

Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information				
Building number, street name Sonom	na 4		Lot:	
SD25-4	WOB		Lot/con.	
Municipality Bradford	Postal code	Plan number/ other description		
B. Individual who reviews and takes responsibility for design	gn activities			
Name David DaCosta		Firm	gtaDesigns Inc.	
Street address 2985 Drew Roa				Lot/con.
Municipality Mississauga	Postal code L4T 0A4	Province Ontario	E-mail dave@gtadesi	gns.ca
Telephone number	Fax number		Cell number	
(905) 671-9800 C. Design activities undertaken by individual identified in S	•) 494-9643 ilding Code Table 3	(416) 268-68 8.5.2.1 of Division Cl	320
		namy code rubie (
☐ House ☐ HVAC – H			☐ Building Structural	
☐ Small Buildings ☐ Building Se			☐ Plumbing – House	
	Lighting and Pov	wer	Plumbing – All BuildingsOn-site Sewage Systems	
	del Certification			
Description of designer's work Mod	dei Certification		Project #: Layout #:	PJ-00204 JB-00000
Heating and Cooling Load Calculations Main		Builder	Bayview Wellington	
Air System Design Alternate	x	Project	Green Valley East	
Residential mechanical ventilation Design Summary Area Sq ft:	2168	Model	Sonoma 4	
Residential System Design per CAN/CSA-F280-12			SD25-4 WOB	
Residential New Construction - Forced Air D. Declaration of Designer		SB-12	Package A1	
David DaCosta	declare that (c	choose one as appro	nriate).	
	'acolare triat (c	moode one as appro	priato).	
(print name)				
☐ I review and take responsibility for t	the design work	on behalf of a firm regi	stered under subsection	
3.2.4 Division C of the Building Coo				
classes/categories.				
Individual BCIN:			•	
Firm BCIN:			•	
Individual BCIN:		-		
Basis for exemp			Division C 3.2.4.1. (4)	
Busis for exemp	don nom region		714131011 0 3.2.4.1. (4)	
☐ The design work is exempt from the	e registration and	d qualification requirem	ents of the Building Code.	
Basis for exemp	tion from registra	ation and qualification:		
I certify that:				
The information contained in this schedule is true to the best of n	ny knowledge.			
I have submitted this application with the knowledge and consent	of the firm.			
February 15, 2018		Mare Ho	-	
Date		Signature of De	signer	

NOTE:

1. For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d), of Division C, Article 3.2.5.1. of Division C and all other persons who are exempt from qualifications under Subsections 3.2.4. and 3.2.5.of Division C.

2. Schedule 1 does not require to be completed a holder of a license, temporay license, or a certificate of authorization, issed by the Ontario Associstion of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited licence to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

Page 2

Heat loss and gain calcul	ation summary sheet CSA-F280-M12 Standard Form No. 1
These documents issued for the use of	ayview Wellington Layout No.
and may not be used by any other persons without authorization. Document	s for permit and/or construction are signed in red. JB-00000
Building	Location
Address (Model): SD25-4 WOB	Site: Green Valley East
Model: Sonoma 4	Lot:
City and Province: Bradford	Postal code:
Calculation	s based on
Dimensional information based on:	VA3 Design Sept/2016
Attachment: Semi	Front facing: East/West Assumed? Yes
No. of Levels: 3 Ventilated? Included	Air tightness: 1961-Present (ACH=3.57) Assumed? Yes
Weather location: Bradford	Wind exposure: Sheltered
HRV? LifeBreath RNC155	Internal shading: Light-translucent Occupants: 5
Sensible Eff. at -25C 71% Apparent Effect. at -0C 84%	Units: Imperial Area Sq ft: 2168
Sensible Eff. at -0C 75%	
Heating design conditions	Cooling design conditions
Outdoor temp -9.4 Indoor temp: 72 Mean soil tem; 48	Outdoor temp 86 Indoor temp: 75 Latitude: 44
Above grade walls	Below grade walls
Style A: As per OBC SB12 Package A1 R 22	Style A: As per OBC SB12 Package A1 R 20ci
Style B: Existing Walls (When Applicable) R 12	Style B:
Style C:	Style C:
Style D:	Style D:
Floors on soil	Ceilings
Style A: As per Selected OBC SB12 Package A1	Style A: As per Selected OBC SB12 Package A1 R 60
Style B:	Style B: As per Selected OBC SB12 Package A1 R 31
Exposed floors	Style C:
Style A: As per Selected OBC SB12 Package A1 R 31	Doors
Style B:	Style A: As per Selected OBC SB12 Package A1 R 4.00
Windows	Style B:
Style A: As per Selected OBC SB12 Package A1 R 3.55	Style C:
Style B: Existing Windows (When Applicable) R 1.99	Skylights
Style C:	Style A: As per Selected OBC SB12 Package A1 R 2.03
Style D:	Style B:
Attached documents: As per Shedule 1 Heat Loss/Ga	ain Caculations based on CSA-F280-12 Effective R-Values
Notes: Residential New C	Construction - Forced Air
Calculations	performed by
Name: David DaCosta	Postal code: L4T 0A4
Company: gtaDesigns Inc.	Telephone: (905) 671-9800
Address: 2985 Drew Road, Suite 202	Fax: (416) 268-6820
City: Mississauga	E-mail dave@gtadesigns.ca

Builder: Bayview Wellington

Air System Design

Date:

SB-12 Package A1 February 15, 2018

Sonoma 4

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under Division C subsection 3.2.5.

Page 3 Project # PJ-00204

Project: Green V	alley Ea	st		Model:			Sonoi SD25-4					Sy	ystem	1		of the Buil ndividual		de. 32964	Ma	ine 14	LA.	7 0	David DaC	osta		yout #		00204 00000
DESIGN LOAD SPECIFICATION	IS		ſ	AIR DIST	RIBUTIO	N & PRES	SURE				Ī	FURNACE	E/AIR HA	NDLER D	ATA:			BOILER/W	/ATER HE	EATER DA	ATA:			7	A/C UNIT [DATA:		
220.011 20712 01 2011 107111011			ı,	7 LII (D.O.)							L						L	-0.22.01	,,,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					L		,,,,,,,		
Level 1 Net Load	14,687	btu/h		Equipme	nt Extern	al Static F	ressure		0.5 "	w.c.		Make		Ama	na		1	Make			т	уре		,	Amana		2.0 T	on
Level 2 Net Load	12,540 I	btu/h		Additiona	al Equipm	ent Press	sure Drop)	0.225 "	w.c.	- 1	Model		AMEC96-0	603BNA		1	Model						(Cond		2.0	
Level 3 Net Load	11,551	btu/h		Available	Design F	ressure			0.275 "	w.c.		Input Btu	/h	6000	00		1	Input Btu/	h					(Coil		2.0	
Level 4 Net Load	0 1	btu/h		Return B	ranch Lo	ngest Effe	ective Ler	ngth	300 f	i		Output Bt	tu/h	5760	00			Output Bt	u/h									
Total Heat Loss	38,778	btu/h		R/A Plent	um Press	ure			0.138 "	w.c.	- 1	E.s.p.		0.50	o '	W.C.	_	Min.Outpu	ıt Btu/h		Α	WH						
Total Heat Gain	22,870	btu/h		S/A Plenu	ım Press	ure			0.14 "	w.c.	,	Water Ter	mp		•	leg. F.							wer DATA	١:				
Combo System HL + 10%	42,656	Btuh.		Heating A	Air Flow F	roportion	ning Facto	or	0.0302 c	fm/btuh		AFUE		96%	6		- 1	Blower Sp	eed Sele	cted:	W2			E	Blower Ty	•	ECM	
Building Volume Vb	25590 1			Cooling A	Air Flow F				0.0421 c		-	Aux. Heat													-	ess DC OE		
Ventilation Load	1,118						R/A Temp			eg. F.	;	SB-12 Pac	ckage	Packag	e A1		I	Heating C	heck	1170 c	fm			(Cooling Cl	neck =	963 c	fm
Ventilation PVC	79.5	cfm					S/A Temp)	116 d	eg. F.					_				_		_		_					_
Supply Branch and Grill Sizing				Diffuser I	oss	0.01	"w.c.					Temp. Ris	se>>>	<u>46</u> d	leg. F.			Selected of	fm>	<u>1170</u> c	fm		C	ooling A	ir Flow Ra	ate _	<u>963</u> c	fm
-							Leve	el 1													Leve	2						
S/A Outlet No.	1	2	3	4	20										5	6	7	8	9	10								
Room Use	BASE	BASE	BASE	BASE	BASE										KIT	KIT	LIV	DIN	PWD	FOY								
Btu/Outlet	2937	2937	2937	2937	2937										2002	2002	1911	2802	675	3149								
Heating Airflow Rate CFM	89	89	89	89	89										60	60	58	85	20	95								
Cooling Airflow Rate CFM	24	24	24	24	24										99	99	97	65	14	64								
Duct Design Pressure	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Actual Duct Length	32	26	21	42	43										35	42	21	39	40	50								
Equivalent Length	100	70	70	120	90	70	70	70	70	70	70	70	70	70	90	100	80	180	140	110	70	70	70	70	70	70	70	70
Total Effective Length	132	96	91	162	133	70	70	70	70	70	70	70	70	70	125	142	101	219	180	160	70	70	70	70	70	70	70	70
Adjusted Pressure	0.10	0.14	0.14	0.08	0.10	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.10	0.09	0.13	0.06	0.07	0.08	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
Duct Size Round	6	6	6	6	6										6	6	6	6	4	6								
Outlet Size	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	3x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10	4x10
Trunk	D	D	Α	С	D										D	F	В	С	С	C								
															U			U	U	U								
	_				, ,		Leve	el 3													Leve	4						
S/A Outlet No.	11	12	13	14	15	16	Leve	el 3 18	19						<u> </u>						Leve	4						
	11 MAST	12 MAST			_	16 BED 3			19 LAUN						, ,			<u> </u>			Leve	4						
S/A Outlet No.			13	14	15		17	18							U	<u> </u>				<u> </u>	Leve	4						
S/A Outlet No. Room Use	MAST	MAST	13 ENS	14 BED 4	15 BATH	BED 3	17 BED 2	18 BED 2	LAUN							<u> </u>					Leve	4						
S/A Outlet No. Room Use Btu/Outlet	MAST 1655	MAST 1655	13 ENS 975	14 BED 4 1209	15 BATH 619	BED 3 2334	17 BED 2 1480	18 BED 2 1480	LAUN 144												Leve	4						
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM	MAST 1655 50	MAST 1655 50	13 ENS 975 29	14 BED 4 1209 36	15 BATH 619 19	BED 3 2334 70	17 BED 2 1480 45	18 BED 2 1480 45	LAUN 144 4	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	Level	0.13	0.13	0.13	0.13	0.13	0.13	0.13
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM	MAST 1655 50 61	MAST 1655 50 61	13 ENS 975 29 21	14 BED 4 1209 36 41	15 BATH 619 19	BED 3 2334 70 79	17 BED 2 1480 45 51	18 BED 2 1480 45 51	LAUN 144 4 26	0.13	0.13	0.13	0.13	0.13									0.13	0.13	0.13	0.13	0.13	0.13
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length	MAST 1655 50 61 0.13 42 135	MAST 1655 50 61 0.13	13 ENS 975 29 21 0.13	14 BED 4 1209 36 41 0.13	15 BATH 619 19 14 0.13	BED 3 2334 70 79 0.13	17 BED 2 1480 45 51 0.13	18 BED 2 1480 45 51 0.13	144 4 26 0.13 35 140	70	0.13	0.13 70	70	70		0.13	0.13			0.13	0.13 70	0.13 70	70	0.13	70	0.13 70	0.13	70
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length	MAST 1655 50 61 0.13 42	MAST 1655 50 61 0.13 66	13 ENS 975 29 21 0.13 46	14 BED 4 1209 36 41 0.13	15 BATH 619 19 14 0.13 42	BED 3 2334 70 79 0.13 72	17 BED 2 1480 45 51 0.13	18 BED 2 1480 45 51 0.13	144 4 26 0.13 35						0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13						
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length	MAST 1655 50 61 0.13 42 135	MAST 1655 50 61 0.13 66 130	13 ENS 975 29 21 0.13 46 120	14 BED 4 1209 36 41 0.13 38 100	15 BATH 619 19 14 0.13 42 125	BED 3 2334 70 79 0.13 72 110	17 BED 2 1480 45 51 0.13 59 160	18 BED 2 1480 45 51 0.13 61 170	144 4 26 0.13 35 140	70	70	70	70	70	0.13	0.13	0.13	0.13	0.13	0.13	0.13 70	0.13 70	70	70	70	70	70	70
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length	MAST 1655 50 61 0.13 42 135	MAST 1655 50 61 0.13 66 130	13 ENS 975 29 21 0.13 46 120	14 BED 4 1209 36 41 0.13 38 100	15 BATH 619 19 14 0.13 42 125 167	BED 3 2334 70 79 0.13 72 110 182	17 BED 2 1480 45 51 0.13 59 160 219	18 BED 2 1480 45 51 0.13 61 170 231	144 4 26 0.13 35 140	70 70	70 70	70 70	70 70	70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	70 70	70 70	70 70	70 70	70 70	70 70
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure	MAST 1655 50 61 0.13 42 135 177 0.07	MAST 1655 50 61 0.13 66 130 196 0.07	13 ENS 975 29 21 0.13 46 120 166 0.08	14 BED 4 1209 36 41 0.13 38 100 138 0.09	15 BATH 619 19 14 0.13 42 125 167	BED 3 2334 70 79 0.13 72 110 182 0.07	17 BED 2 1480 45 51 0.13 59 160 219 0.06	18 BED 2 1480 45 51 0.13 61 170 231	144 4 26 0.13 35 140 175 0.07	70 70	70 70	70 70	70 70	70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	0.13 70 70	70 70	70 70	70 70	70 70	70 70	70 70
S/A Outlet No. Room Use Bttl/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round	MAST 1655 50 61 0.13 42 135 177 0.07 6	MAST 1655 50 61 0.13 66 130 196 0.07 6	13 ENS 975 29 21 0.13 46 120 166 0.08	14 BED 4 1209 36 41 0.13 38 100 138 0.09	15 BATH 619 19 14 0.13 42 125 167 0.08	BED 3 2334 70 79 0.13 72 110 182 0.07 6	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5	144 4 26 0.13 35 140 175 0.07	70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5	144 4 26 0.13 35 140 175 0.07 4 3x10	70 70 0.19	70 70 0.19	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti	70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No.	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5	144 4 26 0.13 35 140 175 0.07 4 3x10	70 70 0.19	70 70 0.19	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19	0.13 70 70 0.19	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19	70 70 0.19	70 70 0.19 4x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E Grill Pres	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B ssure Los:	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C 0.02 6R 95	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19
S/A Outlet No. Room Use Bttl/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E Grill Pres 3R 155 0.12	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B ssure Los: 4R 100 0.12	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti Trunk	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing FM F	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 <u>S</u>	0.13 70 70 0.19 4x10 upply Tru	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing CFM F	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10 Rect. \$	70 70 0.19 4x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E 2R 498 0.12 26	13 ENS 975 29 21 0.13 46 120 1666 0.08 4 3x10 E Grill Pres 3R 155 0.12 41	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B ssure Los: 4R 100 0.12 61	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C 0.02 6R 95 0.12 58	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti Trunk Drop	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing :FM F 1170 1170	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T	0.13 70 70 0.19 4x10 upply Tru	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing EFM F	70 70 0.19 4x10	70 70 0.19 4x10 Round	70 70 0.19 4x10 Rect. \$	70 70 0.19 4x10 Size	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D 1R 222 0.12 13 190	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E 2R 498 0.12 26 165	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E Grill Pres 3R 155 0.12 41 165	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B sure Los: 4R 100 0.12 61 240	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C 0.02 6R 95 0.12 58 205	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C "W.c 7R 0.12	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D	70 70 0.19 4x10	70 70 0.19 4x10 11R 0.12	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti Trunk Drop Z	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing FM F	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 <u>S</u> T	0.13 70 70 0.19 4x10 upply Tru	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing CFM F 650 113 448	70 70 0.19 4x10 Press. F	70 70 0.19 4x10 Round 13.5 6.5 11.5	70 70 0.19 4x10 Rect. S 20x8 8x8 14x8	70 70 0.19 4x10 Size 16x10 8x7 12x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Equivalent Length Total Effective Length	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D 1R 222 0.12 13 190 203	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E 2R 498 0.12 26 165 191	13 ENS 975 29 21 1 0.13 46 120 166 0.08 4 3x10 E Grill Pres 3R 155 0.12 41 165 206	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B surre Los: 4R 100 0.12 61 240 301	15 BATH 619 19 14 42 125 167 0.08 4 3x10 B S S S S R 1000 0.11 57 230 287	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C 0.02 6R 95 0.12 58 205 263	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C "W.c 7R 0.12 50 50	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D	70 70 0.19 4x10 10R 0.12 50	70 70 0.19 4x10 11R 0.12 50	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti Trunk Drop Z Y	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing :FM F 1170 1170	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 <u>S</u> T	0.13 70 70 0.19 4x10 upply Tru	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing CFM F 650 113 448 521	70 70 0.19 4x10 Press. F	70 70 0.19 4x10 Round 13.5 6.5 11.5	70 70 0.19 4x10 Rect. S 20x8 8x8 14x8 16x8	70 70 0.19 4x10 Size	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Equivalent Length Total Effective Length Adjusted Pressure	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D 1R 222 0.12 13 190 203 0.06	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E 2R 498 0.12 26 165 191 0.06	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E Grill Pres 3R 155 0.12 41 165 206 0.06	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B sure Loss 4R 100 0.12 61 240 301 0.04	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B S 5R 100 0.12 57 230 287 0.04	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C 0.02 6R 95 0.12 58 205 263 0.04	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C "W.c 7R 0.12	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D	70 70 0.19 4x10	70 70 0.19 4x10 11R 0.12	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti Trunk Drop Z Y X	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing :FM F 1170 1170	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 <u>S</u> T	0.13 70 70 0.19 4x10 upply Tru	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing CFM F 650 113 448	70 70 0.19 4x10 Press. F	70 70 0.19 4x10 Round 13.5 6.5 11.5	70 70 0.19 4x10 Rect. S 20x8 8x8 14x8	70 70 0.19 4x10 Size 16x10 8x7 12x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D 1R 222 0.12 13 190 203 0.06 8.0	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E 2R 498 0.12 266 165 191 0.06 12.0	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E Grill Pres 3R 155 0.12 41 165 206 0.06 8.0	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B surre Los: 4R 100 0.12 61 240 301	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B S 5R 100 0.12 57 230 287 0.04 6.0	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C 0.02 6R 95 0.12 58 2005 263 0.04 6.0	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C "W.c 7R 0.12 50 50	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D	70 70 0.19 4x10 10R 0.12 50	70 70 0.19 4x10 11R 0.12 50	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti Trunk Drop Z Y X W	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing :FM F 1170 1170	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T A B C C D E F	0.13 70 70 0.19 4x10 upply Tru	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing CFM F 650 113 448 521	70 70 0.19 4x10 Press. F	70 70 0.19 4x10 Round 13.5 6.5 11.5	70 70 0.19 4x10 Rect. S 20x8 8x8 14x8 16x8	70 70 0.19 4x10 Size 16x10 8x7 12x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Equivalent Length Total Effective Length Adjusted Pressure	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D 1R 222 0.12 13 190 203 0.06 8.0 FLC	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E 2R 498 0.12 26 165 191 0.06 12.0 8	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E Grill Pres 3R 155 0.12 41 165 206 8.0 8	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B sure Los: 4R 100 0.12 61 240 301 0.04 6.0 8	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B S 5R 100 0.12 57 230 287 0.04 6.0 8	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C 0.02 6R 95 0.12 58 205 263 0.04 6.0 8	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C "W.c 7R 0.12 50 50	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D 9R 0.12 50 0.24	70 70 0.19 4x10 10R 0.12 50	70 70 0.19 4x10 11R 0.12 50 50 0.24	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti Trunk Drop Z Y X W V	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing :FM F 1170 1170	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T A B C D E F G	0.13 70 70 0.19 4x10 upply Tru	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing CFM F 650 113 448 521	70 70 0.19 4x10 Press. F	70 70 0.19 4x10 Round 13.5 6.5 11.5	70 70 0.19 4x10 Rect. S 20x8 8x8 14x8 16x8	70 70 0.19 4x10 Size 16x10 8x7 12x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Inlet Size " "	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D 1R 222 0.12 13 190 203 0.06 8.0 FLC x	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E 2R 498 0.12 26 165 191 0.06 12.0 8 x	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E Grill Pres 3R 155 0.12 41 165 206 0.06 8.0 8 x	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B ssure Los: 4R 100 0.12 61 240 301 0.04 6.0 8 x	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B S 5R 100 0.12 57 230 287 0.04 6.0 8 x	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C 0.02 6R 95 0.12 58 205 263 0.04 6.0 8 x	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C "W.c 7R 0.12 50 50	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D	70 70 0.19 4x10 10R 0.12 50	70 70 0.19 4x10 11R 0.12 50	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti Trunk Drop Z Y X W V U T	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing :FM F 1170 1170	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T A B C C D E F	0.13 70 70 0.19 4x10 upply Tru	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing CFM F 650 113 448 521	70 70 0.19 4x10 Press. F	70 70 0.19 4x10 Round 13.5 6.5 11.5	70 70 0.19 4x10 Rect. S 20x8 8x8 14x8 16x8	70 70 0.19 4x10 Size 16x10 8x7 12x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Inlet Size Round	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D 1R 222 0.12 13 190 203 0.06 8.0 FLC	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E 2R 498 0.12 26 165 191 0.06 12.0 8	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E Grill Pres 3R 155 0.12 41 165 206 8.0 8	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B sure Los: 4R 100 0.12 61 240 301 0.04 6.0 8	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B S 5R 100 0.12 57 230 287 0.04 6.0 8	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C 0.02 6R 95 0.12 58 205 263 0.04 6.0 8	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C "W.c 7R 0.12 50 50	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D 9R 0.12 50 0.24	70 70 0.19 4x10 10R 0.12 50	70 70 0.19 4x10 11R 0.12 50 50 0.24	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti Trunk Drop Z Y X W V U T S	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing :FM F 1170 1170	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T A B C D E F G	0.13 70 70 0.19 4x10 upply Tru	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing CFM F 650 113 448 521	70 70 0.19 4x10 Press. F	70 70 0.19 4x10 Round 13.5 6.5 11.5	70 70 0.19 4x10 Rect. S 20x8 8x8 14x8 16x8	70 70 0.19 4x10 Size 16x10 8x7 12x10	70 70 0.19
S/A Outlet No. Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Inlet Size " "	MAST 1655 50 61 0.13 42 135 177 0.07 6 4x10 D 1R 222 0.12 13 190 203 0.06 8.0 FLC x	MAST 1655 50 61 0.13 66 130 196 0.07 6 4x10 E 2R 498 0.12 26 165 191 0.06 12.0 8 x	13 ENS 975 29 21 0.13 46 120 166 0.08 4 3x10 E Grill Pres 3R 155 0.12 41 165 206 0.06 8.0 8 x	14 BED 4 1209 36 41 0.13 38 100 138 0.09 4 3x10 B ssure Los: 4R 100 0.12 61 240 301 0.04 6.0 8 x	15 BATH 619 19 14 0.13 42 125 167 0.08 4 3x10 B S 5R 100 0.12 57 230 287 0.04 6.0 8 x	BED 3 2334 70 79 0.13 72 110 182 0.07 6 4x10 C 0.02 6R 95 0.12 58 205 263 0.04 6.0 8 x	17 BED 2 1480 45 51 0.13 59 160 219 0.06 5 3x10 C "W.c 7R 0.12 50 50	18 BED 2 1480 45 51 0.13 61 170 231 0.06 5 3x10 C	LAUN 144 4 26 0.13 35 140 175 0.07 4 3x10 D 9R 0.12 50 0.24	70 70 0.19 4x10 10R 0.12 50	70 70 0.19 4x10 11R 0.12 50 50 0.24	70 70 0.19 4x10	70 70 0.19 4x10 Return Ti Trunk Drop Z Y X W V U T S R	70 70 0.19 4x10	0.13 70 70 0.19 4x10 Sizing :FM F 1170 1170	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 Rect. \$24x12 30x10	0.13 70 70 0.19 4x10	0.13 70 70 0.19 4x10 S T A B C D E F G	0.13 70 70 0.19 4x10 upply Tro	0.13 70 70 0.19 4x10	70 70 0.19 4x10 Sizing CFM F 650 113 448 521	70 70 0.19 4x10 Press. F	70 70 0.19 4x10 Round 13.5 6.5 11.5	70 70 0.19 4x10 Rect. S 20x8 8x8 14x8 16x8	70 70 0.19 4x10 Size 16x10 8x7 12x10	70 70 0.19

Total Heat Loss

Total Heat Gain

38,778 btu/h

22,870 btu/h

Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643

e-mail dave@gtadesigns.ca

		Builder:	Bay	view Well	ington	n	,	Date:		F	ebruary 15	5, 2018					We	ather Data	ı Br	adford	44	-9.4 86	22	48.2				Page 4
2012 OBC		Drainatu	Cro	en Valley	. East			odel:			Sonoma SD25-4 W	a 4		_	Sy	stem 1	_ ا	at Loce A	T 81.4 deg. F	-	Ht gain ^T	11 deç	a E	GTA:	2169	Pi	oject # ayout #	PJ-00204 JB-00000
2012 OBC		Project:	Gre	en valley	Last		. M	odel: _			5D25-4 W	VOB		-	-,		пе	at Loss ^	1 81.4 deg. F		nt gain ^1	11 deg	g. r	GIA:	2168	L	yout #	JB-00000
Rui Rui	Level 1 n ft. exposed wall A n ft. exposed wall B Ceiling height Floor area				78 . 28 ! 4.6 .	В	:	4.6 A	3		A B 4.6 AG Area		A B 4.6 AG Area		A B 4.6 A		A B 4.6 AG Area		A B 4.6 AG Area		A B 4.6 AG Area	4	A B 4.6 AG Area		A B 4.6 AG Area		A B 4.6 AG Are	
	Exposed Ceilings A					A		A	١.		Α		A		Α		Α		Α		Α		Α		A		Α	
ı	Exposed Ceilings B					В		В			В		В		В		В		В		В		B Flr		В		В	
	Exposed Floors Gross Exp Wall A				361	Fir		F	ir		Flr		Flr		FI	Ir	Flr		Flr		Flr		Fir		Flr		Flr	
	Gross Exp Wall B				252																							
	Components			Sain		Loss	Gain	L	.oss (Gain	Loss	Gain	Loss	Gain	L	oss Gain	Loss	Gain	Loss	Gain	Loss	Gain	Loss	Gain	Loss	Gain	Los	ss Gain
	North Shaded East/West	3.55 3.55	22.93 22.93	10.91 27.35																								
	South	3.55	22.93	20.89	6	138	125																					
	WOB Windows	3.55	22.93	27.35	54	1238	1477																					
	Skylight Doors	2.03 4.00	40.10 20.35	88.23 2.75	21	427	58				_																	
N	Net exposed walls A	21.12	3.85	0.52			174																					
N	let exposed walls B	14.49	5.62	0.76			150																					
	Exposed Ceilings A	59.22	1.37	0.64																								
	Exposed Ceilings B Exposed Floors	22.86 29.80	3.56 2.73	1.66 0.17		1																					4	
Foundation Cond	ductive Heatloss			3.17		5085																						
Total Conductive	Heat Loss					8000																						
Air Leakage	Heat Gain Heat Loss/Gain		0.7906	0.0367		6325	1984 73																					
All Leakage	Case 1		0.7906	0.0367		6325	/3																					
Ventilation	Case 2		14.07	11.88																								
	Case 3	x	0.05	0.08		361	164																					
	Heat Gain People Appliances Loads	1 =.25 p	orcont	239 3420																								
	Duct and Pipe loss	1 =.25 pt	ciceiii	10%																								
Level 1 HL Total Level 1 HG Total	14,687		tal HL for p			14687	2887																					
Rui	Level 2 n ft. exposed wall A n ft. exposed wall B Celling height Floor area				10.0	В		13 A E 10.0 245 A	3 Area	10	DIN 30 A B 0.0	I	PWI 6 A B 10.0 33 Area)	22 A B 11.0 62 A	rea	A B 10.0 Area	ı	A B 10.0 Area		A B 10.0 Area	10	A B D.0 Area		A B 10.0 Area		A B 10.0 Are	ea
	Exposed Ceilings A					A B		A			Α		Α				Α				Α		Α				Α	
ı	Exposed Ceilings B Exposed Floors												_		A				A				_		A		_	
	Gross Exp Wall A							E			B Fir		B Fir		В		В		В		В		B Fir		В		B Fir	
I-						Flr		130		3	B Flr 800		B Flr 60										B Flr				B Flr	
	Gross Exp Wall B	1.	T-		350	Fir		130	ir .		Fir 800		FIr 60		B FI 242	lr	B Fir		B Flr		B Flr		Flr		B Flr		Fir	
	Components			Sain 10 91	350	Fir	Gain	130	ir .	3 Gain	Fir 800	Gain	Flr	Gain	B FI 242		В	s Gain	В	Gain	В	Gain		Gain	В	Gain	Fir	ss Gain
	Components North Shaded	3.55	22.93	10.91	350	Fir		130	ir .		Fir 800	Gain	FIr 60	Gain	B FI 242	Ir oss Gain	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	s Gain	Fir	
	Components North Shaded East/West South	3.55 3.55 3.55	22.93 22.93 22.93	10.91 27.35 20.89	350 55	Fir		130	ir .	Gain	Fir 800		FIr 60		B FI 242	oss Gain	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	Gain	Fir	
	Components North Shaded East/West South Existing Windows	3.55 3.55 3.55 1.99	22.93 22.93 22.93 40.90	10.91 27.35 20.89 22.15	350 55	Fir		130 E	oss (Gain	Fir 600 Loss		Fir 60 Loss		242 La	oss Gain	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	s Gain	Fir	
	Components North Shaded East/West South Existing Windows Skylight	3.55 3.55 3.55 1.99 2.03	22.93 22.93 22.93 40.90 40.10	10.91 27.35 20.89 22.15 88.23	350 55	Fir		130 E	oss (Gain	Fir 600 Loss		Fir 60 Loss		242 Lu 24 10	oss Gain 550 656 229 209	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	Gain	Fir	
N	Components North Shaded East/West South Existing Windows	3.55 3.55 3.55 1.99	22.93 22.93 22.93 40.90	10.91 27.35 20.89 22.15	350 55	Loss 1261	1504	130 E	oss (752	Fir 600 Loss	0 501	Fir 60 Loss	6 188	242 La	oss Gain	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	Gain	Fir	
N	Components North Shaded East/West South Existing Windows Skylight Doors Net exposed walls A let exposed walls A	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50	22.93 22.93 22.93 40.90 40.10 20.35 4.78 9.58	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29	350 55	Loss 1261	1504	130 F	oss (752	Loss 24 550	0 501	Fir 60 Loss	6 188	242 24 10	oss Gain 550 656 229 209	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	s Gain	Fir	
N	Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A let exposed walls B Exposed Ceilings A	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22	22.93 22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29	350 55	Loss 1261	1504	130 F	oss (752	Loss 24 550	0 501	Fir 60 Loss	6 188	242 24 10	oss Gain 550 656 229 209	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	s Gain	Fir	
N	Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A let exposed walls B Exposed Ceilings A Exposed Ceilings B	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50	22.93 22.93 22.93 40.90 40.10 20.35 4.78 9.58	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29	350 55	Loss 1261	1504	130 F	oss (752	Loss 24 550	0 501	Fir 60 Loss	6 188	242 24 10	oss Gain 550 656 229 209	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	s Gain	Fir	
N I	Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A let exposed walls B Exposed Ceilings A Exposed Ceilors A Exposed Floors ductive Heatloss	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80	22.93 22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37 3.56 2.73	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29 0.64 1.66	350 55	Loss 1261	1504	130 F	825 449	752	Loss 24 550 276 1318	9 178	9 200	5 188 4 33	242 24 10	550 656 229 209 427 58 894 121	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	Gain	Fir	
N I	Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A let exposed Ceilings A Exposed Ceilings B Exposed Floors ductive HeatLoss Heat Loss	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80	22.93 22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37 3.56 2.73	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29 0.64 1.66 0.17	350 55	Loss 1261	1504	130 F	oss (752 61 2	Loss 24 550	0 501 178	Fir 60 Loss	188	242 24 10	oss Gain 550 656 229 209 427 58 894 121	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	Gain	Fir	
Foundation Cond	Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A let exposed walls B Exposed Ceilings A Exposed Ceilings B Exposed floors ductive Heatloss Heat Loss Heat Gain	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80	22.93 22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37 3.56 2.73 () or Abo	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29 0.64 1.66 0.17	350 55	Loss 1261 1410 2671	1504	130 F	825 449	752	Loss 24 550 276 1318	0 501 9 178 0 680	9 200	33	242 24 10	oss Gain 550 656 229 209 427 58 894 121	B Fir	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	Gain	Fir	
Foundation Cone Total Conductive Air Leakage	Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A let exposed Ceilings A Exposed Ceilings B Exposed Floors ductive HeatLoss Heat Loss	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80	22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37 3.56 2.73 () or Abo	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29 0.64 1.66 0.17 x	350 55	Loss 1261	1504	130 F	825 449	752 61 2	Loss 24 550 276 1318	0 501 9 178 0 680	Fir 600 Loss 9 200 51 244	33	242 24 10	oss Gain 550 656 229 209 427 58 894 121	B Fir	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	s Gain	Fir	
Foundation Conductive	Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A let exposed walls A Exposed Ceilings A Exposed Ceilings B Exposed Floors ductive Heatloss Heat Loss Heat Gain Heat Loss/Gain Case 1 Case 2	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 On Grade	22.93 22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37 3.56 2.73 () or Abo	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29 0.64 1.66 0.17 x	350 55	Loss 1261 1410 2671 1212	1504 191 1695 62	130 F	825 449 1275 578	752 61 2 813 30	Loss Loss 24 550 276 1318 1870 848	0 501 9 178 0 680 8 25	9 200 51 24-	33 33 32 32 34 38	242 24 10	oss Gain 550 656 229 209 427 58 894 121 2101 1044 953 38	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	Gain	Fir	
Foundation Cone Total Conductive Air Leakage	Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A let exposed cellings A Exposed Floors United Television Cellings A Exposed Cellings A Expose	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80	22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37 3.56 2.73 () or Abo	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29 0.64 1.66 0.17 x 0.0367 0.0367 0.08 11.88 0.08	350 55	Loss 1261 1410 2671	1504 191 1695 62	130 F	825 449	752 61 2	Loss 24 550 276 1318	0 501 9 178 0 680 8 25	Fir 600 Loss 9 200 51 244	33 33 32 32 34 38	242 24 10	oss Gain 550 656 229 209 427 58 894 121	B Fir Loss	S Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	i Gain	Fir	
Foundation Cone Total Conductive Air Leakage	Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A let exposed walls B Exposed Ceilings B Exposed Floors ductive Heatloss Heat Gain Heat Loss/Gain Case 1 Case 2 Case 3 Heat Gain People	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 On Grade	22.93 22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37 3.56 2.73 () or Abo	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29 0.64 1.66 0.17 x	350 55	Loss 1261 1410 2671 1212	1504 191 1695 62	130 F	825 449 1275 578	752 61 2 813 30	Loss Loss 24 550 276 1318 1870 848	0 501 9 178 0 680 8 25	9 200 51 24-	33 33 32 32 34 38	242 24 10	oss Gain 550 656 229 209 427 58 894 121 2101 1044 953 38	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	i Gain	Fir	
Foundation Com Total Conductive Air Leakage Ventilation	Components North Shaded East/West South Existing Windows Skylight Doors let exposed walls A let exposed Ceilings A Exposed Ceilings B Exposed Floors ductive Heatloss Heat Gain Case 1 Case 2 Case 3 Heat Gain People Appliances Loade	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 On Grade	22.93 22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37 3.56 2.73 () or Abo 0.4536 0.04 14.07 0.05	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29 0.64 1.66 0.17 x 0.0367 0.08 11.88 0.08 239 3420	350 55 295	Loss 1261 1410 2671 1212	1504 191 1695 62 140	130 L	825 825 449 1275 578	752 61 2 813 30	Loss Loss 24 550 1876 1319 1870 848	0 501 178 0 680 25 4 56 428	9 204 51 244 451 20-	3 188 4 33 0 221 4 8	242 Ld 244 110 211 187	oss Gain 550 656 229 209 427 58 894 121 2101 953 38	B Fir Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	Gain	Fir	
Foundation Com Total Conductive Air Leakage Ventilation	Components North Shaded East/West South Existing Windows Skylight Doors Net exposed walls A let exposed walls B Exposed Ceilings B Exposed Floors ductive Heatloss Heat Loss Heat Gain Heat Loss/Gain Case 1 Case 2 Case 3 Heat Gain People Appliances Loads Duct and Pipe loss 12,540	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 On Grade	22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37 3.56 2.73 () or Abo 0.4536 0.04 14.07 0.05 ercent	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29 0.64 1.66 0.17 x 0.0367 0.08 11.88 0.08 239 3420 10%	350 55 295	Loss 1261 1410 2671 1212	1504 191 1695 62 140	130 L	825 449 1275 578	752 61 2 813 30 67 855 (24 550 276 1315 1870 848	0 501 9 178 0 680 8 25 4 56 428	Fir 60 Fir Loss 9 204 454 454 20 20 677	3 188 4 33 0 221 4 8	242 Ld 244 110 211 187	oss Gain 550 656 229 209 427 58 894 121 2101 953 38 95 866	Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	s Gain	Fir	
Foundation Com Total Conductive Air Leakage Ventilation	Components North Shaded East/West South Existing Windows Skylight Doors Net exposed walls A let exposed walls B Exposed Ceilings B Exposed Floors ductive Heatloss Heat Loss Heat Gain Heat Loss/Gain Case 1 Case 2 Case 3 Heat Gain People Appliances Loads Duct and Pipe loss 12,540	3.55 3.55 3.55 1.99 2.03 4.00 17.03 8.50 59.22 22.86 29.80 On Grade	22.93 22.93 22.93 40.90 40.10 20.35 4.78 9.58 1.37 3.56 2.73 () or Abo 0.4536 0.04 14.07 0.05	10.91 27.35 20.89 22.15 88.23 2.75 0.65 1.29 0.64 1.66 0.17 x 0.0367 0.08 11.88 0.08 239 3420 10%	350 55 295	Loss 1261 1410 2671 1212	1504 191 1695 62 140	130 L	825 825 449 1275 578	752 61 2 813 30	Loss Loss 24 550 1876 1319 1870 848	0 501 178 0 680 25 4 56 428	Fir 60 Fir Loss 9 204 454 454 20 20 677	3 188 4 33 0 221 4 8	242 Ld 244 110 211 187	oss Gain 550 656 229 209 427 58 894 121 2101 953 38	Loss	s Gain	B Flr	Gain	B Flr	Gain	Flr	Gain	B Flr	s Gain	Fir	

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under

Division C subsection 3.2.5. of the Building Code. Individual BCIN:

Name Alak

David DaCosta

SB-12 Package
Package A1

38,778

22,870

btu/h

btu/h

Total Heat Loss

Total Heat Gain

Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643

e-mail dave@gtadesigns.ca

										e-man uav	e@gtadesigns.ca				
		Builder:	Bayview We	lington	Date:		February 15			Weather Data	a Bradford	44 -9.4	86 22 48.2		Page 5 ct # PJ-00204
2012 OBC		Project:	Green Valle	y East	Model:		Sonoma SD25-4 W	OB	System 1	Heat Loss ^	T 81.4 deg. F	Ht gain ^T	11 deg. F GTA:	Proje 2168 Layo	
	Level 3			MAST		ENS	BED	4 BATH	BED 3	BED 2	LAUN				
	ft. exposed wall A			31 A	10	A	12 A	6 A	24 A	12 A	Α	Α	Α	Α	Α
Run	ft. exposed wall B			В		В	В	В	В	В	В	В	В	В	В
	Ceiling height Floor area			8.0 331 Area	8.0 103	Area	8.0 108 Area	8.0 75 Area	8.0 136 Area	10.0 220 Area	8.0 78 Area	8.0 Area	8.0 Area	8.0 Area	8.0 Area
	xposed Ceilings A			331 A	103	A	108 A	75 A	136 A	220 A	78 A	Α	A	Α	Α
E	xposed Ceilings B			В		В	В	В	В	B	В	В	В	В	В
	Exposed Floors Gross Exp Wall A			Flr 248	80	Flr	Flr 96	Fir 48	4 Flr 192	147 Flr 120	Flr	Flr	Flr	Fir	Fir
	Gross Exp Wall B			_											
	Components North Shaded	R-Values Loss	Gain 22.93 10.91		Gain	Loss Gain	Loss	Gain Loss Ga	in Loss Gain	Loss Gain	Loss Gain	Loss Gair	n Loss Gain	Loss Gain	Loss Gain
	East/West		2.93 10.91		1231				26 596 711	40 917 109	14				
	South	3.55 2	2.93 20.89		11	252 23	0 16 367	334 7 161	146 8 183 167						
	Existing Windows		0.90 22.15 0.10 88.23												
	Skylight Doors		0.35 2.75												
	et exposed walls A		4.78 0.65	203 970	131 69	330 4	5 80 382	2 52 41 196	26 158 755 102	80 382 5	52				
	et exposed walls B exposed Ceilings A		9.58 1.29 1.37 0.64	331 455	212 103	142 6	6 108 148	69 75 103	48 136 187 87	220 302 14	1 78 107	50			
	xposed Ceilings B		3.56 1.66		212 100	142	0 100 140	, 03 73 103	40 100 107 07	220 302 14	70 101	30			
	Exposed Floors	29.80	2.73 0.17						4 11 1	147 402 2	25				
Foundation Cond	Heat Loss			2457		724	898	3 460	1733	2004	107				
Total Conductive	Heat Gain				1574	34	0	455	221 1068	131	2	50			
Air Leakage	Heat Loss/Gain Case 1		0.0367 0.03 0.08	742	58	218 1	2 271	17 139	8 523 39	605 4	18 32	2			
Ventilation	Case 2	1	4.07 11.88												
	Case 3 Heat Gain People	х	0.05 0.08	2 111	130 478	33 2	8 41	38 21 239	18 78 88 1 239			4			
	Appliances Loads	1 =.25 perce	nt 3420								0.5 4	28			
Level 3 HL Total	Duct and Pipe loss 11,551	Total F	10% IL for per room	3310		975	1209	619	2334	1 261 15 2960	144				
Level 3 HG Total			per room x 1.3		2912	49		973	321 1865			29			
-															
_	Level 4					_	_	_			_			_	
	ft. exposed wall A ft. exposed wall B			A B		A B	A B	A B	A B	A B	A B	A B	A B	A B	A B
	Ceiling height														
-	Floor area			Area		Area ^	Area	Area	Area A	Area	Area	Area	Area	Area A	Area
	xposed Ceilings A xposed Ceilings B			A B		A B	A B	A B	В	A B	A B	A B	A B	В	A B
	Exposed Floors			Flr		Fir	Fir	Flr	Fir	Fir	Flr	Flr	Flr	Fir	Flr
	Gross Exp Wall A Gross Exp Wall B														
		R-Values Loss	Gain	Loss	Gain	Loss Gain	Loss	Gain Loss Ga	in Loss Gain	Loss Gain	Loss Gain	Loss Gair	n Loss Gain	Loss Gain	Loss Gain
	North Shaded		2.93 10.91												
	East/West South		22.93 27.35 22.93 20.89												
	Existing Windows	1.99	0.90 22.15												
	Skylight Doors		0.10 88.23 0.35 2.75												
Ne	et exposed walls A		4.78 0.65												
Ne	et exposed walls B	8.50	9.58 1.29												
	xposed Ceilings A xposed Ceilings B		1.37 0.64 3.56 1.66												
	Exposed Floors		2.73 0.17												
Foundation Cond															
Total Conductive	Heat Loss Heat Gain														
Air Leakage	Heat Loss/Gain		0000 0.0367												
Ventilation	Case 1		0.00 0.08 4.07 11.88												
	Case 3		0.05 0.08												
	Heat Gain People Appliances Loads	1 =.25 perce	239 nt 3420												
	Duct and Pipe loss	1 =.25 perce	10%												
Level 4 HL Total	0		IL for per room												
Level 4 HG Total	0	Total HG	per room x 1.3							1					
														CD.	-12 Package

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under

Division C subsection 3.2.5. of the Building Code. Individual BCIN:

Name Holand ?

David DaCosta

SB-12 Package Package A1

System Design Option Exhaust only / forced air system

HRV WITH DUCTING / forced air system

Part 6 design

HRV simplified connection to forced air system

HRV full ducting/not coupled to forced air system

1 2

3 Х

4

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

Project # Layout #

Page 6 PJ-00204 JB-00000

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under

Division C subsection 3.2.5. of the Building Code. Individual BCIN: 32964 David DaCosta

Package: Project:	Package A1 Bradford	Model:	SD25-4 WOB	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	RESIDENTIAL MECHANICAL	VENTILATION DES	SIGN SUMMARY	
	For systems serving one dwelling unit & con	iorning to the Ontario Buildin	ng Code, O.reg 332/12	
	Location of Installation	Total \	Ventilation Capacity 9.32.3.3	(1)
Lot #	Plan #	Bsmt & Master Bdrm		
Township	Bradford	Other Bedrooms Bathrooms & Kitchen	3 @ 10.6 cfm 1 4 @ 10.6 cfm	
Roll #	Permit #	Other rooms	4 @ 10.6 cfm Total	42.4 cfm
Address				
		Principa	l Ventilation Capacity 9.32.3	.4(1)
Name	Builder	Master bedroom	1 @ 31.8 cfm	31.8 cfm
Address	Bayview Wellington	Other bedrooms	3 @ 15.9 cfm Total	
City			. Cidi	
City		Prin	ncipal Exhaust Fan Capacity	
Tel	Fax	Make	Model	Location
	Installing Contractor	LifeBreath	RNC155	Base
Name	Installing Contractor	132 cfm		Sones or Equiv.
Address			Heat Recovery Ventilator	
		Make	LifeBreath	
City		Model	RNC155	
Tel	Fax	Sensible efficiency @	132 cfm high	80 cfm low 71%
101	I UX	Sensible efficiency @		75%
		Note: Installer to ba	alance HRV/ERV to within 10 p	ercent of PVC
, , ,	Combustion Appliances 9.32.3.1(1)	Supp	lemental Ventilation Capacit	y
a) <u>x</u> b)	Direct vent (sealed combustion) only Positive venting induced draft (except fireplaces)	Total ventilation capa	ocity.	159.0
c)	Natural draft, B-vent or induced draft fireplaces	Less principal exhaus		79.5
d)	Solid fuel (including fireplaces)	REQUIRED supplem		79.5 cfm
e)	No combustion Appliances		, ,	
	Heather Overton		upplemental Fans 9.32.3.5.	0
	Heating System Forced air	Location Ens	cfm Model 50 XB50	Sones 0.3
X	Non forced air	Bath	50 XB50	0.3
	Electric space heat (if over 10% of heat load)	Buin	oc Aboc	0.0
	House Type 9.32.3.1(2)			
l x	Type a) or b) appliances only, no solid fuel	all fans HVI listed	Make Broan	or Equiv.
II	Type I except with solid fuel (including fireplace)			·
III	Any type c) appliance		Designer Certification	
IV Other	Type I or II either electric space heat Type I, II or IV no forced air	I hereby certify that the in accordance with the	nis ventilation system has beer ne Ontario Building Code.	n designed

	Designer (Certification	
, ,	hat this ventilatio rith the Ontario B	n system has been uilding Code.	designed
Name	David D	aCosta	
Signature	Hans	166	:
HRAI#	5190	BCIN#	32964
Date	February	15, 2018	

♦GTA\DESIGNS

Energy Efficiency Design Summary: Prescriptive Method

(Building Code Part 9, Residential)

Page 7

Project # PJ-00204 Layout # JB-00000

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

This form is used by a designer to demonstrate that the energy efficiency design of a house complies with the building code using the prescriptive method described in Subsection 3.1.1. of SB-12. This form is applicable where the ratio of gross area of windows/sidelights/skylights/glazing in doors and sliding glass doors to the gross area of peripheral walls is not more than 22%.

				For use	e by Princip	oal Authori	ty					
Application	n No:						tification Nun	mber				
Α.	Project Information											
Building nu	umber, street name			Sonom	a 4			Unit nu	umbe	er	Lot/Con	
			S	D25-4 \	WOB							
Municipalit	y Bradford			Postal co	de	Reg. Plan	number / oth	ner des	cripti	on		
	2.44.0.4											
В.	Prescriptive Compliance [indica	te the bu	ilding cod	e complia	nce packa	ge being e	employed in t	the ho	use (design]		
	SB-12 Prescriptive (input design pa			Pack	age A1				Table:	3.1.1.2.	<u> </u>	
C.	Project Design Conditions											
	Climatic Zone (SB-1):		Heat. E	quip. Ef	ficiency			Sp	ace	Heating Fu	iel Sourc	e
V	Zone 1 (< 5000 degree days)		√ ≥ 92	% AFUE		V	Gas	[Propane		Solid Fuel
	Zone 2 (≥ 5000 degree days)		□ ≥8	4% < 929	% AFUE		Oil	[Electric		Earth Energy
R	Ratio of Windows, Skylights & Glas	s (W, S	& G) to \	Nall Are	а			Othe	er B	uilding Cha	racterist	ics
0	(Malla 000 40 m2 m 0505 4	612				☐ Log/F	Post&Beam			ICF Above G	Grade	☐ ICF Basement
Area of	$fWalls = 328.42 \text{ m}^2 \text{ or } 3535.1$	ft²	W,S &	G % =	<u>10%</u>	☐ Slab-	on-ground		V	Walkout Bas	sement	
						☑ Air C	onditioning		П	Combo Unit		
Area of V	$V, S \& G = 34.466 \text{ m}^2 \text{ or } 371.0$	ft²	Utilize V	Vindow	☐ Yes	☐ Air S	ourced Heat	t Pump	(AS	SHP)		
			Avera	aging	☑ No	☐ Grou	nd Source H	Heat Pu	ump	(GSHP)		
D.	Building Specifications [provide	values a	nd ratings	of the er	nergy effici	ency comp	onents prop	osed]				
	Energy Efficiency Substitutions											
	ICF (3.1.1.2.(5) & (6) / 3.1.1.3.(5))											
	Combined space heating and domestic	water he	ating syst	ems (3.1	.1.2(7) / 3.	1.1.3.(7))						
	Airtightness substitution(s)		Table 3.1	.1.4.B	Required:					Permitted S	ubstitution	:
	Airtightness test required		Table 3.1	140	Required:					Permitted S	ubstitution	:
(F	Refer to Design Guide Attached)		Table 3.1	.1.4.0	Required:					Permitted S	ubstitution	:
	Building Component		mum RS Maximun				Build	ding C	om	ponent		Efficiency Ratings
Therma	l Insulation	Non	ninal	Effe	ective	Windov	vs & Door	rs Pro	vide	U-Value ⁽¹⁾ or	ER rating	•
Ceiling w	rith Attic Space	6	0			Window	s/Sliding Gl	lass D	oors	3		1.6
Ceiling w	rithout Attic Space	3	1			Skylights	5					2.8
Exposed	Floor	3	i1			Mechar	nicals					•
Walls Ab	ove Grade	22				Heating	Equip.(AFU	JE)				96%
Basemer	nt Walls		20.0ci			HRV Eff	ciency (SR	E% at	0°C)		75%
Slab (all	>600mm below grade)	2	х			DHW He	eater (EF)					0.80
Slab (edg	ge only ≤600mm below grade)	1	0			DWHR (CSA B55.1	(min. 42	2% e	fficiency))		#Showers 2
Slab (all	≤600mm below grade, or heated)	1	0			Combine	ed Heating	Syste	m			
(1) U valu	e to be provided in either W/(m²·K) or Bt	u/(h·ft·F) k	out not bot	h.								
E.	Designer(s) [name(s) & BCIN(s), if	applicable	e, of perso	n(s) prov	viding inform	mation her	ein to substa	antiate	that	design meets	s building o	code]
Name					BCIN		Signature					
	David DaCosta				329	964			Þ	lane .	14C=	₹ .

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

Page PJ-00204 Project # Layout # JB-00000

System 1 Package: Package A1 System: **Bradford** Model:

Project: **SD25-4 WOB** Air Leakage Calculations **Building Air Leakage Heat Loss Building Air Leakage Heat Gain** В LRairh Vb **HLleak** В LRairh Vb HG^T **HG Leak** 0.018 0.337 25590 81.4 12651 0.018 0.083 25590 11 421 Levels Air Leakage Heat Loss/Gain Multiplier Table (Section 11) 1 2 3 4 Level Building Level Conductive Air Leakage Heat Loss Level (LF) (LF) (LF) (LF) Factor (LF) **Heat Loss** Multiplier 8000 0.7906 1.0 0.6 0.5 0.4 Level 1 0.5 Level 2 0.4536 8366 0.3 0.3 0.4 0.3 12651 0.3019 Level 3 8381 0.2 0.0000 Level 4 0 0 0.1 Air Leakage Heat Gain Levels this Dwelling **HG LEAK** 421 0.0367 3 **BUILDING CONDUCTIVE HEAT GAIN** 11457 **Ventilation Calculations Ventilation Heat Loss Ventilation Heat Gain** /ent /ent Ventilation Heat Loss Ventilation Heat Gain PVC (1-E) HRV **HLbvent** PVC HG^T **HGbvent** 1118 944 1.08 79.5 81.4 0.16 1.1 79.5 11 Case 1 Case 1 Ventilation Heat Loss (Exhaust only Systems) Ventilation Heat Gain (Exhaust Only Systems) Case 1 - Exhaust Only Case 1 - Exhaust Only Multiplier Case Level LF HLbvent LVL Cond. HL Multiplier **HGbvent** 944 0.08 Level 1 8000 Building 11457 0.07 0.5 Level 2 0.3 8366 0.04 1118 8381 Level 3 0.2 0.03 Level 4 0 0 0.00 Case 2 Case 2 **Ventilation Heat Loss (Direct Ducted Systems) Ventilation Heat Gain (Direct Ducted Systems)** Case Case Multiplier Multiplier HL^T (1-E) HRV HG^T С 14.07 11.88 1.08 1.08 0.16 Case 3 Case 3 Ventilation Heat Loss (Forced Air Systems) Ventilation Heat Gain (Forced Air Systems) **HLbvent** Multiplier Vent Heat Gain Multiplier **HGbvent** HG*1.3 **Total Ventilation Load** 1118 0.05 944 0.08 944 Foundation Conductive Heatloss Level 1 5085 1490 Watts Btu/h **Foundation Conductive Heatloss Level 2** Watts Btu/h

Envelope Air Leakage Calculator

Supplemental tool for CAN/CSA-F280

Weather Station	Description
Province:	Ontario
Region:	Bradford ▼
Weather Station Location:	Open flat terrain, grass
Anemometer height (m):	10
Local Shie	elding
Building Site:	Suburban, forest
Walls:	Heavy ▼
Flue:	Heavy ▼
Highest Ceiling Height (m):	6.90
Building Conf	iguration
Type:	Semi-Detached
Number of Stories:	Two
Foundation:	Full
House Volume (m³):	724.71
Air Leakage/V	entilation
Air Tightness Type:	Present (1961-) (ACH=3.57)
Custom BDT Data:	ELA @ 10 Pa. 322.44 cm²
Custom BDT Data.	3.57 ACH @ 50 Pa
Mechanical Ventilation (L/s):	Total Supply: Total Exhaust:
	39.75 39.75
Flue #:	#1 #2 #3 #4
Diameter (mm):	0 0 0 0
Heating Air Leakage Rate (ACH/H):	0.337
Cooling Air Leakage Rate (ACH/H):	0.083

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Weat	her Sta	tion Description
Province:		Ontario
Region:		Bradford ▼
	Site D	escription
Soil Conductivity:		High conductivity: moist soil ▼
Water Table:		Normal (7-10 m, 23-33 Ft) ▼
Fou	ındatio	n Dimensions
Floor Length (m):	15.10	
Floor Width (m):	4.56	
Exposed Perimeter (m):	23.77	
Wall Height (m):	2.74	
Depth Below Grade (m):	1.33	Insulation Configuration
Window Area (m²):	0.56	
Door Area (m²):	1.95	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ation Loads
Heating Load (Watts):		1364

Residential Slab on Grade Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Weat	her Sta	tion Description
Province:		Ontario
Region:		Bradford ▼
	Site D	escription
Soil Conductivity:		High conductivity: moist soil ▼
Water Table:	Normal (7-10 m, 23-33 Ft)	
	Floor D	Dimensions
Length (m):	6.17	
Width (m):	2.51	
Exposed Perimeter (m):	8.53	Insulation Configuration
	Radi	iant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ation Loads
Heating Load (Watts):		126

ZONE I CO
SIGNATURE OF DESIGNER

ZONE I CO
PACKAGE "AI" RE

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

NOTES

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO

BUILDING CODE.
ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES.
ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY)
INSULATE DUCTS IN UNCONDITIONED SPACES RI2 UNDERCUT
ALL DOORS I" MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS.
ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE
RESPONSIBILITY OF GTA DESIGNS.

GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

2985 DREW ROAD SUITE 202,

MISSISSAUGA, ONT. L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA WEB: WWW.GTADESIGNS.CA

HEAT-LOSS	BTU/HR.
38,778	_ 10/////
UNIT MAKE	OR EQUAL.
AMANA	
UNIT MODEL	OR EQUAL.
AMEC96-0603B	NA
UNIT HEATING INPUT	BTU/HR.
60,000	
UNIT HEATING OUTPUT	BTU/HR.
57,600	
A/C COOLING CAPACITY	TONS.
2.0	
FAN SPEED	CFM
1170	

# OF RUNS	S/A	R/A	FANS
3RD FLOOR			
2ND FLOOR	9	4	2
IST FLOOR	6	1	2
BASEMENT	5	-	
SECOND FLOOR			

2168

M3

DD

AΜ

JB-00000

FEBRUARY 15, 2018

CLIENT:
BAYVIEW WELLINGTON

MODEL:
SD25-4 WOB

SONOMA 4

PROJECT:
GREEN VALLEY EAST
BRADFORD,ONT.

3/16" = 1'-0"

DUCT CONNECTION FLEX DUCT LOW/HIGH WALL/KICK SUPPLY DIFFUSER TO JOIST LINING HRV EXHAUST GRILLE **a**|⊶ RIGID ROUND DUCT SUPPLY AIR PIPE RISER 8 SUPPLY DIFFUSER VOLUME DAMPER RETURN ROUND DUCT

RETURN AIR PIPE RISER

RETURN AIR GRILLE (SIZE INDICATED ON DRAWING) RETURN AIR RISER UP TO FLOOR ABOVE RETURN AIR FROM BASEMENT SECOND FLOOR

R.A. ➀

SUPPLY AIR RETURN AIR THERMOSTAT PRINCIPAL EXHAUST FAN SWITCH

PARTIAL BASEMENT PLAN 9R OR MORE W.O.D. CONDITION

PARTIAL GROUND FLOOR PLAN 9R OR MORE W.O.D. CONDITION

THE UNDERSIGNED HAS REVIEWED AND TAKES RESPONSIBILITY FOR THIS DESIGN ON BEHALF OF GTA DESIGNS INC. AND HAS THE QUALIFICATIONS AND MEETS THE REQUIREMENTS SET OUT IN THE BUILDING CODE TO BE A DESIGNER

QUALIFICATION INFORMATION REQUIRED UNLESS DESIGN IS EXEMPT UNDER DIVISION C 3.2.5.1 OF THE ONTARIO BUILDING CODE

OBC 2012

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY) INSULATE DUCTS IN UNCONDITIONED SPACES RI2 UNDERCUT ALL DOORS I" MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS.
ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE

RESPONSIBILITY OF GTA DESIGNS. GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

2985 DREW ROAD SUITE 202, MISSISSAUGA, ONT.

L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA WEB: WWW.GTADESIGNS.CA

HEAT-LOSS	BTU/HR.
38,778	·
UNIT MAKE	OR EQUAL.
AMANA	
UNIT MODEL	OR EQUAL.
AMEC96-0603B	NA
UNIT HEATING INPUT	BTU/HR.
60,000	
UNIT HEATING OUTPUT	BTU/HR.
57,600	
A/C COOLING CAPACITY	TONS.
2.0	
FAN SPEED	CFM
1170	
	•

# OF	RUNS	S/A	R/A	FANS
3RD F	3RD FLOOR			
2ND F	FLOOR	9	4	2
IST F	LOOR	6	1	2
BASEMENT		5	ı	
FLOOR PLAN:				
PARTIAL PLAN(S)				
DRAWN BY: CHECKED: SQFT				
ΔΜ	DD I	2168		

M4

JB-00000

FE	BRUARY 15, 2018
BAYV	IEW WELLINGTON
MODEL:	SD25-4 WOB SONOMA 4

GREEN VALLEY EAST BRADFORD, ONT. 3/16" = 1'-0"

≥18 **PORTICO**

PART. GROUND FLOOR PLAN 'B'

OBC 2012

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.I.I.2.A

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO

THE UNDERSIGNED HAS REVIEWED AND TAKES RESPONSIBILITY FOR THIS DESIGN ON BEHALF OF GTA DESIGNS INC. AND HAS THE QUALIFICATIONS AND MEETS THE REQUIREMENTS SET OUT IN THE BUILDING CODE TO BE A DESIGNER QUALIFICATION INFORMATION Required unless design is exempt under Division C 3.2.5.1 of the

ONTARIO BUILDING CODE

BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY) INSULATE DUCTS IN UNCONDITIONED SPACES RI2 UNDERCUT ALL DOORS I" MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS. ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE

RESPONSIBILITY OF GTA DESIGNS. GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

GTADESIGNS

2985 DREW ROAD SUITE 202,

MISSISSAUGA, ONT. L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA WEB: WWW.GTADESIGNS.CA

HEAT-LOSS 38,778	BTU/HR.
UNIT MAKE AMANA	OR EQUAL.
UNIT MODEL AMEC96-0603BN	OR EQUAL.
UNIT HEATING INPUT 60,000	BTU/HR.
UNIT HEATING OUTPUT 57,600	BTU/HR.
A/C COOLING CAPACITY 2.0	TONS.
FAN SPEED II70	CFM

		_			
I	# 05	RUNS	S/A	R/A	FANS
	# 05	KUNS	S/A R/A FANS		FANS
	3RD FLOOR				
	2ND FLOOR		9	4	2
	IST FLOOR		6	1	2
	BASEMENT		5	1	
	FLOOR PLAN: PARTIAL PLAN(S)				
	DRAWN BY:	CHECKED: DD	2168		
	JB-0		drawing no. M5		

CLIENT: BAYVIEW WELLINGTON
SD25-4 WOB SONOMA 4
PROJECT: GREEN VALLEY EAST BRADFORD,ONT.
3/16" = 1'-0"

FEBRUARY 15, 2018

1170

JB-00000