 11 11 11 95 95 83 63 63 15 39 39 11 0.13 0.13 **Duct Design Pressure** 0.13 **Actual Duct Length** 30 40 12 31 40 45 13 14 41 34 28 39 **Equivalent Length** 110 130 80 120 70 70 70 70 70 70 70 70 70 70 120 140 110 90 120 130 120 140 70 70 70 70 70 70 Total Effective Length 140 170 92 151 70 70 70 70 70 70 70 70 70 160 185 123 104 161 164 148 179 70 70 70 70 70 70 70 Adjusted Pressure 0.09 0.08 0.14 0.09 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.08 0.07 0.11 0.13 0.08 0.08 0.09 0.07 0.19 0.19 0.19 0.19 0.19 0.19 **Duct Size Round** 6 5 **Outlet Size** 4x10 3x10 3x10 4x10 4x10 4x10 4x10 4x10 4x10 4x10 4x10 3x10 3x10 4x10 4x10 4x10 4x10 4x10 Trunk В C D Level 3 Level 4 S/A Outlet No. 13 14 15 17 18 19 20 21 22 16 Room Use MAST MAST FNS 2 RFD 2 BFD 3 BATH RFD 4 RFD 4 I AUN FNS Btu/Outlet 1799 1799 558 1322 2869 942 1849 1849 1111 1550 47 **Heating Airflow Rate CFM** 46 46 14 34 73 24 47 28 39 Cooling Airflow Rate CFM 50 50 17 58 58 32 70 53 30 **Duct Design Pressure** 0.13 59 **Actual Duct Length** 55 68 58 46 61 36 **Equivalent Length** 95 145 120 135 180 170 120 130 170 155 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 178 70 70 Total Effective Length 150 213 200 234 170 191 206 214 70 70 70 70 70 70 70 70 70 70 70 216 70 70 70 70 70 Adjusted Pressure 0.09 0.06 0.07 0.07 0.06 0.06 0.08 0.07 0.06 0.06 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 **Duct Size Round** 5 3 6 5 5 5 5 Outlet Size 3x10 3x10 3x10 3x10 3x10 3x10 4x10 3x10 3x10 3x10 4x10 Trunk R C D D D D R R Return Branch And Grill Sizing Grill Pressure Loss 0.02 "w.c **Return Trunk Duct Sizing** Supply Trunk Duct Sizing R/A Inlet No. CFM 1R 2R 3R 4R 5R 6R 7R 8R 9R 10R 11R Trunk CFM Press. Round Rect. Size Trunk Press. Round Rect. Size Inlet Air Volume CFM 178 480 152 90 90 90 90 **Duct Design Pressure** 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 1170 0.04 18.0 24x12 1170 0.06 16.5 32x8 24x10 Drop Α 53 0.06 125 22 41 55 45 z 1170 0.04 18 0 R 580 18**v**8 **Actual Duct Length** 8 41 30v10 24y12 14v10 **Equivalent Length** 110 125 195 200 115 215 225 50 50 50 50 Υ 358 0.04 11.5 14x8 12x10 c 234 0.06 9.0 8x8 10x7 **Total Effective Length** 118 147 236 241 170 268 270 50 50 50 50 Х D 0.06 11.0 14x8 10x10 w Adjusted Pressure 0.10 0.08 0.05 0.05 0.07 0.04 0.04 0.24 0.24 0.24 0.24 Е **Duct Size Round** 7.0 11.0 8.0 6.0 6.0 6.0 6.0 v FLC G Inlet Size 8 8 8 н Inlet Size 30 14 14 14 s R

Q

46,105 btu/h

24,568 btu/h

Total Heat Loss

Total Heat Gain

Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643

e-mail dave@gtadesigns.ca

		Builder:	Bayview W	ellingto	n	_	Date:		Ma	rch 12, 20	18		_			_	Weathe	er Data	Bradford	44	-9.4	86 22	48.2				Page 4
2012 OBC		Project:	Green Va	ley Eas	t	_	Model:			Barossa 17 S38-17	7		_	Sys	em 1		Heat L	.oss ^T 8	31.4 deg. F	Ht gain ^T	11	deg. F	GTA:	2511		oject # Iyout #	PJ-00204 JB-04488
						_	_						-														
D	Level 1			45	BASE	Ē																					
	n ft. exposed wall A n ft. exposed wall B			150	S A R		A B			A R		A R		A R			A R		A R	A B		A B		A R		A B	
Kuii	Ceiling height			3 5	B AG		3.8 A		3.8	_		3.8 AG		3.8 AG		3.8	_		3.8 AG	3.8 AG		3.8 AG		3.8 AG		3.8 AG	
	Floor area				Area			rea		Area		Area		J.O AG	,		AG Area		Area	3.0 AG		J.O AG		J.O AG		J.O AG	
E	Exposed Ceilings A			33.	A		Ā			A		A		A	•		A		A	A		A		A		A	
	Exposed Ceilings B				В		В			В		В		В			В		В	В		В		В		В	
	Exposed Floors				Flr		F			Flr		Flr		Flr			Flr		Fir	Flr		Flr		Flr		Flr	
	Gross Exp Wall A			585	5																						
	Gross Exp Wall B																										
	Components					Gain	<u>, L</u>	oss Gain	_	Loss (Gain	Loss	Gain	Los	s Gain		Loss	Gain	Loss Gain	Loss	Gain	Loss	Gain	Los	ss Gain	Loss	Gain
	North Shaded	3.55	22.93 10.9																								
	East/West	3.55	22.93 27.3																								
	South	3.55	22.93 20.8		69	63																					
	WOB Windows	3.15	25.84 28.3																								
	Skylight	2.03	40.10 88.2																								
N.	Doors let exposed walls A	4.00 21.12	20.35 2.7 3.85 0.5			58 284																					
	et exposed walls B		5.62 0.3		9	284																					
	Exposed Ceilings A		1.37 0.0																								
	Exposed Ceilings B		3.56 1.6																								
_	Exposed Floors		2.73 0.4																								
Foundation Cond	ductive Heatloss				6252																						
Total Conductive	Heat Loss	· ·			7115																						
Total Conductive	Heat Gain					793																					
Air Leakage	Heat Loss/Gain		0.9521 0.037	77	6774	30																					
	Case 1		0.08 0.0																								
Ventilation	Case 2		14.07 11.8																								
	Case 3	x	0.04 0.0		256	62																					
	Heat Gain People		23																								
	Appliances Loads Duct and Pipe loss	1 =.25 per	cent 412 10																								
Level 1 HL Total	14,146	Tota	HL for per roo		14146																						
Level 1 HG Total			G per room x 1		14140	1150																					
20101111010101	1,100		7 po. 100 x 1					1						L							-	1					
·																											
	Level 2				KIT			DIN		MUD		FOY			WD		GRT										
	n ft. exposed wall A			37	7 A		26 A		19			25 A		10 A		39			A	Α		Α		Α		Α	
Run	n ft. exposed wall B			10.0	В		10.0	1	12.0	В		В 11.0		B 10.0		10.0	В		B 10.0	B 10.0		B 10.0		B 10.0		B 10.0	
	Ceiling height) Area		10.0 238 A			Area	1	11.0 75 Area		10.0 60 Are		297		1	10.0 Area	10.0 Area		10.0 Area		10.0 Are	_	10.0 Area	
_	Floor area Exposed Ceilings A			23								/o Area			1	297			Area					Are	a	Area A	
	Exposed Ceilings B																										
-	Exposed Floors				A		A			A		Α		Α					A	A		A		A			
					В		В			В		A B		A B			В		В	В		В		В		В	
				370	B Flr		B F			B Fir		A B Flr		A B Fir													
	Gross Exp Wall A			370	B Flr		В			B Fir		A B		A B			В		В	В		В		В		В	
	Gross Exp Wall A Gross Exp Wall B	R-Values Lo	s Gain	370	B Flr)	Gain	B F 260		228	B Fir	Gain	A B Fir 275	Gain	A B Fir	s Gain	390	B Fir	Gain	В	B Flr	Gain	В	Gain	В		B Fir	s Gain
	Gross Exp Wall A	R-Values Lo	ss Gain 22.93 10.9		B Flr	Gain	B F 260	i Ir	228	B Fir		A B Fir 275	Gain	A B Fir 100	s Gain	390	B Fir	Gain	B Fir	B Flr	Gain	B Fir	Gain	B Fir		В	Gain
	Gross Exp Wall A Gross Exp Wall B Components			91	B Flr) Loss		260 L	lr oss Gain	228	B Fir	Gain	A B Fir 275		A B Fir 100	s Gain	390	B Fir	Gain 1149	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	s Gain
	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South	3.55	22.93 10.9	91 35 64	B Fir) Loss		260 L	lr oss Gain	228	B Fir	Gain	A B Fir 275	656	A B Fir 100	s Gain	390	B Fir Loss		B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	s Gain
	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows	3.55 3.55 3.55 1.99	22.93 10.9 22.93 27.3 22.93 20.8 40.90 22.7	91 35 64 39	B Fir) Loss		260 L	lr oss Gain	228	B Fir	Gain	A B Flr 275 Loss	656	A B Fir 100		390	B Fir Loss		B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight	3.55 3.55 3.55 1.99 2.03	22.93 10.9 22.93 27.3 22.93 20.4 40.90 22.3 40.10 88.3	91 35 64 39 15	B Fir) Loss		260 L	lr oss Gain	228	B Fir	Gain	A B Fir 275 Loss 24 550 12 275	656 251	A B Fir 100		390	B Fir Loss		B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	s Gain
	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors	3.55 3.55 3.55 1.99 2.03 4.00	22.93 10.9 22.93 27.3 22.93 20.8 40.90 22.4 40.10 88.3 20.35 2.3	91 35 64 39 15 23	B Fir) Loss 4 1467	1751	260 L	oss Gain 825 39	228	B Fir	Gain 58	A B Fir 275 Loss 24 550 12 275 21 427	656 251 58	A B Fir 100 Los	229 209	390	B FIr Loss 963	1149	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
Ne	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors det exposed walls A	3.55 3.55 3.55 1.99 2.03 4.00 17.03	22.93 10.9 22.93 27.3 22.93 20.4 40.90 22.3 40.10 88.3 20.35 2.3 4.78 0.6	91 85 64 89 15 23 75 85 300	B Fir) Loss 4 1467	1751	260 L	lr oss Gain	228	B Fir	Gain 58	A B Fir 275 Loss 24 550 12 275	656 251 58	A B Fir 100 Los		390	B Fir Loss		B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	s Gain
Ne Ne	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A et exposed walls B	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50	22.93 10.9 22.93 27.3 22.93 20.4 40.90 22.3 40.10 88.3 20.35 2.3 4.78 0.0 9.58 1.3	01 01 05 06 08 09 05 07 07 07 07 07 07 07 07 07 07 07 07 07	B Fir) Loss 4 1467	1751	260 L	oss Gain 825 39	228	B Fir	Gain 58	A B Fir 275 Loss 24 550 12 275 21 427	656 251 58	A B Fir 100 Los	229 209	390	B FIr Loss 963	1149	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
Ne Ne E E	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A Exposed Cellings A	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22	22.93 10.9 22.93 27.3 22.93 20.4 40.90 22.4 40.10 88.3 20.35 2.3 4.78 0.0 9.58 1.3 1.37 0.0	91 35 64 39 15 23 75 30 65 30 64	B Fir) Loss 4 1467	1751	260 L	oss Gain 825 39	228	B Fir	Gain 58	A B Fir 275 Loss 24 550 12 275 21 427	656 251 58	A B Fir 100 Los	229 209	390	B FIr Loss 963	1149	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
Ne Ne E E	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A et exposed walls A et exposed Cellings A Exposed Cellings B	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86	22.93 10.9 22.93 27.3 22.93 20.4 40.90 22.2 40.10 88.3 20.35 2.7 4.78 0.0 9.58 1.1 1.37 0.0 3.56 1.4	01 35 64 39 15 23 75 30 65 30 64 66	B Fir) Loss 4 1467	1751	260 L	oss Gain 825 39	228	B Fir	Gain 58	A B Fir 275 Loss 24 550 12 275 21 427	656 251 58	A B Fir 100 Los	229 209	390	B FIr Loss 963	1149	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	i Gain
Ne Ne E E	Gross Exp Wall A Gross Exp Wall B Components North Shaded EastWest South Existing Windows Skylight Doors tet exposed walls A et exposed walls A exposed Cellings A Exposed Cellings A Exposed Floors	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80	22.93 10.9 22.93 27.3 22.93 20.3 40.90 22.3 40.10 88.3 20.35 2.7 4.78 0.6 9.58 1.3 1.37 0.6 2.73 0.7	01 35 64 39 15 23 75 30 65 30 64 66	B Fir) Loss 4 1467	1751	260 L	oss Gain 825 39	228	B Fir	Gain 58	A B Fir 275 Loss 24 550 12 275 21 427	656 251 58	A B Fir 100 Los	229 209	390	B FIr Loss 963	1149	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	i Gain
Ne Ne E E Foundation Cond	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A et exposed walls B Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Floors Juctive Heatloss	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80	22.93 10.9 22.93 27.3 22.93 20.3 40.90 22.3 40.10 88.3 20.35 2.7 4.78 0.6 9.58 1.3 1.37 0.6 2.73 0.7	01 35 64 39 15 23 75 30 65 30 64 66	B Fir) Loss 4 1467	1751	260 L	oss Gain 825 39	228	B Fir	Gain 58	A B Fir 275 Loss 24 550 12 275 21 427	656 251 58 141	100 Los	229 209	390	B FIr Loss 963	1149	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
Ne Ne E E	Gross Exp Wall A Gross Exp Wall B Components North Shaded EastWest South Existing Windows Skylight Doors tet exposed walls A et exposed walls A exposed Cellings A Exposed Cellings A Exposed Floors	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80	22.93 10.9 22.93 27.3 22.93 20.3 40.90 22.3 40.10 88.3 20.35 2.7 4.78 0.6 9.58 1.3 1.37 0.6 2.73 0.7	01 35 64 39 15 23 75 30 65 30 64 66	Loss 4 1467 5 1463	1751	260 L	oss Gain 825 39	228 13 21 25 207	B Fir Loss (1	Gain 58	A B Fir 275 Fir Loss 24 550 12 275 21 427 218 1042	656 251 58 141	100 Los	229 209	390 42 9 3 348	B Fir Loss 963	1149	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
Ne Ne E E Foundation Cond	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A et exposed Cellings A Exposed Cellings B Exposed Floors ductive HeatLoss Heat Loss	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 o On Grade ()	22.93 10.9 22.93 27.3 22.93 20.3 40.90 22.3 40.10 88.3 20.35 2.7 4.78 0.6 9.58 1.3 1.37 0.6 2.73 0.7	23	Loss 4 1467 5 1463	1751	260 L	oss <u>Gain</u> 825 39 1071 1-4	228 13 21 25 207	B Fir Loss (1	58 134	A B Fir 275 Fir Loss 24 550 12 275 21 427 218 1042	656 251 58 141	100 Los	229 209 430 58	390 42 9 33 348	B Fir Loss 963	1149	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
Foundation Cond Total Conductive Air Leakage	Gross Exp Wall A Gross Exp Wall B Components North Shaded EastWest South Existing Windows Skylight Doors let exposed walls A et exposed walls A exposed Cellings A exposed Cellings A exposed Cellings A exposed Floors ductive Heatloss Heat Loss Heat Gain	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 o On Grade ()	22.93 10.3 22.93 27.3 22.93 27.3 24.90 22.4 40.10 88.3 20.35 2.7 4.78 0.0 9.58 1.3 1.37 0.4 3.56 1.4 2.73 0.7 0.7 0.04 0.3438 0.033	91 85 64 85 85 85 85 85 85 86 86 86 87 87 88 88	Loss Loss 144 1467 1463	1751	260 L	oss <u>Gain</u> 825 39 1071 1-4	228 13 21 15 207	B Fir Loss (1) 427 989	58 134	A B Fir 275 Loss 24 550 275 21 427 218 1042	656 251 58 141	100 Los	229 209 430 58 559 267	390 42 9 33 348	B Fir Loss 963 1663	1149 225	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
Ne Ne E E Foundation Cond Total Conductive	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A et exposed walls A Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Heat Loss Heat Loss Heat Loss Heat Loss/Gain	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 o On Grade ()	22.93 10.1 22.93 27.3 22.93 27.3 40.90 22.2 40.90 22.3 47.8 0.1 9.58 1.1 1.37 0.1 3.56 1.1 2.73 0.0 0.7 Abo x 0.3438 0.033 0.03 0.1 14.07 11.4	91 35 64 39 15 55 30 65 30 64 66 17	Loss Loss 144 1467 1463	1751	260 L	oss <u>Gain</u> 825 39 1071 1-4	228 13 21 15 207	B Fir Loss (1) 427 989	58 134	A B Fir 275 Loss 24 550 275 21 427 218 1042	656 251 58 141	100 Los	229 209 430 58 559 267	390 42 9 33 348	B Fir Loss 963 1663	1149 225	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
Foundation Cond Total Conductive Air Leakage Ventilation	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A et exposed walls A Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Foors Juctive Heatloss Heat Loss Heat Loss/Gain Heat Loss/Gain Heat Loss/Gain Case 1 Case 2 Case 3	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 9 On Grade ()	22.93 10.9 22.93 27.3 22.93 27.3 22.93 20.4 40.90 22.4 40.10 88.3 20.35 2.3 4.78 0.4 9.58 1.3 1.37 0.3 3.56 1.4 2.73 0.0 0.7 Abo x 0.3438 0.03 0.03 0.04 14.07 11.4	01 35 64 39 15 53 75 65 30 64 66 17 77 18 88 88	Loss Loss 144 1467 1463	1751 198 1948 73	224	oss <u>Gain</u> 825 3: 1071 1- 1896 5: 652 :	228 13 21 15 207	B Fir Loss (1) 427 989	58 134	A B Fir 275 Loss 24 550 275 21 427 218 1042	58 141 1106 42	100 Los	229 209 430 58 559 267	390	B Fir Loss 963 1663	1149 225	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
No. Ne E E Foundation Cond Total Conductive Air Leakage Ventilation	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A et exposed walls A Exposed Ceilings A Exposed Ceilings B Exposed Floors fuctive Heatloss Heat Loss Heat Case 1 Case 2 Case 3 Heat Gain People	3.55 3.55 1.99 2.03 4.00 17.03 8.50 29.80 29.80 0 On Grade ()	22.93 10.9 22.93 27.3 22.93 20.1 40.90 22.2 40.90 22.3 4.78 0.1 5.78 0.1 5.79 0.1 5.79 0.1 5.70 0.1 5.	21	Loss Loss 1467 1467 1467 1463	198 198 1948 73	260 L 36	oss Gain 825 39 1071 1- 1896 55 652 2	228 33 3 21 207	B Fir Loss (1) 427 989 14417 487	58 134 191 7	A B Fir 275 Loss 24 5500 12 275 21 427 218 1042 2295 789	58 141 1106 42	100 Los	2229 208 430 58 559 267 227 10	390	B Fir Loss 963 1663 2626 903	1149 225 1374 52	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
Foundation Cond Total Conductive Air Leakage Ventilation	Gross Exp Wall A Gross Exp Wall B Components North Shaded EastWest South Existing Windows Skylight Doors let exposed walls A et exposed Cellings A Exposed Cellings A Exposed Cellings A Exposed Floors ductive HeatLoss Heat Loss Heat Loss Guain Case 1 Case 2 Case 3 Heat Gain People Appliances Loads	3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.80 2.980 0 On Grade ()	22.93 10.0 22.93 27.3 22.93 27.3 40.90 22.2 40.10 88.3 4.78 0.1 9.58 1.3 1.37 0.1 3.56 1.4 2.73 0.0 0.3438 0.03 0.03 0.0 14.07 14.07 11.0 0.04 0.0 22: cent 412	911 85 64 85 39 15 23 23 30 85 30 86 66 17 7 17 08 18 38 18 39 18 8 39 18 8 1.5	Loss Loss 1467 1467 1467 1463	1751 198 1948 73	260 L 36	oss <u>Gain</u> 825 3: 1071 1- 1896 5: 652 :	228 33 3 21 207	B Fir Loss (1) 427 989 14417 487	58 134 191 7	A B Fir 275 Loss 24 5500 12 275 21 427 218 1042 2295 789	58 141 1106 42	100 Los	2229 208 430 58 559 267 227 10	390	B Fir Loss 963 1663 2626 903	1149 225 1374 52	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
No N	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A et exposed walls A Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Floors Juctive Heatloss Heat Loss Heat Loss/Gain Heat Loss/Gain Loss/Gain Loss/Gain Heat Loss/Gain Heat Loss/Gain Heat Loss/Gain Heat Loss/Gain Description of the Case 1 Case 1 Case 3 Heat Gain People Appliances Loads Duct and Pipe loss	3.55 3.55 1.99 2.03 4.00 17.03 8.50 29.80 29.80 20 On Grade ()	22.93 10.9 22.93 27.3 22.93 27.3 22.93 27.3 22.93 20.3 40.10 88.3 20.35 2.3 4.78 0.4 9.58 1.3 1.37 0.3 3.56 1.4 2.73 0.0 0.7 Abo x 0.3438 0.03 0.03 0.4 14.07 11.4 0.04 0.4 22 cent 41:	666 677 77 188 188 189 188 188 188 188 188	Loss Loss 1467 1467 2930 1007	1948 73 1548	260 L 36	1071 14 1896 55 652 5	228 33 3 21 207	B Fir Loss (58 134 191 7	A B Fir 275 Loss 24 5500 12 275 21 427 218 1042 2295 789	656 251 58 141 1106 42	100 Los	2229 208 4330 58 559 267 2227 10	390	963 1663 2626 903	1149 225 1374 52	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
Foundation Cond Total Conductive Air Leakage Ventilation	Gross Exp Wall A Gross Exp Wall B Components North Shaded EastWest South Existing Windows Skylight Doors let exposed walls A exposed Cellings A Exposed Cellings A Exposed Cellings B Exposed Floors Juctive Heatloss Heat Loss Heat Gain Heat Loss/Gain Heat Loss/Gain Heat Pipe loss Unct and Pipe loss Lott and Pipe loss 16,313	3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 o On Grade () x 1 = .25 per	22.93 10.9 22.93 27.3 22.93 27.3 40.90 22.1 40.90 82.3 4.78 0.4 20.35 2.7 4.78 0.4 3.56 1.4 2.73 0.4 2.73 0.7 0.7 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1	155 64 155 59 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 1	Loss Loss 1467 1467 1467 1463	1948 73 1548	260 L 36	oss Gain 825 3: 1071 1. 1896 5: 68 4 10: 2616	228 213 21 21 207 207 209 212 21.0	B Fir Loss (1) 427 989 14417 487	58 134 191 7 15	A B Fir 275 Loss 24 5500 12 275 21 427 218 1042 2295 789	58 141 1106 42	100 Los	2229 208 430 58 559 267 227 10 24 21	390 42 3 3 3 3 3 42	B Fir Loss 963 1663 2626 903	1149 225 1374 52 108	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain
No N	Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A et exposed walls A Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Floors Juctive Heatloss Heat Loss Heat Loss/Gain Heat Loss/Gain Loss/Gain Loss/Gain Heat Loss/Gain Heat Loss/Gain Heat Loss/Gain Heat Loss/Gain Description of the Case 1 Case 1 Case 3 Heat Gain People Appliances Loads Duct and Pipe loss	3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 o On Grade () x 1 = .25 per	22.93 10.9 22.93 27.3 22.93 27.3 22.93 27.3 22.93 20.3 40.10 88.3 20.35 2.3 4.78 0.4 9.58 1.3 1.37 0.3 3.56 1.4 2.73 0.0 0.7 Abo x 0.3438 0.03 0.03 0.4 14.07 11.4 0.04 0.4 22 cent 41:	155 64 155 59 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 1	Loss Loss 1467 1467 2930 1007	1948 73 1548	260 L 36	1071 14 1896 55 652 5	228 213 21 21 207 207 209 212 21.0	B Fir Loss (58 134 191 7	A B Fir 275 Loss 24 5500 12 275 21 427 218 1042 2295 789	656 251 58 141 1106 42	100 Los	2229 208 4330 58 559 267 2227 10	390 42 3 3 3 3 3 42	963 1663 2626 903	1149 225 1374 52	B Fir	B Flr	Gain	B Fir	Gain	B Fir		B Fir	Gain

 $Ireview\ and\ take\ responsibility\ for\ the\ design\ work\ and\ am\ qualified\ in\ the\ appropriate\ category\ as\ an\ "other\ designer"\ under$

Division C subsection 3.2.5. of the Building Code. Individual BCIN:

Name Alak

David DaCosta

SB-12 Package
Package A1

46,105

24,568

btu/h

btu/h

Total Heat Loss

Total Heat Gain

Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

															egtadesigns.ca								
		Builder:	Bayview W	ellington	_ Dat	e:		arch 12, 20 Barossa 1		_			Weat	her Data	Bradford	44	-9.4 86	22	48.2		Projec		Page 5 -00204
2012 OBC		Project:	Green Vall	ey East	Mode	el:		S38-17		_	System	n 1	Hea	t Loss ^T	81.4 deg. F	Ht gain ^T	11 de	g. F	GTA:	2511	Layou		04488
	Level 3			MAS	г	ENS 2		BED 2	RF	D 3	BATH		BED	4	LAUN	ENS							
	ft. exposed wall A			42 A		6 A	1	1 A	25 A	55	7 A		32 A	•	11 A	22 A		Α		Α		Α	
Run	n ft. exposed wall B Ceiling height			B 9.0		B 3.0	8.	В	B 8.0		B 8.0		B 10.0		B 8.0	B 8.0		B 8.0		B 8.0		B 8.0	
	Floor area			9.0 342 Area		5.0 50 Area		9 Area	8.0 175 Area		8.0 70 Area		202 Area		8.0 125 Area	8.0 112 Area		8.0 Area		8.0 Area	•	8.0 Area	
	Exposed Ceilings A			342 A		50 A	18	9 A	175 A		70 A		202 A		125 A	112 A		A		A		A	
E	Exposed Ceilings B Exposed Floors			B Flr		B Flr	2	B 9 Flr	B 163 Flr		B 70 Flr		B 15 Flr		B Flr	B Fir		B Fir		B Flr		B Fir	
	Gross Exp Wall A			378		48	8	В	200		56		320		88	176							
	Gross Exp Wall B Components	R-Values Lo	ss Gain	Loss	Gain	Loss	Gain	Loss	Gain Loss	Gain	Loss	Gain	Loss	Gain	Loss Gair	Loss	Gain	Loss	Gain	Loss	Gain	Loss G	ain
	North Shaded	3.55	22.93 10.9	1	075	8 183	87 1		175			404					050						
	East/West South	3.55 3.55	22.93 27.3 22.93 20.8		875				24 5	50 656	7 161	191	42 96 18 41			13 298 334	356						
	Existing Windows	1.99	40.90 22.1																				
	Skylight Doors	2.03 4.00	40.10 88.2 20.35 2.7																				
N	et exposed walls A	17.03	4.78 0.6	5 346 1654	223	40 191	26 7	2 344	47 176 8	41 114	49 234	32	260 124	3 168	72 344	47 163 779	105						
	et exposed walls B Exposed Ceilings A	8.50 59.22	9.58 1.2 1.37 0.6		219	50 69	32 18	9 260	121 175 2	41 112	70 96	45	202 27	8 130	125 172	80 112 154	72						
	xposed Ceilings B	22.86	3.56 1.6	6												107							
Foundation Cond	Exposed Floors	29.80	2.73 0.1	7			2	9 79	5 163 4	45 27	70 191	12	15 4	1 3									
Total Conductive	Heat Loss			2858		443		1050	20		682		293		883	1231							
Air Leakage	Heat Gain Heat Loss/Gain		0.2228 0.037	7 637	1318	99	145 5	234	347 13 4	910 63 34	152	280 11	65	1825 4 69		161 17 274	533						
	Case 1		0.02 0.0	8																			
Ventilation	Case 2 Case 3	х	14.07 11.8 0.04 0.0		103	16	11	38	27	75 71	25	22	10	6 143	32	36 44	42						
	Heat Gain People		23	9 2	478			1	239 1	239			1	239									
	Appliances Loads Duct and Pipe loss	1 =.25 per	rcent 412						1 2	54 115	1 83	28			0.5	516							
Level 3 HL Total	15,646		al HL for per roor	n 3597		558		1322	28	69	942		369		1111	1550							
Level 3 HG Total	10,853	Total H	IG per room x 1.	3	2534		211		815	1780		442	L L	2959	1	339	773			1 —			
	Level 4																						
	n ft. exposed wall A n ft. exposed wall B			A B		A B		A B	A R		A B		A B		A B	A B		A B		A B		A B	
Kun	Ceiling height								_														
-	Floor area Exposed Ceilings A			Area A		Area A		Area A	Area A		Area A		Area A		Area A	Area A		Area A		Area A		Area A	
	Exposed Ceilings B			В		В		В	В		В		В		В	В		В		В		В	
	Exposed Floors Gross Exp Wall A			Flr		Flr		Flr	Flr		Flr		Flr		Flr	Fir		Flr		Fir		Fir	
	Gross Exp Wall B			_																			
	Components North Shaded	R-Values Lo 3.55	ess Gain 22.93 10.9	Loss	Gain	Loss	Gain	Loss	Gain Loss	Gain	Loss	Gain	Loss	Gain	Loss Gair	Loss	Gain	Loss	Gain	Loss	Gain	Loss G	Sain
	East/West	3.55	22.93 27.3	5																			
	South Existing Windows	3.55 1.99	22.93 20.8 40.90 22.1																				
	Skylight	2.03	40.10 88.2	3																			
N	Doors et exposed walls A	4.00 17.03	20.35 2.7 4.78 0.6																				
	et exposed walls B	8.50	9.58 1.2																				
	Exposed Ceilings A Exposed Ceilings B	59.22 22.86	1.37 0.6 3.56 1.6																				
	Exposed Floors	29.80	2.73 0.1																				
Foundation Cond	ductive Heatloss Heat Loss																						
Total Conductive	Heat Gain																						
Air Leakage	Heat Loss/Gain Case 1		0.0000 0.037 0.00 0.0																				
Ventilation	Case 2		14.07 11.8	8																			
	Case 3 Heat Gain People	x	0.04 0.0																				
	Appliances Loads	1 =.25 per	cent 412	8																			
Level 4 HL Total	Duct and Pipe loss	Tota	109 al HL for per roor																				
Level 4 HG Total	0		IG per room x 1.																				
	-			-	_	-	_		· 							<u></u>	_				CD.		_

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under

Division C subsection 3.2.5. of the Building Code. Individual BCIN:

Man Holat ?

David DaCosta

SB-12 Package Package A1

Bayview Wellington

Fax

Positive venting induced draft (except fireplaces)

Natural draft, B-vent or induced draft fireplaces

Combustion Appliances 9.32.3.1(1)

Heating System

House Type 9.32.3.1(2) Type a) or b) appliances only, no solid fuel

Electric space heat (if over 10% of heat load)

Type I except with solid fuel (including fireplace)

Direct vent (sealed combustion) only

Solid fuel (including fireplaces)

No combustion Appliances

Forced air Non forced air

Address

Address

City Tel

> a) b)

> c)

d)

e)

Х Ш

PJ-00204

Page 6 2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 Project # e-mail dave@gtadesigns.ca JB-04488 Layout # I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under Division C subsection 3.2.5. of the Building Code. Individual BCIN: 32964 Mana Alexan David DaCosta Package: Package A1 **Bradford** Project: Model: S38-17 RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY For systems serving one dwelling unit & conforming to the Ontario Building Code, O.reg 332/12 **Total Ventilation Capacity 9.32.3.3(1)** Location of Installation Lot# Plan # Bsmt & Master Bdrm @ 21.2 cfm 2 42.4 cfm Township Other Bedrooms 31.8 cfm 3 @ 10.6 cfm Bradford Bathrooms & Kitchen @ 10.6 cfm 53 cfm 5 Roll # Permit # Other rooms 10.6 cfm 42.4 cfm Total 169.6 Address Principal Ventilation Capacity 9.32.3.4(1) Builder Name Master bedroom 1 @ 31.8 cfm 31.8 cfm

City					
		Prir	ncipal Exhaust Fan Capa	acity	
Tel	Fax	Make	Model	Location	1
		LifeBreath	RNC155	Base	
Name	Installing Contractor	132 cfm		Sones	or Equiv.

Other bedrooms

	Heat Recovery Ventilator	
Make	LifeBreath	
Model	RNC155	
	132 cfm high	80 cfm low
Sensible effi	ciency @ -25 deg C	71%
Sensible effi	ciency @ 0 deg C	<u>75%</u>

@ 15.9 cfm

Total

47.7 cfm 79.5

Note: Installer to balance HRV/ERV to within 10 percent of PVC

Supplemental Ventilation Capacity Total ventilation capacity 169.6 Less principal exhaust capacity 79.5 REQUIRED supplemental vent. Capacity 90.1 cfm

alamantal	Eans 0 22 2 5										
•••											
ctm	Model	Sones									
50	XB50	0.3									
50	XB50	0.3									
Make	Broan	or Equiv.									
	cfm 50 50	50 XB50 50 XB50									

III Any type c) appliance IV Type I or II either electric space heat Other Type I, II or IV no forced air	Designer Certification I hereby certify that this ventilation system has been designed in accordance with the Ontario Building Code.
System Design Option	Name David DaCosta
1 Exhaust only / forced air system 2 HRV WITH DUCTING / forced air system	Signature Mane Alate
3 x HRV simplified connection to forced air system 4 HRV full ducting/not coupled to forced air system Part 6 design	HRAI # 5190 BCIN # 32964
	Date March 12, 2018

♦GTA\DESIGNS

Energy Efficiency Design Summary: Prescriptive Method

(Building Code Part 9, Residential)

Page 7

Project # PJ-00204 Layout # JB-04488

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

This form is used by a designer to demonstrate that the energy efficiency design of a house complies with the building code using the prescriptive method described in Subsection 3.1.1. of SB-12. This form is applicable where the ratio of gross area of windows/sidelights/skylights/glazing in doors and sliding glass doors to the gross area of peripheral walls is not more than 22%.

			For use	e by Princip	oal Author	ty					
Application No:					Model/Ce	tification Nu	mber				
A. Project Information											
Building number, street name			Baross	a 17			Unit nu	mber	Lo	ot/Con	
			S38-1	17							
Municipality Bradford			Postal co	de	Reg. Plan	number / oth	her desc	cription	1		
Bradioid											
B. Prescriptive Compliance [indica	ate the bu	ilding cod	e complia	ance packa	ge being e	employed in	the hou	ıse design	n]		
SB-12 Prescriptive (input design pa	ickage):			<u>Pack</u>	age A1			T	Гable: <u>3</u>	.1.1.2./	<u>A</u>
C. Project Design Conditions											
Climatic Zone (SB-1):		Heat. E	auip. El	fficiency			Sp	ace Heat	tina Fue	l Sourc	e
Zone 1 (< 5000 degree days)			% AFUE		✓	Gas		Prop		П	Solid Fuel
Zone 2 (≥ 5000 degree days)		_	4% < 92			Oil		⊒ Flect			Earth Energy
Ratio of Windows, Skylights & Glas	s (W. S					O.II		er Buildir			
Traine or Trimbone, enjingine a ena	(11, 0				☐ Log/F	Post&Beam			Above Gra		☐ ICF Basement
Area of Walls = 330.91 m ² or 3561.9	ft²	W,S &	G % =	11%		on-ground		— □ Walk	out Base	ment	
		,				onditioning		_	bo Unit		
Area of W, S & G = <u>35.581</u> m ² or <u>383.0</u>	ft²	Utilize V	Vindow	☐ Yes	l	ourced Hea	ıt Pump				
		Avera		☑ No		nd Source H	•	. ,	P)		
D. Building Specifications [provide	e values a	nd ratings	of the er		encv com	onents pror	posedl	• `	· · · · · · · · · · · · · · · · · · ·		
Energy Efficiency Substitutions					,,						
☐ ICF (3.1.1.2.(5) & (6) / 3.1.1.3.(5))											
☐ Combined space heating and domestic	water he	eating syst	ems (3.1	.1.2(7) / 3.	1.1.3.(7))						
☐ Airtightness substitution(s)		Table 3.1	.1.4.B	Required:				Perm	nitted Sub	stitution	:
Airtightness test required		T-1-1-04	4.4.0	Required:				Perm	nitted Sub	stitution	:
(Refer to Design Guide Attached)		Table 3.1	.1.4.C	Required:							
Building Component		mum RS //aximun				Build	ding C	ompone	nt		Efficiency Ratings
Thermal Insulation	Non	ninal	Effe	ective	Windov	vs & Doo	rs Prov	/ide I I-Val	ue ⁽¹⁾ or F	R rating	
Ceiling with Attic Space		60				s/Sliding G			uo 01 L	.r. raurig	1.6
Ceiling without Attic Space	3	1			Skylights						2.8
Exposed Floor	3	1			Mechai						
Walls Above Grade	22					Equip.(AFL	JE)				96%
Basement Walls		20.0ci			_	iciency (SR		0°C)			75%
Slab (all >600mm below grade)	3	x				eater (EF)		<u> </u>			0.80
Slab (edge only ≤600mm below grade)	1	0			DWHR (CSA B55.1	(min. 42	2% efficienc	cy))		#Showers 2
Slab (all ≤600mm below grade, or heated)	1	0			Combine	ed Heating	Syster	m			
(1) U value to be provided in either W/(m²·K) or Bt	u/(h·ft·F) b	out not bot	h.		3						
E. Designer(s) [name(s) & BCIN(s), if	applicable	e, of perso	n(s) prov	iding infor	mation her	ein to subst	tantiate	that desig	n meets b	ouilding (code]
Name				BCIN		Signature)				
David DaCosta				329	964			Man	re /	4Œ	

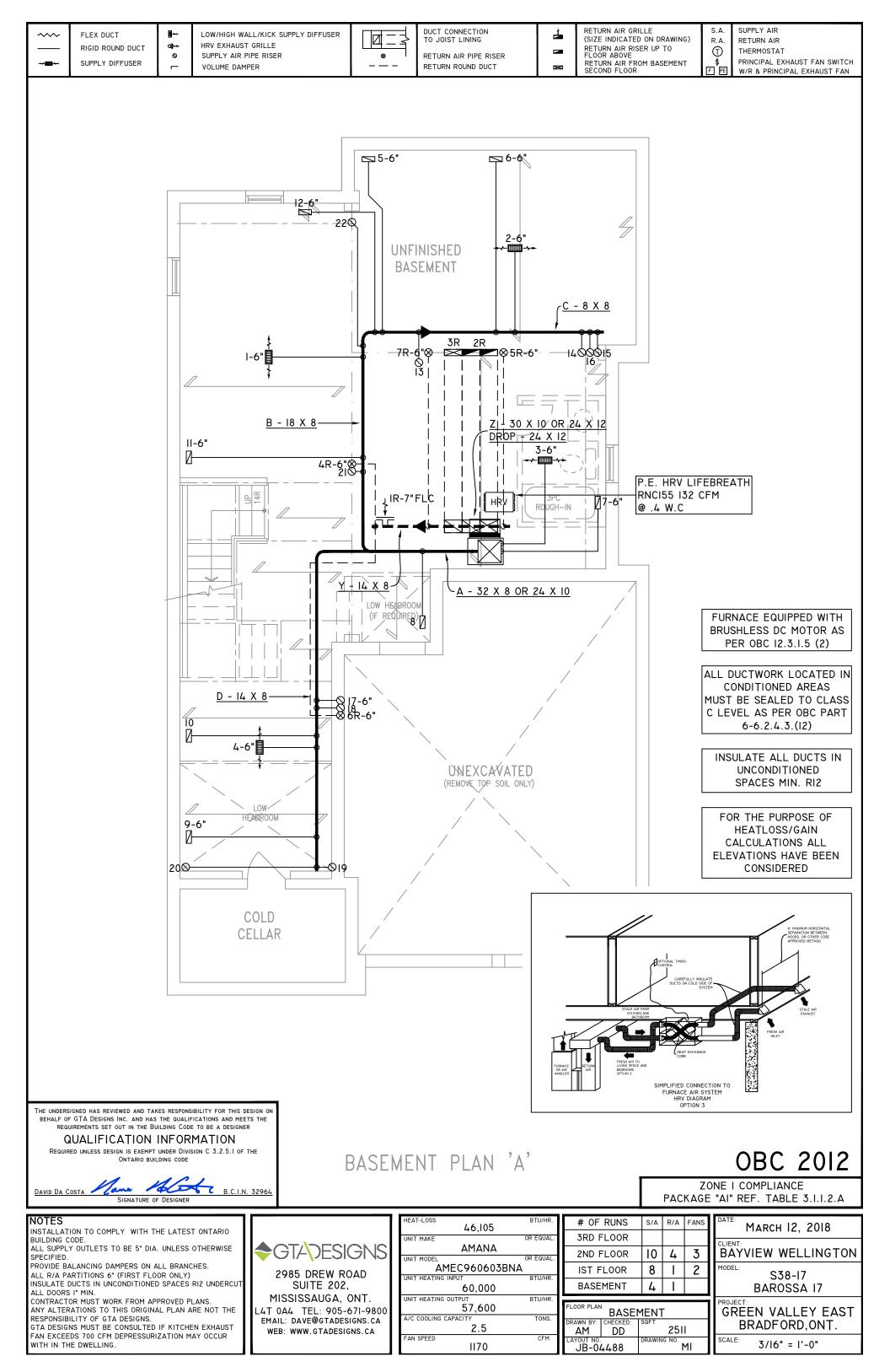
2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

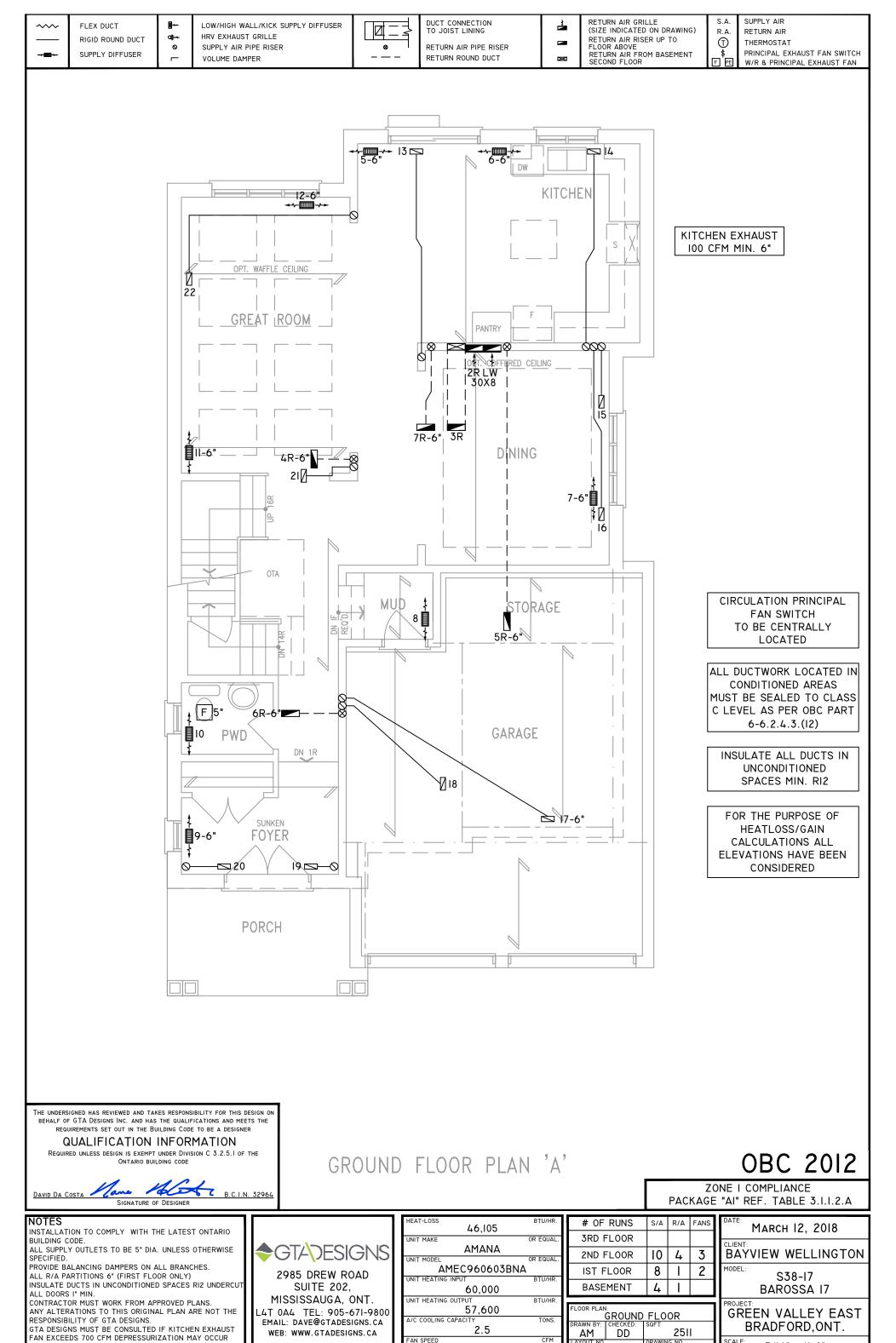
Page PJ-00204 Project # Layout # JB-04488

Package: Package A1 System 1 System: **Bradford** Model:

Project: S38-17 Air Leakage Calculations **Building Air Leakage Heat Loss Building Air Leakage Heat Gain** В LRairh Vb **HLleak** В LRairh Vb HG^T **HG** Leak 0.018 0.319 28974 81.4 13549 0.018 0.079 28974 11 454 Levels Air Leakage Heat Loss/Gain Multiplier Table (Section 11) 1 2 3 4 Level Building Level Conductive Air Leakage Heat Loss Level (LF) (LF) (LF) (LF) Factor (LF) **Heat Loss** Multiplier 0.9521 1.0 0.6 0.5 0.4 Level 1 0.5 7115 Level 2 0.3438 11824 0.3 0.3 0.4 0.3 13549 Level 3 12162 0.2228 0.2 0.0000 0 Level 4 0 0.1 Air Leakage Heat Gain Levels this Dwelling **HG LEAK** 454 0.0377 3 **BUILDING CONDUCTIVE HEAT GAIN** 12035 **Ventilation Calculations Ventilation Heat Loss Ventilation Heat Gain** /ent /ent Ventilation Heat Loss Ventilation Heat Gain PVC (1-E) HRV **HLbvent** PVC HG^T **HGbvent** 1118 944 1.08 79.5 81.4 0.16 1.1 79.5 11 Case 1 Case 1 Ventilation Heat Loss (Exhaust only Systems) Ventilation Heat Gain (Exhaust Only Systems) Case 1 - Exhaust Only Case 1 - Exhaust Only Multiplier Case Level LF HLbvent LVL Cond. HL Multiplier **HGbvent** 944 0.08 Level 1 Building 12035 7115 0.5 0.08 Level 2 0.3 11824 0.03 1118 12162 Level 3 0.2 0.02 Level 4 0 0 0.00 Case 2 Case 2 **Ventilation Heat Loss (Direct Ducted Systems) Ventilation Heat Gain (Direct Ducted Systems)** Case Case Multiplier Multiplier HL^T (1-E) HRV HG^T С 14.07 11.88 1.08 1.08 0.16 Case 3 Case 3 Ventilation Heat Loss (Forced Air Systems) Ventilation Heat Gain (Forced Air Systems) **HLbvent** Multiplier Vent Heat Gain Multiplier **HGbvent** HG*1.3 **Total Ventilation Load** 1118 0.04 944 0.08 944 Foundation Conductive Heatloss Level 1 1832 Watts 6252 Btu/h **Foundation Conductive Heatloss Level 2** Watts Btu/h

Envelope Air Leakage Calculator


Supplemental tool for CAN/CSA-F280


Weather Station	Description
Province:	Ontario
Region:	Bradford ▼
Weather Station Location:	Open flat terrain, grass
Anemometer height (m):	10
Local Shie	lding
Building Site:	Suburban, forest
Walls:	Heavy ▼
Flue:	Heavy ▼
Highest Ceiling Height (m):	6.63
Building Confi	guration
Type:	Detached
Number of Stories:	Two
Foundation:	Full
House Volume (m³):	820.54
Air Leakage/Ve	entilation
Air Tightness Type:	Present (1961-) (ACH=3.57)
	ELA @ 10 Pa. 322.44 cm ²
Custom BDT Data:	3.57 ACH @ 50 Pa
Mechanical Ventilation (L/s):	Total Supply: Total Exhaust:
	39.75
Flue #:	#1 #2 #3 #4
Diameter (mm):	0 0 0 0
Heating Air Leakage Rate (ACH/H):	0.319
Cooling Air Leakage Rate (ACH/H):	0.079

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Weat	her Sta	tion Description
Province:		Ontario
Region:		Bradford ▼
	Site D	escription
Soil Conductivity:		High conductivity: moist soil ▼
Water Table:		Normal (7-10 m, 23-33 Ft) ▼
Fou	ındatio	n Dimensions
Floor Length (m):	18.87	
Floor Width (m):	4.90	
Exposed Perimeter (m):	47.55	
Wall Height (m):	2.74	
Depth Below Grade (m):	1.60	Insulation Configuration
Window Area (m²):	1.77	
Door Area (m²):	1.95	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ation Loads
Heating Load (Watts):		1832

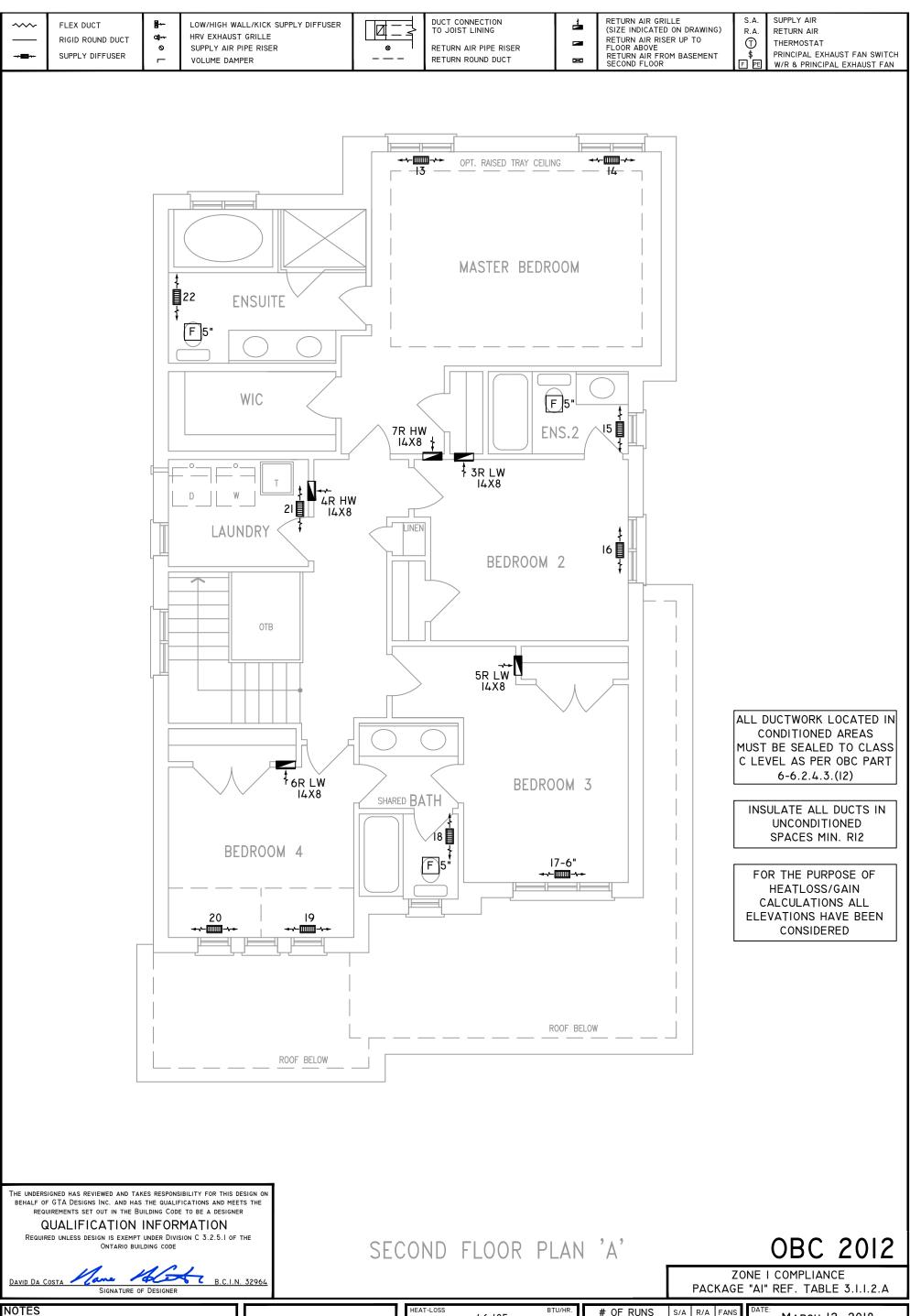
WEB: WWW.GTADESIGNS.CA

WITH IN THE DWELLING.

BRADFORD, ONT. 3/16" = 1'-0"

DD

AΜ


JB-04488

1170

2511

M2

DRAWING NO

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY) INSULATE DUCTS IN UNCONDITIONED SPACES RI2 UNDERCUT ALL DOORS I" MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS.
ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE RESPONSIBILITY OF GTA DESIGNS.

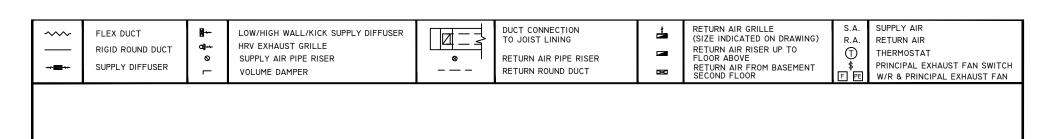
GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

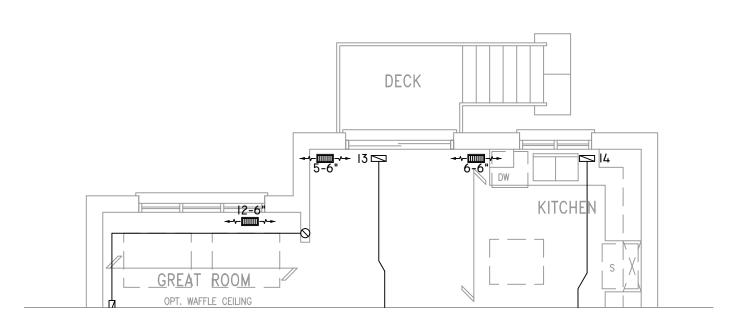
♦GTADESIGNS

2985 DREW ROAD SUITE 202, MISSISSAUGA, ONT. L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA

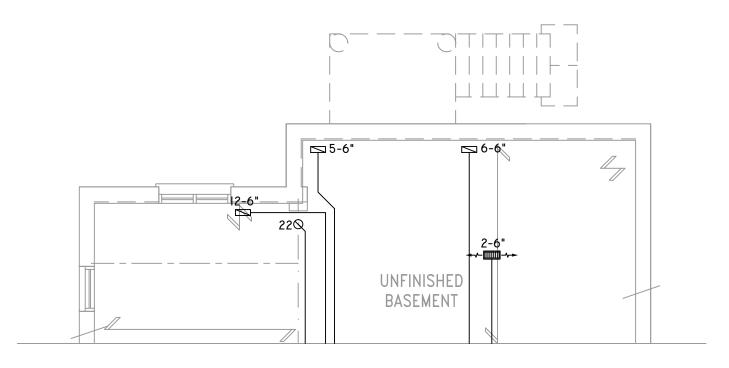
WEB: WWW.GTADESIGNS.CA

UNIT MAKE **AMANA** AMEC960603BNA 60,000 BTU/HR 57,600 2.5 FAN SPEED 1170


OF RUNS 46,105 3RD FLOOR 10 2ND FLOOR 4 IST FLOOR 8 1 BASEMENT 4 SECOND FLOOR 2511 DD AΜ JB-04488 M3


MARCH 12, 2018 BAYVIEW WELLINGTON MODEL: S38-I7 BAROSSA 17

3


2

GREEN VALLEY EAST BRADFORD, ONT. 3/16" = 1'-0"

PART. GROUND FLOOR PLAN EL. 'A', 'B' & 'C' W/ 9R OR MORE W.O.D. CONDITION

PART. BASEMENT PLAN EL. 'A', 'B' & 'C' W/ 9R OR MORE W.O.D. CONDITION

OBC 2012

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

NOTES

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO

BUILDING CODE.
ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES.
ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY)
INSULATE DUCTS IN UNCONDITIONED SPACES RI2 UNDERCUT
ALL DOORS I" MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS.
ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE
RESPONSIBILITY OF GTA DESIGNS.

RESPONSIBILITY OF GTA DESIGNS.

GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST
FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR
WITH IN THE DWELLING.

SUITE 202, MISSISSAUGA, ONT. L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA

WEB: WWW.GTADESIGNS.CA

HEAT-LOSS	BTU/HR.
46,105	
UNIT MAKE	OR EQUAL.
AMANA	
UNIT MODEL	OR EQUAL.
AMEC960603BNA	
UNIT HEATING INPUT	BTU/HR.
60,000	
UNIT HEATING OUTPUT	BTU/HR.
57,600	
A/C COOLING CAPACITY	TONS.
2.5	
FAN SPEED	CFM
1170	

# OF RUNS					
2ND FLOOR 10	# OF RUNS	S/A	R/A	FANS	n
IST FLOOR 8 I 2 BASEMENT 4 I FLOOR PLAN: PARTIAL PLAN(S) DRAWN BY: CHECKED: SOFT	3RD FLOOR				L
BASEMENT 4 I FLOOR PLAN: PARTIAL PLAN(S) DRAWN BY: CHECKED: SQFT	2ND FLOOR	10	4	3	
FLOOR PLAN: PARTIAL PLAN(S) DRAWN BY: CHECKED: SQFT	IST FLOOR	8	1	2	
PARTIAL PLAN(S) DRAWN BY: CHECKED: SQFT	BASEMENT	4	_		
	PARTIAL		۱(S)		
		SQFT	251	I	L

M4

JB-04488

MARCH 12, 2018
BAYVIEW WELLINGTON
S38-I7 BAROSSA I7
PROJECT:

GREEN VALLEY EAST BRADFORD,ONT. SCALE: 3/16" = 1'-0"

RETURN AIR GRILLE (SIZE INDICATED ON DRAWING) SUPPLY AIR DUCT CONNECTION FLEX DUCT LOW/HIGH WALL/KICK SUPPLY DIFFUSER TO JOIST LINING R.A. RETURN AIR HRV EXHAUST GRILLE **a)**→ RETURN AIR RISER UP TO FLOOR ABOVE RIGID ROUND DUCT 1 THERMOSTAT RETURN AIR PIPE RISER SUPPLY AIR PIPE RISER 8 SUPPLY DIFFUSER PRINCIPAL EXHAUST FAN SWITCH RETURN AIR FROM BASEMENT SECOND FLOOR VOLUME DAMPER RETURN ROUND DUCT W/R & PRINCIPAL EXHAUST FAN F 6R LW SHARED BATH BEDROOM 2 BEDROOM 2 17-6" F]5" RAISED CEILING 2'-0" **---**20 19 ~-**||||**-ROOF BELOW FLAT ROOF BELOW PART. SECOND FLOOR PLAN 'B' **GARAGE** DN 1R **√**] 18 SUNKEN **≥** 17-6" **FOYER** 9-6" 19/00-0 -□20 0 **PORCH** PART. GROUND FLOOR PLAN 'B' UNEXCAVATED (REMOVE TOP SOIL ONLY) 9-6" 20⊗-COLD **CELLAR**

THE UNDERSIGNED HAS REVIEWED AND TAKES RESPONSIBILITY FOR THIS DESIGN ON BEHALF OF GTA DESIGNS INC. AND HAS THE QUALIFICATIONS AND MEETS THE REQUIREMENTS SET OUT IN THE BUILDING CODE TO BE A DESIGNER

QUALIFICATION INFORMATION Required unless design is exempt under Division C 3.2.5.I of the ONTARIO BUILDING CODE

PART. BASEMENT PLAN 'B'

OBC 2012

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO

BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY) INSULATE DUCTS IN UNCONDITIONED SPACES RI2 UNDERCUT ALL DOORS I" MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS. ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE RESPONSIBILITY OF GTA DESIGNS.

GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

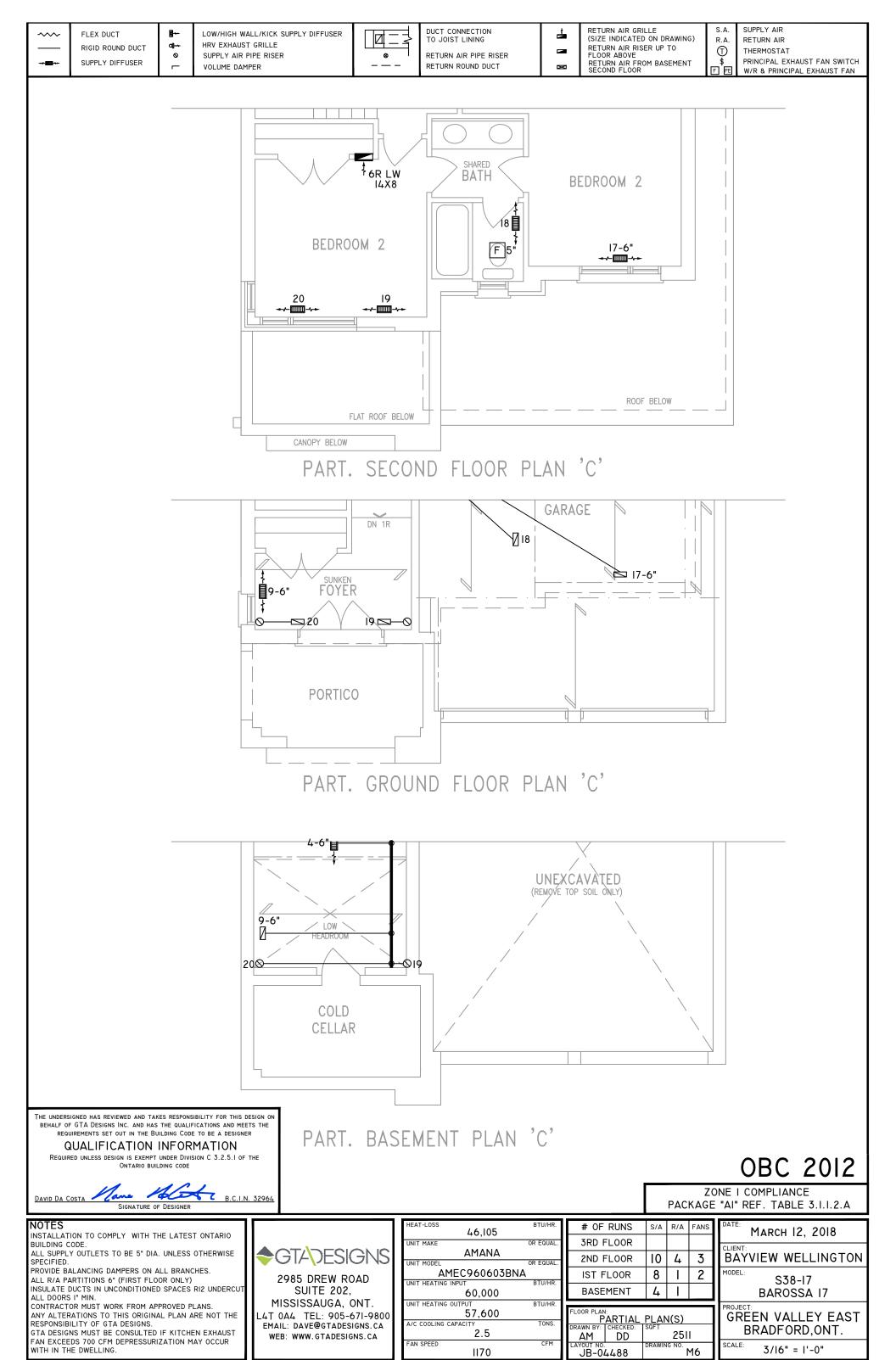
2985 DREW ROAD SUITE 202, MISSISSAUGA, ONT.

L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA WEB: WWW.GTADESIGNS.CA

HEAT-LOSS	BTU/HR.
46,105	
UNIT MAKE	OR EQUAL.
AMANA	
UNIT MODEL	OR EQUAL.
AMEC960603BNA	
UNIT HEATING INPUT	BTU/HR.
60,000	
UNIT HEATING OUTPUT	BTU/HR.
57,600	
A/C COOLING CAPACITY	TONS.
2.5	
FAN SPEED	CFM
1170	

# OF RUNS	S/A	R/A	FANS
3RD FLOOR			
2ND FLOOR	10	4	3
IST FLOOR	8	1	2
BASEMENT	4	-	
FLOOR PLAN: PARTIAL	PLAN	۱(S)	

AM DD


JB-04488

2511

DRAWING NO. M5

DATE:	MARCH 12, 2018
BAY	VIEW WELLINGTON
MODEL:	S38-I7 BAROSSA I7
PROJEC	T: FN VALLEY FAST

BRADFORD, ONT. 3/16" = 1'-0"

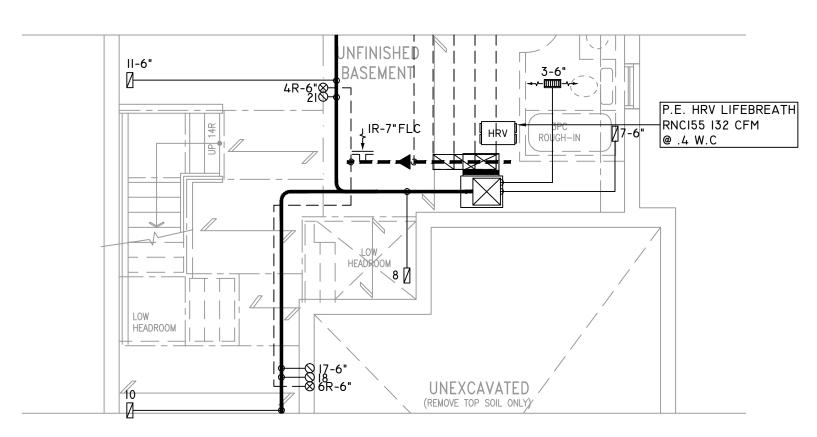
1170

JB-04488

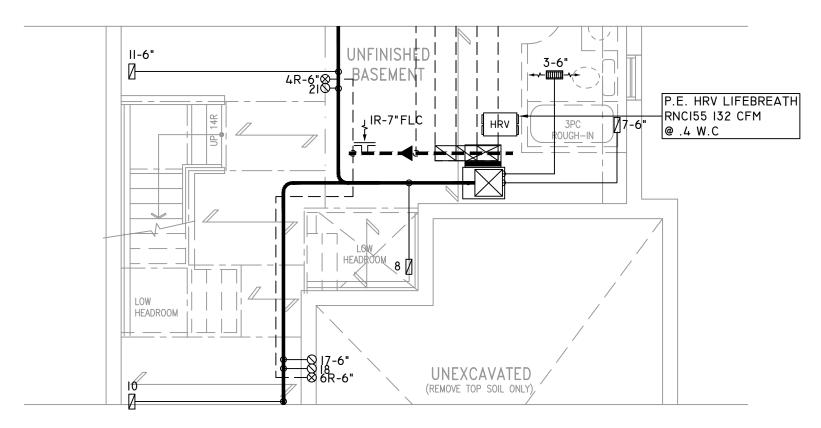
WITH IN THE DWELLING.

3/16" = 1'-0"

FLEX DUCT LOW/HIGH WALL/KICK SUPPLY DIFFUSER HRV EXHAUST GRILLE RIGID ROUND DUCT 0 SUPPLY AIR PIPE RISER SUPPLY DIFFUSER **VOLUME DAMPER**



DUCT CONNECTION TO JOIST LINING RETURN AIR PIPE RISER RETURN ROUND DUCT


RETURN AIR GRILLE (SIZE INDICATED ON DRAWING) RETURN AIR RISER UP TO FLOOR ABOVE RETURN AIR FROM BASEMENT SECOND FLOOR

R.A 1

SUPPLY AIR RETURN AIR THERMOSTAT PRINCIPAL EXHAUST FAN SWITCH W/R & PRINCIPAL EXHAUST FAN

PART. BASEMENT PLAN FOR SUNKEN MUD COND.

PART. BASEMENT PLAN FOR -2R OR MORE SUNKEN MUD COND.

THE UNDERSIGNED HAS REVIEWED AND TAKES RESPONSIBILITY FOR THIS DESIGN ON BEHALF OF GTA DESIGNS INC. AND HAS THE QUALIFICATIONS AND MEETS THE REQUIREMENTS SET OUT IN THE BUILDING CODE TO BE A DESIGNER QUALIFICATION INFORMATION Required unless design is exempt under Division C 3.2.5.I of the ONTARIO BUILDING CODE

OBC 2012

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY) INSULATE DUCTS IN UNCONDITIONED SPACES RI2 UNDERCUT ALL DOORS I" MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS. ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE

RESPONSIBILITY OF GTA DESIGNS. GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

2985 DREW ROAD SUITE 202, MISSISSAUGA, ONT. L4T 0A4 TEL: 905-67I-9800 EMAIL: DAVE@GTADESIGNS.CA

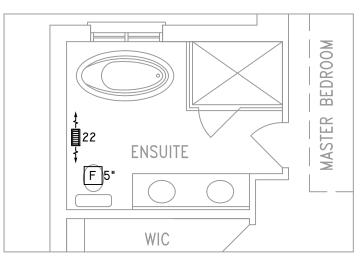
WEB: WWW.GTADESIGNS.CA

HEAT-LUSS	BTU/HR.
46,105	
UNIT MAKE	OR EQUAL.
AMANA	
UNIT MODEL	OR EQUAL.
AMEC960603BNA	
UNIT HEATING INPUT	BTU/HR.
60,000	
UNIT HEATING OUTPUT	BTU/HR.
57,600	
A/C COOLING CAPACITY	TONS.
2.5	
FAN SPEED	CFM
1170	

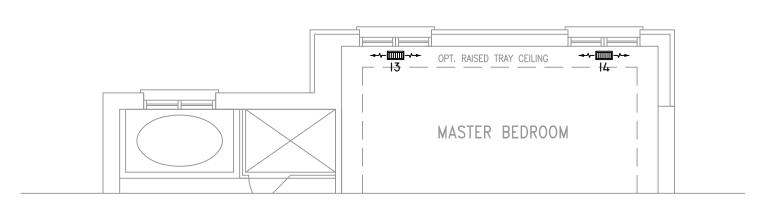
# OF RUNS	S/A	R/A	FANS
3RD FLOOR			
2ND FLOOR	10	4	3
IST FLOOR	8	1	2
BASEMENT	4	_	
			=
FLOOR PLAN: PARTIAL		۱(S)	
DDAWN DV. CHECKED.	CUET		

AM DD

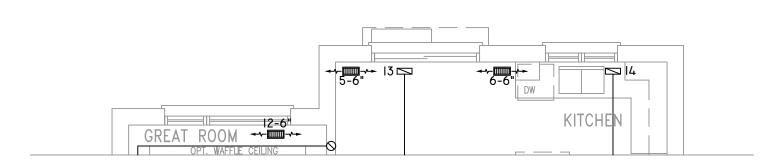
JB-04488


2511

DRAWING NO. M7


MARCH 12, 2018
CLIENT: BAYVIEW WELLINGTON
S38-I7 BAROSSA I7
GREEN VALLEY EAST BRADFORD,ONT.

3/16" = 1'-0"


RETURN AIR GRILLE (SIZE INDICATED ON DRAWING) SUPPLY AIR DUCT CONNECTION FLEX DUCT LOW/HIGH WALL/KICK SUPPLY DIFFUSER j TO JOIST LINING R.A. RETURN AIR HRV EXHAUST GRILLE **aj**↔ RETURN AIR RISER UP TO FLOOR ABOVE RIGID ROUND DUCT 1 THERMOSTAT RETURN AIR PIPE RISER SUPPLY AIR PIPE RISER 8 PRINCIPAL EXHAUST FAN SWITCH SUPPLY DIFFUSER RETURN AIR FROM BASEMENT SECOND FLOOR RETURN ROUND DUCT VOLUME DAMPER W/R & PRINCIPAL EXHAUST FAN

OPT. SECOND FLOOR W/ ALT. ENSUITE LAYOUT

PARTIAL SECOND FLOOR PLAN ELEVATION 'C' REAR UPGRADE

HEAT-LOSS

PARTIAL GROUND FLOOR PLAN ELEVATION 'C' REAR UPGRADE

OBC 2012

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

NOTES

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO

BUILDING CODE.
ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES.
ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY)
INSULATE DUCTS IN UNCONDITIONED SPACES RI2 UNDERCUT
ALL DOORS I" MIN.

ALL DOORS I" MIN. CONTRACTOR MUST WORK FROM APPROVED PLANS. ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE

RESPONSIBILITY OF GTA DESIGNS.
GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST
FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR
WITH IN THE DWELLING.

SUITE 202,
MISSISSAUGA, ONT.
L4T 0A4 TEL: 905-671-9800
EMAIL: DAVE@GTADESIGNS.CA

WEB: WWW.GTADESIGNS.CA

46,105 UNIT MAKE AMANA UNIT MODEL OR EQUAL. AMEC960603BNA UNIT HEATING INPUT BTU/HR. 60,000 UNIT HEATING OUTPUT BTU/HR. 57,600 A/C COOLING CAPACITY TONS. 2.5 FAN SPEED IT70	HEAT-LUSS	BTU/HR.
AMANA UNIT MODEL OR EQUAL. AMEC960603BNA UNIT HEATING INPUT BTU/HR. 60,000 UNIT HEATING OUTPUT BTU/HR. 57,600 A/C COOLING CAPACITY TONS. 2.5 FAN SPEED CFM	46,10	5
UNIT MODEL AMEC 960603BNA UNIT HEATING INPUT BTU/HR. 60,000 UNIT HEATING OUTPUT BTU/HR. 57,600 A/C COOLING CAPACITY TONS. 2.5 FAN SPEED CFM	UNIT MAKE	OR EQUAL.
AMEC 960603BNA UNIT HEATING INPUT BTU/HR. 60,000 UNIT HEATING OUTPUT BTU/HR. 57,600 A/C COOLING CAPACITY TONS. 2.5 FAN SPEED CFM	AMAN	Α
UNIT HEATING INPUT BTU/HR. 60,000 UNIT HEATING OUTPUT BTU/HR. 57,600 A/C COOLING CAPACITY TONS. 2.5 FAN SPEED CFM	UNIT MODEL	OR EQUAL.
60,000 UNIT HEATING OUTPUT BTU/HR. 57,600 A/C COOLING CAPACITY TONS. 2.5 FAN SPEED CFM		
UNIT HEATING OUTPUT BTU/HR. 57,600 A/C COOLING CAPACITY TONS. 2.5 FAN SPEED CFM	UNIT HEATING INPUT	BTU/HR.
57,600 A/C COOLING CAPACITY TONS. 2.5 FAN SPEED CFM	60,00	0
A/C COOLING CAPACITY TONS. 2.5 FAN SPEED CFM	UNIT HEATING OUTPUT	BTU/HR.
2.5 FAN SPEED CFM	,	0
FAN SPEED CFM	A/C COOLING CAPACITY	TONS.
7.11 51 225	2.5	
1170		CFM
	1170	

# OF RUNS	S/A	R/A	FANS	
3RD FLOOR				
2ND FLOOR	10	4	3	
IST FLOOR	8	-	2	
BASEMENT	4	-		
FLOOR PLAN: PARTIAL		۱(S)		
DRAWN BY: CHECKED: AM DD	SQFT 2511			

JB-04488

DRAWING NO. M8

MARCH 12, 2018
BAYVIEW WELLINGTON
S38-I7 BAROSSA I7
GREEN VALLEY EAST BRADFORD,ONT.

3/16" = 1'-0"